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Bo Å. S. Gustafson is a Professor of Astronomy at the University of Florida and Di-
rector of its Laboratory for Astrophysics. Besides electromagnetic scattering theory and
experiments, his research interests include planetary systems formation, the dynamics and
physical evolution of cosmic grains, meteoroids, comets and asteroids. A developer of the
original concepts for the GIADA instrument on ESA’s Rosetta mission, Gustafson is a
CoI of several NASA and ESA space instruments/missions past and present. He served
on numerous international panels or expert groups including NASA, UNESCO, and the
UN and as president of International Astronomical Union Commission 21. In 1996 the
International Astronomical Union named Asteroid 4275 BoGustafson in recognition of
his work to develop a model for primitive solar system solids as aggregate structures of
evolved interstellar grains, a work only possible because of scaled analogue experiments
in the two classical laboratories described in Chapter 1. In 1995 Gustafson designed and
built the next generation scaled laboratory facility at the University of Florida. As Pres-
ident of DataGrid Inc. a developer of high-precision Global Navigation Satellite System
(GNSS) receivers, land management hardware/software systems and national resource
management consulting, as well as a member of the University of Florida’s Center for
African Studies, Gustafson’s activities also include the development and introduction of
advanced technology and science to address problems in the developing world. Gustafsons
contribution to science and technology was recognized through the ID Hall of Fame award
at the 2008 ID WORLD International Congress.

Edith Hadamcik is an associated scientist at Service d’Aéronomie (1999–). She has been
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Preface

This fourth volume of Light Scattering Reviews is composed of three parts. The
first part is concerned with theoretical and experimental studies of single light scat-
tering by small nonspherical particles. Light scattering by small particles such as,
for instance, droplets in the terrestrial clouds is a well understood area of physical
optics. On the other hand, exact theoretical calculations of light scattering pat-
terns for most of nonspherical and irregularly shaped particles can be performed
only for the restricted values of the size parameter, which is proportional to the
ratio of the characteristic size of the particle to the wavelength λ. For the large
nonspherical particles, approximations are used (e.g., ray optics). The exact theo-
retical techniques such as the T-matrix method cannot be used for extremely large
particles, such as those in ice clouds, because then the size parameter in the vis-
ible x = 2πa/λ → ∞, where a is the characteristic size (radius for spheres), and
the associated numerical codes become unstable and produce wrong answers. Yet
another problem is due to the fact that particles in many turbid media (e.g., dust
clouds) cannot be characterized by a single shape. Often, refractive indices also
vary. Because of problems with theoretical calculations, experimental (i.e., labo-
ratory) investigations are important for the characterization and understanding of
the optical properties of such types of particles.

The first paper in this volume, written by B. Gustafson, is aimed at the descrip-
tion of scaled analogue experiments in electromagnetic scattering. Such experiments
for understanding optical properties of small particles (say, of submicrometer size)
are based on the fact that light is composed of electromagnetic waves. Electromag-
netic scattering (for a given refractive index m) depends not on the size of particles
a and the wavelength λ of the incident radiation separately but on their ratio or
size parameter x = 2πa/λ. Therefore, one can deduce optical properties of small
particles from measurements of microwave scattering by large macroscopic objects,
which are much simpler to manipulate as compared to the tiny aerosol particles.
The pioneer in this area was the late Professor M. Greenberg, who appears in
Fig. 1.1 of Gustafson’s paper setting up one the objects used for microwave scat-
tering experiments. The main problem here is to find materials having the same
refractive indices in the optical and microwave ranges. This issue is discussed by
Gustafson in considerable detail. He also describes several scaled analogue scatter-
ing laboratories and reviews results obtained for the elements of the Mueller matrix
of the studied objects.

The second paper of this volume (E. Hadamcik et al.) deals with the experi-
mental studies of light scattering by collections of nonspherical solid particles with
emphasis on the atmospheric and astronomical applications. The experiments were
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performed on levitated particles at normal atmospheric pressure, and also in con-
ditions of reduced gravity. Measurements at reduced gravity can be made within
seconds for any kind of particles without discrimination by weight or composition.
The microgravity technique is suitable for particles with characteristic sizes larger
than about 10 μm. The measurements are then performed onboard of aircraft oper-
ating in parabolic flights. An imaging technique is used to detect the scattered light
using, in particular, a CCD sensor with 752 × 582 pixels. Measurements of both
intensity and degree of polarization of the scattered light are presented and dis-
cussed in this paper. The results are given as functions of the phase angle α = π−θ,
where θ is the scattering angle, and also as functions of the size parameter for a
vast range of shapes and chemical compositions of particles. This data can be used
for the development of realistic models of optical properties of particles that exist
in nature.

In the third paper of Part I aimed at the description of single scattering effects,
S. Savenkov describes the structure, symmetry relations, and information content
of Mueller matrices. Mueller matrices describe the transformation of the Stokes
parameters of a beam of radiation upon scattering of that beam. An important
objective is to extract information on the properties of the scattering medium from
the Mueller matrices. A goal of this paper is to present in a systematic way the main
properties of Mueller and Jones matrices that are experimentally or numerically
derived. Both single scatterers and collections of randomly oriented particles are
considered. This paper provides a review of the different polarimetric equivalence
(decomposition) theorems, and highlights details about their application. Useful
applications of the results presented in this paper can be made in lidar studies of
ocean and atmosphere.

Part I of this volume is concluded by the paper of T. Rother, who describes a
quite general technique for theoretical studies of light scattering by nonspherical
particles based on the method of Green functions. Waterman’s T-matrix approach
has become very popular and widely used in many light scattering applications,
where future research is needed to deal with nonspherical particles (e.g., in optics
of desert dust and biological media). The author clarifies the relationship between
the T-matrix and Green function methods introducing the interaction operator
describing the interaction of the free-space Green function with the surface of the
light scattering object. He shows that the Green function method can be used to
examine the symmetry and unitarity of the T-matrix at a purely mathematical
level. The consideration is restricted to homogeneous and isotropic scatterers. The
study is based on the exclusive use of the spherical coordinate system, although
the general case of light scattering by an arbitrarily shaped particle is also consi-
dered. The general results presented in the paper can be used for the development
of particular approximate and numerical techniques for the solution of a light scat-
tering problem for the case of objects with arbitrary shapes. This study is also of
importance for improving our understanding of some general properties of wave
scattering phenomena.

The second part of the book is aimed at theoretical studies of multiple light
scattering phenomena. It starts with the paper by A. Davis et al. describing new
techniques for studying light propagation in dense clouds at wavelengths where
water droplets are essentially non-absorbing. This survey is entirely based on the
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theory of space-time Green functions for multiple scattering that can be computed
analytically in the diffusion (i.e., small mean-free-path) limit of radiative transfer.
However, the validity of this popular approximation is constantly checked against
accurate numerical (Monte Carlo) solutions of the corresponding time-dependent
3D radiative transfer problems over a broad range of opacities. The localized and/or
pulsed sources considered can be internal or on a boundary; receivers can also be
inside or, as is naturally required in cloud remote sensing, outside the medium.
Techniques that account for the internal variability of the cloud as well as the di-
rectionality of the laser or solar source are presented. Moment-based methods are
applied to the emerging technologies of high-resolution differential absorption spec-
troscopy of sunlight in the oxygen A-band and of multiple-scattering cloud lidar
from below, inside or above the cloud layer. In addition, more established techniques
in passive cloud remote sensing are revisited productively from a Green-function
perspective. Finally, the power of this unified theory for remarkably different obser-
vational phenomena is illustrated by invoking possible diagnostics of turbid media
beyond clouds.

The paper by A. Klose is aimed at studies of luminescence in biological tissue.
In most applications of radiative transfer, only the case of monochromatic (elas-
tic) scattering is considered. However, in reality luminescence/fluorescence effects
occur in a broad range of materials. One therefore needs to take into account that
a scattering medium has the capability of selective absorption of light at one spec-
tral interval with emission at other frequencies. In this case, the scattering matrix
describes not only the angular pattern of light scattering by a medium but also
must include a description of the frequency change in the inelastic scattering. The
exact equations describing these processes are quite complex. However, they can
be solved using a range of numerical and approximation techniques discussed by
the author. The author considers radiative transfer in fluorescence systems both
in steady-state, in time and in frequency domains. In particular, he formulates a
system of two separate time-dependent radiative transfer equations for the exci-
tation light at the wavelength λex and the emission at the wavelength λem. Their
simultaneous solution leads to a description of radiative transfer phenomena in
light scattering media composed of particles capable to produce effects of selective
absorption and emission (fluorescence). Various numerical techniques for the solu-
tion of the problem at hand are discussed by the author in great detail. The results
presented are of considerable interest for both radiative transfer theory, and also
for applications (e.g., in the field on biomedical optics). In particular, the author
describes optical molecular imaging of small animals based on luminescence, in-
stead of intrinsic absorption properties of tissue. Luminescent imaging probes are
either administered from outside or genetically expressed inside a small living an-
imal. The results presented in this paper are of considerable importance, e.g., for
the development of noninvasive methods in cancer diagnostics.

The paper by N. Rogovtsov and F. Borovik is concerned mostly with the math-
ematics of radiative transfer. They derive an analytical solution of the radiative
transfer equation for some specific types of light scattering media. The techniques
they use to solve the characteristic equation of the radiative transfer describing the
light field deep inside the plane-parallel medium are covered in great detail. In this
chapter, the qualitative and constructive mathematical theory of the classical vari-
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ant of the characteristic equation and reduced characteristic equations of radiative
transfer theory is presented. This theory is used as a basis for correct and effec-
tive methods for solving characteristic equations and boundary-value problems of
radiative transfer theory in an analytical form in the case of arbitrary phase func-
tions (in particular for phase functions highly peaked in the forward direction). The
new theory substantially differs from the qualitative mathematical theory of char-
acteristic equations constructed on the basis of ideas and methods of functional
analysis and Case’s method. It is based on the extensive use of classical results
from mathematical analysis, difference equation theory and continuous fractions
theory. As an application of the new theory, rigorous general analytical expressions
for all azimuthal harmonics of Green function of radiative transfer equation are
obtained for the case of a plane-parallel infinite turbid medium. In addition, an
effective algorithm for calculating the azimuthally averaged reflection function and
the reflection function of a plane-parallel semi-infinite turbid medium is presented.
Results of numerical calculations using the algorithm developed here are given for
the specific case of water clouds.

The final part of the book, Part III, is aimed at the description of dynamic and
static light scattering used for studies of turbid media such as suspensions of par-
ticles in liquids and air. P. Zakharov and F. Scheffold discuss the theoretical foun-
dations and experimental implementations of dynamic light scattering techniques
used for diagnostics of the media of various origin – from colloidal suspensions to
the moving red blood cells in the living organism. These techniques explore cor-
relation properties of scattered coherent light in order to uncover the dynamical
characteristics of underlying systems. Special attention is devoted to the recent
developments of the space and time resolved techniques, which extend the range
of applications of dynamic scattering methods with the imaging of heterogeneous
media and analysis of non-stationary processes.

To conclude this book, R. P. Singh gives a comprehensive review of different
methods to measure properties of aerosols in a controlled environment. Aerosols
play many complex roles in environmental dynamics and climate change producing
cooling at some places while warming at others, creating clouds that rain and at
times making clouds which would not rain. In all these cases, aerosol size is the
single most important parameter that determines its dispersion and a host of other
properties. The article deals with optical sizing of aerosols using static as well
as dynamic light scattering, and compares them with other methods employed for
sizing of the particles. A review of light scattering methods used for particle sizing is
provided. The author describes experiments designed to investigate aerosols under
controlled conditions of humidity, temperature and concentration, and he points
out the dearth of work in this area.

In summary, the results presented in this volume show that the optics of light
scattering media remains an important area of applied research with many new
exciting developments ahead.

This volume of Light Scattering Reviews commemorates the lives of two out-
standing scientists, Gustav Mie (1868–1957) and Peter Debye (1884–1966), who
made important contributions to the optics of light scattering media. The light
scattering community indeed celebrates now the centennials of the publication
in Annalen der Physik of their classic papers on light scattering (G. Mie, 1908:
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Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen, Annalen der
Physik, 330, 377–445; P. Debye, 1909: Der Lichtdruck auf Kugeln von beliebigem
Material, Annalen der Physik, 335, 57–136). These papers are of not only historic
importance. Even now, 100 years after their publication, they remain relevant and
inspirational.

Bremen, Germany Alexander A. Kokhanovsky
October, 2008



Part I

Single Light Scattering



1 Scaled analogue experiments in electromagnetic
scattering

Bo Å. S. Gustafson

1.1 Introduction

Bertrand Russell famously contemplated a table: ‘depending upon the angle one
has upon looking at it, and the way the light and shadows fall across it, it will
appear one way to one observer, another way to another. Since no two people can
see it from precisely the same point of view, and since the light falls on it differently
from different points of view, it will not look the same to anyone,’ he noted, and
the philosopher asked ‘But if that is so, does it make any sense to say what the real
shape (or color, or texture) the table REALLY is?’ To the physicist it makes sense
to deduce as many properties of an object as possible and to predict what it would
look like under different observing conditions. These are the inverse respectively
direct problems of electromagnetic scattering. It is interesting that it is through
experience acquired by observing (and active ‘experimentation’ in part through
play) that humankind and other life forms develop the ability to deduct what their
observations signify, and interpretation requires no theoretical knowledge. This
illustrates that observations and ‘trial-and-error’ experience suffice to work out the
inverse problem in scattering theory to some level that has practical use, at least
in the realms of geometric optics where the physics of interaction simplify.

Deductive reasoning combined with systematic observations allowed some of
the first recorded insights into what we now know as electromagnetic scattering.
Aristotle observed how rainbows, solar halos and several other atmospheric phe-
nomena depend on the geometry with respect to the light source and that the same
observable features occur in moonlight as in sunlight. He concluded correctly that
they result from a sort of reflection and that illumination of the reflecting object(s)
does not depend on the observer. Euclid’s experiments with mirrors and reflection
demonstrated that light travels in straight lines between reflections. His experi-
ments appear to have been conceptionally simple and free from a priori assump-
tions. Ptolemy established an early de facto laboratory standard as he measured
the path of a ray of light from air to water, from air to glass, and from water to
glass and tabulated the relationship between the incident and refracted rays. His
systematic and quantitative measurements belong to a first generation of exper-
iments that took advantage of Euclid’s results although they did not depend on
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insights gained from theoretical models.1 Like Ptolemy, most modern researchers
design their experiments using insights gained from earlier experiments and from
theory to probe ever further into the unknown. Theoretical computing progress de-
pends on technology and engineering advances similarly to progress in experimental
and observation capabilities. Theoretical modeling and reasoning along with exper-
iments and observations developed into interdependent tools in a comprehensive
process.

The role of experiments has long been to yield the true answer to a specific
question when answers either cannot be obtained from theory or depend on some
inadequately tested hypothesis and therefore cannot be relied upon until confirmed
by experiment. We also take recourse to the laboratory when, as with the scattering
by clouds of particles involving broad ranges of parameter space, the solution may
require prohibitive amounts of theoretical calculations. A third class is when the
exact parameters to the scattering problem (refractive indices, shapes or other
relevant parameters) remain undefined, such as for collected soil samples or for
aerosols. Observations are a class when control over the experimental parameters
is confined to the observing parameters at best and may naturally fit in as a fourth
class in this sequence. However, an important distinction is that observations give
answers to questions that may be unknown while experiments are attempts at
posing and controlling the questions to varying degree depending on the class.

Scaled experiments use particle models specifically made to represent a particle
in the scattering problem posed. The method is therefore applicable to well posed
problems involving known particle parameters and is primarily used to test and
extend theoretical solutions to address the first type of problem listed above.

1.2 Theoretical basis for scaled electromagnetic experiments

Scaled electromagnetic experiments build on the findings of classical electrodynam-
ics. Obtained from experiments and refined throughout the nineteenth century, a
set of four partial differential equations attributed to Gauss, Faraday and Ampère
describe the properties of the electric and magnetic fields and relate them to their
sources, the charge density and current density. Together they form the basis of clas-
sical electrodynamics and are collectively known as Maxwell’s equations. Maxwell
used the equations to derive the electromagnetic wave equation and show that light
is an electromagnetic wave. The classic electrodynamics concept of electromagnetic
radiation and most modern solutions to its propagation and scattering therefore are
direct consequences of experimental findings summarized in the form of Maxwell’s
equations.

The idea of using scaled models and scaled frequencies to study electromagnetic
scattering dates back at least to the late 1940s (Sinclair, 1948). But the scaling in
size and frequency is implicit in the formulation of the Mie-solution where parti-
cle dimensions are expressed in units of the wavelength using a dimensionless size
parameter x instead of absolute units. Use of dimensionless size parameters in clas-
sical electrodynamics based formulations as standard practice can be traced back
to well before the Mie-solution. This is since Maxwell’s equations themselves only

1See works by for example Sayili (1939) and Herzberger (1966) for historical accounts.
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contain dimensions in units of the wavelength. Experimental scattering results are
also usually reported in terms of a size parameter. This generalizes the response
similarly to the way theoretical results are reported and facilitates comparison
between works. It follows that the laboratory simulation of any electromagnetic in-
teraction problem can be scaled to any particle size or region of the electromagnetic
spectrum and the choice of laboratory wavelength is a matter of convenience.

There are, however, a few known complications. One is the requirement that the
material of a scaled object must be represented using an analogue material with
the same optical properties at the laboratory frequency as those of the replicated
material at the original frequency. Analogue materials can often be found or may
be produced from a mixture of standard compounds. However, there may be a
need for multiple scale models made from a range of analogue materials to study
color effects near absorption/emission lines and the experiment may become cum-
bersome. One may also need to invoke inhomogeneous structures to simulate very
short wavelength radiation that experiences matter atom by atom rather than as
a continuum. This and statistical effects at low intensities are due to the quantum
nature of light and can also be replicated through scaling. Max Planck found that to
match the radiation in equilibrium with a blackbody the energy of a monochrome
wave must only assume values which are an integral multiple of ωh/2π where h is
Planck’s constant and ω the frequency. This quantum property of electromagnetic
waves leads to the famous wave–particle duality effect and spawned the field of
quantum theory. We see that quantum effects occur at all frequencies and that the
consequence of changing the frequency is to shift the energy quanta proportionally.
This has statistical consequences when the number of detected quanta or photons
is small but even this could be replicated by scaling the observing time or intensity
so that the number of detected photons remains unchanged.2 Approximately 1019

quanta illuminate the particle during each measurement at the University of Florida
facility and the detection limit is close to 108, which is still statistically large. In
practice all measurements considered here therefore correspond to the large num-
ber of photons limit so that any statistical uncertainty can be neglected. This also
applies to the older laboratories where measurements were made at approximately
the same intensity but lower frequencies and longer exposure times so that even
larger numbers of photons were collected per measurement. The scaled laboratory
measurements should be interpreted as the statistically most likely outcome from
a large number of photon-scattering events and are as such entirely valid. Put
differently, the laboratories do not have the sensitivity to detect quantum effects.

1.3 Scattering by a few common particle classes

Scaled laboratory experiments are best viewed as complementary to other means of
investigating the scattering problem. We therefore consider a few classes of particles
that have come to play special roles or may impose special requirements on the
investigation method before contemplating the laboratory facilities.

2The lower the frequency, the shorter the observing time or lower the intensity needed
to collect a given number of photons.
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1.3.1 Mie-solutions

Known for more than a century (Kerker, 1969), the Mie- or Lorenz–Mie–Debye- an-
alytic solution to Maxwell’s equations in a spherical geometry (Mie, 1908) is often
referred to as ‘Mie-theory’. Yet it is not an independent theory but the mathemat-
ical application of Maxwell’s equations to an electromagnetic wave illuminating a
homogeneous sphere of given size and refractive index. The Mie-solution is therefore
a direct consequence of classical electrodynamics, much as Maxwell’s electromag-
netic wave equations are the result for empty space.

Mie first applied his solution to metallic gold spheres but the solution was soon
extended to the scattering by homogeneous spheres of arbitrary size and refractive
index including magnetic materials. Although the solution involves infinite series,
they converge so that it becomes possible to evaluate the scattering to any degree
of accuracy. Clearly there is no need to resort to laboratory experiments if the
scattering body is a Mie-sphere. However, this allowed the sphere to be used as a
convenient laboratory test and calibration case. Mie-spheres remain the de facto
test standard for experiments although the high degree of symmetry simplifies
scattering (Savenkov, Chapter 3 in this volume) and does not test or calibrate all
aspects of the experiment.

Similar solutions were developed in cylindrical coordinates and allowed the cal-
culation of scattering by infinite circular cylinders (Rayleigh, 1881; Twersky, 1952;
Kerker, 1969). This solution can in principle not be tested in a finite laboratory.
However, the first-order effect of truncating an infinite cylinder to finite size is a
diffraction broadening of the scattering cone. This effect is clearly seen in labora-
tory data (Gustafson, 1980, 1983). It appears that long cylinders could be used to
probe the effective extent of the finite wave fronts in the laboratory. Indeed, the
diffraction due to the finite field generated by the transmitting antenna combined
with the corresponding effect due to the receiving antenna3 could be measured
conveniently (Gustafson, 1980, 1983).

Cross polarization terms4 could not be calibrated until Asano and Yamamoto
(1975) derived the solution in spheroidal coordinates. But this requires appropri-
ately oriented spheroids and the advance remains mostly academic due to high
sensitivity on geometry compared to routinely achievable orientation accuracy.

Spheres, cylinders, spheroids, and other particles with well defined geometries
on which Maxwell’s equations may be applied to yield boundary conditions per-
mit solutions to the scattering problem that are sometimes collectively referred
to as Mie-solutions. Many of these were soon extended to concentric core man-
tle geometries and Mie-type solutions now also exist for a limited but growing
number of particle geometries. These include structures with off-center cores, clus-
ters of interacting spheres and cylinders (see contributions in Mishchenko et al.,
2002). Further, the Extended Boundary Condition Method (EBCM) and related
approaches dramatically relax the shape constraint so we can be optimistic that

3By time reversal symmetry.
4The two cross polarization terms are measures of the intensity of radiation polarized

(electric vector) in the scattering plane resulting from illumination polarized perpendic-
ular to the scattering plane and scattered radiation polarized perpendicular to the plane
resulting from illumination polarized along the plane.
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Mie-related solutions will continue to expand the number of geometries for which
‘exact’ solutions exist.5

Does this mean that the scattering problem is about to be solved to the level
where it satisfies most practical needs? H. C. van de Hulst (2000) addressed this
question in the foreword to Light Scattering by Nonspherical Particles (Mishchenko
et al., 2000). He wrote: ‘In the majority of applications, the assumption of homoge-
neous spherical particles is highly unrealistic. That much was clear from the start
to all serious research workers.’ His half-page objection is in its essence applicable
not only to spheres but to all particles with extensive homogeneous volumes and
smooth surfaces. If a grain is exposed to space for any significant time there is
surely damage from cosmic rays. Amorphous and crystalline mineral mixtures may
be crisscrossed by odd-shaped crystals, similar to those forming Widmanstätten
patterns, the interleaving of kamacite and taenite filaments seen in many iron me-
teorites. Impurities, dents and cracks will dot the particle surfaces as well as the
interiors. H.C. van de Hulst concludes: ‘The upshot of these objections is that
the efforts of most scientists applying Mie computations to a problem in nature
were unwarranted.’ While a step in the right direction, simple nonspherical particle
shapes remain unrealistic in most natural settings. Of the particle types discussed
in this article, large aggregates of small dissimilar subvolumes may be the morphol-
ogy that comes closest to representing heterogeneous real particles whose interior
may be a mixture of minerals but, as we shall see in section 1.3.1.2 even this is a
stretch.

1.3.1.1 Complex inhomogeneous structures

It is in principle possible to represent particle geometries with arbitrarily complex
interiors using the Coupled Dipole Approximation by Purcell and Pennypacker
(1973). The internal field is discretized and solved for iteratively using interacting
dipoles to numerically calculate the internal field and the resulting scattered field
in a process that has been shown to be equivalent to the Volume Integral Equa-
tion Method (Lakhtakia and Mulholland, 1993). How many dipoles are needed
to represent the internal field? To be ‘safe’ we may want to assign a number of
dipoles comparable to the number of atoms in a real particle but in reality there
is no practical way to use such large numbers and the discretization of the internal
field remains intrinsically, as the name indicates, an approximation. How should
the dipoles be distributed? Is a specific lattice geometry appropriate or will it in-
troduce numerical resonances or other disturbances? Many implementations rely
on a cubic lattice for computational expediency. These and additional issues such
as the polarizability to assign each dipole have been investigated and tested. But
they often rely on spheres and related simple geometries with homogeneous and

5The word ‘exact’ is in quotation marks to acknowledge that the solutions represent
materials as a continuum involve infinite series that in practice are truncated and may
not necessarily converge except within some parameter ranges. Some like the EBCM
can involve additional approximations. For example, Maxwell’s equations degenerate and
cannot be solved on a surface with a discontinuous first derivate such as the edges and
corners of a cube. Solutions can approach these locations but do not include rigorous
solutions on the very edges and corners.
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isotropic interiors from section 1.3.1 as test cases. This is hardly making much
advance unless the solutions are also tested on more complex structures.

Microwave measurements by Gustafson (1980), Zerull et al. (1993) and Gustafson
et al. (2002) (discussed in section 1.5.3) illustrate how the scattering at large an-
gles is affected first if a homogeneous material is discretized too coarsely. As we
model more complex structures convergence issues and other numerical instabilities
emerge at increasing rate, especially when interaction between dipoles in complex
inhomogeneous materials is locally strong. A comparison of the Coupled Dipole
Approximation solution to microwave measurements for even a simple aggregate
of spheres illustrates the problem (Xu and Gustafson, 1999). The method is con-
ceptionally attractive and a powerful tool when used within its limits, but the
limits of validity are hard to define and it remains difficult to predict when the ap-
proximation breaks down. Undetected erroneous results are likely to emerge more
frequently as computing power grows and modeling is pushed toward ever more
complex and larger particle models. Verification using precise tests in a laboratory
of the first type or class described in section 1.1 is warranted.

1.3.1.2 Real particles

The Rayleigh approximation (Strutt, 1871) applies when the phase is uniform ev-
erywhere across the scattering body (van de Hulst, 1957). This requires that the
particle dimensions are small compared to the wavelength both outside and inside
the particle. Grains meeting the dimensions criterion are so small that any restric-
tion on surface smoothness and internal homogeneity is automatically fulfilled. The
Rayleigh solution therefore applies to sufficiently small particles even as they may
have been weathered and subject to cosmic rays as long as the polarizability can
be assigned. The solution is intrinsically a Volume Integral Equation formulation
like the Coupled Dipole Approximation which reduces to Rayleigh scattering in
the small particle limit of a single dipole. The Rayleigh approximation is therefore
plagued by the same issue of assigning polarizability to the dipole as the Coupled
Dipole Approximation. Because of this and because the propagation speed in metals
is slow (and therefore the internal wavelength short which can make the Rayleigh
requirement very limiting), there may be an arguable need to study the scatter-
ing by some very small particles in the laboratory. However, the major laboratory
facilities were optimized for the study of larger scatterers.

At the other extreme size limit, ray tracing or the geometric optics approxi-
mation is said to apply when all particle dimensions are large compared to the
wavelength, but the conditions are restrictive and eliminate many naturally occur-
ring structures. The interiors must be homogeneous over distances that are large
compared to the wavelength and all surfaces including any internal boundaries
must be smooth even on scales that are small compared to the wavelength. The
geometric optics approximation is a practical engineering tool for the design of
telescopes, microscopes, eyeglasses or spectacles. These are successfully modeled
as long as the glass is of good quality (homogeneous) and surfaces are clean and
free from scratches and other defects. We just need to consider ‘foggy’ or dirty
glasses to see that the deviation might be significant when the conditions are not
met. How serious is this problem with real particles? Figure 1.1 shows a section
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Fig. 1.1. Cut through the Allende meteorite reproduced from Grossman’s (1980) seminal
article in which he described what became known as ‘calcium aluminum rich inclusions’
(CAIs) such as the light-colored object at top center. Having condensed at high tempera-
ture (∼ 3000K) presumably in the cooling inner solar nebula, CAIs are the earliest known
surviving solids to form in the solar system. Grossman identified the two narrow, elon-
gated objects at middle right as ‘fine-grained inclusions’ and the large object at bottom
center as an ‘amoeboid olivine aggregate that may include mineral predating the solar
system and formed an aggregate of interstellar grains so that the structure is coarse down
to the sub micron level’. He also states that a dark clast is barely visible at middle left and
that most of the other light-colored objects are chondrules. Reprinted, with permission,
from the Annual Review of Earth and Planetary Sciences, Volume 8; c©1980 by Annual
Reviews, www.annualreviews.org.

of the Allende meteorite. As all carbonaceous chondrite meteoroids, Allende is a
rocky structure in which most chemical bonds formed billions of years ago when
partially molten heterogeneous matter accreted and to some extent fused to form
asteroids. After being crushed by any overlaying material for billions of years, pos-
sibly hydrated (which redistributes minerals), pounded in repeated collisions and
probably shattered and reassembled many times over, a meteoroid emerges from
the interior of an asteroid as surviving debris from a collision. It only escapes if the
collision is of sufficient violence to knock the meteoroid away from the gravitational
well surrounding the parent. As if that was not tough enough, the meteoroid may
have spent the past few thousand years tumbling in space, suffering cosmic ray
exposure and occasionally colliding with other rocks. The meteorite material seen
in Figure 1.1 is believed to be the result of such violent events. We would probably
not subject our laboratory optics to similar treatment and expect it to behave even
close to an ideal structure. Why then expect it of natural particles that on top of
this treatment often started as complex and heterogeneous?

Similarly complex inhomogeneous structures that defy simple descriptions using
homogeneous macroscopic optical constants are also seen in comet material (Fig-
ure 1.2) and may be found across a broad range of dimensions (from nanometer-
to centimeter-size) in the form of GEMS, chondrules and CAIs (Grossman, 1980),



10 Bo Å. S. Gustafson

Fig. 1.2. Collected IDPs (interplanetary dust particles), that are usually classified as
cometary, have complex interiors that include amorphous silicate materials with scattered
inclusions of metals and sulfides (GEMS). Not seen in the TEM (transmission electron
microscope) slide is an organic compound that is likely to permeate the particle and
further affect the uneven value of the refractive index across these complex particles.
Similar structures are found in impact tracks in aerogel returned by NASA’s Stardust
mission (John Bradley, LLNL, personal communication; image credit: Bradley).

as individual particles or as inclusions. These scales are of relevance in optical and
infrared studies since the wavelength is not large compared to all inclusions6 in any
waveband.

It is true that particle geometries to which approximations apply can be found
but can particles to which the approximations apply be found in nature? Yes, if
they are small compared to the wavelength but larger solid bodies, unless they
are young crystals (e.g., hail or snow) or liquid (e.g., rain drops) tend to feature
imperfections and be better viewed as compact heterogeneous compound particles
(HCPs) to which geometric optics does not apply. Mie-type solutions are also not
forthcoming and both compact and porous structures of this type need to be the
main targets of scaled laboratory studies at facilities like that at the University of
Florida.

1.3.2 Evaluating the scattering by HCPs and other complex natural
particles

The main problem with natural particles is their diversity. We are many times
faced with a set of scattering curves and hope to conclude something about the
particles that produced them (the ‘inverse problem’). We may try any number of
more or less specialized computer codes and chances are good that the number of

6Note that for this purpose empty cavities can also be viewed as inclusions (often
irregular) characterized by the refractive index 1.
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free parameters is so large that a reasonable fit can be found. However, this is no
guarantee that the solution is unique. To the contrary, if anything can be said with
certainty, it is usually that other solutions also fit. It is for example possible to
find a good fit to the zodiacal light using physically reasonable dust models but
without the need for the level of complexity that the actual particles likely have.
In addition, a fit with entirely unreasonable materials (optical constants that only
deviate minutely from those of vacuum) and large spherical shapes7 can fit most
and possibly all observations including silicate emission features in the infrared.

Commercial optical-scattering-based particle sizers/counters where particles are
counted and binned in size ranges are examples of non-unique classification. The
proper interpretation is not that the particles counted are in the indicated size
ranges. The instrument could simply not distinguish them from spheres of that size
and bins according to a ‘sphere-equivalent’ size. To achieve this level we may have
to indicate the particle composition (refractive index) and even so, counters using
dissimilar optics generally yield conflicting results. Systematic probing of scattering
response to the change of some defined parameter such as packing in an aggregate
was used to devise an in situ Planetary Aerosol Monitor or Interplanetary Dust
Analyzer (Gustafson et al., 2000) where the scattering by an arbitrary single par-
ticle can be classified according to multiple parameters. This may be the direction
of future high-end particle counters/characterizers. However, most observations of
natural particles are limited and the particles often form clouds with a distribution
of particle properties that wash out specifics and allow multiple interpretations.

1.4 The scattering problem in the laboratory setting

The most fundamental role of an experiment is to reveal under given conditions the
state of a set of parameters that may be otherwise unknown. A well-designed and
well operating experiment provides a truthful answer but the enduring difficulty is
usually not so much in the answer as in the question. That is, in the control of the
experimental conditions. What experimental electromagnetic scattering conditions
need to be created and controlled? The answer depends on the specific scattering
problem. We assume that the objective is to measure all properties of independent
scattering in the far field.8 Further, we adopt the definitions given by Mishchenko et
al. (2000, p. 4) and other restrictions given there, as is usual in the electromagnetic
scattering literature. Interaction between particles (dependent scattering) can also
be investigated using this same apparatus by considering the interacting particles
as an ensemble making up one scattering body. Scattering parameters are assigned
to this ensemble rather than to its components.

Any aspect of a light scattering solution subject to these restrictions should
be testable in the laboratory so that knowledge about scattering can be extended

7Large porous aggregates approach these values if they are represented using Mie-
theory and effective medium theory and may in a sense be an optical equivalent although
physically different. The approximation is known to work well for thermal emission and
is also an often usable scattering approximation when the optical constants are low and
averages are taken over many orientations and sizes.

8Called the distant field by van de Hulst (1957).
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to particle parameters beyond the reach of theoretical solutions. This means mea-
surements should yield the same type and format scattering information as theory
usually yields and numerical computations can produce. These can then ‘plug-in’
to existing codes to address a broad range of practical scattering problems through
the use of the measured quantities in the same way as calculated ones. We there-
fore seek to first reduce the description of an arbitrary illumination to its simplest
terms and to similarly describe radiation resulting from the scattering process. The
scattering process is then fully described through the transformation of one into
the other. Scattering in the near field is not contemplated here.

Stokes (1852) reduced the description of the radiance (intensity) and state of
polarization of fully overlapping beams (radiation traveling in the same direction
and passing through the same points in space) to a set of only four real elements
known as the Stokes parameters. We use the classical notation (I,Q, U, V ) where
the Stokes parameters are written as a vector. The first Stokes parameter I is
the net monochromatic energy flux. Q and U describe the state of linear polariza-
tion and V is a phase term to describe the state of circular polarization. H.C.van
de Hulst (1957) points out that Stokes parameters make up a complete set of
quantities characterizing the intensity and state of polarization of an incoherent
monochrome beam of light.9 Naturally the direction of propagation and a set of
spatial coordinates it passes through are also needed for completeness. A descrip-
tion of an arbitrary monochrome electromagnetic radiation field can be a vector
field describing the direction of propagation and the associated Stokes vectors while
the multi-beam panchromatic generalization is simply a set of such fields.

The most common formulation of the scattering problem is that of an infi-
nite and flat (uniform) incident wavefront of wavelength λ radiation that may be
uniquely described by the Stokes vector (I0, Q0, U0, V0). The scattered radiation
is evaluated at a sufficient distance r from a finite size scattering body so that
the scattered spherical field can be locally approximated by a flat wavefront. The
scattered field subject to this far field condition can then be expressed as

(I,Q, U, V ) =
1

k2r2
F · (I0, Q0, U0, V0)

where F is a 16-element transformation matrix and k = 2π/λ. The F-matrix for any
specific particle depends only on the wavelength, particle orientation and scattering
angle Θ. The far field scattering resulting from illumination by any combination
of incoherent distant light sources can be calculated by combining (adding) the
Stokes vectors representing the scattered field. Calculating and adding field am-
plitudes (using the Stokes vector) instead of adding Stokes parameters trivially
makes the generalization to coherent illuminating sources or coherently scattering
bodies. Most scattering problems only require the far field solution. Generalization
to arbitrary distances requires near field data.

It is understood that some scattering problems are confined to specific scattering
geometries. For example the interstellar grains that Greenberg et al. studied (see
section 1.5.1) are mostly seen in extinction. To measure just extinction Greenberg’s
original laboratory at Rensselaer Polytechnic Institute (RPI) did not need to in-
clude the possibility to measure side scattering. In addition, all scattering problems

9Alternatives to Stokes’s original formulation are also found in the literature.
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do not in practice require determination of the entire Stokes vector transformation
from the incident to scattered light and most scattering experiments have been set
up to quantify a limited aspect of the scattering process. Investigations of scatter-
ing of natural incoherent light such as sunlight or scattering of any light by clouds
of moving particles to yield average scattering functions usually deal with intensity
and polarization but not phase. Only the four elements in the upper left quarter
of the transformation matrix known as the Mueller matrix are relevant in these
cases. To see this, we note that when particles are illuminated by ‘natural light’
Q0 = U0 = V0 = 0 so there is no definite phase relation between the polarization
components.

Many experiments are more limited than the example of Greenberg’s original
laboratory. In particle sizing it is common to measure the scattered linearly po-
larized intensity integrated across some scattering angle range while ignoring the
phase and the polarization, requiring only one transformation element. Experi-
ments may use monochrome or broad-spectrum sources to obtain averages across
some spectral range.

1.4.1 Considerations in designing a high-precision scattering laboratory

A minimum of four pairs of incident and scattered Stokes vectors are needed to
calculate all elements of the F-matrix (Gustafson, 2000). This means control over
the illumination characterized by the incident Stokes vector (I0, Q0, U0, V0) and
ability to measure the scattered Stokes vector (I,Q, U, V ) in accurately known
geometries. This is similar in content and format to results obtained from most
theoretical solutions. The laboratory should be capable of retrieving the full F-
matrix at as many scattering angles as possible. All particle parameters including
the orientation should be known and preferably be controlled.

In practice the polarization state of the incident beam and of the sampled part
of the scattered radiation can be controlled using polarizers. A transmission loss
of 0.15 dB and rejection of the orthogonal polarization state in the 50 dB range is
now reachable in the w-band. Similar or better polarizer performance is available
in most wavebands and in the optics range. The polarization direction must be
related to the scattering plane and is therefore part of the antenna and target
alignment. The measured intensity can be given in units of the incident field. Here,
the phase differences between the illuminating and scattered waves are relevant,
not the absolute values (Bohren and Huffman, 1983). It is therefore good practice
to siphon off a signal from the emitted beam and make all measurements relative
this reference.

The reference signal needs to travel the same optical length as the scattered
radiation to ensure that both signals refer to the same combination of wave trains.
Although the theoretician usually considers idealized perfect monochromatic, flat
and infinite beams, a real beam consists of many ‘simple waves’ with independent
phase in succession. It also is finite and cannot have a flat wavefront everywhere.
A real beam is in addition never fully monochromatic. The wave train length is
related to the spectral purity so the ‘cleaner’ (more narrow and phase stable) the
radiation source is, the longer the wave trains are. Coherent wave trains of duration
10−8 seconds (a few meters in length) were already achievable in the microwave
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range as Greenberg developed his laboratory. This is comparable to the coherence
time of modern stabilized helium-neon lasers although the laser has a much longer
train in units of wavelengths.

The advent of radar opened the possibility to achieve the requirements de-
scribed above at microwave frequencies. Lasers enabled measurement of F-matrices
throughout most of the spectrum including the visual and IR decades later. De-
mands from the communication industry drive instrument development across
the spectrum and suitable equipment is now often available off-the-shelf. Mod-
ern millimeter-wave stabilized oscillators have very high spectral purity and there-
fore very long wave trains so this issue is no longer a practical concern. However,
alignment and dimensional stability is important at any wavelength and since all
relevant dimensions are in units of the wavelength there is great advantage gained
from use of the microwave range over the optical range. In addition, particle control
is best achieved with models of dimensions in the millimeter to decimeter range.
The millimeter or microwave spectral range therefore continues to be preferred for
high-precision scattering measurements and will probably always remain so.

1.4.2 Analogue particle materials

Macroscopic material properties in optical applications are usually described using
the complex refractive index m = mr + imi or equivalently, in electrodynamics,
through the dielectric constant ε = ε′ + iε′′, where i =

√−1. The relations ε′ =
m2

r −m2
i and ε

′′ = 2mrmi hold for nonmagnetic materials. Although m and ε are
known as ‘optical constants’, they depend on the angular frequency, ω, so that an
analogue material must usually be substituted as part of the scaling process. To see
this, it is useful to note that the material properties could also be represented using
a combination of harmonic oscillators of strength proportional to (ω2

0−ω2)−1, where
the resonance frequency ω0 is higher than microwave frequencies and often closer to
the visual range (Bohren and Huffman, 1983). Based on this representation, optical
properties vary only slowly across the microwave range since it is far removed
in frequency from ω0 while the infrared and especially the visual range usually
are much closer to resonances so that the oscillator strength may vary across the
range. The oscillator strength and loss are related through the Kramers–Kronig
relations (Bohren and Huffman, 1983) so that the loss as well as the oscillator
strength depends on the frequency. Put differently, most materials have vivid colors
in the visual, dull in the far infrared and are shades of grey in the microwave
range. There are some exceptions, silicates have their most vivid colors in the
infrared with resonances near 9.7μm produced by Si-O stretching and 18μm due
to O-Si-O bending modes. This makes ‘rocks’ grey at visual as well as microwave
frequency ranges. Silicates typically have refractive indices in the 1.55+ i0.0001 to
1.7 + i0.03 range in the visible. They reach extreme values of the order 1.1 + i1
near the resonances in the infrared and then stabilize around 3.5 + i0.03 in the
millimeter microwave range and at longer wavelengths. Similarly, water ice has
m ≈ 1.31 + i3 × 10−9 in the visible, however, the real part dips below unity near
λ = 3μm, where the imaginary part peaks around mi = 0.6. The real refractive
index approaches an asymptotic value close to 1.78 with the imaginary part in the
10−2 to 10−4 range at wavelengths exceeding a few hundred micrometers.
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It is advisable to shift scaled scattering experiments away from resonances if
one intends to operate at multiple wavelengths. Millimeter wavelengths and longer
are typically far from any resonance so that any detected color effect is due to the
scattering body’s morphology, not to wavelength dependence in the material it is
made from. As we have seen, many minerals (rocks) are grey in the visual so the
analogue material should apply across the microwave frequencies. Water ice has no
major resonances in the visual and can for many applications also be represented
in the microwave range using a single analogue material. Cosmic organic refrac-
tory materials (e.g., Greenberg et al., 1995) are brown, yellow or red. Like most
organics, it and other colored materials typically need to be matched using several
analogue materials depending on the frequency range to be represented. If the ob-
jective is to study color effects near a resonance, it is necessary to use a full-scale
laboratory setup unless the wavelength dependence is precisely known and one is
prepared to develop matched model materials at each wavelength to be simulated.
Conversely material restrictions would make the use of scaled frequencies in the
visual or infrared ranges more difficult, at least for color investigations. However,
the original material can often be used when the scaling is from lower frequencies
to the microwave range.

Refractive indices were typically measured in the Greenberg et al. laboratory
using the slotted waveguide method by Roberts and von Hippel (1946). This ap-
proach is based on measuring the change in a standing wave pattern as a sample of
the material is introduced inside a waveguide. Giese et al. fitted the measured an-
gular distribution of scattering by a sphere made from the material with unknown
refractive index using the Mie-solution. Both methods appear to be similar in accu-
racy. Using von Hippel’s method Schuerman et al. (1981) found m ≈ 1.61 + i0.004
at 9.417GHz (λ = 3.18 cm) for the acrylic resin polymethyl methacrylate, also
known under the trade name ‘Lucite’. Gustafson (2000) obtained 1.605 + i0.003
for the same material at 85 equally spaced frequencies across the 75 to 110GHz
interval (2.7mm < λ < 4mm) using a fit to Mie-calculations. Zerull et al. (1993)
similarly obtained m ≈ 1.735 + i0.007 for nylon at 35GHz (λ = 8mm). Gustafson
obtained m ≈ 1.740 + i0.005 across the 75 to 110GHz interval. We conclude that
these plastics are remarkably consistent in their refractive index and that there is
indeed no measurable frequency dependence.

These easy to machine common plastic compounds, including Delrin (a poly-
acetal marketed by DuPont) with m = 1.655 + i0.00, are convenient analogues for
silicates. Use of effective medium theory allows control over the complex refractive
index. Many plastics can be expanded or, better, diluted with ‘microspheres’ hol-
low glass or plastic spheres with a priori known sizes small enough to safely satisfy
the conditions of effective medium theory. Or they can be mixed with pigments
and/or absorbing compounds (carbon) to represent practically any material in the
visual. See Kolokolova and Gustafson (2001) for a modern summary and test of the
effective medium approximation. We have developed plastic compounds to produce
any refractive index in the range mr = 1.195 to 1.7 and mi = 0.002 to 0.08 with
relative ease at the University of Florida. We have also made individual samples
with imaginary parts as high as 0.2 and real parts near 2. It is usually practical
to use commercially available compounds for testing theoretical solutions and to
approach a desired refractive index even if it is not a perfect match. In this way dis-
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crete and highly reproducible values can be obtained including m ≈ 2.517+ i0.017
for BK7 glass or m ≈ 3.08+ i0.001 for alumina glass. The metals aluminum, steel,
and copper can be used to reach very high real and imaginary refractive indices.
We note that use of analogue materials sometimes has great advantages; for ex-
ample, water ice and many other volatiles can be represented with ease by plastic
compounds that can be machined and that do not melt at room temperatures. It
also is possible to make harmless plastic models of bacteria and other hazardous
compounds.

1.5 Scaled analogue scattering laboratories

We have seen that scaled experiments depend on insights gained from the now
very extensively tested and well-established theoretical foundation of classic elec-
trodynamics. We can be confident that scaling is permitted and introduces no
approximation as long as classic electrodynamics applies and the particle material
can be described using macroscopic optical constants. Although special considera-
tions apply to the scaling of quantum effects they too could be studied in scaled
experiments.

1.5.1 The classic laboratories

By mid-twentieth century, the Mie-solution had long been known but solutions
for nonspherical particle shapes were rather limited. Most were approximations
that make use of simplifications arising when some particle parameter reaches an
extreme value and the complex structures of real particles were mostly beyond
contemplation (van de Hulst, 1957, 2000). In addition, the world of the experimen-
talist was crude in the eyes of the theoretician who contemplates idealized problems,
usually involving perfect infinite uniform and coherent wavefronts of monochrome
radiation.

We have seen that it was the emergence of coherent sources in the microwave
range following rapid development of radar technology around the Second World
War that opened up the possibility of generating coherent radiation. Although
the laboratory version wavefront will always be finite in extent, it became possi-
ble to make precise narrow band microwave measurements of scattered amplitude
and phase that were not reachable at other wavelengths. Realizing the potential
to circumvent limitations imposed by the state of theoretical solutions for non-
spherical particles J.Mayo Greenberg et al. developed a pioneering analogue lab-
oratory (Greenberg, 1960) at RPI in 1960 and applied it to astrophysical prob-
lems. Greenberg et al. used X-band equipment operating at 3.18 cm wavelength
and centimeter-sized plastic models (Figure 1.3) as the analogue to micrometer
and submicrometer-sized silicate and ice interstellar grains scattering starlight at
visual wavelengths. Retrieving all elements of the scattering matrix, the apparatus
was optimized to study the forward and back scattering by any shape and refrac-
tive index particle in the notoriously difficult resonance scattering size range where
the size parameter x = (2πa)/λ of a radius a particle illuminated by wavelength λ
radiation is of the order of unity and most approximate solutions fail. X-band radar
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Fig. 1.3. J. Mayo Greenberg in the SUNY incarnation of his microwave analogue labo-
ratory circa 1978. The solution for spheroids was just becoming available and this par-
ticle model was used in attempts to check the cross polarization coefficients in angular
and forward scattering. Absorbers line the anechoic chamber and thin nylon strings (fish
line) support the target and control its orientation using computer-controlled servomotors
mounted in the ceiling and on the floor. (Photograph by D. E. Beeson.)

is designed to place airplanes and ships that radar was developed for in the geomet-
ric optics range. Classic size interstellar grains scattering visual light (Greenberg’s
main interest) are in the 1 < x < 5 size range so that analogue interstellar grain
diameters translate approximately to the convenient 1 cm to 5 cm range. Greenberg
et al. were lucky too.

Figure 1.4 illustrates the laboratory configuration for angular scattering mea-
surements as it was implemented at the State University of New York at Albany
(SUNYA) and at the University of Florida (UF) toward the end of its use. Also
shown is the forward scattering antenna which was covered by an absorber while
angular measurements were made. When illuminated from the transmitting an-
tenna to the left, the fixed forward scattering and movable receiving antennas to
the right intercept not only the scattering by the analogue particle model in the
center but also unwanted direct radiation as well as scattered background radiation
despite use of ‘anechoic’ materials on the chamber walls. The wanted scattering sig-
nal from the model particle was often dwarfed by the unwanted signal. Operation
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Fig. 1.4. Layout of the microwave laboratory at the State University of New York at
Albany (SUNYA) is shown as used when configured for angular scattering measurements.
Reproduced from Gustafson (1980).

of the laboratory involved creation of conditions in which the weak wanted signal
could be separated from the unwanted signal and accurately measured. To achieve
this, the stable oscillator to the lower left in the diagram feeds not only the trans-
mitting antenna but also a ‘compensation’ or ‘nulling’ waveguide signal which is
mixed with the received signal. By removing the scattering body and manually
adjusting the amplitude and phase of the compensation signal it became possible
to achieve nulling destructive interference at the waveguide-mounted square law
detector. As the analogue model is introduced into the beam an off-balance signal
arises which is a highly accurate measure of the scattering produced by the particle
and intercepted by the receiving antenna. This is a type of interferometry creating
a condition in which unwanted signals cancel10 and are prevented from interfer-
ing with the much weaker scattered radiation. Measurements were only accepted
if the null condition returned when the particle model was again removed from
the illuminating beam. The most sensitive measurements were carried out in early
morning hours when stability was at its best.11

The phase and amplitude of the off-balance signal could in principle be ob-
tained by adjusting a calibrated set of variable attenuator and phase shifter to
again obtain a null through destructive interference. The change in attenuation is
a measure of the intensity in units of the incident radiation intensity. The phase

10The unwanted signal is the sum of multiple signals each with their own Stokes vector.
As we have seen their sum is also described by a single Stokes vector. The compensation
signal has this same Stokes vector except that the phase element is shifted by the factor
π radians.

11Each component of the signal was subject to drift due to uncompensated power and
temperature fluctuations, even trembles due to passing trucks on a nearby road had a
noticeable effect.
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shifter measures the phase difference between the incident and scattered waves.
With four polarization combinations at each scattering angle12 this would allow
calculation of the entire F-matrix without need for calibration. Instability of the
null condition unfortunately made the measurement time window too short to allow
use of this method. The intensity of the scattered radiation was instead amplified
and measured using a lock-in amplifier system. The measurement therefore needed
calibration using a known standard at the time of each measurement. A circuitry
used in the forward scattering setup measured the amplitude and phase of the
off-balance signal on separate branches using amplifiers that also needed continual
calibration (Wang and Greenberg, 1976). The full F-matrix could be calculated
from the forward scattering measurements but since phase measurements were not
done in side scattering, only the four elements of the Mueller matrix in the upper
left corner of the F-matrix related to intensities were obtained at other scattering
angles. Schuerman, Wang and Gustafson ran Greenberg’s setup at SUNYA in Al-
bany through the late 1970s and at the UF in Gainesville from 1980 through the
early 1990s.

Fig. 1.5. The Bochum Ka-band laboratory as it appeared shortly before it was disman-
tled. The fixed transmitting antenna is in the center and computer movable receiving
antenna to the left. To the right is a mobile screen to limit the illuminating beam and
reduce unwanted radiation.

12All nulling adjustments must be repeated for each polarization and angle combination.
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Richard Giese et al. performed similar experiments at the Eberhard Karls Uni-
versity Tbingen (Giese and Siedentopf, 1962) and until 1990 at the Ruhr University
Bochum (Zerull et al., 1977). Having a primary interest in interplanetary particles,
Giese and his team operated their facility (Figure 1.5) at 35GHz, which eventually
became known as the Ka-band. The ∼ 8 millimeter wavelength and larger beam
size (in terms of wavelengths) at the Bochum facility allowed study of particle sizes
up to approximately x = 40 in the far field condition. This corresponds to 5 to
8 micrometer diameter in the visual depending on the wavelength. The angular
scattering measurement strategy employed in the Giese et al. laboratory differed
primarily from that of Greenberg et al. in that the particle model under study
remained illuminated throughout the angular measurement sequence so that scat-
tering plus background in principle were measured. This was only possible because
of a low background level. The very last set of angular scattering results (Zerull et
al., 1993) included phase measurements using an approach with separate branches
for intensity and phase similar to the forward scattering arrangement.

Both facilities normally used a sphere for calibration. However, cross polariza-
tion vanishes for spheres so they cannot be used to calibrate the off-diagonal cross
polarization elements. It was usually assumed that an arithmetic average of the two
obtainable calibration factors (polarization of both transmitter and receiver per-
pendicular respective parallel to the scattering plane) was a good approximation
to the remaining two cross polarization calibration factors. Spheroid based calibra-
tions were never sufficiently accurate to confirm this assumption because of the
uncertainties in the precise orientation of an elongated particle. We note that cross
polarization calibration factors primarily depend on loss across a rotary waveguide
joint and that the calibration errors are likely to remain small.

It is also notable that due to the fact that the orientation of a sphere is de-
generate the orientation control is not part of tests commonly used to demonstrate
the accuracy of a laboratory apparatus. Inadequate control over orientation quickly
leads to errors especially for large highly elongated particles. Both laboratory fa-
cilities used similar means of particle support and orientation using nylon string
(fish-line). There was never observable evidence for uncompensated perturbations
due to the strings. The teams collaborated to obtain measurements at both wave-
lengths for some models until both laboratories were discontinued in the early
1990s. While other laboratories also existed, Greenberg’s and Giese’s were proba-
bly the main facilities of these early times.

1.5.2 The University of Florida laboratory

A modern millimeter multi-wavelength broadband facility at the University of
Florida (Figure 1.6) which is described in detail elsewhere (Gustafson, 1996, 2000)
can measure phase as well as intensity to generate all elements of the scattering
matrix from forward scattering to 163 degrees near backscattering. Synthesizers au-
tomatically step through 512 discrete wavelengths across a waveband as broad as
the sensitivity range of the human eye and simulate colors as seen through standard
color filters. Like Greenberg’s laboratory it has the sensitivity to measure angular
scattering from simulated interstellar grains in the visual but the laboratory is op-
timized for larger grains and interstellar ones are near the sensitivity limit. Its large
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Fig. 1.6. The multi-wavelength w-band full bandwidth laboratory at the University
Florida. The scale model in the center is illuminated by a fixed transmitting antenna
on a vibration dampened and temperature stabilized titanium and aluminum mount. A
mobile but otherwise similarly mounted receiving antenna to the left is identical to the
transmitting antenna. The aperture is covered by a polarizing copper wire grid and a lens
made of acetal homopolymer resin (Delrin). (Photograph by the author.)

beam can accommodate particles several times larger than in Giese’s laboratory
reaching x ∼ 200 or 250 (depending on the required fidelity). The laboratory was
designed to study especially the effect of complex internal structure (e.g., Figs. 1.1
and 1.2) that may exist in compact and fluffy aggregates. Particle control consid-
erations and the size range dictate use of the millimeter wavelength range of the
w-band (75 to 110GHz or 2.7 to 4mm). Objectives include validation of theoret-
ical solutions (e.g., Xu and Gustafson, 1997, 1999; Waldemarsson and Gustafson,
2003), probe the validity range of approximations such as effective medium theory
(e.g., Kolokolova and Gustafson, 2001) and to probe sensitivity on otherwise not
modeled parameters (Kolokolova et al., 2001).

As van de Hulst (1957) points out, space is traversed by the incident and the
scattered wave and the two wave systems cannot be separated in a mathematical
point. However, using direction sensitive antennas, we can distinguish the two. The
combination of an antenna aperture of the order of 100 wavelengths and corrective
lenses generate a flat wavefront at the distance of the scattering body approximately
700 wavelengths away. By time reversal symmetry, the identical receiving antenna
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collects not the spherical wave of the scattering body but a similarly flat wavefront
taken out of that spherical wave. This helps assure that the measured scattering
corresponds to the far field. Equivalently, the spherical wave can be viewed as a set
of superposed flat wavefronts that travel in all directions and decompose in these
flat wavefronts at infinity. Space can then be viewed as being traversed by all these
waves plus the incident wave and in practice several unwanted waves scattered by
the support of the particle model and by background structures. The direction sen-
sitivity of the antenna helps separate these waves and collect the wanted scattered
far field signal.

The separation is not perfect and other methods including anechoic mats are
used to further reduce the unwanted background. Mechanical control as well as
frequency and other drift mitigation measures allow the unwanted signals to be
measured in the absence of the scattering body and to be mathematically sub-
tracted from the corresponding measurement with the model present in the beam.
This is only possible when the system is stable and phase as well as amplitude is
measured to allow vector subtraction. The ability to reach a high level of separation
of the wanted scattered radiation from the incident radiation and scattered stray
radiation is a key feature that sets the microwave analogue method apart from its
optical counterparts.

While it is possible to derive the scattering components based on the ratio of
the scattered intensity to the intensity measured in the unobstructed direct beam,
we found that higher accuracy can be obtained using a sphere and the Mie-solution
for calibration similarly to praxis in the preceding laboratory facilities. Scattering
quantities that we refer to as ‘measured’ are thus not obtained directly but are pro-
cessed, first through the subtraction of the background signal, and then through
calibration. Although the scattered signal can be separated out, captured and cal-
ibrated, the idealized conditions of light scattering that are commonly assumed
in theoretical works cannot be fully reproduced in any laboratory. For example,
the incident wavefront is necessarily finite and suffers from imperfections, the dis-
tance to other objects is also finite and the scattering sample must be supported
against gravity so some supporting mechanism is typically nearby. Gustafson (1996)
describes how the Florida facility is designed for stability with its thermal and me-
chanical layout,13 how its geometric configuration minimizes the studied model’s
interaction with the support, and how the use of lenses compensates for the finite
beam width to produce a flat wavefront in the central part of the beam.

When, as in the Florida facility, the change in both intensity and phase suffered
by a scattered wave can be deduced in the four combinations of polarization along
the scattering plane and perpendicular to the plane, we characterize the far field
scattering process completely (Gustafson, 2000). With both the incident and the
scattered waves described using their respective Stokes parameters, the scattering

13The effective sensitivity is limited by the fraction of the power in the illuminating
beam that emerges as unwanted ‘background’ due to direct exposure to the beam or
stray radiation even in an anechoic chamber. With the transmitted power in the 0.1W
range (limited by safety concerns), contribution from thermal radiation and thermal noise
generated in the electronic circuitry are usually less important than drift in the background
due to frequency drift or thermal expansion/contraction which are the most important
factors to control.
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can be described by a linear transformation, mathematically the 4× 4 matrix F of
section 1.4.

We have seen in section 1.4.2 that because the resonant frequencies of most ma-
terials are far removed from microwave frequencies, their refractive index changes
only slowly across the microwave range and is usually constant across a single
microwave band. The broadband facility in Florida thus allows us to study the
dependency on frequency while the refractive index remains constant. This allows
the separation of color induced by the particle geometry or morphology from the
intrinsic color of the material since it is neutral, or gray, by definition when the
refractive index is constant.

Practically any number and combination of frequencies can be used at the
Florida facility from 75 to 110GHz (approximately 4mm to 2.7mm wavelength) to
represent the illuminating spectrum. To give a quantitative measure of the intrinsic
color in intensity and in polarization we may integrate the total intensity across
the waveband which is represented by the sum over intensities normalized to the
width of the band, ∑

I(Θ)Δω∑
Δω

where Δω is the separation between discrete frequencies. If for example, the labo-
ratory illumination is to simulate sunlight, we may represent the integral of matrix
elements illuminated by the solar spectrum across the [ωa, ωb] interval using

〈i〉[ωa,ωb] =

ωb∑
freq=ωa

I0,freqifreqΔω

ωb∑
freq=ωa

I0,freqΔω

,

where the indices indicating polarization have been dropped and I0,freq is the solar
illumination integrated across the small frequency interval corresponding to one
frequency step Δω from ω − 1

2Δω to ω + 1
2Δω.

This mimics the usual format of reported observations where the numerator
represents the observed flux across the waveband and the denominator provides
normalization to the solar spectrum. The matrix elements are 〈i〉filter where the
filter may be standard red and blue filters used in astronomy. The averages 〈I〉color
and 〈P 〉color can now be obtained by substituting the corresponding averages to
compute the intensity and polarization (van de Hulst, 1957). As an example, we
may quantify color through the ratio

C(Θ) =
Ired − Iblue

Ired + Iblue
.

While the intervals [ωa, ωb] for either red or blue colors can be chosen to simulate
a variety of filters, we simulate the narrow-band continuum filters 443 and 642 nm
using the frequency bands 75–85GHz and 100–110GHz to compare laboratory
colors with colors obtained from modern comet observations.

A single particle orientation requires a few hours of measurement to obtain 1◦

angular resolution from 5◦ to 165◦ at 85 frequencies and four combinations of po-
larization, with equal time needed for a background measurement. The background



24 Bo Å. S. Gustafson

measurement includes the scattering by the support which does not have perfect
symmetry so that a background measurement is made for each orientation of the
support. The background usually does not need to be re-measured except when the
target support is replaced. The repeatability and accuracy of angular measurements
usually are comparable to errors introduced through uncertainties in the target pa-
rameters including the refractive index, shape and orientation (Gustafson, 1996).

Scattering at angles from 168◦ to 180◦ cannot be measured because the anten-
nas would overlap in this interval. However, it is possible to add a backscattering
measurement capability through the addition of a directional coupler and receiving
circuitry in the transmitting antenna. The forward scattering amplitude and phase
are, in principle, measured in a manner similar to those at other scattering angles.
However, due to strong contamination from the illuminating beam, extra care must
be taken so that the illumination remains stable between the times of the measure-
ments of the scattered signal plus background and the background alone. This is
because the intensity of the scattered signal may constitute a small fraction of the
direct beam background signal: ∼ 10−3 for an x ≈ 10 sphere. The measurement
error is, to a first approximation, proportional to the measured signal strength,
which in forward scattering is dominated by direct illumination. This means that
the error is expected to be practically independent of the particle’s cross-section so
that the forward scattering by large scatterers can be measured with much higher
relative accuracy than that by small particles. The large background signal is a di-
rect consequence of the large beam size which, at about 100 wavelengths across, is
approximately a factor of 10 wider (∼ 100 times larger in cross-section) than those
of the two preceding laboratories. This compromise was made to accommodate
particle size parameters up to x = 200 or 250 in the beam. The 0◦ to 5◦ interval is
so badly plagued by direct illumination of the receiver antenna by way of the first
side lobes that it requires a tedious measurement procedure similar to that at 0◦.

1.5.3 Complex interiors scattering experiment example

We have seen that analogue laboratory models can in principle be arbitrary. Mi-
crowave and laser technology now exists that allow laboratory measurements at
practically any size parameter. Using mostly plastic compounds with pigments and
other inclusions to adjust the refractive index, the material and particle internal
morphologies as well as shape can be arbitrary.

The original motivation dating back to the works of Greenberg and Giese was
primarily to study the effects of nonspherical shape. But internal structure may be
even more important. Figure 1.7 shows the scattering from a set of 125 x = 0.47
finite 4:1 aspect ratio prolate circular cylinders averaged over rotation about an
axis normal to the scattering plane. All cylinder axes are aligned with the rotation
axis and the cylinders randomly distributed in an 80% porosity (20% material)
spherical aggregate. A particle with the same amount of scattering material evenly
distributed across the volume of the sphere can be represented by a Mie-sphere with
the same total polarizability as the aggregate. We see that the deviation, labeled
‘Mie’, is not large in the forward scattering direction where Fraunhofer diffraction
(van de Hulst, 1957) dominates. The scattering gradually deviates from that for
the uniform interior as the scattering angle increases and eventually joins with
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Fig. 1.7. Measured (circles) angular distribution of polarized scattered intensities, per-
pendicular to the scattering plane, resulting from similarly polarized illumination of a 125
aggregate of simulated silicate (m ≈ 1.618−0.005i) cylinders aligned perpendicular to the
scattering plane (upper left element of the Mueller S-matrix). The scattering is averaged
over a rotation axis normal to the scattering plane. All cylinders were 4:1 prolate elonga-
tion ratio circular cylinders of size x = 0.47 randomly located in an approximately spheri-
cal aggregate at 20% packing factor (80% void). Comparison curves are a Mie calculation
representing the homogeneous distribution approximation for the interior using effective
medium theory, a Rayleigh–Gans (van de Hulst, 1957) -type approximation labeled ‘Inter-
ference’ and a non-interacting and non-interfering approximation labeled ‘independent’ in
which the single-scattering solution for each cylinder was added incoherently. Reproduced
from Gustafson (1980).

the curve representing the coherent interference pattern from independently scat-
tering cylinders labeled ‘interference’. (The incoherent scattering by the cylinders
labeled ‘independent’ is also shown for comparison.) The homogeneous interior is
a gross underestimate in the backscattering hemisphere where most of the radia-
tion results from a few instances where scattering centers interfere constructively
(Figure 1.8), which is supported by the ‘interference’ calculation. The body ‘glit-
ters’ in backscattering. Coherent scattering allows most of the incident radiation
to propagate undisturbed past the particle generating a different forward diffrac-
tion pattern than from a homogeneous body where a significant portion of the
incident radiation is shifted in phase and/or attenuated. A homogeneous interior
can therefore not be used to represent the scattering from a particle with internal
structure.
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Fig. 1.8. Measured variation of the scattering element shown in Fig. 1.7 (upper left corner
of the Mueller S-matrix) before averaging over rotation. The rotation angle χ is about
an axis normal to the scattering plane. The pattern is dominated by interference which
is seen to shift as the geometry changes with rotation. This fully explains the increasing
sensitivity to orientation with increasing scattering angle Θ. Reproduced from Gustafson
(1980).

While this is an extreme example of the effect of internal distribution of matter,
it is illustrative. One can generally expect that the Fraunhofer diffraction dominated
forward scattering is affected the least by an inhomogeneous interior, although not
unaffected, and that there is a transition with increasing scattering angle toward
scattering that depends on interference and (more generally) interaction between
inhomogeneities or identifiable scattering centers. The scattering angles where these
transitions occur depend strongly on the scattering volume (Zerull et al., 1993;
Gustafson et al., 2002) and the effect reduces to polarizability strength anisotropies
in the Rayleigh limit. Interaction between inhomogeneities is low in this specific
case, which makes it easier to identify the overall effect of inhomogenieties. The
particle model is one of the so-called ‘bird’s-nest’ structures made to represent
aggregates of interstellar grains. It was part of a series of models used to test a
theory about the nature of comet material and the process of comet formation in the
solar nebula and consequent evolution ending with interplanetary dust (Gustafson,
1980; Greenberg and Gustafson, 1981). Measurements are from the SUNYA version
of the Greenberg et al. laboratory and illustrate use of the laboratory to fill in where
other solutions do not exist.

While effects of irregular internal structures were studied, the relatively small
size parameter < 5 reachable in the SUNYA laboratory was a limiting factor. The
slightly larger ‘fluffy’ particle structures (x < ∼ 40) studied in Bochum (Giese et
al., 1978) often had complex shape on the wavelength-scale with inhomogeneities
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on scales that are not small compared to the wavelength so that effective medium
theory does not apply and geometric optics fails. Systematic investigations were
limited by the difficulty of accurately describing the ‘fluffy’ particle structures.
The scattering by larger porous aggregates and some compact ones continue at
the University of Florida facility (Gustafson et al., 2001, 2009; Thomas-Osip et
al., 2005) with emphasis on complex structures that could be reasonably well doc-
umented. Investigation of the color and polarimetric color effects of aggregation
geometry (cluster-cluster or ballistic) as bodies grow in nature are currently the
emphasis. Problems in defining the complex geometry of aggregates remain but the
emergence of 3D scanners and 3D printers are likely to herald a new era as far as
particle documentation and the ability to build complex structures of predefined
geometry.

1.6 Discussion

Microwave analogue measurements fill a special need because of their versatility,
accuracy, and the capability of systematic explorations of electromagnetic scatter-
ing at any wavelength. The high degree of control over the scattering experiment
allows its use as a guide in theory development; for example, we have tested partial
solutions to the scattering by large dielectric cubes by covering faces of the cube
with absorbing or reflecting materials at will (e.g., Waldemarsson, 2001: Fig. 29).
It is the only resort in the cases where no theoretical solution exists or when theo-
retical solutions are unreliable. It is also useful in the many cases when numerical
computing is even more demanding than the experiment.

Scaled analogue measurements require the construction of scale models. Be-
cause of this and because of the large parameter space to explore, microwave mea-
surements are tedious. Given the level of effort and the many tasks for which an
accurate microwave laboratory is uniquely suited, it may be hard to justify its use
in the exploration of scattering by broad varieties of natural particles that can be
studied using direct optical techniques and clouds of particles. Multiparticle full-
scale scattering measurements such as described by Muñoz and Volten (2006) and
Hadamcik et al. (Chapter 2 in this volume) are likely more suitable in such in-
stances. There are also a broad range of systematic surveys that do not necessarily
require the high accuracy of our w-band facility and that could best be done using
a microwave analogue facility that trades some of the accuracy for higher data log
rates. In the ‘direct’ problem the particle properties are specified and the task is to
predict the scattering properties. The analogue laboratory is an ideal complement
to theoretical computations of the direct problem and will probably remain so for a
long time as practically any specified particle can be machined, molded, or possibly
printed using ‘rapid prototyping’ technology.
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Gustafson, B. Å. S., 1980: Scattering by ensembles of small particles, experiment, the-
ory, and application, Reports from the Observatory of Lund, 17, PhD thesis, Lund
University.
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2 Laboratory measurements of the light scattered
by clouds of solid particles by imaging technique

Edith Hadamcik, Jean-Baptiste Renard, Anny-Chantal Levasseur-Regourd,
Jean-Claude Worms

2.1 Introduction

2.1.1 Astronomical and atmospheric context

Clouds of solid particles are found in numerous regions in the solar system: in
comets (comae and tails), in planetary and satellite atmospheres (Earth, Mars,
Titan), in the interplanetary dust complex built up from dust released by comets
and by asteroidal collisions (Grün et al., 2001; Levasseur-Regourd et al., 1990;
Levasseur-Regourd, 1999; Levasseur-Regourd and Hadamcik, 2003). Space missions
are rare and many objects cannot be visited (e.g. new comets). Although most dust
clouds have very low number densities, they may be remotely detected by the light
they scatter. Their properties are known by in situ observations, remote observa-
tions or by the interplanetary dust particles (IDPs) collected in the atmosphere of
the Earth (Hanner and Bradley, 2004). Asteroidal and cometary nuclei surfaces are
layers of loosely connected grains made of fragmentary debris produced by, for ex-
ample, meteoritic impacts (regolith) or by gaseous species evaporation (Sullivan et
al., 2002; Levasseur-Regourd et al., 2006). When released, these particles are irreg-
ular, compact or aggregated. Cometary particles, as confirmed by, for example, the
particles captured by Stardust, are mainly made of silicates and carbonaceous com-
pounds with aggregates and compact grains in a large range of sizes from a tenth
up to hundreds of micrometres (Hörtz et al., 2006; Zolensky et al., 2006). Titan
solid aerosols, as observed by the Cassini–Huygens in situ space probe, are made
of aggregates of submicrometre-sized organic grains (Tomasko et al., 2005). As far
as Earth atmospheric solid particles are concerned, ice crystals, soot produced by
biomass burning, industrial or aircraft combustions, sands lifted by winds, volcano
ashes or extraterrestrial particles have been identified (Renard et al., 2003). Light
scattering and polarization measurements are one of the tools used to study such
particles and to access their physical properties (Herman et al., 1986; Santer et al.,
1988; Gayet et al., 2002; Brogniez et al., 2003).

Light scattering by clouds of particles can be studied using different techniques
such as in a steady-state gas flow or in jet streams (West et al., 1997; Muñoz et al.,
2004; Volten et al., 2007). These techniques are suitable for submicrometre-sized or
micrometre-sized particles but not for large ones (hundreds of micrometers). Mi-
crowave analogue experiments on individual or aggregated grains (Gustafson and



32 E. Hadamcik, J.-B. Renard, A.-C. Levasseur-Regourd, J.-C. Worms

Kolokolova, 1999) have validated numerous numerical model although the particles
are purpose-built and clouds of particles cannot be obtained. Reduced gravity can
be a sensible way to achieve conditions close to those prevailing in space for the
laboratory experiment measurements which are requested to relate remote or in
situ observations to physical parameters (Worms et al., 1996, 1999a,b; Levasseur-
Regourd, 2003). The choice of parabolic flights to achieve these conditions is deter-
mined by the fact that light scattering measurements can be made within seconds
for any kind of particles without discrimination by weight or composition. The
PROGRA2 experiment (PRopriétés Optiques des Grains Astronomiques et Atmo-
sphériques) has been developed to study the light scattered by realistic ‘natural’
(opposed to purpose-built) dust clouds with the PROGRA2-vis instrument (‘vis’
for visible). The second instrument PROGRA2-surf (‘surf’ for surface) is used for
comparison with the light scattered by the same grains deposited on layers on the
ground and for the study of regolith analogues.

Samples are chosen for two main reasons: (1) astronomical analogues (e.g. lu-
nar or Martian, Titan’s aerosols, cometary, asteroidal) or purpose studies for at-
mospheric applications (soot, sands); (2) to have different samples with only one
change of parameter (e.g. size of grains, of particles, structure, absorption).

2.1.2 Polarization measurements

2.1.2.1 Definitions

The linear polarization value depends on the phase angle, the wavelength and the
physical properties of the particles. The phase angle (180◦-scattering angle) is the
angle between the direction of the light source and the observer’s line of sight at
the scattering particle, in the scattering plane (Fig. 2.1). The plane of observations
is perpendicular to the line of sight at the scattering object.

Fig. 2.1. Geometry of observations. Scattering plane defined by line of sight and illu-
mination directions. Plane of observations perpendicular to the line of sight. α = phase
angle. R = light source to object distance (Sun-object distance in case of observations),
Δ = object to detectors distance (object-Earth distance in the case of observations).
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2.1.2.2 Equations

The degree of linear polarization P of the scattered light and the intensity I can
be written:

P =
I⊥ − I||
I⊥ + I||

, (2.1)

I = I⊥ + I|| , (2.2)

where I⊥ and I|| are the polarized components respectively perpendicular and
parallel to the scattering plane (they are measured by two separate images). P as
a dimensionless ratio does not need any normalization with the distance or the
number of particles.

2.1.2.3 Phase curves for comets and asteroids

Solar system small bodies present phase curves typical of irregular particles with
a positive branch and a maximum polarization Pmax between 90◦ and 120◦, a
small negative branch of 1% or 2% and an inversion angle close to 20◦. In Fig. 2.2
synthetic phase curves are presented for comets and asteroids of S and C types at
green and red wavelengths, and for the interplanetary dust (Levasseur-Regourd et
al., 2001). In the positive branch, the polarization increases with wavelength for
comets and C-type asteroids. The opposite trend is observed for S-type asteroids,
for the circumnucleus region of comets, close to the nucleus (Levasseur-Regourd et
al., 2005; Harrington et al., 2007) and for two comets (e.g. Kiselev et al., 2000).
For the interplanetary dust, the polarization spectral effect is difficult to measure;
it seems to be neutral in the visible domain (Leinert et al., 1998).

Fig. 2.2. (Updated from Hadamcik et al., 2007; Levasseur-Regourd et al., 2001). Syn-
thetic fits of the observed phase curves for comets (HP = high Pmax comets, LP = low
Pmax comets), for asteroids of C and S types and for the interplanetary dust (ID = inter-
planetary dust in the symmetry surface, at 1.5AU from the Sun). Left: Green wavelength
domain. Right: Red wavelength domain. The ID component is assumed to have the same
scattering properties as in the green domain.
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In cometary comae different regions are observed such as jets and a circum-
nucleus halo (Renard et al., 1996; Hadamcik and Levasseur-Regourd, 2003a). The
polarization is higher in the jets and generally in regions following fresh dust emis-
sion, e.g. during an outburst. The synthetic phase curve for jets seems to only
present a positive branch (or a very small negative branch if it exists at all), indi-
cating differences in the physical properties of the particles filling up these regions.

After a description of the operating principles of the two instruments, we mainly
concentrate on the PROGRA2-vis instrument and on results for lifted particles but
do not neglect the comparison with results obtained on layers (with non-coherent
multiple scattering). We also present some comparisons between numerical mod-
els and experiments and finally some applications to interpret astronomical and
atmospheric observations.

2.1.3 Instruments

Two instruments are used: PROGRA2-vis for levitating particles studied in the vis-
ible spectral domain and PROGRA2-surf for particles deposited on a surface in the
same spectral domain. The average phase angle range is [6–150]◦ with aminimum
value of 5◦ and a maximum value of 170◦.

2.1.3.1 Description

Measurement system

A randomly polarized light source illuminates lifted or deposited particles. An
optical fibre carries the light to the vial in which the particles are lifted or to the
collimator lenses to illuminate the deposited sample. The samples scatter the light.
A polarizing beam splitter cube splits the scattered light at a given phase angle in
its parallel and perpendicular components to the scattering plane. The detection
system (photodiodes or cameras) enables measurements (Worms et al. (1999a, b)
for the first system and Renard et al. (2002, 2005a) for the imaging system). For
lifted particles, the incident laser beam and vial rotate to change the phase angle,
the detection system being in a fixed position (Fig. 2.3(a)). For deposited particles,
two arms can rotate, one with the incident beam, the other one with the detection
system (Fig. 2.3(b)).

Fig. 2.3. (Updated from Hadamcik et al., 2002a.) Operating principle of the two instru-
ments. (a) PROGRA2-vis for lifted particles with measurements in the visible wavelength
domain. (b) PROGRA2-surf for particles deposited on surfaces.
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Light source

Randomly polarized He-Ne lasers are used at two wavelengths (543.5 nm and
632.8 nm). The lack of residual polarization is checked in the laboratory as a func-
tion of the position in the beam (Worms et al., 1999a, b), and as a function of
time. For this purpose, it is necessary to enlarge the beam and to reduce the aper-
ture to avoid saturation (measurements in the forward direction). After the laser
is switched on, an important increase of intensity in the first 20min is noticed. An
oscillation of the polarization value with a period of a few seconds and a small
amplitude of a few tenths of one per cent is detected. The whole system (laser and
detection) produces an error bar of ±1% on the polarization value. Measurements of
the scattered light by transparent and absorbing particles (silica and carbon-black
with nanometre-sized grains) at a 10◦ fixed phase angle with the PROGRA2-surf
instrument are also conducted with the two lasers (red and green). In the first
40min, the polarized intensities increase by about 0.12%min−1; the increase is
about 0.1%min−1 during the next 20min and only of 0.03%min−1 during the next
hour. These results are the same for all the lasers used and perfectly correlated
to the direct measurements made with the PROGRA2-vis instrument. When the
steady-state temperature is reached (after about 60min) in the laboratory condi-
tions, the signals and polarization are stable within an error bar of 0.5% for the
second hour of measurements and 0.05% for the third hour (on layers of transparent
particles). If the samples are absorbing, their temperature can slightly increase and
the intensity slowly change depending on the size of the grains. Although negligible,
this problem can be avoided if the beam impact point changes on the surface. Levi-
tating particles are moving and the increase of temperature for absorbing particles
is negligible.

Sample container for lifted particles

The optical fibre head was set at about 35 cm from the sample. In the new version,
it is close to the entrance of the vial. The laser beam diameter lies between 2 and
3mm (4mm in the first version).

The samples are introduced in a container. The vial containing the dust particles
is cylindrical with a diameter of about 40mm and is made of glass. The beam
enters the vial through a plane-parallel glass window fixed on a glass tube (length
about 12mm, external diameter 8mm and internal diameter about 6mm). The
unscattered light is trapped in a curved light trap with an external diameter 12mm
where it connects to the vial (Fig. 2.4(a)). The light input cylinder and the light
trap are covered with a black paint and their diameters areminimal in order to
have a better access to the backward and forward scattering regions. For studies in
reduced gravity, the pressure inside the vial is reduced and the vial is hermetically
sealed. For particles lifted by air-draught, nitrogen is introduced in the vial by an
opening in the cap of the vial (Fig. 2.4(b)). The gas then flows along the vial wall
with a slow speed of injection, lifts the particles close to the axis and leaves the
vial through the centre cap. This allows, if necessary, a partial cleaning of the vial
walls by blowing off the dust.
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Fig. 2.4. Sample containers: (a) Vial for microgravity conditions. (b) Vial for air-draught
injection on the ground with its cap allowing to the injection of nitrogen and its circulation
around the inner wall.

Beam splitter cube

A broadband (450–700 nm) polarizing beam splitter cube separates the parallel
and perpendicular polarized components to the scattering plane, corresponding to
the reflected and transmitted beams (at 90◦ from each other). The refractive index
of the substrate material is 1.64 in the visible domain. All external surfaces are
antireflection-coated. At wavelengths of 543.5 nm and 632.8 nm the transmitted
and reflected beam efficiency are theoretically the same, and as checked in the
experiment (if necessary one way is weighted by the measured coefficient).

Detectors

In the first version of the instrument, pin-photodiodes were used, integrating the
scattered light on a field of 2 cm diameter at about 35 cm from the detectors (such
configuration is still available for the deposited particles system). Since 2000, two
cameras are used. The cameras (Leutron Vision LV65CE) have a 752× 582 pixels
CCD sensor. To minimize the time of lecture of the CCD, the field of view is
reduced to 740× 400 pixels. Telephoto lenses allow imaging with a 10μm per pixel
resolution. At 90◦ phase angle, the horizontal field of view is about 6.5mm and the
vertical field corresponds to the diameter of the beam (about 2mm). As the phase
angle changes, the field of view increases theoretically as 6.5/ sinα. In practice, it is
limited by the field depth and we only keep the central part of the image; for phase
angles smaller than 40◦ and larger than 140◦, this gives a maximum field of view of
about 10mm (and not the 40mm of the vial). The geometry of the measurements
induces an error bar of about 1◦ on the phase angles.

The signals are digitized in real time on 10 bits. The cameras record 12.5 im-
ages per second. To increase the dynamics, exposure times are between 1/50 s
and 1/10 000 s; the choice mainly depends on the particles albedo. If the exposure
time is too long the images of the particles are significantly elongated. Different
diaphragm-stops positioned in front of the cameras allow the manual adjustment
of the field depth or the increase of the flux for very dark samples (thus obtaining
less accurate images).



2 Laboratory measurements of the light scattered by clouds of solid particles ... 37

A third camera at a fixed 90◦ phase angle is used to normalize the intensity
(reference camera). It is synchronized to the two main cameras. Its resolution is
about 18μm per pixel. This camera allows also a partial 3D view of the particles.

Instrument container

The whole instrument is installed in a case, whose inside walls were painted black
(Fig. 2.5a). The external dimensions are 1.05 × 0.85m with a height of 0.54m.
The command and acquisition systems are located in an external specific rack
(Fig. 2.5b).

Fig. 2.5. PROGRA2-vis instrument and container. Left: Instrument inside the container.
Right: Container in the A300-Zero-G plane.

2.1.3.2 Measurements process

Without particles

To control and adjust the optical alignment before each series of measurements (on
the ground or during a parabolic flight campaign) a sighting-mark is positioned
along the axis of the rotating tray. The vertical and horizontal alignments of the two
images are first controlled visually. The two images of the sighting-mark are then
recorded and the shift parameters between the two images measured automatically.

At each phase angle and without any particles in the field of view, one (or more)
images are recorded to estimate the electronic offset and obtain a so-called ‘offset-
image’. The offset-image also allows subtracting the eventual faint stray light that
may be present at small (α < 20◦) or large (α > 150◦) phase angles (produced
mainly by grains stuck in the light-trap or in the input cylinder).

With levitating particles

Two techniques are used to lift the particles: levitation under reduced gravity con-
ditions or injection of a draught of nitrogen in ground-based conditions (so-called
‘air-draught’). The microgravity technique is suitable for compact particles with
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an average size larger than 10μm, or for relatively compact particles. For fluffy
particles or for particles with sizes smaller than 10μm, the air-draught technique
is generally used.

Novespace operates the parabolic flights with the A300-zeroG dedicated air-
craft. The typical profile of a parabola is as follows: an entry pull-up phase from
the horizontal normal flight and during which the gravity is about 1.8g (for about
20 s), a transitory injection phase during which the gravity falls down from 1.8g
to 0g (less than 5 s), the microgravity phase (±5 × 10−2g) for some 22 s and the
pull-out phase (essentially symmetrical to the pull-up phase) ending by a 2-min
period between two consecutive parabolas. The pull-up and pull-out phases may
increase the amount of particles sticking to the vial. A mechanical device is used to
un-stick the particles at the beginning of each parabola (and sometimes during the
parabola). During the 22 s of the microgravity phase, the particles freely float in the
vial with random movements; the phase angle is constant and the images are con-
tinuously recorded. The tray rotates between the parabolas by 5◦ or 10◦ depending
on the phase angle range, at the convenience of the operator. Exceptionally, the
operator can initiate a two-angle procedure during the same parabola, with two
recordings of 9 s each (rotation of the tray 5◦). The number of recorded images
being lower in the two angles procedure, the consequence can be a loss of precision
for the polarization values. A full campaign (three flights with 31 parabolas each),
allows studying about six samples at one wavelength. Twenty to thirty series of
measurements (phase angles) are necessary to retrieve a whole phase curve. One
to three campaigns take place every year (with the French Space agency CNES or
the European Space agency ESA).

When the particles are lifted by air-draught, they progressively fall down with
gravity but, depending on the samples, they may float with random movements
for 1s up to tens of seconds (sometimes minutes). The images are recorded during
the time when particles are in the field of view (10 s on average). To achieve better
accuracy, many injections can be necessary for each phase angle. When the scatter
of the data is too large, an important number of measurements are necessary to
retrieve a representative value of the polarization.

2.1.3.3 Data reduction

Pre-processing

An iterative procedure with a 0.25 pixel step precisely aligns the images of the
sighting-mark; the parameters are applied to all pairs of recordings of each series.
The ‘offset-image’ containing the electronic offset and the eventual stray-light is
first subtracted for each series of images corresponding to the same phase angle.

For some samples (mainly for large agglomerates or for crystals), some pixels
may be saturated. To avoid some bias in the polarization results by these pixels, or
by values in the nonlinear part of the curve of the detectors, an automatic procedure
suppresses all the pixels, the level of which exceeds 80% of the saturation level.

To achieve the best accuracy on the photometry of the individual particles, the
images are filtered and smoothed by a mean smoothing IDL procedure. Neverthe-
less, some noise is still present on the images and to prevent any confusion with
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real particles in the field of view, all pixels with a digital level smaller than 5 are
excluded from the analysis.

Polarization maps

Polarization and intensity maps are obtained by computing the equations (2.1) and
(2.2) for each pixel of the polarized component images. The particles in the field
of view may be of different kinds. Large compact grains (20μm < size < 300μm)
appear as single particles in the field of view, but when lifted in microgravity they
can be found to be agglomerates of grains in contact with each other by small
surfaces; their large sizes in the field of view generally make it possible to locate
them on the polarization map. Aggregates of submicrometre-sized grains can be
also agglomerated in larger particles. When lifted by an air-draught the average
size of the fluffy agglomerates is [50–100]μm with a lower cut-off of 10μm and
some large particles. When levitating in microgravity, the agglomerates of fluffy
aggregates are generally huge, up to millimetres.

When micrometer-sized grains are studied, they are lifted by the air-draught
technique. If some large agglomerates are lifted they quickly fall down; some seconds
after, the beam seems about continuous in the field of view, individual grains and
small aggregates of a few number of grains remain present and scatter the light.

Figure 2.6 shows a polarization map, the corresponding intensity map and the
reference intensity map for lunar analogue particles at a 120◦ phase angle. The
number of particles in the field of view is relatively large and this type of image is
generally not kept for single scattering studies.

Fig. 2.6. Lunar analogue PROGRA2 images at 120◦ phase angle. Top: intensity maps;
middle: polarization maps; bottom: intensity maps from the reference camera.
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Single and multiple scattering

The imaging method enables measurements of both the polarization of light pro-
duced from individual particles and that from thick (or dense) clouds of particles.
In practice, when single scattering of a sample is studied, images containing strong
multiple-scattering effects arising from particles too close from one another are
rejected. Inside a particle, optically interacting grains can be present and the vari-
ations of the polarization with the size of the particles may be an indication of
such interactions. Another indication of multiple scattering comes from important
differences in polarization and/or intensity values in the image as compared to the
average values from other images at the same phase angle for the same sample.

The behaviour of the polarization is monitored when the number density in-
creases: from optically thin to optically thick clouds with multiple scattering be-
tween non-touching particles, loose agglomerates with a few touching grains, loose
deposited very large agglomerates, sifted layers and finally packed layers.

Polarization values for clouds of particles

All pixels with a digital level higher than the cut-off level are added for each I||
and I⊥ images. To calculate the intensity normalized over the surface, the resulting
sum is divided by the number of used pixels. Then, the parallel and perpendicular
components of all the images are summed separately. Finally the polarization value
is calculated with equation (2.1). If enough images are available (typically more
than 10), the resulting polarization value is the same than when directly calculated
on each image and averaged over the whole series.

Intensity values

The intensity function, in relative units, is obtained as Ip/Ir where Ip is the sum
of the surface-normalized polarized components as in equation (2.2) and Ir is the
surface-normalized intensity recorded by the reference camera. At small and large
phase angles, the field of view on the two main cameras and on the reference camera
differ markedly; hence the division Ip/Ir can give inaccurate results, except when
only one or two particles are in the field of view with non-overlapping images.

Size distribution of particles

The imaging technique allows us to measure the polarization of the light scattered
by large single particles (compact or not). The polarization maps (for phase angles
between 30◦ and 150◦) are automatically scanned; the output is the projected
surface (S) of each particle independently of its shape. Two adjoining pixels with
values higher than the cut-off have to be present to be identified as a particle. The
equivalent diameter (in pixels) is

d =

√
4S
π
. (2.3)
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Size ranges are defined (steps of some tens of micrometres) and a size distribution
given. For each size range a polarization and a surface-normalized intensity value
are calculated. To have a significant variation of the polarization as a function of
the particles’ size, it is necessary to measure the polarization for numerous (usu-
ally more than one thousand) particles. Polarization values for clouds of particles
selected by size can be obtained; variations of these values if any give an indication
on the structure (compact or fluffy) of the particles. In the case of fluffy particles,
it may be interesting to study the variation of the polarization as a function of the
surface-normalized intensity, which can give some indication of the porosity of the
aggregates.

Due to the large number of images for a session of measurements (some tens
of thousands of images), the processing is automatic but manual sorting can be
done after the processing if some images give results completely different from the
average. New parameters (such as flux and polarization as a function of time or
polarization as a function of equivalent diameter) may also be defined (see, for
example, Hadamcik et al., 2002b).

2.2 Samples

For light scattering studies, the main physical properties are linked to the real and
imaginary parts of the refractive index, which are related to the material, the size
of the grains, their shape (spheres, cubes, irregular particles with rounded or sharp
edges), their structure (single grains, aggregates with different porosities). In the
case of aggregates or agglomerates, different sizes are involved. Figure 2.7a presents
SEM and TEM images of silica and carbon samples in different size ranges. The
size distribution of the grains is given by the provider (industrial or laboratory)
and controlled on the images. Figures 2.6 and 2.7(b) display some polarization
maps used to measure the size distribution of the particles in the field of view. For
compact particles this size is compared to those estimated from microscope images
and to those sometimes given by the provider. Nevertheless, some discrepancy can
exist between these measurements mainly due to grain shape (e.g. elongated grains
have a smaller size than those measured on the polarization maps). Table 2.1 gives
the characteristics of the samples presented in this chapter, the sizes are those given
by the provider or measured on the SEM images.

To have access to some physical properties from the observed phase curves
(inverse problem) it is necessary to know the influence of each parameter and to
disentangle these influences. Systematic studies are made by changing one param-
eter at a time.

2.2.1 Samples preparation

A small quantity of materials is introduced in the vial (typically less than 0.5 g for
compact particles and 0.05 g for fluffy aggregates). It is difficult to image together
small and large, compact grains. When the size distribution of the grains is too
large the smaller grains are not detected on the polarization maps. Small grains
can eventually stick to large ones producing irregularities on the particles. The small
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Fig. 2.7. (a) Silica and carbon samples in different size ranges (C spheres = Sicastar-
black-coated silica spheres): sub-μm-sized, μm-sized and large as compared to the wave-
length. (b) Images of compact and fluffy particles on the polarization maps.

grains may also be agglomerated into large fluffy particles (that can eventually be
detected by the flux per pixel on the intensity images).

To relate the optical properties of particles to their physical properties it is
necessary to study narrow size distributions mainly for compact particles. Different
size ranges are usually obtained by crushing and sieving; it is then necessary to clean
the sample and eliminate the fine grains, for example, by sedimentation in a liquid.
To prepare mixtures, it is necessary to homogenize them, first by vigorous manual
shaking eventually complemented by a 15min shaking in an ultrasonic device. Small
compact grains well mixed with fluffy particles made of submicrometre-sized grains
are thus included in the fluffy agglomerates.

2.2.2 Levitation techniques, advantages and restrictions

The advantages and restrictions of the two levitation methods, which are used in
the experiment, are summarized below.

Microgravity avoids sedimentation due to weight and allows the study of clouds
of freely floating mixtures of irregular particles of any shape, size, and size distri-
bution. The number of parabolas is limited and it can be necessary to complete
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the phase curves at the next campaign. Owing to fluctuations of the micrograv-
ity level (±5 × 10−2g), the particles move inside the vial with in average random
speeds and directions. In the vial, the pressure is generally reduced also avoiding
the presence of humidity. Nevertheless, the pull-up and pull-out phases (with 1.8g
gravity) favour the sticking of the small grains and aggregates of small grains to
the bottom of the vial. When they are shaken off by the kick-off device, they are
lifted in large agglomerates with low number densities.

Micrometre-sized grains and fluffy aggregates can be lifted from the ground
by a low speed air-draught (avoiding orientation of possibly elongated particles);
they then float by convection and gravity-driven buoyancy with random speeds for
several seconds before settling down. It is possible to adjust the injection and have
small or large agglomerates of grains. Some samples, with average sizes of tens of
micrometres may be studied if their particles have homogeneous densities; when
that is not the case the polarization becomes time-dependent. If the statistics are
not sufficient to retrieve a representative average phase curve, a small quantity of
material can be introduced again in the vial, then it is possible to start again the
measurements.

A limit of the two methods used to lift the particles is the difficulty of studying
single scattering for grains smaller than 20μm. The advantage is the possibility of
studying large particles compact or fluffy as found in, for example, cometary comae
and to make measurements on optically thin and thick clouds of particles.

2.3 Results

2.3.1 Calibrations

Calibration experiments are first carried out with samples for which the polarization
values can be easily calculated. With PROGRA2-surf, specular reflection on a black
plane glass surface allows to control that the reflected light follows the Fresnel laws
(Worms et al., 1999a, b). With PROGRA2-vis, the phase curves (intensity and
polarization) obtained for the scattered light by 100μm diameter glass spheres are
compared to Mie curves (Worms et al., 1999a, b; Renard et al., 2002; Hadamcik et
al., 2003). A good adequacy between theory and experiment in the two wavelengths
is found if about 20 measurements are made for each phase angles. The results at
543.5 nm are presented in Fig. 2.8. If the real part of the refractive index is known,
the imaginary part is a free parameter of the fit.

2.3.2 Phase curves and their parameters

2.3.2.1 Transparent and absorbing materials in different size ranges

The variation of the phase curve characteristics will be presented on series of mea-
surements for silica (transparent) and carbon (black). Their properties can be found
in Fig. 2.7 and Table 2.1. For each material, the parameters are the size of the grains
and the structure of the particles. The size range is compared to the wavelength
range. In Fig. 2.9(a), the maximum polarization (Pmax) difference is small between
transparent silica with average grain size of (12 ± 3) × 10−3 μm and dark carbon
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Fig. 2.8. Polarization (left) and intensity (right) phase curves for 100μm glass spheres
as compared to Mie curves. The Mie curves take into accounts the aperture of the de-
tectors (which produces a 1◦ uncertainty on the phase angle) and the size distribution
of the spheres (measured on SEM images and controlled on the polarization maps).
λ = 543.5 nm.

with grain size of (14±5)×10−3 μm. For larger sizes than the wavelength, Pmax in-
creases when the size increases (Fig. 2.9b, c, d); this increase is more important for
dark materials. More generally, Pmax is higher for absorbing than for transparent
materials. The polarization in the negative branch depends on different parameters,
the absorption, the morphology and the shape of the grains.

Figures 2.9(e, f, g, h) present the phase curves for layers of the same grains.
The main difference is the systematic decrease of Pmax for layers of transparent
particles as compared to lifted particles because of multiple scattering between the
transparent grains. The other important difference is the presence of the negative
branch for all the samples in layers. For dark particles, the difference of Pmax

between lifted particles and layers is smaller than for transparent particles and
Pmax may be higher for deposited particles than for lifted ones.

2.3.2.2 Mixtures of materials

Fluffy (porosity larger than 90%) particles made of mixtures of silica and car-
bon aggregates with submicrometre-sized grains have been studied. Figure 2.10(a)
presents the phase curves for silica (40 ± 20) × 10−3 μm and carbon (14 ± 5) ×
10−3 μm and (95 ± 20) × 10−3 μm in red and green wavelengths. Figure 2.10(b)
presents the phase curves for mixtures of 50% silica and 50% carbon (in mass)
in two size ranges of the carbon samples. Pmax increases when the average size
of the grains in the mixture decreases (Hadamcik et al., 2006a). A negative
branch is always found for the mixtures. If micrometre-sized transparent com-
pact particles are mixed to fluffy particles of the same material, Pmax decreases
(Fig. 2.10(c)).
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Fig. 2.9. (a, b, c, d) Polarization phase curves for particles in levitation: silica and carbon
in different size ranges and structures. λ = 632.8 nm. (e, f, g, h) Same grains but in layers.
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Fig. 2.10. (Updated from Hadamcik et al., 2006a.) R = red (λ = 632.8 nm) and G =
green (λ = 543.5 nm). (a) Phase curves for silica and carbon. (b) Mixtures of silica with
carbon. (c) Mixture of fluffy silica (0.04μm) with 1.5μm size compact spheres.

2.3.2.3 Micrometer-sized spheres

Partly for numerical simulation purposes, spheres are used to try and better under-
stand the internal interactions inside the agglomerates with increasing sizes (and in
a future phase to make a comparison with irregular grains in regolith). In space as
suggested by Greenberg and Hage (1990) grains may be covered by black organic
compounds and organized in ‘bird-nest’ structures. Transparent and black-coated
spheres are studied in levitation as individual grains and/or small agglomerates of
grains (size smaller than 5μm), as large agglomerates in the [50–100]μm size range
and as deposited very large agglomerates (diameter 2 cm, thickness 3mm). The
transparent spheres are made of compact silica; the coated spheres have a silica
core and a thin organic black mantle ( R©Sicastar-black). Figure 2.11 presents the
polarization phase curves. For small agglomerates made of a few spheres only, the
oscillations of the Mie scattering are present (Fig. 2.11(a)). The phase curve for
the large agglomerates of transparent spheres presents a possible small negative
branch at phase angles smaller than 20◦, a polarization spike around (25–30)◦, a
bell-shaped branch up to 130◦ and an increase of polarization (Fig. 2.11(b)). The
internal interactions between the transparent grains seem to decrease the negative
branch at small phase angles, and smooth the phase curve between 40◦ and 130◦.
For deposited very large agglomerates (Fig. 2.11(c)), the interactions between the
transparent grains become important and the polarization value for phase angles
between 30◦ and 120◦ is close to zero with small amplitudes oscillations (Hadamcik
et al., 2006b).

For agglomerates of coated spheres with a black mantle, the oscillations de-
crease as compared to transparent spheres (Fig. 2.11(d)) and disappear for large
agglomerates; the phase curve is smooth with a shape similar to those obtained for
irregular particles (Fig. 2.11(e)). Surprisingly though, for the very large deposited
agglomerates of coated spheres, the phase curve present oscillations with maxima
andminima corresponding to those obtained for the small agglomerates or single
spheres (Fig. 2.11(f)). The amplitude of the oscillations decreases as the phase an-
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Fig. 2.11. Polarization phase curves for μm-sized spheres in agglomerates. λ = 632.8 nm.
On the left-hand side, transparent silica spheres (diameter 1.45μm). On the right-hand
side, black-coated spheres (silica core 1.45μm, black coating 0.04μm). Top curves: In-
dividual spheres and small agglomerates (less than 5μm) in levitation. Middle curves:
Large agglomerates (tens of μm) in levitation. Bottom curves: Huge agglomerates (cm),
deposited.

gle increases, it may come from surface irregularities. The polarization is mainly
dominated by single scattering for the coated very large deposited agglomerates
(Hadamcik et al., 2007a).

2.3.3 Optical and physical properties

2.3.3.1 Maximum polarization as a function of sizes

Size of the particles

The maximum polarization is studied as a function of the size of the particles as
measured on the polarization maps for compact particles and agglomerates, and of
the constituent grains for fluffy aggregates (Hadamcik et al., 2006b).



50 E. Hadamcik, J.-B. Renard, A.-C. Levasseur-Regourd, J.-C. Worms

For fluffy aggregates (more than 90% porosity), Pmax generally decreases
when the size of the agglomerates increases except for constituent grains smaller
than about 0.015μm for which it does not change with the size of the particles
(Fig. 2.12(a)). For relatively compact aggregates (less than 50% porosity) such as
the silicates (S) in Fig. 2.12(a), the variation of Pmax with size follows the same
trend than for compact particles. For compact particles, which are large compared
to the wavelength, Pmax increases up to a value for which the polarization remains
stable (all the refracted light being absorbed); Pmax also increases with the absorp-
tion (Fig. 2.12(b)). In Fig. 2.12(c), the same trend is observed for deposited particles
and for levitating compact particles (Hadamcik et al., 2003a; Levasseur-Regourd
et al., 2006).

Fig. 2.12. (Updated from Hadamcik et al., 2006b.) (a) Pmax vs particles size for white
samples (fluffy and compact). (b) Pmax vs particles size for compact particles with increas-
ing absorption from quartz to CB4 (c) The same as (b) for deposited compact particles
(updated from Hadamcik et al., 1996).

Size of the constituent grains in aggregates

When the grain size is smaller than about 0.03μm, the linear decrease of Pmax with
the increasing size of the grains is similar for the transparent and the absorbing
materials as can be seen in Fig. 2.13 (to allow a comparison with other data, the
size parameter X = πaλ−1 is used on the horizontal axis, ‘a’ being the average
diameter of the grains and ‘λ’ the wavelength). For larger grains of absorbing
materials, the slope decreases and Pmax seems to have aminimum value of about
40%. For transparent materials, the lack of data for grains larger than 0.04μm in
fluffy aggregates prevents providing such a limit. Nevertheless, for small aggregates
of irregular silica particles with a size of the grains in the range [0.1–6]μm, Pmax

is about 20% (Hadamcik et al., 2007a) and can be a limit for grains smaller than
the wavelength in silica fluffy aggregates. The variations for red and green light are
similar; the wavelength effect is only a relative size effect (Fig. 2.13).
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Fig. 2.13. (Updated from Hadamcik et al., 2006a.) Pmax vs grain size for fluffy aggregates
(SiO2 and C).

2.3.3.2 Maximum polarization as a function of albedo

The albedo is the geometric albedo measured at 8◦ phase angle (incident an-
gle 4◦) on layers of different materials relative to the same compact white sam-
ple (MgO) in the same geometric conditions. The albedo depends on the refrac-
tive index (mainly on the absorption); it also depends on the grain size and on
the porosity of the deposited samples. The measurements are made with sifted
samples without any compression. For layers of particles, log(Pmax) is linearly
dependent on log(albedo), with different slopes for fluffy particles and for com-
pact ones (Hadamcik et al., 2002a; Levasseur-Regourd et al., 2006). To change
the albedo, it is convenient to make mixtures of transparent particles with ab-
sorbing ones. Nevertheless as shown in Fig. 2.14(a) for levitating fluffy particles,
Pmax increases when the average submicron size of the grains in the mixture de-
creases. Nevertheless as expected for single materials (SiO2 or C), log(Pmax) in-
creases linearly when log(albedo) decreases but this result can also be interpreted
as a size effect. For these fluffy aggregates made of submicrometre-sized grains,
when the size increases, the albedo increases (Fig. 2.14(b) and Hadamcik et al.,
2006).
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Fig. 2.14. (Updated from Hadamcik et al., 2006a.) Pmax vs geometric albedo (in log-log
scale) for different mixtures of SiO2 and C. Linear fits for each set of data points. (1) SiO2

(40 nm) + C (95 nm), (2) SiO2 (40 nm) + C (14 nm), (3) SiO2 (12 nm) + C (14 nm).

2.3.3.3 Maximum polarization as a function of number density
of the grains

The number density of the grains has been estimated for two samples: one made of
large irregular compact silicon carbide grains (88μm) and the other one made of
fluffy alumina agglomerates of submicrometre-sized grains (0.013μm). An average
volume for an equivalent sphere diameter for the grains of each sample is calcu-
lated. The mass of the sample is measured, the density of the material known and
the number of grains calculated. The grains are supposed to be homogeneously dis-
tributed in the vial volume. Similar estimation has been made for the fluffy sample,
the non-homogeneous distribution of the grains being ignored in a first approxi-
mation. The measurements have been made with the first photodiodes system and
the number density is supposed to be proportional to the mass in the vial. With
the imaging system, we have verified that this hypothesis generally gives a correct
approximation.

For the particles deposited in a cylindrical cup, the volume of the cup is mea-
sured. The cup is either filled with sifted grains or the grains are packed in the cup
with a glass plate to have a sample with grains as closely packed as possible. The
mass is measured in each case and the number density of the grains is calculated.

The variation of Pmax as a function of the number density (ND) of the grains
decreases when the ND increases for lifted grains and increases for deposited grains
(Fig. 2.15). The increase of Pmax with increasing ND for deposited samples was ob-
served for all samples with sifted or packed grains, when the size of the grains is
smaller than about 20μm (it is easier to pack small grains than large ones). To
interpret the decrease of Pmax with the increase of ND for lifted grains, multiple
scattering between the grains can be suggested. To interpret the increase of Pmax

between sifted and packed grains other interpretations have to be found. The ori-
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Fig. 2.15. (Updated from Worms et al., 1999b.) (a) Pmax as a function of number density
of the grains for 88μm SiC. (b) Pmax as a function of number density of the grains for
0.013μm Al2O3.

entation of packed grains may be suggested but the increase is also observed for
iso-shaped grains (e.g. spheres in the case of fluffy silica or carbon black).

2.3.4 Numerical models

The first step in such a work on real particles in a 3D volume is to make a model to
represent the samples by equations: particles shape, average size and size distribu-
tion using mainly flat images from microscopes. The second step is to build a light
scattering code corresponding to the experiment and investigate the influence of
shape, surface irregularities, size distribution and the optical properties to interpret
the observations.

2.3.4.1 Compact particles, large as compared to the wavelength

Penttilä et al. (2003) first described the shapes of the boron carbide particles by
stochastic polyhedra. They used optical microscope images of 125 particles and
chose a convex polyhedral model (Figure 2.16(a)). The same model is used for the
three size distributions (9μm, 13μm, 88μm). The particles are large as compared
to the red wavelength (632.8 nm) and a ray-tracing code (Macke et al., 1996) is
applied. The complex refractive index of the material is not known and different
combinations are tried. A Fourier fit is made for 20 realizations of the particles
model, 1000 rays of the 100 orientations per particle. The goodness-of-fit between
measurements and model data is chosen to be the root mean square (rms) between
measured data points and the continuous ray-tracing model curve. The best-joined
fits, where the rms values of fits are simultaneously minimized for the three sizes,
are achieved with a refractive index of (2 + 0.04i). The effect of concavities is also
studied but it does not produce any significant change in the best refractive index
obtained there from. Figure 2.16(b) compares the experimental data to the best
fits.

Mikrenska et al., (2006) used a Monte Carlo model for direct simulation of
polarization at single scattering by rounded NaCl crystals (cubes). The method
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Fig. 2.16. (Update from Penttilä et al., 2003a.) (a) Left side: boron carbide grain with
six corners and its maximum diameter d. Right side: model particle viewed from three
orthogonal directions. (b) Comparison of the best fits in polarization to the experimental
data for the three size ranges of B4C particles. λ = 632.8 nm.

was first described by Stefanov et al., (2002) and applied to glass spheres. Particle
orientation is assumed to be random. Modelling is done in geometric optics approx-
imation. First, by numerical approach, the influence of the different parameters is
studied: macro and micro shapes, crystals size distribution, refractive indices, sin-
gle scattering by an ensemble of randomly oriented crystals. Analysis of the SEM
images yields defining ratios of shape irregularities and a mean size of the crystals.
In Figure 2.17(a), a real NaCl particle and the rounded cube model are presented.
The real part of the refractive index is known (1.54) but the imaginary part is a
free parameter. In the studied sample 35% cubic, 10% slightly rounded cubic (mean
roundness 0.72), 10% highly rounded cubes (roundness degree 0.94) and 45% round
spherical shapes are estimated to be present. The degree of roughness is respec-
tively 25% and 40% for the cubic and the spherical part of the surfaces. The output
is the imaginary part of the refractive index, which was found to be 4×10−5 by the
best fit. Figure 2.17(b) compares the experimental data to the best fits in polar-
ization and intensity. Considering the wide variety of the grain irregularities (e.g.
presence of a few multi-cubes), the comparison between calculated and measured
data is quite satisfactory. The Direct Monte Carlo Simulation model is suitable for
non-homogeneous particles and/or with complex shapes, and for relatively dense
media without or with multiple scattering between the particles (Hadamcik et al.,
2003).
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Fig. 2.17. (Updated from Mikrenska et al., 2006.) (a) Left side: real NaCl crystal; right
side: model rounded cube. (b) Comparison of the best fits to the experimental data for
NaCl crystals. Left side: polarization; right side: intensity. λ = 632.8 nm.

Lasue et al., (2007a) studied the light scattered by transparent spheres covered
by different coatings. All the diameters are large compared to the wavelengths
(632.8 nm and 543.5 nm for some of the samples). The code is adapted from a
stratified sphere model (Toon and Ackerman 1981) to take into account the size
distribution as well as the specific parameters of the experiment. In this work
we present the results for Sicastar-black-coated spheres (silica core and organic
black mantle). The refractive index of the core is known but not that of the black
coating. The diameter of the spheres is about 20mm and the size distribution of
the coated spheres was measured using SEM images. The coating thickness is in the
[0.01–0.05]μm range as indicated by the provider. The real and imaginary parts
of the refractive index and the thickness of the mantle are free parameters. In
order to estimate the confidence level of the fit from the numerical model and the
data points, the root mean square (rms) is calculated for the polarization phase
curve. The best fit of the measurements is obtained for a thickness of 0.05μm and a
refractive index (2.4+i0.4) for the coating; it is presented with the data in Fig. 2.18.
The discrepancy between the data and the fit that is observed at the maximum of
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Fig. 2.18. (Updated from Lasue et al., 2007a.) Comparison between the data points
and the best fits for 20μm diameter silica spheres covered by an organic black mantle:
m = 2.4 + i0.4, thickness 0.05μm. λ = 632.8 nm.

the polarization curve could correspond to some small agglomerates of grains and
to some shape irregularities on the surface or among the grains and/or to some
uncertainties in the size of the core.

2.3.4.2 Micrometre-sized spheres, single or in small agglomerates,
bare or coated

Hadamcik et al. (2007a) have compared the phase curves for particles made of
micrometre-sized (diameter about 1.5μm) constituent grains. The particles size is
smaller than 5μm. Single grains and small agglomerates are present in the field
of view in a statistically similar ratio at each phase angle. The constituent grains
are either compact bare silica spheres or the same spheres coated by an organic
mantle (Sicastar-black R©). The experimental results are compared to numerical
simulations. The size distribution of the spheres was measured using SEM images.
The codes used for the numerical model are adapted from Toon and Ackerman
(1981) and Lasue and Levasseur-Regourd (2006). The refractive index for the black
mantle is taken from Lasue et al. (2007a). The influences of the size distribution
of the grains, of the thickness of the mantle for the coated spheres, and of the
number of grains in the agglomerates are considered. Figure 2.19(a) compares the
experimental polarization data to the Mie curves obtained for single spheres made
of bare silica and of supposed plain spheres made of the mantle material for two
different sizes (1.45μm and 1.54μm). Figure 2.19(b) compares the experimental
polarization data for bare silica spheres and for the coated spheres to the best
fits for agglomerates of eight spheres with a size distribution (σ = 0.05) of the
constituent grains and a 0.04μm thickness mantle. Figure 2.19(c) compares the
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intensity experimental data to the fits obtained for eight spheres agglomerates. The
position of the maxima and minima of the polarization phase curves mainly depends
on the size of the grains and not on the refractive index of the external material,
which only produces a small shift of the phase angle values (Fig. 2.19(a)). The
presence of agglomerates produces a decrease of the amplitude of the oscillations

Fig. 2.19. (Updated from Hadamcik et al., 2007a.) Bare silica (left column) and core-
mantle (right column) 1.5μm diameter spheres. λ = 632.8 nm. (a) Experimental polariza-
tion phase curves for bare silica spheres and coated silica spheres compared to Mie curves
of plain spheres (pure silica and pure Sicastar- black). (b) Experimental polarization phase
curves for bare silica spheres and coated silica spheres compared to the best fits obtained
for aggregates of eight spheres with a size distribution of the spheres. (c) Experimental
intensity phase curves obtained for bare silica spheres and coated spheres compared to the
best fits obtained for agglomerates of eight spheres with a size distribution of the spheres.
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and of the negative branch at small phase angles. The oscillations for coated spheres
are reduced as compared to bare spheres. In future numerical work, mixtures of
different size of agglomerates and larger agglomerates will be tested to obtain the
best fits between the model and the data points.

2.4 Applications

The results of the light scattering experiments are used to interpret remote obser-
vations of dust either in the solar system or in the Earth’s atmosphere.

2.4.1 Solar system dust

2.4.1.1 Analogues

The relevant samples for astronomical applications are powdered meteorites and
analogues (Moon, Mars, regoliths, Titan’s aerosols, cometary comae). Deposited
in layers, the lunar and Martian soils analogues (JSC1) polarization phase curves
are compatible with phase curves obtained by remote observations (Worms et al.,
2000). Very large agglomerates are considered as protoplanetary analogues or as
regolith analogues; they are produced by random ballistic deposition (Blum and
Schraepler, 2004; Blum et al., 2006), their volume-filling factor is in the [0.1–0.2]
range depending on the sample. All of them are compared to the same levitating
grains in agglomerates or not (Worms et al., 2000; Hadamcik et al., 2007a); the
main purpose is to underline the optical interactions between grains and finally
compare with asteroids. Some clouds of large agglomerates of submicrometre-sized
constituent grains may also be considered as cometary dust analogues (Hadamcik
et al., 2006a, 2007b) and Titan’s aerosols analogues (Hadamcik et al., 2009).

2.4.1.2 Interpretation of cometary observations

The variations of the polarization values as a function of the different physical
properties such as the sizes, the porosity or the albedo for the different kinds of
particles (compact or fluffy, transparent or absorbing) are used to interpret some
remote sensing observations. For example, the dust in comet C/1995 O1 Hale-Bopp
and more generally in active comets and their jets shows a higher polarization
than in other regions or comets (Hadamcik et al., 2003a,b). Confirmed by other
diagnosis such as colour in intensity or infrared emission features by silicates, the
particles seem to be made of mixtures of fluffy aggregates with submicrometre-sized
constituent grains of different materials. Such particles were also found in the dust
ejected by Deep Impact from comet 9P/Tempel 1 nucleus subsurface (Harker et
al., 2005, Hadamcik et al., 2007c).

When particles break up in a coma, the polarization evolution may give in-
dications on the structure of the particles. Large, relatively compact fragmenting
particles are suggested by the important decrease of polarization with increasing
aperture, correlated to important intensity gradient around a nucleus or its frag-
ment. Such trends were observed around comet C/2000 WM1 LINEAR nuclei and
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around the main debris in comet C/1999 S4 LINEAR (Hadamcik and Levasseur-
Regourd, 2003a,c).

For sufficiently large apertures including all the main cometary structures, the
polarization phase curves (Fig. 2.2) and mainly their positive branches allow defin-
ing of three classes of comets (high Pmax comets, low Pmax comets); the third class
consist only of comet Hale-Bopp, the polarization of which was the highest ever
measured for comets (Hadamcik and Levasseur-Regourd, 2003b). When a comet
presents important jet activity, the polarization increases due to a size distribu-
tion of the grains shifted towards smaller grains with the presence of Mg-silicates
crystals (Hanner, 2002).

Cometary analogues with Mg-silicates, Fe-silicates provided from the Goddard
Space Center (Nuth et al., 2002) and carbonaceous compounds in fluffy agglom-
erates with average sizes in the [50–100]μm range have been studied with the
PROGRA2-vis instrument. The average size of the constituent grains is 0.05μm.
The polarization phase curves have the same characteristics as for remote obser-
vations. To have a maximum polarization in the 30% range, it is necessary to add
some compact particles to the mixture (Fig. 2.20), as found in particles captured
from 81P/Wild 2 coma by Stardust (Burchell et al., 2008). To have a positive spec-
tral gradient, the presence of carbonaceous compounds is necessary (Mg-silicates
spectral gradient is very small, if at all existing, and the spectral gradient of any
iron component, e.g. Fe-silicates, is negative). Grains sintered in chains in the ag-
gregates seem to play a role on the presence of the negative branch just as does the
random mixture of transparent and absorbing materials (Hadamcik et al., 2006a,
2007b).

Numerical simulations with mixtures of aggregates and compact particles give
comparable results (Lasue and Levasseur-Regourd, 2006; Levasseur-Regourd et al.,
2007; Lasue et al., 2007a). Lasue et al., (2009) compare the phase curves in different
wavelengths for comets C/1995 O1 Hale-Bopp and 1P/Halley. They find an average
composition of 50% Mg-silicates and 50% carbonaceous compounds and an average
size distribution of [0.25–40]μm range. More precisely, as expected, the average size
is found to be smaller for comet Hale-Bopp than for comet Halley, and the ratio of
silicates over carbonaceous compounds is found to be higher. In the computations,
the numerical code limits the number of grains in the aggregates to 512 grains. The
size distribution is defined by the equivalent volume (i.e. the material is supposed to
be melted in a sphere), the largest equivalent particles sizes are for compact parti-
cles, the smallest ones are for fluffy particles and the size of aggregates is dependent
on the size of their constituent grains. But very large aggregates [50–500]μm with
grains in the [0.05–0.1]μm range cannot be ruled out if the experimental results are
considered (with a porosity of [90–95]% for the aggregates, the equivalent size of
these aggregates is in the [10–100]μm range. Some tracks made by fluffy particles
in the aerogel of the Stardust mission, as well as craters on the aluminium foils
(Hörz et al., 2006) seem to be made by large fluffy aggregates. It agrees well with
the size range of [10–500]μm and a density of 100 kgm−3 (porosity about 95%),
deduced from Giotto in situ observations of 1P/Halley (Levasseur-Regourd et al.,
1999; Fulle et al., 2000).

Combining numerical and experimental simulations creates synergy to their
mutual benefit. The numerical simulations can give quantitative results but the
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Fig. 2.20. (Updated from Hadamcik et al., 2007b.) Phase curves for cometary ana-
logues (mixtures of fluffy Mg-silicates, Fe-silicates and dark carbonaceous compounds
and same mixture with compact Mg-silicate aggregates). Red (λ = 632.8 nm) and green
(λ = 543.5 nm).
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modelling limits have to be given; the results obtained by experimental simulations
are usually more qualitative due to the difficulty of separating the different param-
eters in real particles. Using real particles is essential to make a complete analysis
and, if complemented by numerical simulations, this makes possible discrimination
of the involved physical properties parameters.

2.4.1.3 Interpretation of interplanetary dust results

As interplanetary dust is concerned, some evolution of the particles may be fore-
casted as they approach the Sun (Levasseur-Regourd et al., 1990). The temperature
of the particles increases and the abundance of the carbonaceous compounds seems
to decrease increasing the albedo (Dumont and Levasseur-Regourd, 1988). When
less dark carbonaceous compounds are present among the silicates, the polariza-
tion spectral gradient becomes neutral or slightly negative (Fig. 2.20). Lasue et al.,
(2007) have found a similar result by numerical simulations of the scattered light
and of thermal evolution.

2.4.1.4 Interpretation of Titan’s aerosols results

Observations of the scattered light and its linear polarization by Titan’s aerosols
were conducted onboard different spacecraft such as Pioneer andVoyager (Tomasko
and Smith, 1982; West et al., 1983) for the integrated measurements (Pmax = 50%
in red and 54% in green, close to 90◦ phase angle). The polarization values mea-
sured in 2005 by DISR/Huygens during its descent in the atmosphere are smaller
when the altitude decreases. With a numerical model of fractal aggregates and less
than 256 constituent grains, Tomasko et al., (2005) deduce a size for the grains in
the [0.05–0.1]μm range and an aggregate size smaller than 1μm; nevertheless, they
do not exclude the possibility of larger aggregates.

Analogues of Titan’s aerosols are produced in the gas phase by a radio-frequency
plasma technique in methane–nitrogen mixtures by the PAMPRE experiment
(Szopa et al., 2006). Depending on the experimental conditions the particles pro-
duced there from have different physical properties. One important difference be-
tween these particles is the average size of the grains in the range [0.2–1.4]μm.
The details of the samples and production process may be found in Hadamcik et
al. (2009). The produced samples are studied with the PROGRA2-vis experiment
by the air-draught technique. The lifted particles are fluffy agglomerates with an
average size of [50–100]μm. In Fig. 2.21, the PROGRA2-vis measurements, close
to 90◦ phase angle, are compared to the results of in situ measurements with grain
sizes from numerical simulations (Tomasko et al., 2005). With an extrapolation of
our results to 0.075μm grains in diameter, the observations and laboratory mea-
surements yield comparable results, but in the experiment the size of the particles
reaches hundreds of micrometres. The spectral gradient from outside the atmo-
sphere (West, 1983) in polarization is negative for the analogues; it is similar to
the observed one and can be due to a higher absorption in green than in red (evalu-
ated by geometric albedo measurements for the analogues and observed for Titan’s
aerosols).
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Fig. 2.21. Comparison between observations and experimental simulations with PAM-
PRE experiment analogues. R = red (λ = 632.8 nm) and G = green (λ = 543.5 nm).

2.4.2 Atmospheric dust

Even if the most important components of the aerosols in the Earth’s atmosphere
are droplets, solid particles are also present in the upper troposphere and in the
stratosphere. They are probably residues of combustions such as soot of various
origins (natural fires, industrial activities and in a lesser proportion from aircraft).
Their concentration is of a few particles per cm−3 (Renard et al., 2008) even in the
middle stratosphere (at altitudes lower than 30 km). Some volcanic ashes can also
be present, for example after a strong eruption event such as the Pinatubo in June
1991 (e.g. Russell et al., 1996; Deshler et al., 1997). Interplanetary micrometre-
sized dust and meteorites are also found but with a concentration of about 10−4

particles per cm−3 (Hunten et al., 1980; Renard et al., 2005a). Some sand and other
particles lifted by wind are also found in the (lower) troposphere.

The composition, size distribution and morphology of some of these solid par-
ticles are not yet well known, in particular in the stratosphere. Their small con-
centration and localization need remote observations of their optical properties
from satellites or balloon-borne instruments. Among them, the balloon-borne Mi-
croRadibal radiometer instrument allows us to retrieve the brightness and polar-
ization functions of light scattered by the aerosols (Brogniez et al., 2003; Renard
et al., 2008).

Just as for astronomical observations, it is necessary to make comparisons with
well-documented laboratory measurements and numerical simulations to interpret
the observations. Two main materials are systematically studied: soot and sands
(sands measurements can be used for future analysis of remote sensing observa-
tions in the lower atmosphere). The results for interplanetary particles (powdered
meteorites, cometary analogues and asteroidal analogues) can also be taken into
account for the analysis of observations of solid particles in the upper atmosphere
where such particles could be the main population.
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This work is still in progress, since flights with stratospheric balloons of the
improved version of MicroRadibal will probably start in 2009. Some preliminary
results for solid particles thought to be found in the atmosphere are presented
below.

2.4.2.1 Soot in the atmosphere

Soot presents typical aggregates of submicrometre-sized grains and important ab-
sorptions in the whole visible spectrum. The individual grains are usually roughly
spherical with sizes in the [0.01–0.1]μm range. Obviously due to their fluffy mor-
phology, it is impossible to model the light scattered by the particles with Mie
curves and to measure the physical parameters such as size, size distribution, and
refractive index (Renard et al., 2001, 2005b). The polarization phase curves for
almost all carbonaceous soot, independently of their origin, are similar with Pmax

in the (75–85)% range and a slight positive spectral gradient (Fig. 2.22). More
generally, this kind of spectral variation in polarization was observed for fluffy ag-
gregates of submicrometre-sized grains made of grey materials (Hadamcik et al.,
2002a). Extinction measurements in the visible domain [400–700] nm seem to in-
dicate a slightly positive gradient for the absorption (Renard et al., 2001), which
may also contribute to the polarization increase with wavelength. A small negative
branch at phase angles smaller than 20◦ is observed for all the samples. The max-
imum in polarization increases when the size of the agglomerates increases. This
trend may be the result of a smaller number density of the largest agglomerates.

Fig. 2.22. (Updated from Renard et al., 2005b.) Synthetic phase curves for soot. Red
(λ = 632.8 nm) and Green (λ = 543.5 nm).
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Phase curves measurements will be systematically extended to other soots of
different origins together with spectroscopic analysis to characterize the soot by its
chemical composition and to have precise measurements of the absorption. Mea-
surements on soot made of carbon nanotubes fall within the scope of our studies
as well as soot containing a large amount of non-carbonaceous compounds. Work
is in progress to numerically model the morphological and physical properties of
soot (Moulin, 2007). Such a novel database will be used for the analysis of remote-
sensing measurements and a best characterization of the various natures and thus
the origin of soot that will be observed with the MicroRadibal radiometer.

2.4.2.2 Sand particles

Sand particles of three origins, in a [10–400]μm size-range, have been studied by
three levitation techniques, microgravity, air-draught and air-flow (Daugeron et
al., 2006). With the air-draught technique, important sedimentation was observed
and different porosities found in the sand. With the Laboratoire de Météorologie
Physique (LaMP) nephelometer, a powder generator with an airflow speed between
2m s−1 and 20m s−1 ejects the particles downward vertically; a considerable speed
is needed to have a continuous flow of hundreds of micrometres particles. For elon-
gated particles with velocities higher than about 5m s−1, the polarization phase
curves are completely different than those obtained in microgravity conditions. The
unique and valuable technique to study such large and compact irregular particles
is by using microgravity. Nevertheless, in the case of remote observations, the dif-
ferences in polarization phase curves could provide fundamental indications on the
particles shape and wind speeds and/or sedimentation that can orient the particles
during their transport.

In microgravity conditions, the phase curves follow the same trend for large
particles as compared to the wavelength with a bell-shaped curve for phase angles
larger than 20◦. As for other irregular particles, the maximum polarization depends
on the average grain size and on the absorption. An extensive database is progres-
sively built with sands of different compositions, from different origins (e.g. coastal
and desert sands); the absorption in the two wavelengths is appreciated using the
geometric albedo.

The different sands will also be studied when deposited in layers to compare to
observations made from satellites or balloons and from a theoretical point of view
to analyse the effect of multiple scattering at the different phase angles. The size
studies have to be extended to smaller grains and the different parameters involved
have to be extensively studied.

2.5 Conclusions and future developments

The PROGRA2 experiment results are of interest for the interpretation of astro-
nomical and atmospheric light scattering observations in terms of physical proper-
ties of the particles and more generally in terms of their formation.

The PROGRA2-vis measurements on levitating particles have already made
possible the interpretation of some of the physical properties of cometary and of
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interplanetary dust particles, as well as the differences existing between different
comets and different cometary regions. The experimental work is indeed a comple-
ment to numerical simulations, which are limited by computer time and by the size
of the aggregates in the codes to simulate the particles. The experiment enlarges
the size range of studied particles toward large agglomerates and it permits the use
of particles of any shapes. Comparison between numerical simulations and our ex-
perimental results has validated the experiment protocol and the numerical models
making it possible, for instance, to measure the complex refractive index and to
better understand the influence of the different irregularities on light scattering of
the shape of a complex particle. Measurements with the MicroRadibal instrument
compared to brightness measurements on soot (PROGRA2 and the LaMP neph-
elometer) have proved the presence of soot up to 30 km altitude in the stratosphere.
Their detection and characterization is important for climate evolution.

A wide spectral structure in extinction produced by aerosols was detected by
balloon-borne and satellite instruments; it was interpreted as originating from
the interplanetary medium. Polarization measurements associated with other tech-
niques are used to interpret them in order to best document the various origins and
nature of the grains. For such purpose, an extended and well-documented database
is mandatory and is still in progress.

The PROGRA2-surf instrument was updated in 2008, with cameras replacing
the photodiodes, in order to avoid the contribution of surroundings in the measured
flux for large phase angles.

Up to now, the wavelength dependence was limited to the visible domain with
green and red light. A new instrument for levitating particles was built in 2008,
for the near-infrared domain at about 1500 nm (PROGRA2-IR for infrared) and
another instrument for deposited particles at the same wavelength is expected to
start operating in 2010–2011 (PROGRA2-SIR, for surface infrared). This wave-
length range is particularly important for cosmic dust studies and to interpret
the MicroRadibal balloon-borne results. A new set-up (PROGRA2-aero) is under
development for micrometre-sized grains, including an injection system with a tur-
bulent airflow, which can de-agglomerate the grains. Photodiodes will be used, the
resolution of the cameras being too small for this size range.

The samples to be studied by the ICAPS programme (Interactions in Cos-
mic and Atmospheric particles System) and its precursor experiment IPE on-
board the international Space Station (see e.g. Levasseur-Regourd, 2003; Lasue
and Levasseur-Regourd, 2007), are currently tested with PROGRA2-vis.

To prevent damage on the Rosetta spacecraft in the innermost coma of comet
67P/Churyumov-Gerasimenko in 2014 (when the lander will be released), it is nec-
essary to have the most precise knowledge on the physical properties of the dust par-
ticles (nuclei surface and cometary particles). Experimental (e.g. with PROGRA2)
and numerical simulations on good candidates for realistic particles are necessary
to interpret the preliminary remote observations.

The database is available, through a web-connection in 2008 (www.icare.univ-
lille1.fr/PROGRA2), for researchers who want to make comparisons of models,
or to use it to interpret remote observations. The physical characteristics of the
samples are progressively completed and new results are being added.
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3 Jones and Mueller matrices: structure,
symmetry relations and information content

S.N. Savenkov

3.1 Introduction

When light propagates through a linear medium, its polarization properties can be
described either by the Stokes vector or, under definite conditions, by Jones vector
formalisms. The effect of medium on the light is then to transform the Stokes or
Jones vector, so that the medium can be represented by a transformation matrix.
This transformation is usually known as the Mueller matrix (Bohren and Huffman,
1983; Brosseau; 1998) when it acts on the four-dimensional Stokes vector or as
the Jones matrix (Azzam and Bashara, 1987; Collett, 1993; Shurcliff, 1962) when
it acts on Jones vector. Information contained in the Mueller matrix has many
useful applications in such diverse fields as interaction with various optical systems
(Shurcliff, 1962; Azzam and Bashara, 1977; Collett, 1993; Brosseau, 1998), cloud
diagnostics (van de Hulst, 1957; Bohren and Huffman, 1983; Mishchenko et al.,
2000, 2002; Kokhanovsky, 2003b), remote sensing in the ocean, atmosphere and
terrestrial (Boerner, 1992; Kokhanovsky, 2001, 2003a, 2003b; Muttiah, 2002), and
tissue optics (Priezzhev et al., 1989; Tuchin, 2002, 2004).

Taking into account that the Mueller matrix allows one to determine everything
optically about the medium at the incident frequency and, in that sense, is a matrix
model of the medium, the main aim of polarimetry lies in the physical interpreta-
tion of the information that provides the 16 elements of the Mueller matrix. The
information that can be derivable from the Mueller matrix is determined by model
of the medium considered. If one considers the medium as a single scatterer or
system of scatterers (discrete medium), the Mueller matrix contains information
related to the optical properties, size, shape and composition of scatterers (van de
Hulst, 1957; Bohren and Huffman, 1983). If one considers the model (approxima-
tion) of continuous medium, as, say, it is in crystal optics, than the Mueller matrix
contains information related to the time and spatial dispersion, which determine, in
the general case, the character of anisotropy of medium, namely, linear amplitude
and phase, and circular amplitude and phase anisotropies (Landau et al., 1984;
Berry and Dennis, 2003). In both the above cases under certain conditions the
Mueller matrix can contain information related to depolarization (Chipman, 1995;
Mishchenko and Travis, 2000; Gil, 2007). The methods of extraction of this infor-
mation from the Mueller matrices have been developed by many authors (Hurwitz
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and Jones, 1941; Whitney, 1971; Cloude, 1986; Gil and Bernabeu, 1987; Lu and
Chipman, 1994, 1996; Mar’enko and Savenkov, 1994; Savenkov and Yushtin, 2005;
Savenkov et al., 2006, 2007b). In this chapter we consider the structure, symmetry
relations and information content of the Jones and Stokes vectors transformation
matrices for both approaches to medium modeling: system of scatterers and con-
tinuous medium approximation.

Bibliography presented in this chapter does not pretend to be exhaustive and
is merely aimed to direct the reader in the case of his/her further interest.

3.2 Basic definitions

Let us recollect some basic definitions. The Jones calculus (Jones, 1941; Hurwitz
and Jones, 1941; Jones, 1942, 1947, 1948, 1956) is the adequate way to describe
the coherent superposition of polarized light because it operates on amplitudes
rather than on intensities. However, Jones vectors and matrices can only describe
completely polarized light because a monochromatic wave is always completely
polarized. The electric vector of a monochromatic light wave traveling along the
z axis of a right-handed coordinate system can be decomposed into its x and y
components Ex and Ey, which are in general complex quantities with an amplitude
and a phase.

The Jones vector contains the complex components of electric vector of light in
the form

E =
(
Ex

Ey

)
. (3.1)

Note that amplitudes are not observed directly by detectors in the optical wave-
length range. Therefore, observables always depend on products of Jones vector
components such as |E|2.

The transfer of completely polarized light through an optical medium is de-
scribed by 2× 2 matrix T:(

Esct
x

Esct
y

)
= T

(
Einc

x

Einc
y

)
where T =

(
t11 t12
t21 t22

)
or

(
t1 t4
t3 t2

)
, (3.2)

where Einc
x,y represent the electric vector components of a incident light; E

sct
x,y relate

to a scattered light that is not necessarily traveling in the same direction as the
incident light.

The matrix T is called a Jones matrix; its elements are in general complex.
In the context of light scattering by small particles, T is frequently called the
amplitude matrix (van de Hulst, 1957), while the scattering plane then usually
acts as the common reference plane for the incident and scattered beams.

Combined Jones matrix describing a series of optical elements is equal to the
matrix product of the individual Jones matrices. Examples of various Jones ma-
trices are given in the following sections. Extensive lists have been presented by
several authors (Shurcliff, 1962; Kliger et al., 1990; or Gerrard and Burch, 1975).
The rotation of Jones matrices is given by

T′ = RT (−γ)TRT (γ) , (3.3)
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where the rotation matrix RT

RT =
(
cos γ sin γ
− sin γ cos γ

)
. (3.4)

Mueller matrices (classic contributions here are Soleillet, 1929; Perrin, 1942;
Mueller, 1948; and Parke, 1948, 1949) describe the linear transformation between
Stokes vectors (formed by grouping the four Stokes parameters into a single vector)
associated with optical elements and media, i.e.

Ssct =MSinc (3.5)

where the Stokes vector (here superscripts ‘sct’ and ‘inc’ are the same as in
Eq. (3.5)) consists of the following Stokes parameters

S =

⎛⎜⎜⎝
I
Q
U
V

⎞⎟⎟⎠ =

⎛⎜⎜⎝
s1
s2
s3
s4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
〈|Ex|2 + |Ey|2

〉〈|Ex|2 − |Ey|2
〉〈

E∗xEy + ExE
∗
y

〉
i
〈
E∗xEy + ExE

∗
y

〉
⎞⎟⎟⎠ . (3.6)

The Stokes parameter I is proportional to the total energy flux of the light beam.
Stokes parameters Q and U represent the differences between two components
of the flux for which the electric vectors oscillate in orthogonal directions. The
Stokes parameter V is the difference between two oppositely circularly polarized
components of the flux. As indicated by the angle brackets, 〈 〉, the Stokes parameter
si are ensemble averages (or time averages in case of ergodic, stationary processes).
Therefore no coherence effects are considered.

A normalized Mueller matrix is obtained by scaling the matrix such that the
upper left element is equal to one. When a beam of light passes through N optical
elements, each described by a Mueller matrix Mi, the combined Mueller matrix
MC of the whole assembly is given by

MC =MNMN−1 . . .M2M1 . (3.7)

Rotation of Mueller matrices is given by equation which is analogous to that
for Jones matrix. In particular, it follows that:

M′ = RM (−γ)TRM (γ) , (3.8)

where

RM =

⎛⎜⎜⎝
1 0 0 0
0 cos 2γ sin 2γ 0
0 − sin 2γ cos 2γ 0
0 0 0 1

⎞⎟⎟⎠ . (3.9)

However, this rule for rotating Mueller matrices cannot be applied formally.
In particular, one has to remember that this rule assumes the same coordinate
system is kept for the incoming and outgoing beams. However, when scattering or
reflections are considered, the convention is to change the coordinate system for
the scattered beam as compared to the incident beam of light.
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Stokes vectors and Mueller matrices operate on intensities and their differences,
i.e. incoherent superpositions of light; they are not adequate to describe neither
interference nor diffraction effects. However, they are suited to describe partially
polarized and unpolarized light.

The Stokes parameters obey the inequality

s21 ≥ s22 + s23 + s24 . (3.10)

This inequality is called the Stokes–Verdet criterion and is a consequence of
Schwartz’s (or Couchy-Buniakovski’s) theorem. The degree of polarization p is de-
fined by

p =

√
s22 + s23 + s24

s1
. (3.11)

In Eq. (3.10) the equality holds for completely (pure) polarized light. For this
case p = 1. Another limiting case p = 0 has occurred when s22 + s23 + s24 = 0,
i.e., when the electric vector of light vibrates in all directions with no preferential
orientation. The intermediate case 0 < p < 1 implies that light contains both
polarized and depolarized components and is called ‘partially polarized’.

Inequality (3.10) plays important role in polarimetry because it allows the clas-
sification of the character of light-medium interaction. We consider input light com-
pletely polarized. In this case, if for output light condition Eq. (3.10) is an equality,
then the medium is non-depolarizing. It is important to note that the terms ‘non-
depolarizing’ and ‘deterministic’ or ‘pure’ are not generally identical. The term
‘deterministic’ means that the Mueller matrix describing such a medium can be
derivable from the correspondent Jones matrix (Simon, 1982; Gil, and Bernabeu,
1985; Anderson and Barakat, 1994; Gopala Rao et al., 1998b). This condition is
more rigid than the condition of non-depolarizing (Savenkov and Yushtin, 2000). To
emphasize the fact that the Mueller matrix of a homogeneous anisotropic medium
can be derivable from the correspondent Jones matrix we will hereinafter call this
class of matrices ‘Mueller–Jones’ matrices. If for output light we have an inequality
in Eq. (3.10) then this medium is neither deterministic nor non-depolarizing. If,
in addition, transformation matrix in Eq. (3.5) can be defined as a parallel com-
bination (convex sum) of Mueller–Jones matrices (Cloude, 1986; Gil, 2007), this is
a depolarizing Mueller matrix (hereinafter a ‘Mueller’ matrix), otherwise a Stokes
transformation matrix, i.e. the transformation matrix ensures the fulfillment of
the Stokes–Verdet criterion only. The properties of matrices transforming Stokes
vectors into Stokes vectors, i.e., satisfying the Stokes–Verdet criterion, have been
studied by many authors (Xing, 1992; van der Mee, 1993; van der Mee and Hove-
nier, 1992; Sridhar and Simon, 1994; Nagirner, 1993; Givens and Kostinski, 1993;
Gopala Rao et al., 1998a).

Any Jones matrix can be transformed into the corresponding Mueller–Jones
matrix, M, using the following relation (Parke, 1949; Azzam and Bashara, 1977):

M = A
(
T⊗T∗)A−1 , (3.12)

where ∗ indicates the complex conjugate,
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A =

⎛⎜⎜⎝
1 0 0 1
1 0 0 −1
0 1 1 0
0 i −i 0

⎞⎟⎟⎠ , (3.13)

and ⊗ is the tensor (Kronecker) product, or in detailed form:

M =⎛⎜⎝
1
2
(S11 + S22 + S33 + S44)

1
2
(−S11 + S22 − S33 + S44) S32 + S41 D32 − D41

1
2
(−S11 + S22 + S33 − S44)

1
2
(S11 + S22 − S33 − S44) S32 − S41 D32 +D41

S42 + S31 S42 − S31 S21 + S43 −D21 − D43

−D42 +D31 −D42 − D31 D21 − D43 S21 − S43

⎞⎟⎠ ,

(3.14)

where the following auxiliary quantities

Skj = 1
2 i(tkt

∗
j + tjt

∗
k) ,

Dkj = 1
2 i(tkt

∗
j − tjt

∗
k) , (3.15)

are used.
From Eq. (3.14) it can be in particular seen that

m2
11 −m2

21 −m2
31 −m2

41 = det(T) ; (3.16)

here mij are elements of the Mueller–Jones matrix M.
Since element m11 is a gain for unpolarized incident light it must hold the

following inequality:
m11 > 0 . (3.17)

Besides, elements of the Mueller matrix have to obey the conditions:

m11 ≥ |mij | , (3.18)

Tr (M) ≥ 0 , (3.19)

μT ∼ |μ|2M , (3.20)

where Tr is the trace operation; μ is an arbitrary real or complex constant.
Note that last relation concerns the condition for the elements of the Jones and

Mueller matrices to represent a ‘physically realizable’ medium (Lu and Chipman,
1994; Anderson and Barakat, 1994; Gil, 2007) which is the result of the physical
restriction that the ratio, g, between the intensities of the emerging and incident
light beams (the gain or intensity transmittance) must always be in the interval
0 ≤ g ≤ 1. This condition is called the gain or transmittance condition and can be
written in function of the elements of T as follows (Barakat, 1987):

1
2

[
Tr (T+T) +

[(
Tr (T+T)

)2 + 4 det(T+T)
] 1

2
]
≤ 1 , (3.21)

or, as a function of the elements of the Mueller matrix,

m11 +
(
m2

12 +m2
13 +m2

14

) 1
2 ≤ 1 ,

m11 +
(
m2

21 +m2
31 +m2

41

) 1
2 ≤ 1 . (3.22)

Taking into account Eqs (3.17) and (3.18), the condition 0 ≤ g is satisfied.



76 S.N. Savenkov

3.3 Internal structure of a general Mueller–Jones matrix

While the Jones matrix has eight independent parameters Eq. (3.2), the absolute
phase information is lost in the Mueller–Jones matrix Eq. (3.12), leading to only
seven independent matrix elements for a Mueller matrix derived from a Jones
matrix. This results evidently in existence of interrelations for the elements of a
general Mueller–Jones matrix. For the first time this fact was pointed out, though
without derivation of their explicit form, by van de Hulst, (1957). Since then this
subject has been studied by many authors (Abhyankar and Fymat, 1969; Fry and
Kattawar, 1981; Hovenier et al., 1986). In most complete and refined form these
interrelations presented in (Hovenier, 1994) as two following sets of equations.

(1) The first set of seven equations for the squares of the elements of general
Mueller–Jones matrix can be obtained from the matrix

MS =

⎡⎢⎢⎣
m2

11 −m2
12 −m2

13 −m2
14

−m2
21 m2

22 m2
23 m2

24

−m2
31 m2

32 m2
33 m2

34

−m2
41 m2

42 m2
43 m2

44

⎤⎥⎥⎦ , (3.23)

requiring that all sums of the four elements of a row or column of above matrix
are equal. That is, one has

m2
11 −m2

21 −m2
31 −m2

41 = −m2
12 +m2

22 +m2
32 +m2

42 =
= −m2

13 +m2
23 +m2

33 +m2
43 = −m2

14 +m2
24 +m2

34 +m2
44 =

= m2
11 −m2

12 −m2
13 −m2

14 = −m2
21 +m2

22 +m2
23 +m2

24 =
= −m2

31 +m2
32 +m2

33 +m2
34 = −m2

41 +m2
42 +m2

43 +m2
44

(3.24)

(2) Second set of equations includes thirty interrelations that involve products of
different elements of M, which can be obtained by means of a graphical code
presented in Fig. 3.1.

For example, the pictogram in the upper left corner of Fig. 3.1(a) means

m11m12 −m21m22 −m31m32 −m41m42 = 0 (3.25)

and the pictogram in the upper left corner of Fig. 3.1(b) stands for

m11m22 −m12m21 −m33m44 +m34m43 = 0 . (3.26)

From structure of Mueller–Jones matrix presented in Eq. (3.24) and Fig. 3.1 nine
expressions connecting the matrix elements can be derived. For that end we consider
the following relations:

e = m11 +m22 −m12 −m21 ,
f = m11 +m22 +m12 +m21 ,
g = m11 −m22 −m12 +m21 ,
h = m11 −m22 +m12 −m21 .

(3.27)

These relations determine the values of amplitude of the Jones matrix elements
(Gerrard and Burch, 1975), and, hence, they are non-negative. If they equal to
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a)

b)
Fig. 3.1. The 16 dots in each pictogram represent the elements of a Mueller–Jones ma-
trix. A solid line connecting two elements represents a positive product, and a dashed line
represents a negative product. In each pictogram, the sum of all positive and negative
products vanishes. (a) Twelve pictograms that represent equations that carry correspond-
ing products of any two chosen rows and columns. (b) Eighteen pictograms that demon-
strate that the sum or difference of any chosen pair of complementary subdeterminants
vanishes (after Hovenier, 1994).

zero simultaneously then one has a trivial case of null matrix. So, at least one of
the above relations has to exceed zero. In each case we have a certain set of nine
relations to deal with. In particular, for example, in the case of e > 0 we have, as
shown by Hovenier et al. (1986), the following nine relations:

(m11 +m22)2 − (m12 +m21)2 = (m33 +m44)2 + (m34 −m43)2 ,
(m11 −m12)2 − (m21 −m22)2 = (m31 −m32)2 + (m41 −m42)2 ,
(m11 −m21)2 − (m12 −m22)2 = (m13 −m23)2 + (m14 −m24)2 ,

e(m13 +m23) = (m31 −m32)(m33 +m44)− (m41 −m42)(m34 −m43) ,
e(m34 +m43) = (m31 −m32)(m14 −m24) + (m41 −m42)(m13 −m23) ,
e(m33 −m44) = (m31 −m32)(m13 −m23)− (m41 −m42)(m14 −m24) ,
e(m14 +m24) = (m31 −m32)(m34 −m43) + (m41 −m42)(m33 +m44) ,
e(m31 +m32) = (m33 +m44)(m13 −m23) + (m34 −m43)(m14 −m24) ,
e(m41 +m42) = (m33 +m44)(m14 −m24)− (m34 −m43)(m13 −m23) .

(3.28)
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From Eq. (3.28) one more important equation for elements of general Mueller–Jones
matrix can be obtained

4∑
i=1

4∑
j=1

m2
ij = 4m2

11 . (3.29)

Firstly, this equation has been obtained by Fry and Kattawar (1981) and there it
was shown that this equation is satisfied by any Mueller–Jones matrix. However,
the question whether this is a sufficient condition for M to be a Mueller–Jones
matrix has been the subject of discussion in many papers (see, for example, Simon,
1982, 1987; Hovenier, 1994; Kim et al., 1987; Kostinski, 1992; Kostinski et al., 1993;
Gil and Bernabeu, 1985; Anderson and Barakat, 1994; Brosseau et al., 1990, 1993).
Under the premise that a given Mueller matrix can be represented as a convex sum
of Mueller–Jones matrices, this equation is both necessary and sufficient condition
for M to be a Mueller–Jones matrix (Gil, 2007).

In addition to the equalities presented above, the following series of inequalities
can be derived to characterize the structure of Mueller–Jones matrix (Hovenier et
al., 1986):

m11 +m22 +m12 +m21 ≥ 0 ,
m11 −m22 −m12 +m21 ≥ 0 ,
m11 +m22 −m12 −m21 ≥ 0 ,
m11 −m22 +m12 −m21 ≥ 0 ,
m11 +m22 +m33 +m44 ≥ 0 ,
m11 +m22 −m33 −m44 ≥ 0 ,
m11 −m22 +m33 −m44 ≥ 0 ,
m11 −m22 −m33 +m44 ≥ 0 .

(3.30)

It is important to note that although the analysis of the internal structure of a
general Mueller–Jones matrix have been carried out historically in the framework
of light scattering by a single particle, the results obtained can also be used in the
more general context of properties of a Mueller–Jones matrix.

3.4 Symmetry relations for Mueller–Jones matrix

Now Eqs (3.12) and (3.14) can be used to derive relations between Jones matrices
and corresponding Mueller–Jones matrices. We proceed from the form of Jones
matrix in Eq. (3.2).

(i) transposition of the Jones matrix gives

TT =
(
t1 t3
t4 t2

)
↔

⎛⎜⎜⎝
m11 m21 m31 −m41

m12 m22 m32 −m42

m13 m23 m33 −m43

−m14 −m24 −m34 m44

⎞⎟⎟⎠ ; (3.31)

(ii) Hermitian conjugation of the Jones matrix gives simple transposition of cor-
responding Mueller–Jones matrix:
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(
t∗1 t∗3
t∗4 t∗2

)
↔

⎛⎜⎜⎝
m11 m21 m31 m41

m12 m22 m32 m42

m13 m23 m33 m43

m14 m24 m34 m44

⎞⎟⎟⎠ ; (3.32)

(iii) sign reversal for off-diagonal elements:

(
t1 −t4
−t3 t2

)
↔

⎛⎜⎜⎝
m11 m12 −m13 −m14

m21 m22 −m23 −m24

−m31 −m32 m33 m34

−m41 −m42 m43 m44

⎞⎟⎟⎠ ; (3.33)

(iv) interchange of diagonal elements

(
t2 t4
t3 t1

)
↔

⎛⎜⎜⎝
m11 −m21 m31 m41

−m12 m22 −m32 −m42

m13 −m23 m33 m43

m14 −m24 m34 m44

⎞⎟⎟⎠ ; (3.34)

(v) successive application of (i) and (iii)

(
t1 −t3
−t4 t2

)
↔

⎛⎜⎜⎝
m11 m21 −m31 m41

m12 m22 −m32 m42

−m13 −m23 m33 −m43

m14 m24 −m34 m44

⎞⎟⎟⎠ . (3.35)

Physical reasons for the above relations are directly clear. For instance, relation
Eq. (3.31) and Eq. (3.35) originates from the operation of interchanging the incident
and emerging light beams and the principle of reciprocity (Saxon, 1955; Sekera,
1966; Vansteenkiste et al., 1993; Potton, 2004); relation Eq. (3.33) originates from
mirror symmetry (Hovenier, 1969, 1970). In the framework of light scattering by a
single particle, Jones matrices Eqs (3.2), (3.31), (3.33) and (3.35) correspond to two
arbitrary particles and two positions of its mirror particles (van de Hulst, 1957).

The effect of the symmetry of a collection of scatterers on the structure (number
of independent parameters) of a Mueller matrix has been considered by van de Hulst
(1957), in particular:

(i) The collection contains one kind of particles. For each particle in one position
there is a particle in the reciprocal position (Eq. (3.2) + Eq. (3.35)):⎛⎜⎜⎝

m11 m12 m13 m14

m12 m22 m23 m24

−m13 −m23 m33 m34

m14 m24 −m34 m44

⎞⎟⎟⎠ (10 parameters) , (3.36)

with relation: m11 −m22 +m33 −m44 = 0
(ii) The collection contains equal number of particles and their mirror particles

(Eq. (3.2) + Eq. (3.33)):⎛⎜⎜⎝
m11 m12 0 0
m21 m22 0 0
0 0 m33 m34

0 0 m43 m44

⎞⎟⎟⎠ (8 parameters) . (3.37)
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If, in addition, t3 = t4, then m22 = m11, m33 = m44, m34 = −m43, and
m2

11 −m2
12 −m2

33 −m2
34 = 0.

If in this case for any particle of Eq. (3.2) there is a particle in position
Eq. (3.31), then the Mueller–Jones matrix has a form:⎛⎜⎜⎝

m11 m12 m13 m14

m12 m22 m23 m24

m13 m23 m33 m34

−m14 −m24 −m34 m44

⎞⎟⎟⎠ (10 parameters) . (3.38)

(iii) The collection contains equal number of particles in positions Eq. (3.2),
Eq. (3.35), Eq. (3.33) and Eq. (3.31):⎛⎜⎜⎝

m11 m12 0 0
m12 m22 0 0
0 0 m33 m34

0 0 −m34 m44

⎞⎟⎟⎠ (6 parameters) . (3.39)

The scattering angles 0◦ and 180◦ deserve separate attention in the literature
through their practical importance. It was van de Hulst (1957) who first derived
the general form of Mueller matrices for these scattering angles. Hu et al. (1987)
presented a comprehensive study of forward and backward scattering by an in-
dividual particle in a fixed orientation. For forward scattering they distinguished
sixteen different symmetry shapes which were classified into five symmetry classes
and for backward scattering four different symmetry shapes which were classified
into two symmetry classes. A large number of relations were derived in this way.
Below we present structures of Mueller matrices for various collections of particles
in the cases of forward and backward scattering (van de Hulst, 1957; Hovenier and
Mackowski, 1998).

3.4.1 Forward scattering

(i) There is one kind of asymmetric particles in the collection. The assumption
of rotational symmetry is made:⎛⎜⎜⎝

m11 0 0 m14

0 m22 m23 0
0 −m23 m22 0
m41 0 0 m44

⎞⎟⎟⎠ (6 parameters) . (3.40)

(ii) There is one kind of asymmetric particles. The assumption of rotational sym-
metry combined with that equal numbers of particles occur in the reciprocal
position is made:⎛⎜⎜⎝

m11 0 0 m14

0 m22 m23 0
0 −m23 m22 0
m14 0 0 m44

⎞⎟⎟⎠ (5 parameters) . (3.41)
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(iii) Particles and mirror particles occur in equal numbers. The assumption of
rotational symmetry combined with that for any particle there is a mirror
symmetric particle in any plane through the axis is made:⎛⎜⎜⎝

m11 0 0 0
0 m22 0 0
0 0 m22 0
0 0 0 m44

⎞⎟⎟⎠ (3 parameters) . (3.42)

with m44 ≥ 2m22 − m11. For the special case of homogeneous, optically in-
active, and spherical particles m11 = m22 = m44 (Hovenier and Mackowski,
1998).

(iv) Particles and mirror particles occur in equal numbers. Rotational symmetry
is combined with the assumption of mirror symmetry with respect to a plane
perpendicular to the axis.⎛⎜⎜⎝

m11 0 0 m14

0 m22 0 0
0 0 m22 0

−m14 0 0 m44

⎞⎟⎟⎠ (4 parameters) . (3.43)

3.4.2 Backward scattering

(i) No assumption about kind of particles is made:⎛⎜⎜⎝
m11 m12 m13 m14

m12 m22 m23 m24

−m13 −m23 m33 m34

m14 m24 −m34 m44

⎞⎟⎟⎠ (10 parameters) . (3.44)

(ii) There is one kind of asymmetric particle in the collection. The assumption of
rotational symmetry is made:⎛⎜⎜⎝

m11 0 0 m14

0 m22 0 0
0 0 −m22 0
m14 0 0 m44

⎞⎟⎟⎠ (4 parameters) . (3.45)

Also, m11 ≥ m22 ≥ 0; m44 = m11−2m22, and m22−m11 ≤ m44 ≤ m11−m22.
(iii) The collection contains particles and mirror particles occurring in equal num-

bers. Rotational symmetry is combined with the assumption that any particle
has its mirror particle with respect to any plane through the axis. Then it
follows: ⎛⎜⎜⎝

m11 0 0 0
0 m22 0 0
0 0 −m22 0
0 0 0 m44

⎞⎟⎟⎠ (3 parameters) (3.46)

For special case of homogeneous, optically inactive, and spherical particles:
m11 = m22 = −m44 (Hovenier and Mackowski, 1998).
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3.5 The depolarizing Mueller matrix

When the incident light is fully polarized and for output light in Eq. (3.10) we have
an inequality, then equalities on matrix elements (Eq. (3.24), Fig. 3.1, Eqs (3.26)–
(3.29)) determining the structure of the Mueller matrix as a Mueller–Jones matrix
are lost. In this case the output light is composed of several incoherent contribu-
tions, and the medium cannot be represented by means of a Jones matrix. However,
the medium can be considered as a parallel set of deterministic media, each one
is described by a well-defined Jones matrix, in such a way that the light beam is
shared among these different media. It is important to point out that the same
result could be obtained by considering the medium as an ensemble (Kim et al.,
1987) so that each realization i, characterized by a well-defined Jones matrix Ti,
occurs with a probability pi.

If the Mueller matrix can be presented as a weighted sum of the Mueller–Jones
matrices (Cloude, 1986; Simon, 1987; Cloude and Pottier, 1995; Gil, 2007) then it
is called a depolarizing Mueller matrix. It is important to note that this class of
matrices does not coincide with the class of matrices, named Stokes matrices, satis-
fying the Stokes–Verdet criterion (see section 3.2), i.e., transforming Stokes vectors
into Stokes vectors. Any physical Mueller matrix is a Stokes matrix; however, the
converse statement is not in general true (Gil, 2007). Furthermore, no method has
been quoted to physically realize a Stokes matrix being non-derivable as a weighted
sum of Mueller–Jones matrices.

3.5.1 Structure of the depolarizing Mueller matrix

Linear inequalities for elements of a Mueller–Jones matrix are also valid for a
depolarizing Mueller matrix, Ms (Hovenier and van der Mee, 2000), in particular:

ms
11 ≥ 0; ms

11 ≥ |ms
ij | ,

ms
11 +ms

22 +ms
12 +ms

21 ≥ 0 ,

ms
11 +ms

22 −ms
12 −ms

21 ≥ 0 ,

ms
11 −ms

22 +ms
12 −ms

21 ≥ 0 ,

ms
11 −ms

22 −ms
12 +ms

21 ≥ 0 .

(3.47)

In this case the following quadratic inequalities are valid as well (Fry and Kattawar,
1981):(

ms
11 +ms

12

)2 − (
ms

21 +ms
22

)2 ≥ (
ms

31 +ms
32

)2 + (
ms

41 +ms
42

)2
,(

ms
11 −ms

12

)2 − (
ms

21 −ms
22

)2 ≥ (
ms

31 −ms
32

)2 + (
ms

41 −ms
42

)2
,(

ms
11 +ms

21

)2 − (
ms

12 +ms
22

)2 ≥ (
ms

13 +ms
23

)2 + (
ms

14 +ms
24

)2
,(

ms
11 −ms

21

)2 − (
ms

12 −ms
22

)2 ≥ (
ms

13 −ms
23

)2 + (
ms

14 −ms
24

)2
,(

ms
11 +m2

22

)2 − (
ms

12 +ms
21

)2 ≥ (
ms

33 +m2
44

)2 + (
ms

34 −ms
43

)2
,(

ms
11 −ms

22

)2 − (
ms

12 −ms
21

)2 ≥ (
ms

33 −ms
44

)2 + (
ms

34 +ms
43

)2
,

(3.48)

and Eq. (3.29) becomes an inequality as well:
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4∑
i=1

4∑
j=1

(
ms

ij

)2 ≤ 4
(
ms

11

)2
.

The following relations on elements of the Mueller matrix have to satisfy the
condition Eq. (3.10), i.e., be the Stokes vectors (Gil, 2007):

S1 =
(
ms

11 +m2
21 ms

12 +ms
22 ms

13 +m2
23 ms

14 +ms
24

)T
,

S2 =
(
ms

11 −m2
21 ms

12 −ms
22 ms

13 −m2
23 ms

14 −ms
24

)T
,

S3 =
(
m2

11 +m2
12 ms

21 +ms
22 ms

31 +ms
32 ms

41 +ms
42

)T
,

S4 =
(
m2

11 −m2
12 ms

21 −ms
22 ms

31 −ms
32 ms

41 −ms
42

)T
,

S5 =
(
m2

11 +ms
22 ms

21 +ms
12 ms

33 +ms
44 ms

34 −ms
43

)T
,

S6 =
(
m2

11 −ms
22 ms

21 −ms
12 ms

33 −ms
44 ms

34 +ms
43

)T
,

(3.49)

As can be seen, the first four expressions can be obtained as results of the following
transformations:

S1 =Ms
r(1 1 0 0)T ,

S2 =Ms
r(1 − 1 0 0)T ,

S3 =Ms(1 1 0 0)T ,

S4 =Ms(1 − 1 0 0)T ,

(3.50)

where
Mr = diag (1 1 1 − 1)MT diag (1 1 1 − 1) .

The last two expressions in Eq. (3.49) are peculiarities of structure of the Mueller
matrix and cannot be derived as results of Stokes vector transformations.

3.5.2 Matrix models of depolarization

One of the key points of scattering media optics is the study of one more phe-
nomenon originating in light–medium interaction which is called depolarization.
The study and characterization of depolarization is of considerable importance by
reason of the fact that depolarization phenomena is involved in many theoreti-
cal and experimental applications in polarimetry of discrete random media and
medium with bulk and surface inhomogeneities. However, note that light–medium
interaction with depolarization is heretofore studied in considerably less degree than
the problem described by Mueller–Jones matrices discussed in previous sections.

Depolarization is the result of decorrelation of the phases and the amplitudes
of the electric vector and selective absorption of polarization states (Brosseau,
1998). Depolarization can be observed in both single and multiple light scatter-
ing regimes and depends on the geometrical and physical characteristics of the
scattering particles: shape, morphology, refractive index, size parameter (ratio of
the particle circumference to the wavelength of the incident light), and orientation
with respect to the coordinate system (Mishchenko and Travis, 2000). Further-
more, multiple scattering results in depolarization of the output light, even in case
of collections of spherical particles, and often reinforces depolarization caused by
particle nonsphericity. The purpose of this section is to consider the depolarization
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phenomenon using Mueller matrix formalism; in particular, we intend to discuss
some single-number metrics and Mueller matrix models of depolarization in the
literature.

In addition to the degree of polarization Eq. (3.11) it is common practice in
scattering optics to describe depolarization of light scattered by random and in-
homogeneous media in terms of linear, δL, and circular, δC , depolarization ratios
(Mishchenko and Hovenier, 1995; Mishchenko and Travis, 2000)

δL =
s1 − s2
s1 + s2

(3.51)

δC =
s1 − s4
s1 + s4

(3.52)

The interest of these parameters is explained by the fact that they are suscepti-
ble to particle nonsphericity. Indeed, for spherical particles both ratios are equal
to zero whereas, for nonspherical scatterers, both δL and δC can substantially be
different from zero. As pointed out by Mishchenko and Hovenier (1995) for the
backscattering direction the depolarization ratios have several interesting proper-
ties. In the case of backscattering by a small-volume element comprising arbitrary
particles in random orientation, the Mueller matrix has the form of Eq. (3.45). For
isotropic spheres the Mueller matrix takes the form of Eq. (3.46), i.e., in this case
both ratios vanish. This means that, if the incident light is linearly polarized, the
backscattered light is completely linearly polarized in the same plane, whereas, if
the incident light is circularly polarized, the backscattered light is completely cir-
cularly polarized in the opposite sense. For nonspherical particles this is generally
not the case. Combining inequalities on matrix elements in Eq. (3.45) we get

(
m22

m11
− 1

)
≤ m14

m11
≤
(
1−

(
m22

m11

)2
) 1

2

(3.53)

This inequality and the areas in which δC > δL and δC < δL are presented in
Fig. 3.2.

Based on and in addition to the degree of polarization, p, Eq. (3.11) for a more
detailed description of depolarization properties of light the degrees of linear and
circular polarization can be determined (Chipman, 1995):

DoLP =

√
s22 + s23
s1

, (3.54)

DoCP =
s4
s1
. (3.55)

These parameters are very useful for applications in meteorology, astronomy, oph-
thalmology, optical fibers etc. (Bueno, 2001, and references therein).

Quantities Eqs (3.51), (3.52), (3.54) and (3.55) refer to the intrinsic depolariza-
tion properties of light; however, in many cases it is important to know about the
depolarization features of a medium itself. Depolarization metrics provide a single
scalar number that varies from zero relating to totally depolarized output light to a
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1114 mm

Fig. 3.2. Areas of possible combinations of m14/m11 and m22/m11 for backscattering by
randomly oriented particles (after Mishchenko and Hovenier, 1995)

certain positive number relating to totally polarized output light. All intermediate
values are associated to partial polarization.

The depolarization index DI(M) is introduced by Gil and Bernabeu (1985,
1986):

DI(M) =

⎛⎝ 4∑
i,j=1

m2
ij −m2

11

⎞⎠ 1
2

√
3m11

(3.56)

The bounds on the depolarization index is 0 ≤ DI(M) ≤ 1. Boundary values of
DI(M) associate with the case of unpolarized and totally polarized output light
respectively.

In a sense an ‘analog’ of the degree of linear polarization Eq. (3.54) in terms of
Mueller matrix elements, the index of linear polarization was suggested in (Bueno,
2001):

GL =
√
3

2m11

(
m2

21 +m2
31 +

1
3

4∑
i=1

(
m2

2i +m2
3i

)) 1
2

(3.57)

It can be seen that GL is a ratio of the mean of sum of the squares of the matrix
elements corresponding to linear polarization of the output light and the value of
the corresponding averaged intensity normalized by the maximum value of this
ratio which occurs for the linear polarizer (GL)max = 2/

√
3. The former provides

the range of variation 0 ≤ GL ≤ 1.
The average degree of polarization AverageDoP is defined as follows (Chipman,

2005):

AverageDoP(M) =
1
4π

∫ π

0

∫ π/2

−π/2

p[MS(ε, ζ)] cos(ε) dε dζ (3.58)
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The term cos(ε) dε dζ scans the incident polarization state over the Poincaré sphere,
with the latitude ε and longitude ζ. The Stokes vector S(ε, ζ) is here a function of
ellipticity and the azimuth of orientation of the polarization ellipse of light:

S(ε, ζ) =

⎛⎜⎜⎝
1

cos(2ε) cos(2ζ)
cos(2ε) sin(2ζ)

sin(2ε)

⎞⎟⎟⎠ (3.59)

The Q(M) metrics is (Espinosa-Luna and Bernabeu, 2007):

Q(M) =

4∑
i=2
j=1

m2
ij

4∑
j=1

m2
1j

=
3[DI(M)]2 − [D(M)]2

1 + [D(M)]2
, (3.60)

where D(M) =
√
m2

12 +m2
13 +m2

14 is the diattenuation parameter and 0 ≤
D(M) ≤ 1.

The bounds on the metric Q(M) are 0 ≤ Q(M) ≤ 3. Q(M) = 0 is for a totally
depolarizing medium; 0 < Q(M) < 1 is for a partially depolarizing medium; 1 ≤
Q(M) < 3 represents a partially depolarizing medium if, in addition, 0 < DI(M) <
1, otherwise, represents a non-depolarizing diattenuating medium; Q(M) = 3 is for
a non-depolarizing non-diattenuating medium.

Thus, depolarization metrics provide a summary of the depolarizing property of
a medium in a single number. The depolarization index DI(M) and Q(M) metrics
are directly related to the Mueller matrix elements only and, in contrast to the av-
erage degree of polarization AverageDoP, no need to scan the whole Poincar sphere
of input polarizations. Thus, Q(M) provides more detailed information about the
depolarization properties of a medium.

Since the polarization properties of a medium can be very different if the di-
rection of the incident and output light is exchanged, it is appropriate, in addition
to the ‘direct’ depolarization metrics, to introduce the depolarization metrics for
the reverse direction of light. The Mueller matrix for the reverse direction of light,
MR, can be written in the form (Sekera, 1966; Schonhoffer and Kuball, 1987):

MR = QMT Q−1 , (3.61)

where
Q = diag (1 1 1 − 1) .

The expression Eq. (3.61) is of importance in a number of problems both in crys-
talline (Potton, 2004) and in scattering media optics (Mishchenko et al., 2006).

As an example of depolarization metrics for the reverse direction of light the
reverse index of linear polarization can be pointed out (Bueno, 2001):

GLR =
√
3

2m11

(
m2

12 +m2
13 +

1
3

4∑
i=1

(
m2

i2 +m2
i3

)) 1
2

(3.62)
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It can be directly seen from Eqs (3.57) and (3.62) that the condition of GLR = GL

is m2
ij = m2

ji.
Some media depolarize all polarization states equally. Other depolarizing me-

dia partially depolarize most polarization states but may not depolarize one or
two particular incident states. Nevertheless, a single-number metric for depolar-
ization providing a summary of depolarization of a medium cannot give detailed
information about all features of depolarization. Such information can be obtained
only from Mueller matrix models of depolarization. The case when for all polar-
izations of input light the degree of polarization p of output light is the same is
called isotropic depolarization. When the degree of polarization of output light is
a function of parameters of input polarization, then this case is called anisotropic
depolarization.

There seems to be a consensus about the form of Mueller matrix model describ-
ing the isotropic depolarization (Brosseau, 1998; Chipman, 1999):⎛⎜⎜⎝

1 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

⎞⎟⎟⎠ (3.63)

It can be seen that properties of this type of depolarization are the following: (i)
the transmittance is equal for all polarizations of incident light; (ii) p of output
light is equal for all input polarizations.

At the same time, in the literature there exists no agreement concerning the
Mueller matrix for the case of anisotropic depolarization. Seemingly, one of the most
accepted forms of the Mueller matrix describing the dependence of p of output light
on incident polarization is the following (Shindo, 1995; Brosseau, 1998; Chipman,
1999): ⎛⎜⎜⎝

1 0 0 0
0 a 0 0
0 0 b 0
0 0 0 c

⎞⎟⎟⎠ . (3.64)

The physical meaning of the elements a, b and c are interpreted in the following
manner: a and b are the degrees of linear depolarization; c is the degree of circular
depolarization. When a = b = c = 0 the Mueller matrix is a matrix of the ideal
depolarizer. Bicout et al., (1994) discussed the depolarization arising in multiple
scattering of light by spherical scatterers in a Rayleigh regime given by the matrix
Eq. (3.64) with a = b.

One more form of the Mueller matrix describing depolarization is (Williams,
1986): ⎛⎜⎜⎝

1 A1 A2 A3

0 P1 0 0
0 0 P2 0
0 0 0 P3

⎞⎟⎟⎠ . (3.65)

This matrix, as the author stated, shrinks the unit vectors along the three coor-
dinate axes without changing their directions. The diagonal matrix elements P1,
P2, and P3 are average lengths of the transformed axes. The top row elements A1,
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A2, and A3 represent asymmetry in the amounts of depolarization of the oppositely
directed input vectors. The terms A1 and P1 are defined by the following equations:

A1 =
(L′S − L′P )
(L′S + L′P )

, (3.66)

P1 =
2L′PL

′
S

(L′S + L′P )
. (3.67)

The terms L′P and L′S represent the lengths of transformed unit input vectors
(1 1 0 0)T , the p wave, and (1 − 1 0 0)T , the s wave. Similar expressions de-
fine A2, A3, P2, and P3. Thus, the Mueller matrix Eq. (3.9) will transform unit
input vectors (1 1 0 0)T and (1 − 1 0 0)T to

(
2L′S/

(
L′P + L′S

))(
1 L′P 0 0

)T

and
(
2L′P /

(
L′P + L′S

))(
1 L′S 0 0

)T . Note that this Mueller matrix contains six
degrees of freedom (leaving out of account the degree of freedom connected with
transmittance for unpolarized radiation).

The most general expression for the Mueller matrix describing depolarization
was suggested by Lu and Chipman (1996):(

1 OT

PΔ mΔ

)
; mT

Δ =mΔ , (3.68)

where PΔ denotes the so-called polarizance vector. The polarizance vector de-
scribes the state of polarization produced by this Mueller matrix from an unpolar-
ized incident light. The Mueller matrix Eq. (3.68) has nine degrees of freedom and
this situation is of interest because this matrix with the generalized deterministic
Mueller matrix are jointly characterized by 16 degrees of freedom. This means that
one, in that way, has the generalized Mueller matrix of an arbitrary medium, which
has 16 degrees of freedom and linearly interacts with polarized light.

It is important to note that describing the dependence of p of output light on
input polarization, the Mueller matrices Eqs (3.64), (3.65), and (3.68) describe the
changes of polarization of incident light as well. Because of that, the question of
what exact additional mechanisms of polarization transformation all these Mueller
matrices contain is absolutely relevant. Although Gil (2007) suggested one of the
possible approaches to gaining insight into the retarding, polarizing and depolar-
izing properties of the Mueller matrix Eq. (3.68), nevertheless, the problem is far
from being completely solved.

In Savenkov (2002a) the following Mueller matrix for anisotropic depolarization
has been suggested: ⎛⎜⎜⎝

1 m12 m13 m14

0 m 0 0
0 0 m 0
0 0 0 m

⎞⎟⎟⎠ . (3.69)

Formally, this Mueller matrix differs from the matrix Eq. (3.65) only by the equality
of its diagonal elements; however, this distinction results in a substantial implica-
tion. This implication consists in the fact that, describing the dependence of p of
output light on incident polarization, this Mueller matrix preserves the state of
polarization of input light.
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3.5.3 Cloude’s coherency matrix

In this section we consider an additive matrix model to present the Mueller matrix
based on Cloude’s coherency matrix (Cloude, 1986; Cloude and Pottier, 1995). The
coherency matrix J is derived from the corresponding Mueller matrix as follows:

J11 = 1
4 (m11 +m22 +m33 +m44) J12 = 1

4 (m12 +m21 − im34 + im43)

J13 = 1
4 (m13 +m31 + im24 − im42) J14 = 1

4 (m14 − im23 + im32 +m41)

J21 = 1
4 (m12 +m21 + im34 − im43) J22 = 1

4 (m11 +m22 −m33 −m44)

J23 = 1
4 (im14 +m23 +m32 − im41) J24 = 1

4 (−im13 + im31 +m24 +m42)

J31 = 1
4 (m13 +m31 − im24 + im42) J32 = 1

4 (−im14 +m23 +m32 + im41)

J33 = 1
4 (m11 −m22 +m33 −m44) J34 = 1

4 (im12 − im21 +m34 +m43)

J41 = 1
4 (m14 + im23 − im32 +m41) J42 = 1

4 (im13 − im31 +m24 +m42)

J43 = 1
4 (−im12 + im21 +m34 +m43) J44 = 1

4 (m11 −m22 −m33 +m44)
(3.70)

Thus, J depends linearly on M and the linear relation between them is given by
four sets of interrelations presented in Fig. 3.3.

Fig. 3.3. Relation between structures of the Mueller matrix M and corresponding
Cloude’s coherency matrix J (after Hovenier and van der Mee, 1996).

It can be seen that coherence matrix J is positive semidefinite Hermitian and,
hence, has always four real eigenvalues. The eigenvalues of the coherency matrix,
λi, can be combined to form a quantity that is a measure of the depolarization of
the studied medium. This quantity is called entropy and is defined as:

S = −
N∑

i=1

⎛⎜⎜⎝ λi∑
j

λj

⎞⎟⎟⎠ logN

⎛⎜⎜⎝ λi∑
j

λj

⎞⎟⎟⎠ . (3.71)

Given eigenvalues λi of coherency matrix J, we have for initial Mueller matrix:

M =
4∑

k=1

λkMk
D; Mk

D ⇔ Tk , (3.72)
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here Mk
D are the Mueller–Jones matrices obtained from the Jones matrices by

Eq. (3.12).
The Jones matrix, T, in turn, is obtained in the following manner:

t
(k)
11 = Ψ(k)

1 +Ψ(k)
2 , t

(k)
12 = Ψ(k)

3 − iΨ(k)
4

t
(k)
21 = Ψ(k)

3 + iΨ(k)
4 , t

(k)
22 = Ψ(k)

1 −Ψ(k)
2 k = 1, 4 ,

(3.73)

where Ψ(k) = (Ψ1 Ψ2 Ψ3 Ψ4)Tk is kth eigenvector of coherency matrix J.
Thus, the substance of the Cloude’s coherency matrix concept, which, in essence,

is an additive matrix model of depolarizing Mueller matrix representing the ini-
tial depolarizing Mueller matrix as a weighted convex sum of four Mueller–Jones
matrices, is presented in Fig. 3.4.

If three of the eigenvalues of J vanish, then the initial matrix M is a deter-
ministic Mueller–Jones matrix. Indeed, we note above that Fry and Kattawar
(1981) showed that the inequality Eq. (3.48) is a necessary condition satisfied by
any Mueller matrix, which became an equality for Mueller–Jones matrices. From
Eq. (3.70) it can be shown that (Simon, 1987; Gil, 2000):

Tr (MTM) = 4 Tr (J2) = 4
4∑

i=1

λ2
i , (3.74)

(Tr (J))2 = m2
11 =

(
4∑

i=1

λi

)2

. (3.75)

Taking into account that λi are non-negative, we can write

+

+

+

1

2

3

4

Max( i )

CAM

LAM

LPM

CPM

Cloude decomposition 

Measured 
matrix 

Deterministic matrices 

Anisotropy parameters 
(R ,P , , , , )

Generalized equivalence theorem 
decomposition 

Fig. 3.4. Additive model of the Mueller matrix based on Cloude’s coherency matrix.
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4∑
i=1

λ2
i ≤

(
4∑

i=1

λi

)2

, (3.76)

It can be seen that Eq. (3.76) becomes an equality if, and only if, only one eigenvalue
is nonzero.

If all four eigenvalues of J are not equal to zero and S ≤ 0.5, then the Mueller–
Jones matrix, which corresponds to the maximal eigenvalue, is the dominant type of
deterministic polarization transformation of the studied medium. So, this theorem
on the one hand makes it possible to study the anisotropy properties of depolarizing
media and, on the other hand, is a necessary and sufficient criterion for a given
4×4 real matrix to be a Mueller matrix (the case when all four eigenvalues of J are
non-negative) and a Mueller–Jones matrix (the case when three of the eigenvalues
vanish) (Hovenier and van der Mee, 1996; Volten et al., 1999).

Aiello and Woerdman (2005) have studied the relation between entropy S and
depolarization index DI(M). They derived the analytical expression which inter-
connects S and DI(M):

S(n, f) = − [(1− nf) log4(1− nf) + nf log4(f)] (3.77)

where

f± =
1

n+ 1

[
1±

√
1− 3

4
n+ 1
n

(1− (DI(M))2)

]
(3.78)

In the S − DI(M) plane expression Eq. (3.77) determines domain presented in
Fig. 3.5. The boundary of this domain is the curves Cij (i, j = 1, . . . , 4), joining
the points (1→ 4).

The links between the functions S(n, f) and the curves Cij are given in Ta-
ble 3.1. S13 is defined as S13 = −(1− μ) log4((1− μ)/2)− μ log4(μ/2). The curve
C14 sets an upper bound for the value of entropy for any light scattering medium.
The entropy on this curve is approximated by

S

)(MDI

1
22

3

4

Fig. 3.5. Domain in the S−DI(M) plane corresponding to all physically realizable light
scattering media (after Aiello and Woerdman, 2005).
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Table 3.1. List of curves Cij (Fig. 3.5) for scattering media determined by eigenvalues
of coherency matrix J.

Curve Generating equation Eigenvalues of J

C12 S(3, f+)
`
λ μ μ μ

´
C23 S(2, f+)

`
λ μ μ 0

´
C34 S(1, f±)

`
λ μ 0 0

´
C14 S(3, f−)

`
λ μ μ μ

´
C13 S13

`
λ λ μ μ

´
C24 S(2, f−)

`
λ μ μ 0

´

S14 ∼ (
1− (DI(M))2

)κ
(3.79)

where κ ≈ 0.862. For all other scattering media must be satisfied the condition
S ≤ S13. Thus, various light scattering medium described by different Mueller
matrices can be characterized by corresponding curves and subdomains in Fig. 3.5.

3.5.4 Block-diagonal structure of the Mueller matrix

The Mueller matrix of the form Eq. (3.37) plays a key role in many light scattering
problems. Certain of them we discuss in this section. The structure Eq. (3.37) can
be caused by symmetry of a single particle and a collection of particles in single
and multiple scattering (van de Hulst, 1957; Mishchenko, and Travis, 2000) and by
illumination-observation geometry for backward (Zubko et al., 2004) and forward
(Savenkov et al., 2007a) scattering.

A model of the medium described by the Mueller matrix Eq. (3.37) was used
in a study (to present only a few examples) of the optical characteristics of oceanic
water (Voss and Fry, 1984; Kokhanovsky, 2003d); of an ensemble of identical, but
randomly oriented fractal particles (Kokhanovsky, 2003c); of dense spherical par-
ticle suspensions in multiple-scattering case (Kaplan et al., 2001); of the multiple
scattering of light by an ice cloud consisting of nonspherical ice crystals (Lawless
et al., 2006); of polydisperse, randomly oriented ice crystals modeled by finite cir-
cular cylinders with different size distributions (Xu et al., 2002); for characterizing
cylindrically shaped radially inhomogeneous particles (Manickavasagam and Men-
guc, 1998); small spherical particles (diameters range from 0.2 to 1.5μm) sparsely
seeded on a surface of crystalline silicon c-Si wafer (Kaplan and Drevillon, 2002);
for measurements of the complex refractive index of isotropic materials as matrices
of isotropic and ideal metal mirror reflections (Deibler and Smith, 2001); in devel-
oping a symmetric three-term product decomposition of a Mueller–Jones matrix
(Ossikovski, 2008).

Cloude’s coherence matrix method enables to derive the conditions on block-
diagonal matrix Eq. (3.37) (van der Mee, 1993) to be representable as a convex
sum of the Mueller–Jones:[

(m33 −m44)2 + (m34 +m43)2 + (m12 −m21)2
] 1

2 ≤ m11 −m22[
(m33 +m44)2 + (m34 −m43)2 + (m12 +m21)2

] 1
2 ≤ m11 +m22 (3.80)
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Analogously one can see that conditions on matrix elements presented in Eq. (3.37)
are the conditions on the matrix to be derivable from corresponding Jones matrix.

Note that, in contrast to the case of spherical particles when relations m22 =
m11 and m33 = m44 presented in Eq. (3.37) are held, i.e., when the Mueller ma-
trix of the structure Eq. (3.37) is a Mueller–Jones matrix and can be derivable
from the corresponding Jones matrix, in many cases this Mueller matrix can con-
tain information on depolarization. In Kokhanovsky (2003c) in examining whether
the Mueller matrix of the structure Eq. (3.37) can produce depolarized light, the
following parameter

q =
√
(ms

12)2 + (ms
33)2 + (ms

34)2 (3.81)

was suggested. It can be seen that for normalized Mueller matrix of spherical
particles q is equal to 1.

To illustrate the physical meaning of the parameter q, consider the illumination
of a scattering medium with the Mueller matrix Eq. (3.37) by a linearly polarized
light with the Stokes vector Sinc = (1 0 1 0)T , which corresponds to the linear
polarization at the angle 45◦ to a reference plane. Then for output light we have
Sout = (1 ms

12 ms
33 −ms

34)
T . For a completely polarized output light the condition

Eq. (3.10) is an equality and for this case it can be presented in the form (ms
11)

2 =
(ms

12)
2+(ms

22)
2+(ms

34)
2, which is equivalent to q = 1. Therefore, in the case q = 1,

the depolarized light is not produced in a light scattering event.
The ratio (−ms

12/m
s
11) is called (Mishchenko and Travis, 2000; Kokhanovsky,

2003c) the degree of polarization of initially unpolarized incident light. It is negative
for most of the scattering angles. This means that direction of an electric vector
is predominantly in the plane perpendicular to the scattering plane. For single
spheres the ratio (−ms

12/m
s
11) at scattering angles 0

◦ and π is identically equal to
1. Mishchenko and Travis (2000) have pointed out that the most prominent feature
of nonspherical scattering is the bridge of positive linear polarization at scattering
angles near 120◦. The ratio ms

22/m
s
11 is equal to unity for spherical particles at

any scattering angles. So, the difference of ms
22/m

s
11 from unity can be used as a

measure of the particle’s nonsphericity, which is sensitive to particle size and aspect
ratio (Quinby-Hunt, 2000). The ratio ms

34/m
s
11 describes the transformation of

linear polarized incident light to circular polarized output light. Generally,ms
34/m

s
11

decreases with the value of refractive index of particles. The value of ratioms
44/m

s
11

describes the reduction of the degree of circular polarization for circularly polarized
incident light. Much as ms

22/m
s
11, the behavior of element ratios m

s
33/m

s
11 and

ms
44/m

s
11 also represents asymmetric particle shapes, i.e., deviation of ms

44/m
s
11

from ms
33/m

s
11 indicates nonspherical symmetry of particles (Xu et al., 2002).

Figure 3.6 shows the example of dependencies of ratios of matrix elements
discussed above and phase function defined as 2ms

11(θ)
/ ∫ π

0
ms

11(θ
′) sin θ′ dθ′ on

scattering angle for a power law size distribution of spheres and randomly oriented
spheroids in the case of single scattering (Mishchenko and Travis, 2000).

Multiple scattering can significantly affect the process of polarization (the oc-
currence of at least one more nonzero Stokes parameter other than overall intensity
for unpolarized input Stokes vector) and depolarization. In particular, polarization
can be considerably decreased by multiple scattering. At the same time, multi-
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Fig. 3.6. Phase function and normalized Mueller matrix elements for power law size
distribution spheres and randomly oriented spheroids (after Mishchenko and Travis, 2000).

ple scattering causes nonzero depolarization values even for spherical particles and
often reinforce depolarization caused by particle nonsphericity.

Figure 3.7 (Mishchenko and Travis, 2000) demonstrates this by the example
of randomly oriented bispheres with an index of refraction of 1.5 + 0.005i. The
size parameter of the component spheres is 5 and the distance D between the
sphere centers. Solid curves show the results of Lorenz–Mie computations for a
single sphere with the same size parameter 5. It can be seen that the magnitude
of oscillations, which are attributed to manifestation of the interference structure
typical for monodisperse spheres, decreases as the component spheres become closer
and is minimal for the bisphere with touching components. In particular, the degree
of linear polarization (−ms

12/m
s
11) becomes more neutral and less indicative of the

physical characteristics of the component spheres.
Using the coherency matrix concept (see section 3.5.3) consider the structure

of the Mueller matrix for multiple scattering in the exact backscattering direction
by optically thick discrete random media (Cloude and Pottier, 1995). In this case
backscattering of light is affected by a phenomenon called coherent backscattering
or weak photon localization (van Albada et al., 1988; MacKintosh et al., 1989).
Mishchenko (1992) have shown that the Mueller matrix for this problem has the
structure given by Eq. (3.37) and can be presented as follows:

M =M1 +ML +MC (3.82)

The first term, M1, describes single scattering contribution. The second, ML, de-
scribes multiple incoherent scattering contribution. Depending on particle symme-
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Fig. 3.7. Phase function and normalized Mueller matrix elements for randomly oriented
bispheres with touching and separated components (after Mishchenko and Travis, 2000).

try this contribution may have high or low entropy S and, hence, support polar-
ization information (MacKintosh et al., 1989). This term can be calculated using
classical vector radiative transfer equation (Chandrasekhar, 1950). The third term,
MC , represents the contribution results from coherence in the exact backscattering
direction between the path and the time-reversed path of light. The third term is
difficult to calculate for a general random medium; however, using the vector reci-
procity theorem Mishchenko (1992) derived the relationship for given scattering
geometry between coherent and incoherent multiple scattering contributions:

mC
ij = mL

ij , i �= j

mC
11 =

1
2 (m

L
11 +mL

22 −mL
33 +mL

44)

mC
22 =

1
2 (m

L
11 +mL

22 +mL
33 −mL

44)

mC
33 =

1
2 (−mL

11 +mL
22 +mL

33 +mL
44)

mC
44 =

1
2 (m

L
11 −mL

22 +mL
33 +mL

44)

(3.83)

Consequently, both matrices ML and MC can be found by solving the vector
radiative transfer equation. Since there is a one-to-one correspondence between
Mueller matrix M and coherency matrix J, from Eq. (3.82) one can write for
overall coherency matrix:

J = J1 + JL + JC (3.84)
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From Eqs (3.70) and (3.84) it can be seen that:

JL =

⎛⎜⎜⎝
J11 J12 0 J14

J21 J22 0 J24

0 0 J33 0
J41 J42 0 J44

⎞⎟⎟⎠ (3.85)

JC =

⎛⎜⎜⎝
J11 J12 0 J14

J21 J22 0 J24

0 0 −J33 0
J41 J42 0 J44

⎞⎟⎟⎠ (3.86)

The overall entropy is a sum of the following contributions: the first relates with
the form of a Mueller matrix that describes a single scattering event for array of
particles and the second relates with JL, so that it is determined by size, shape and
angular distribution of particles. If these two components have similar eigenvectors
of corresponding coherency matrices Eq. (3.84) then the problem has low entropy,
even for multiple scattering. The high value of entropy associates with the case
when eigenvectors are nearly orthogonal.

As an example of the case when the Mueller matrix has the structure of
Eq. (3.37) and contains information on depolarization and depolarization depends
pronouncedly on the polarization state of input light, consider the exactly forward
scattering of polarized light by a slab of inhomogeneous linear birefringent medium
(Savenkov et al., 2007a). Inhomogeneity is due to the output side (where radiation
exits) of the slab has random roughness and insures the single scattering regime.
When inhomogeneity σh is large compared with wavelength λ, i.e., the following
condition:

σh � λ/(n1 − n2) (3.87)

is satisfied, then Mueller matrix Eq. (3.37) takes the form⎛⎜⎜⎝
1 ms

12 0 0
ms

12 1 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ . (3.88)

The value of matrix element m12 is found as follows

ms
12 =

(n2 − 1)2 − (n1 − 1)2

(n2 − 1)2 + (n1 − 1)2
, (3.89)

where ni are refraction indexes of birefringent medium. Condition Eq. (3.87) is not
very hard to fulfill and, say, for calcite CaCO3 at λ = 0.63μm it is already satisfied
for σh ≈ 8÷ 10μm.

For the Mueller matrix Eq. (3.88) Fig. 3.8 presents the theoretical and experi-
mental dependences of polarization degree, p, and intensity, I, of output light for
linear polarized input light with azimuth of polarization scanning over 0 ÷ 180◦

region (Savenkov et al., 2005). p takes all physically acceptable values in light scat-
tering by such medium 0 ≤ p ≤ 1. In that way, the effect of so-called polarization
memory is observed: the medium ‘keeps in mind’ the input linear polarizations
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Fig. 3.8. Theoretical and experimental dependences of the intensity, I, and the polar-
ization degree, p, of output light versus azimuth θ of incident linearly polarized light.
σh = 20μm (after Savenkov et al., 2005).

with some azimuths (0◦ and 90◦) perfectly (light remains completely polarized)
and ‘forgets’ completely the input linear polarizations with some other azimuths
(approximately 60◦ and 120◦) (light becomes unpolarized).

It can be seen that the presence of surface inhomogeneity results in dependence
of intensity I of output light on azimuth of input linear polarization as well. Hence,
for exact forward scattering direction an inhomogeneous linear birefringent medium
exhibits partial dichroism. At that, the ratio of minimal and maximal values of
intensity is a function of refraction indexes ni (see Eq. (3.89)) and determined by

Imin

Imax
=
1−ms

12

1 +ms
12

=
(n1 − 1)2

(n2 − 1)2
≈ 0.4 (3.90)

Note that in scope of additive matrix model based on the Cloude’s coherency
matrix Eq. (3.72) and Fig. 3.4 the Mueller matrix Eq. (3.88) for the case of inhomo-
geneous linear birefringent medium is represented as weighed sum of two matrices
of ideal (singular) linear polarizers with crossed planes of transmittance.

Depolarization depends significantly on polarization state of input light in mul-
tiple scattering as well (Bicout et al., 1994; Rojas-Ochoa et al., 2004; Kim et al.,
2006, and references therein). In particular, Bicout et al. (1994) studied numeri-
cally and experimentally how depolarization proceeds for linear and circular input
polarizations as the size of the particles increases from very small (Rayleigh regime)
to large (Mie regime) for forward scattering geometry. They considered a plane-
parallel slab of finite thickness d composed of uncorrelated spherical particles of
radius a. For the degree of polarization of the light transmitted by the scattering
medium for linearly, pL, and circularly, pC , polarized input light they derived:

pL,C � 2d
l
sinh

(
l

ξL,C

)
exp

(
− d

ξL,C

)
(3.91)
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where l is a mean free path and ξL,C are terms define the characteristic lengths
of depolarization for linear (L) and circular (C) input polarizations in the slab
geometry. The beam of light (λ = 0.67μm) normally impinges on one side of the
slab (3mm thickness) and the scattered light transmitted through back side of
the slab was detected within a collection angle of 2◦. The samples, which ensure
multiple scattering of input light, are suspensions of polystyrene spheres with mean
diameters of 0.22 and 1.05μm in distilled water at different concentrations.

Figure 3.9 shows the dependencies of ratio of linear to circular degree of polariza-
tion pL/pC as a function of d/l∗. Dashed lines are fit to Eq. (3.91). Symbols indicate
experimental data corresponding to measurements on suspensions of polystyrene
latex spheres in water: 0.22μm (circle); 1.05μm (square). It can be seen that pL/pC

increases in the qa� 1 (Rayleigh) regime, decreases in qa > 1 (Mie) regime and is
constant in the intermediate regime.

Fig. 3.9. Dependencies of the ratio of the degrees of polarization pL/pC as a function of
d/l∗ for three values of size parameters qa (after Bicout et al., 1994).

The character of the dependences of pL/pC the authors explain by the fact that
for various values of size parameters qa a various character of scattering is observed:
in the Mie regime scattering is predominantly in the forward direction while in the
Rayleigh regime forward and backward scattering directions are equally presented.
Linear polarization is not affected by backscattering regardless of particle size,
whereas backscattering for circular polarization results in helicity flip.

3.6 Structure and information content of the Mueller–Jones
matrix in continuous medium approximation

The increased interest in the Jones and Mueller–Jones matrices is conditioned by
the following circumstances. First, these matrices describe the interaction between
polarized light and medium without depolarization, i.e., the problem which is a
subject of crystal optics. Second, as can be seen from the discussion of section 3.5.3,
the Jones and the Mueller–Jones matrices are the key concept of the additive matrix
model of a scattering medium being described by a depolarizing Mueller matrix,
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Fig. 3.4. Indeed, if the entropy S is low (typically <0.5), the medium is weakly
depolarizing and the Jones matrix in Eq. (3.72) associated with the eigenvector
corresponding to the largest eigenvalue of the coherency matrix is dominant and
describes the anisotropy properties of a given medium. If the entropy S is high
(typically >0.5), the medium is strongly depolarizing and in this case all four Jones
matrices, Fig. 3.4, consist of information about the medium (Cloude and Pottier,
1995).

In this section we consider the structures and information content of Jones and
Mueller–Jones matrices of homogeneous anisotropic (deterministic) media (Shur-
cliff, 1962; Azzam and Bashara, 1977; Brosseau, 1998). Note that the results for
the internal structure of the general Mueller–Jones matrix and symmetry relations
caused by interchanging the incident and emerging light beams and the principle
of reciprocity presented in the preceding sections and obtained in the framework of
light scattering by particles are relevant for the Jones and Mueller–Jones matrices
of homogeneous anisotropic (deterministic) media in continuous medium approxi-
mation.

3.6.1 Mueller–Jones matrices of basic types of anisotropy and partial
equivalence theorems

Polarization of light changes if either amplitudes and phases of components of
electric vector E taken separately or both of them simultaneously change (Azzam
and Bashara, 1977; Shurcliff, 1962; Brosseau, 1998). It is therefore accepted to
distinguish between corresponding classes of anisotropic media: dichroic (or pos-
sessing amplitude anisotropy), which influence only the amplitudes; birefringent
(or possessing phase anisotropy), influencing only the phases; and ‘all other’ (pos-
sessing amplitude and phase anisotropy) which influence both the amplitudes and
the phases of the components of the electric vector simultaneously. Among these
classes, four types of anisotropic mechanisms are recognized as basic (or primitive)
(Jones, 1941; Hurwitz and Jones, 1941): linear and circular phase and linear and
circular amplitude anisotropies.

The Jones and Mueller–Jones matrices of linear phase anisotropy are

TLP =
(
cos2 α+ sin2 α exp(−iΔ) cosα sinα[1− exp(−iΔ)]
cosα sinα[1− exp(−iΔ)] sin2 α+ cos2 α exp(−iΔ)

)
,

MLP =

⎛⎜⎝1 0 0 0
0 cos2(2α) + sin2(2α) cos(Δ) cos(2α) sin(2α)[1− cos(Δ)] − sin(2α) sin(Δ)
0 cos(2α) sin(2α)[1− cos(Δ)] sin2(2α) + cos2(2α) cos(Δ) cos(2α) sin(Δ)
0 sin(2α) sin(Δ) − cos(2α) sin(Δ) cos(Δ)

⎞⎟⎠
(3.92)

where Δ is a value, i.e., phase shift between two orthogonal linear components of
the electric vector, and α is an azimuth of the anisotropy.
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Linear amplitude anisotropy has the matrices

TLA =
(
cos2 γ + P sin2 γ cos γ sin γ(1− P )
cos γ sin γ(1− P ) sin2 γ + P cos2 γ

)
,

MLA =

⎛⎜⎜⎝
1 + P (1− P ) cos(2γ)

(1− P ) cos(2γ) cos2(2γ)(1 + P ) + 2 sin2(2γ)
√
P

(1− P ) sin(2γ) cos(2γ) sin(2γ)(1−√
P )2

0 0

(1− P ) sin(2γ) 0
cos(2γ) sin(2γ)(1−√

P )2 0
sin2(2γ)(1 + P ) + 2 cos2(2γ)

√
P 0

0 2
√
P

⎞⎟⎟⎠ (3.93)

where P is a value (relative absorption of two linear orthogonal components of the
electric vector) and γ is an azimuth of the anisotropy.

Circular phase anisotropy has the matrices:

TCP =
(
cosϕ sinϕ
− sinϕ cosϕ

)
,

MCP =

⎛⎜⎜⎝
1 0 0 0
0 cos(2ϕ) sin(2ϕ) 0
0 − sin(2ϕ) cos(2ϕ) 0
0 0 0 1

⎞⎟⎟⎠ , (3.94)

where ϕ is a phase shift introduced for two orthogonal circular components of the
electric vector.

Finally, the Jones and Mueller–Jones matrices of circular amplitude anisotropy
are

TCA =
(
1 −iR
iR 1

)
,

MCA =

⎛⎜⎜⎝
1 +R2 0 0 2R
0 1−R2 0 0
0 0 1−R2 0
2R 0 0 1 +R2

⎞⎟⎟⎠ , (3.95)

where R is a value of the anisotropy, i.e., relative absorption of two orthogonal
circular components of the electric vector.

Six quantities α, Δ, P , γ, ϕ, and R are called anisotropy parameters. The ranges
of their physically realizable values are

0 ≤ ϕ ≤ 2π

0 ≤ Δ ≤ 2π

−π/2 ≤ α ≤ π/2

0 ≤ P ≤ 1

−π/2 ≤ γ ≤ π/2

−1 ≤ R ≤ 1

(3.96)
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It can be seen that elements of matrices of linear Eq. (3.92) and circular Eq. (3.94)
phase anisotropy satisfy

t11 = t∗22; t12 = −t∗21, | det(T )| = 1 , (3.97)

i.e., these matrices have structures corresponding to class of unitary matrices (in
case of matrices with real elements – orthogonal matrices). Diagonal elements of
the matrices of linear Eq. (3.93) and circular Eq. (3.95) amplitude anisotropy are
real and non-diagonal:

t12 = t∗21 , (3.98)

i.e., these matrices belong to the class of Hermitian matrices (in case of matrices
with real elements – symmetric matrices). It is evident that, in general, the arbitrary
medium can be characterized by these four types of anisotropy simultaneously.

The history of matrix models of anisotropic media goes back to the early works
of Jones, who in 1941 introduced the formalism of 2 × 2 matrix (Jones, 1941)
describing the response of anisotropic media to the incident polarized light. Relying
on this approach, Hurwitz and Jones proved three so-called equivalence theorems
(Hurwitz and Jones, 1941) providing the basis of the matrix models for a number
of classes of homogeneous anisotropic media. According to the first theorem, any
combination of polarization elements with circular and linear phase anisotropy (i.e.,
rotators and retardation plates) can be presented by an optical system consisting of
only two elements, one with circular and the other with linear phase anisotropy. The
Jones matrix of the medium corresponding to the first Jones equivalence theorem
has the form:

TCPTLP =
(

cosϕ
(
cos2 α+ sin2 α exp(−iΔ))+ 1

2 sinϕ sin 2α
(
1− exp(−iΔ))

− sinϕ
(
cos2 α+ sin2 α exp(−iΔ))+ 1

2 cosϕ sin 2α
(
1− exp(−iΔ))

sinϕ
(
sin2 α+ cos2 α exp(−iΔ))+ 1

2 cosϕ sin 2α
(
1− exp(−iΔ))

cosϕ
(
sin2 α+ cos2 α exp(−iΔ))− 1

2 sinϕ sin 2α
(
1− exp(−iΔ))

)
(3.99)

Note that the Jones matrix Eq. (3.99) is a matrix model of an arbitrary linear
crystalline medium in the transmission band. It can be seen that structure of the
matrix Eq. (3.99) satisfies the conditions Eq. (3.97) and, hence, is unitary.

The second theorem is analogous to the first and deals with combinations of
elements with circular phase and amplitude anisotropy (rotators and partial po-
larizers). Finally, the third theorem states that any combination of elements with
amplitude and phase anisotropy is equivalent to an optical system containing only
four elements: two with linear phase, one with circular phase, and one with lin-
ear amplitude anisotropy. Some other partial equivalence theorems can be found
elsewhere (Whitney, 1971; Barakat, 1998).

3.6.2 Polar decomposition of Mueller–Jones matrices

The development of matrix descriptions of media properties motivated further re-
search in the field based on the methods of linear algebra and matrix analysis. In
particular, Barakat (1998) gave an analytical proof of the third Jones equivalence



102 S.N. Savenkov

theorem in terms of singular decomposition (Lancaster and Tismenetsky, 1985).
Another approach to modeling homogeneous anisotropic media, alternative to that
of Jones, is based on the polar decomposition theorem (Lancaster and Tismenet-
sky, 1985). According to this theorem, an arbitrary matrix T can be presented by
a product

T = TPTR or T = TRT′P (3.100)

where TP , and T′P are Hermitian matrices and TR is a unitary one. The Hermitian
matrix is associated with amplitude anisotropy, and the unitary matrix with phase
anisotropy (Whitney, 1971). The matrices TP and TR are called dichroic and phase
Jones polar forms (Whitney, 1971; Gil and Bernabeu, 1987; Lu and Chipman, 1996).

Polar decomposition for polarization theory was first employed in Whitney
(1971) without, however, finding explicit expressions for TP and TR. They were
obtained later independently by Gil and Bernabeu (1987) and Lu and Chipman
(1996). Alternatively, dichroic and phase polar forms may be presented relying on
the spectral problem of linear algebra (Azzam and Bashara, 1977).

The models of anisotropic media based on polar decomposition contain six
independent parameters, three for the phase TR and three for the dichroic TP

polar forms, for four complex elements of the Jones matrix. Two additional degrees
of freedom are associated with isotropic changes of the phase and amplitude of the
light propagating in the medium.

Analogously to Eq. (3.100), polar decomposition can be realized in terms of
Mueller–Jones polar forms MP and MR. Phase polar form MR (using notations
from Lu and Chipman (1996)) has the form:

MR =
(
1 0T

0 mR

)
(3.101)

(mR)ij = δij cos(R) + aiaj

(
1− cos(R)

)
+

3∑
k=1

εijkak sin(R) , i, j = 1, 3

where 0 is a 3× 1 zero vector, (1 a1 a2 a3)T = (1 R̂T )T is the normalized Stokes
vector for the fast axis of MR, δij is the Kronecker delta, εijk is the Levi–Civita
permutation symbol, mR is a 3× 3 submatrix of matrix MR obtained by striking
out the first row and the first column of MR and R is the retardance and can be
obtained as:

R = arccos
(
Tr (MR)

2
− 1

)
(3.102)

The dichroic polar form MP is:

MP = Tu

(
1 DT

D mP

)
, (3.103)

mP =
√
1−D2I+

(
1−

√
1−D2

)
D̂D̂T , (3.104)

where I is the 3 × 3 identity matrix, D̂ = D/|D| denotes the unit vector along
the diattenuation vector D, and Tu is the transmittance for unpolarized light; the
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value of diattenuation can be obtained as

D =
(
1− 4| det(T)|2

[Tr (T∗T)]2

)1/2

(3.105)

So, we can see that the Mueller–Jones phase polar form is a unitary (orthogonal)
matrix and the Mueller–Jones dichroic polar form is a Hermitian (symmetric) ma-
trix. Note that unitarity (orthogonality) of the Mueller–Jones phase polar form,
Eq. (3.101) is in complete accordance with the first Jones equivalence theorem,
Eq. (3.99), and is a general model of birefringence medium. As we see below, the
situation with dichroic polar is more complex. This originates from the fact that,
in contrast to unitary matrices, the product of Hermitian matrices is generally not
a Hermitian matrix (Lancaster and Tismenetsky, 1985).

The product of Mueller matrices of polar forms Eqs (3.101) and (3.103) and the
depolarizing Mueller matrix Eq. (3.68) is called the generalized polar decomposition
and multiplicative matrix model of an arbitrary Mueller matrix (Lu and Chipman,
1996; Gil, 2007). The effect of the order of multiplication of matrices on the results
of decomposition has been studied by Morio and Goudail (2004) and Ossikovski et
al. (2007).

3.6.3 Generalized matrix equivalence theorem

A direct consequence of the generality of polar and singular decompositions is that
they can be employed for representing an arbitrary deterministic medium. One has,
however, to pay the price for using these formal mathematical approaches by losing
in physical interpretability of the decomposition results (Savenkov et al., 2005).
The most significant issue for any model of media would be its physical validity
(Boerner, 1992). Evidently, only those matrix models that simultaneously take into
account both the inertia of medium properties and the nonlocality of the medium
response to light (i.e., time and spatial dispersion) can be accepted as rigorous
and adequate. It is known that these properties of a crystalline medium determine,
in the general case, the character of its anisotropy, namely, linear amplitude and
phase, and circular amplitude and phase anisotropies (see, for example, Landau et
al., 1984; Berry and Dennis, 2003).

The subject of this section is an analysis of the structure of the Jones matrix of
arbitrary anisotropic medium. The Jones matrix of an arbitrary anisotropic medium
is derived on the basis of the so-called generalized equivalence theorem (Savenkov et
al., 2006), which is a direct generalization of the first and second Jones equivalence
theorems. Accepting the style of Jones (Hurwitz and Jones, 1941), in (Savenkov et
al., 2006) the following theorem is formulated:

Any combination of elements with linear and circular phase and linear and
circular amplitude anisotropy is equivalent to an optical system containing
only one element of each kind in the order

TGen = TCPTLPTCATLA (3.106)

Formulated in the form of Eq. (3.106) the generalized equivalence theorem is free
from the drawbacks of both polar and singular decompositions. First, the results of
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the suggested decomposition can be directly used for an analysis of the anisotropy
of a medium, which is based on physically meaningful and realizable parameters.
Second, in contrast to singular decomposition (or the third Jones equivalence the-
orem), Eq. (3.106) includes circular amplitude anisotropy. Therefore, it provides
a more physically adequate and complete description of the anisotropic properties
of the general case of media possessing all four kinds of anisotropy mechanisms.
The fact is that, although circular amplitude anisotropy can operationally result
in transformations of light polarization which are analogous to some forms of lin-
ear phase anisotropy (half-wave plate), nevertheless, physically circular amplitude
anisotropy differs in principle from linear phase anisotropy and, therefore, must be
presented in a general model of a medium.

An explicit form of the elements of the matrix TGen Eq. (3.106) follows:

t11 =
ˆ
sϕcαsα

`
1− exp(−iΔ)

´
+ cϕ

`
c2

α + s2
α exp(−iΔ)

´˜ ˆ
c2

γ + s2
γP − iRcγsγ(1− P )

˜

+
ˆ
sϕ

`
s2

α + c2
α exp(−iΔ)

´
+ cϕcαsα

`
1− exp(−iΔ)

´˜ ˆ
cγsγ(1− P ) + iR

`
c2

γ + s2
γP

´˜

t21 =
ˆ
cϕcαsα

`
1− exp(−iΔ)

´
+ sϕ

`
c2

α + s2
α exp(−iΔ)

´˜ ˆ
c2

γ + s2
γP − iRcγsγ(1− P )

˜

+
ˆ
cϕ

`
s2

α + c2
α exp(−iΔ)

´
+ sϕcαsα

`
1− exp(−iΔ)

´˜ ˆ
cγsγ(1− P ) + iR

`
c2

γ + s2
γP

´˜

t12 =
ˆ
sϕcαsα

`
1− exp(−iΔ)

´− cϕ

`
c2

α + s2
α exp(−iΔ)

´˜ ˆ
cγsγ(1− P )− iR

`
s2

γ + c2
γP

´˜

+
ˆ
sϕ

`
s2

α + c2
α exp(−iΔ)

´− cϕcαsα

`
1− exp(−iΔ)

´˜ ˆ
s2

γ + c2
γP + iRcγsγ(1− P )

˜

t22 =
ˆ
cϕcαsα

`
1− exp(−iΔ)

´− sϕ

`
c2

α + s2
α exp(−iΔ)

´˜ ˆ
cγsγ(1− P )− iR

`
s2

γ + c2
γP

´˜

+
ˆ
cϕ

`
s2

α + c2
α exp(−iΔ)

´− sϕcαsα

`
1− exp(−iΔ)

´˜ ˆ
s2

γ + c2
γP + iRcγsγ(1− P )

˜

(3.107)

where sϕ = sin(ϕ), cϕ = cos(ϕ); sα = sin(α), cα = cos(α), sγ = sin(γ), cγ = cos(γ).
It is important to note that matrix Eq. (3.107) generally does not satisfy either

conditions Eq. (3.97) or conditions Eq. (3.98).
Assuming that det(TGen) �= 0, from Eq. (3.107) we derive the expressions for

parameters of anisotropy:

for the azimuth of linear amplitude anisotropy γ:

γ = −1
2
arctan

2Re (t22t∗21 + t11t
∗
12)

|t12|2 + |t22|2 − |t11|2 − |t21|2 , (3.108)

for the value of linear amplitude anisotropy P :

P =

√
|t12 cos γ − t11 sin γ|+ |t22 cos γ − t21 sin γ|
|t12 sin γ + t11 cos γ|+ |t22 sin γ + t21 cos γ| , (3.109)

for the circular amplitude anisotropy R:

R =

−`|t′11|2+|t′21|2+|t′12|2+|t′22|2
´±

q
(|t′11|2+|t′21|2+|t′12|2+|t′22|2)2−4[Im (t′∗11t′12+t′∗22t

′
21)]

2

−2Im (t′∗11t′12 + t′∗22t
′
21)

(3.110)

where t′ij are the elements of the following matrix
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T′ = TGen(TLA)−1 = TCPTLPTCA . (3.111)

The parameters ϕ, α, and Δ can then be directly determined from the following
equations:

ϕ = arctg
(
t′′12 − t′′21
t′′11 + t′′22

)
, (3.112)

α =
1
2

(
arctg

(
t′′21 + t′′12
t′′11 − t′′22

)
+ ϕ

)
, (3.113)

Δ = −2 arctg
(
i
(t′′12 + t′′21)
(t′′11 + t′′22)

cos(ϕ)
sin(ϕ− 2α)

)
, (3.114)

where t′′ij are the elements of the following matrix

T′′ = T′(TCA)−1 = TCPTLP . (3.115)

Obviously, a similar theorem can be formulated for the Mueller–Jones matrices as
well (Savenkov et al., 2006).

The fact that the parameters used in this theorem characterize physically real-
izable anisotropy mechanisms permits not only clear physical interpretation of the
anisotropic properties of a medium but also synthesis of the systems (polarization
elements) with arbitrary predetermined polarization properties.

Matrix Eq. (3.107) describes the generalized effect operator of anisotropic me-
dia on the polarized light in terms of the Jones and Mueller matrix formalisms,
respectively. Therefore, Eq. (3.107) may be regarded as generalized polarimetric
matrix model of an arbitrary deterministic medium or, in other words, as the basic
relation of algebraic (or operator) optics of anisotropic media (Rozenberg, 1977).
The anisotropy parameters Eqs (3.108)–(3.115) are then the general solution of the
inverse problem of crystal optics based on the model Eqs (3.107).

In addition, Eq. (3.107) determines the general matrix form of the polarization
transfer equation (Brosseau, 1995) for homogeneous anisotropic media. Measure-
ment of the Mueller matrices and determination of the anisotropy parameters for a
corresponding number of directions in the studied medium can then be considered
as a content of the method of Mueller tomography (Azzam and Bashara, 1977; Le
Roy-Brehonnet and Le Jeune, 1997) for the given class of media.

Furthermore, the generalized equivalence theorem clarifies the matter and phys-
ical interpretation of the non-uniqueness of the solutions of the inverse problem as
well as the invariance of describing the anisotropic properties from an electrody-
namic point of view. Non-uniqueness of the inverse problem is a result of the fact
that the matrices of the primitive anisotropic mechanisms Eqs (3.92)–(3.95) are
not interchangeable in Eq. (3.106), the latter gives several different ways in which
the matrices Eqs (3.92)–(3.95) can be multiplied (Lu and Chipman, 1996; Morio
and Goudail, 2004; Ossikovski et al., 2007).

The importance of the formulated problems was addressed in a number of ear-
lier publications (Rozenberg, 1973, 1977; Gil and Bernabeu, 1987; Lu and Chip-
man, 1996; Morio and Goudail, 2004; Ossikovski et al., 2007). The models of the
homogeneous anisotropic media available at the moment did not, however, allow
their further development. The proven theorem provides a basis for a systematic
investigation of these problems.
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3.6.4 Eigenanalysis of the Jones matrices of dichroic, birefringent,
and degenerate media

Eigenpolarizations and eigenvalues (Lancaster and Tismenetsky, 1985) completely
characterize the optical medium (Landau et al., 1984) and determine the structure
and inner symmetry of the corresponding matrix models (Azzam and Bashara,
1977; Shurcliff, 1962; Jones, 1941). We use eigenanalysis to derive and analyze
the Jones matrix of dichroic, birefringence media and media with degenerate
anisotropy.

Depending on eigenvalues and eigenpolarizations, the media and associated
Jones matrices are classified as homogeneous and inhomogeneous (Shurcliff, 1962).
To avoid the confusion in using the terminology ‘homogeneous and inhomogeneous
medium (polarization element)’ accepted in laser polarimetry (Lu and Chipman,
1994, 1996; Sudha and Gopala Rao, 2001) with that used in scattering media optics
we will use here the terms ‘homogeneous and inhomogeneous Jones and Mueller–
Jones matrices.’

The homogeneous Jones matrix has two orthogonal eigenpolarizations:

E+
e1Ee2 = 0 , (3.116)

where + denotes the Hermitian conjugate.
The inhomogeneous Jones matrix has nonorthogonal eigenpolarizations. The

case when eigenpolarizations of the Jones matrix are coincident is called degenerate
anisotropy (Pancharatnam, 1955a, 1955b; de Lang, 1966; Meira-Belo and Leitao,
2000; Mosino et al., 2002).

The Jones matrices describing phase and dichroic polar forms Eqs (3.101) and
(3.103) discussed in section 3.6.2 are considered as either generalized elliptical re-
tarders (medium with phase anisotropy), or generalized elliptical dichroic medium
(medium with amplitude anisotropy). Hence, generalized media with phase and
amplitude anisotropy, each taken separately, have been heretofore assumed to pos-
sess orthogonal eigenpolarizations (Azzam and Bashara, 1977) and a single ‘origin’
of nonorthogonality of eigenpolarizations of medium is simultaneous presence of
phase and amplitude anisotropy. From the Jones’ equivalence theorem (Hurwitz
and Jones, 1941) for the medium with general phase anisotropy, this is indeed true.
The case for a medium with general amplitude anisotropy turns out to be more
complicated and is addressed in this subsection. Making only the most general as-
sumptions on properties of crystal media, below we analyze the structure of the
generalized Jones matrices for birefringent and dichroic media.

It is convenient to describe polarization state in this case by the complex variable
defined by (Azzam and Bashara, 1977):

χ = |Ey|/|Ex| exp[j(δy − δx)] (3.117)

The connection between incident and output polarizations can be written in
terms of complex variable Eq. (3.117) in the form:

χ0 =
t21 + t22χi

t11 + t12χi
(3.118)
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If a medium is described by the Jones matrix, T, its eigenvectors Ee1 and Ee2

satisfy the following equations (Lancaster and Tismenetsky, 1985):

TEe1 = V1Ee1 , TEe2 = V2Ee2 (3.119)

where, V1, V2 are the eigenvalues of T, which are in general complex values.
Eigenvectors Ee1 and Ee2 are presented in terms of complex variable Eq. (3.117)

by:

Ee1,2 =
(

1
χe1,2

)
. (3.120)

For the Jones matrix, the eigenpolarizations and eigenvalues are, respectively (Az-
zam and Bashara, 1977):

χe1,2 =
1
2
t22 − t11 ±

√
(t22 − t11)2 + 4t12t21
t12

, (3.121)

V1,2 =
1
2

(
t22 + t11 ±

√
(t22 − t11)2 + 4t12t21

)
(3.122)

If eigenpolarizations and eigenvectors do not coincide, then the Jones matrix ele-
ments can be obtained from Eqs (3.121) and (3.122):

T =
1

χe1 − χe2

(
V2χe1 − V1χe2 V1 − V2

−(V1 − V2)χe1χe2 V1χe1 − V2χe2

)
(3.123)

The structure of the matrix Eq. (3.123) illustrates once more the fact, which we
pointed out above for matrix Eq. (3.107), that the Jones matrix describing general
homogeneous anisotropic medium is neither unitary nor Hermitian.

3.6.4.1 Medium characterized by phase anisotropy

In the most general case the birefringent medium, i.e., the medium which is char-
acterized only by changes to the phases of the components of the electric vector E
and by the isotropic changes of the amplitude of the electric vector of incident light
(Lu and Chipman, 1994), is completely characterized by the following conditions
(Savenkov et al., 2005): ∣∣∣∣V1

V2

∣∣∣∣ = 1 (3.124)

χe1χ
∗
e2 = −1

It is important to note that the orthogonality of eigenpolarizations of the birefrin-
gent medium is a consequence of the definition of birefringence rather than a part
of this definition. Eq. (3.124) results in the following form of the generalized Jones
matrix for birefringent media:

T =
|V |

|χe|2 + 1⎛⎜⎝ exp
(
i
φ

2

)
+ |χe|2 exp

(
−iφ

2

)
|χe|

[
exp

(
iφ
2

)
− exp

(
−iφ

2

)]
exp(−iψ)

|χe|
[
exp

(
iφ
2

)
− exp

(
−iφ

2

)]
exp(iψ) |χe|2 exp

(
iφ
2

)
+ exp

(
−iφ

2

)
⎞⎟⎠

(3.125)
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where φ and ψ are the phases of eigenvalues and eigenpolarizations respectively.
It can be seen that structure of the generalized Jones matrix of birefringent

medium is characterized by relations Eq. (3.97).
Constant |V | representing the degree of isotropic absorption is present in

Eq. (3.125) as a general multiplier and it, obviously, does not influence the po-
larization properties of an element.

Thus, having the eigenvalues and the eigenpolarizations for a given realization of
the Jones matrix, T, using Eq. (3.124), it is possible to specify whether the medium,
described by this matrix, belongs to the class characterized by phase anisotropy. If,
however, the aim is to analyze the anisotropy of birefringent media, or to synthesize
a polarization element with given properties, then it needs to have the conditions
analogous to Eq. (3.124) in terms of anisotropy parameters Eq. (3.96). This can be
done by applying the model of Eq. (3.106) to the definitions in Eqs (3.121), (3.122)
and (3.124).

It can be shown (Savenkov et al., 2007b) that a medium has birefringent eigen-
values, Eq. (3.124), when

R(P + 1) cos
Δ
2
sinϕ− (P − 1) sin

Δ
2
cos

(
ϕ− 2(α− γ)

)
= 0(

(P + 1) cos
Δ
2
cosϕ+R(P − 1) sin

Δ
2
sin

(
ϕ− 2(α− γ)

))2

− 4P (1−R2) < 0

(3.126)

The eigenvalues are then given by

V1,2 =
1
2
exp

(
−iΔ

2

)((
(1 + P ) cos

Δ
2
cosϕ−R(1− P ) sin

Δ
2
sin

(
ϕ− 2(α− γ)

))

± i

√
4P (1−R2)−

(
(1 + P ) cos

Δ
2
cosϕ−R(1−P ) sin Δ

2
sin(ϕ−2(α−γ))

)2
⎞⎠

(3.127)

Eigenpolarizations of a birefringent medium are orthogonal, as determined by
the second equation in Eq. (3.124). Analysis of the orthogonality for eigenpolariza-
tions of the generalized Jones matrix Eq. (3.106) together with Eq. (3.126) leads
to P = 1 and R = 0. This means that a general birefringent medium consists of
only two basic elements: a retarder and rotator; dichroic components (linear and
circular diattenuators) are absent. The Jones matrix, for which Eq. (3.126) holds,
can be considered as the polar form in the polar decomposition theorem (Whitney,
1971; Gil and Bernabeu, 1987; Lu and Chipman, 1994, 1996).

3.6.4.2 Medium characterized by amplitude anisotropy

The anisotropic properties of general dichroic media, despite their significance, have
been analyzed much less thoroughly. Most studies of dichroic media either rely on
symbolic operator approaches or deal with particular examples of these elements
(Azzam and Bashara, 1977; Chipman 1995; Savenkov, et al., 2005; de Lang, 1966;
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Lu and Chipman, 1994; Sudha and Gopala Rao, 2001; Tudor, 2003, 2006). It is
known, for example, that the simultaneous presence of dichroism and birefringence
in a medium may lead to nonorthogonal eigenpolarizations of the latter (Tudor,
2006; Moxon and Renshow, 1990; Savenkov et al., 2006; Tudor and Gheondea,
2007). The questions that arise are: what combinations of anisotropic mechanisms
would make a medium demonstrate a dichroic behavior and whether the simultane-
ous presence of dichroism and birefringence is a necessary or a sufficient requirement
for nonorthogonal eigenpolarizations?

The medium, which is characterized only by changes to the amplitudes of the
components of the electric vector, E, is called dichroic. It is also assumed that the
isotropic changes to the phase of components of the electric vector of incident light
are present (Lu and Chipman, 1994). Note that, unlike intensity, phase-shift cannot
be the same for any polarization basis. Dichroic media preserve relative phase
(or, equivalently, make isotropic phase-shifts) only in a specific basis, i.e., in the
eigenbasis. Therefore, in general, the dichroic medium is completely characterized
by the following conditions (Savenkov et al., 2005):

Im
(
V1

V2

)
= 0

Re
(
V1

V2

)
≥ 0

(3.128)

Then, taking into account Eqs (3.123) and (3.128), the corresponding generalized
Jones matrix of the dichroic medium has a form:

T =
exp(iφ)
χe1 − χe2

( |B|χe1 − |A|χe2 |A| − |B|
−χe1χe2(|A| − |B|) |A|χe1 − |B|χe2

)
. (3.129)

Thus, Eq. (3.129) presents the structure of the generalized Jones matrix of the
dichroic medium and this Jones matrix in contrast to the dichroic polar form
Eq. (3.103) is not Hermitian. The fact that the generalized dichroic Jones ma-
trix, Eq. (3.129), is not a non-negative definite Hermitian matrix allows us to
assert that in the case when medium is characterized by presence of phase and
amplitude anisotropy simultaneously, the Hermitian polar form by itself, which is
derived in polar decomposition theorem, cannot not be an adequate and exhaustive
description of the dichroic properties of the medium.

The generalized Jones matrix of the dichroic medium Eq. (3.129) can be consid-
ered as new general equivalence theorem, namely (in terms of the Jones equivalence
theorems (Hurwitz and Jones, 1941)): ‘any combinations of the polarization ele-
ments with linear and circular amplitude anisotropy will have a resulting matrix of
the form’ Eq. (3.129). Indeed, the eigenvalues of any combination of polarization el-
ements with linear and circular amplitude anisotropy have to satisfy the conditions
Eq. (3.128), hence, the resulting Jones matrix of the combination of polarization
elements will have the form Eq. (3.129).

If we have the case when the determinant of the Jones matrix is zero, one of
the eigenvalues equals zero. In which case, the output polarization is the same for
all incident polarizations. Phase shifts can be regarded as isotropic and, therefore,
polarization elements with one zero eigenvalue are still dichroic.
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From Eq. (3.128) and taking into account Eq. (3.106) for dichroic eigenvalues
we get

R(1 + P ) cos
Δ
2
sinϕ+ (1− P ) sin

Δ
2
cos[ϕ− 2(α− γ)] = 0(

(1 + P ) cos
Δ
2
cosϕ−R(1− P ) sin

Δ
2
sin[ϕ− 2(α− γ)]

)2

− 4P (1−R2) > 0 ,

(3.130)

The corresponding eigenvalues are

V1,2 =
1
2
exp

(
−iΔ

2

)[(
(1 + P ) cos

Δ
2
cosϕ−R(1− P ) sin

Δ
2
sin(ϕ− 2(α− γ))

)

±
√(

(1+P ) cos
Δ
2
cosϕ−R(1−P ) sin Δ

2
sin[ϕ−2(α−γ)]

)2

−4P (1−R2)

⎤⎦
(3.131)

As can be seen from Eq. (3.128), a general dichroic medium is completely de-
termined by the eigenvalues of its Jones matrix; in contrast to the birefringent
medium, Eq. (3.124), there are no restrictions for the corresponding eigenpolariza-
tions. The case of orthogonal eigenpolarizations, however, usually receives increased
attention in the literature, and it has been a milestone for classifying media and
studying their properties (Azzam and Bashara, 1977; Chipman 1995; Savenkov et
al., 2005; Sudha and Gopala Rao, 2001). Here, therefore, we discuss the properties
of arbitrary dichroic medium with orthogonal eigenpolarizations.

From Eqs (3.106) and (3.121) and taking into account Eq. (3.128), eigenpolar-
izations of dichroic elements are orthogonal when (Savenkov et al., 2007b):

ϕ = 0, π; α = π/4 + γ

tan
Δ
2
= −1− P

1 + P
R , (3.132)

ϕ = 0, π; α = −π/4 + γ

tan
Δ
2
=
1− P

1 + P
R . (3.133)

The two possibilities, Eqs (3.132) and (3.133), differ in the relative orientation
of the linear birefringence, α, and the linear dichroism, γ, and in the sign of the
phase-shift Δ. Note that Eqs (3.132) and (3.133) are written for the birefringent
parameters Δ, α, and ϕ, because, obviously, no restrictions could be placed on the
dichroic parameters, P , R, and γ.

Then, from Eq. (3.106), the generalized Jones matrix of dichroic elements with
orthogonal eigenpolarizations is of the form

T = ±1
2
exp

(
−iΔ

2

)
H , (3.134)
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where the upper sign should be taken for ϕ = 0 and the lower for ϕ = π in
Eqs (3.132) and (3.133). H is a Hermitian matrix given by

H =
1√
Q1

[
Q1 +Q2 cos 2γ Q2 sin 2γ − 4iPR
Q2 sin 2γ + 4iPR Q1 −Q2 cos 2γ

]
, (3.135)

where
Q1 = (1 + P )2 + (1− P )2R2 , (3.136)

Q2 = (1− P 2)(1 +R2) . (3.137)

3.6.4.3 Medium characterized by degenerate anisotropy

Heretofore, we have assumed that eigenvalues and eigenpolarizations be not equal.
In this section we will discuss the case when eigenpolarizations of a given medium
are coincident (degenerate anisotropy) (Savenkov et al., 2007b). This occurs when:√

(t22 − t11)2 + 4t12t21 = 0 . (3.138)

The practical examples of media and polarization elements with degenerate aniso-
tropy that are available in the literature refer mostly to the singular case (Lu and
Chipman, 1994; Tudor, 2003; Berry and Dennis, 2004). It is, however, known that
nonsingular realizations should also be available (Sudha and Gopala Rao, 2001).
So, what combinations of anisotropic mechanisms would make a medium be a
degenerate one? Note that the impossibility of constructing an eigenbasis for a
medium with degenerate anisotropy implies the medium cannot be dichroic.

The structure of the Jones matrix of a medium with degenerate anisotropy is
then determined:

t21 = − t11t
∗
12

t∗22
, (3.139)

|t11|2 = |t22|2 , (3.140)

|t12|2 = |t21|2 . (3.141)

Eqs (3.138) and (3.139) yields:

|t212| =
(t11 − t22)2t∗22

4t11
(3.142)

In terms of parameters Δ, α, P , γ, ϕ, and R, of the general model Eq. (3.106), a
degenerate medium is given by

R(1 + P ) cos
Δ
2
sinϕ+ (1− P ) sin

Δ
2
cos[ϕ− 2(α− γ)] = 0[

(1 + P ) cos
Δ
2
cosϕ−R(1− P ) sin

Δ
2
sin[ϕ− 2(α− γ)]

]2

− 4P (1−R2) = 0 ,

(3.143)

The corresponding eigenvalues are then of the form

V1 = V2 =
1
2

(
(1 + P ) cos

Δ
2
cosϕ−R(1− P ) sin

Δ
2
sin[ϕ− 2(α− γ)]

)
· exp

(
−iΔ

2

)
. (3.144)
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3.6.4.4 Transition of eigenvalues

In this subsection we intend to consider the interesting symmetry in expressions for
the eigenvalues of dichroic, Eq. (3.130), birefringent, Eq. (3.126), and degenerate,
Eq. (3.143), media. Indeed, comparing the expressions Eq. (3.126), Eq. (3.130), and
Eq. (3.143), one can see that they differ only in the sign of the lower expression:
it is negative for birefringent, positive for dichroic, and zero for degenerate media.
Hence, it is possible, without changing the arrangement of the constituting parts
in the model, Eq. (3.106), to transit eigenvalues of a medium from dichroic to
birefringent and to degenerate by changing just a single parameter in Eq. (3.106).
We demonstrate this by the following example. To satisfy the first expression in
Eqs (3.126), (3.130), and (3.143), which is the same for birefringent, dichroic, and
degenerate media, we chose R, Δ, α, γ = 0. The medium then is characterized by
a combination of a linear dichroism and circular birefringence. The eigenvalues of
the corresponding Jones matrix can be readily found as

V1/2 =
1 + P

2

[
cosϕ±

√
cos2 ϕ− 4P

(1 + P )2

]
. (3.145)

The sign of the radicand in Eq. (3.145) can be changed by changing the value of
circular birefringence, ϕ. The ratio of the eigenvalues, V1/V2, is shown in Fig. 3.10
in the complex plane for a medium with P = 0.5, whose parameter ϕ changes in
the whole range of physically realizable values, 0 ≤ ϕ ≤ 2π. As can be seen in
Fig. 3.10, all possible values of V1/V2 lie either on a circle with a unitary radius
(dashed curve) or on a straight line that corresponds to a zero imaginary part
(solid line). The former represents birefringent and the latter is for dichroic media.
The point at which the line and the circle intersect characterizes a medium with
degenerate anisotropy for which

cosϕ = ± 2
√
P

1 + P
, (3.146)

giving for the chosen value of P four values of ϕ: ϕ = 0.11π; ϕ = 0.89π; ϕ = 1.11π;
and ϕ = 1.89π.

3.6.5 Conclusions

The principal objective of this chapter has been to consider the main properties
of the central concept of mathematical description of scattering process – Jones
and Mueller matrices. On the assumption that the Jones and Mueller matrices
are the models of corresponding classes of media we have analyzed the structure,
symmetry relations and information content of the Jones and Mueller matrices for
both approaches to medium modeling: system of scatterers and continuous medium
approximation.

It is interesting to note that characterizing the information content of the
Mueller matrix Bohren and Huffman (1983) have pointed out that the complete
Mueller matrix contains so much information that only recently have the properties
of all its elements begun to be investigated.
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Fig. 3.10. Evolution in the complex plane of V1/V2 with the change of rotation angle
ϕ. The eigenvalues transit from dichroic to degenerate and birefringent depending on the
rotation angle (after Savenkov et al., 2007b).

These studies provide a better understanding of the physical information and
specificity provided by defined groups of elements and by each of the Mueller matrix
elements individually. Thus, the results discussed in this chapter make it possible
to determine the corresponding classes of the inverse problems for the models of
inhomogeneous and homogeneous random and dispersive media described by the
appropriate incomplete Mueller matrices (Jellison and Modine, 1997; Tang, and
Kwok, 2001; Savenkov, 2002b). The former, in its turn, will guide the experimen-
talist in developing and using the Mueller-polarimeter for which characteristic ma-
trix is mostly appropriate for the measurement the structure of incomplete Mueller
matrix describing the properties of a given medium. In particular, this is also ev-
idently of current importance in developing the imaging polarimeters (Tyo, 2002;
Tyo et al., 2006).

It can be seen that the main properties of the Jones and Mueller–Jones matrices
(see sections 3.3, 3.4 and 3.6) are today studied in more detail than those of the
depolarizing Mueller matrix (section 3.5). In this connection it is interesting to
note that van de Hulst in his milestone book (1957) has pointed out that the Jones
matrix of general form characterized by eight independent parameters:(

b c
d a

)
is a most general combination of linear and circular birefringence and linear and
circular dichroism. In this chapter we in particular have shown that the answer to
the question, i.e., in what exact way the information on birefringence and dichro-
ism consists in the Jones matrix in the most general case, is determined by the
generalized matrix equivalence theorem (section 3.6.3).
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At present, perhaps the main challenge associated with depolarizing Mueller
matrices is the development of an adequate Mueller matrix model of anisotropic
depolarization and studying the physical content of its elements.
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4 Green functions for plane wave scattering on
single nonspherical particles

Tom Rother

4.1 Introduction

Elastic plane wave scattering of electromagnetic waves on three-dimensional struc-
tures is a basic physical interaction process which is of great importance in many
practical applications. One may think of measurements in technical and medical
diagnostics as well as in remote sensing of our Earth’s atmosphere, for example.
During the last decades, not at least due to the possibilities of modern computers,
there is a growing interest in modelling more and more realistic scattering scenar-
ios which goes beyond the conventional Mie theory for spherical scatterers. A large
variety of rigorous numerical methods (i.e., methods which start from the under-
lying physical equations without any approximations) for solving the problem of
plane wave scattering on single but nonspherical particles have been developed in
the past. Among those methods Waterman’s T-matrix approach as well as several
boundary and volume integral equation approaches have become very popular and
widely used in many applications (for an overview see [1], for example, and the
literature cited therein). Differing in concept and execution these methods start
from the common assumption that the well-known separation of variables method
cannot be applied if the scatterer geometry deviates from that of a spherical sur-
face (see [2] chapter 16.11 therein, and [3], for example). A critical discussion of
this assumption is one goal of the paper at hand. On the other hand, there is
still an ongoing discussion in the literature concerned with conceptual and techni-
cal differences as well as advantages and disadvantages of those standard methods
mentioned above. In the paper at hand this discussion is considered from the point
of view of Green functions belonging to the scattering problem. An essential step
for this purpose is the introduction of an interaction operator describing the inter-
action of the free-space Green function with the scatterer surface. It is discussed
afterwards that several numerical methods can be traced back to certain approx-
imations of this interaction operator. But the main focus of our considerations
here is to clarify the relation between Green functions and T-matrices. A conse-
quent Green’s function approach of electromagnetic boundary-value problems has
already been given in the well-known book of Tai [4]. Unfortunately, Tai considered
only boundary-value problems with boundaries along constant coordinate lines (i.e.
spherical boundaries in spherical coordinates, for example). This paper can be con-
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sidered as a generalization of his concept to nonspherical boundaries. The results
of this paper reveal the conceptual similarity of the Green’s function concept and
Waterman’s T-matrix approach [5]. Surprisingly, this was noticed neither by Tai
nor by Waterman even though Tai’s concept (according to a remark in the first
edition of his book which was released in 1971) has existed since the 1950’s, and
even though Waterman’s T-matrix exhibits in some aspects already the nature of
a Green’s function. It should be also emphasized that much of the work presented
in this paper was motivated by the papers of Kleinman, Roach, and Stroem [6, 7].
In these papers they introduced the so-called ‘modified Green’s function’ related
to the scalar Helmholtz equation in conjunction with the homogeneous Dirichlet
and Neumann problem by use of a least-squares approach.

By using the Green’s function formalism presented herein, boundary symme-
tries can be treated in a very comprehensive way, as already demonstrated in [8].
Concerning the difference between the T-matrix approach and singular integral
equations for solving the scattering problem the so-called Rayleigh hypothesis is of
special importance. This hypothesis has a quite interesting history, and although
it is still an unsolved problem, the Green’s function point of view may add some
interesting aspects to it. Another advantage of using Green functions is the ability
to consider the symmetry and unitarity property of the T-matrix solely on a math-
ematical level without employing reciprocity and energy conservation as necessary
physical preconditions.

Starting from the general representations of the relevant Green functions we
will finally discuss their far-field behaviour, the relation between the scattering
dyadic and the interaction operator, and resulting but well-known properties of
the scattered and total field.

4.2 Some basic considerations

4.2.1 Formulation of the scattering problems

Plane wave scattering on ideal metallic or dielectric particles can be described
mathematically by the following two boundary-value problems (for the scattering
configuration see Fig. 4.1):

– solving the inhomogeneous vector-wave equation for the total electric field et

in the outer space Γ+ in conjunction with the homogeneous Dirichlet condition
at the scatterer surface ∂Γ (this corresponds to scattering on an ideal metallic
scatterer), i.e., (∇×∇×− k2

0

)
et(x) = ρ(x) ; x ∈ Γ+ (1)

n̂− × et(x) = 0 ; x ∈ ∂Γ . (2)

– solving the inhomogeneous vector-wave equation for the total electric field et

in the outer space Γ+ as well as the homogeneous vector-wave equation for
the internal field eint in conjunction with the transmission conditions at the
scatterer surface ∂Γ (this corresponds to scattering on a dielectric scatterer),
i.e.,
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scatterer
n̂−

n̂−

C

k,Γ−
∂Γ

S∞

k0,Γ+

ρ(x)

Fig. 4.1. Scattering configuration of an isotropic, homogeneous, and nonspherical scat-
terer with boundary surface ∂Γ . The outer space Γ+ represents a single-connected area,
bounded by ∂Γ , S∞, and cut C. The point of origin is located somewhere inside the
scatterer.

(∇×∇×− k2
0

)
et(x) = ρ(x) ; x ∈ Γ+ (3)(∇×∇×− k2

)
eint(x) = 0 ; x ∈ Γ− (4)

n̂− × et(x) = n̂− × eint(x) ; x ∈ ∂Γ (5)
n̂− ×∇× et(x) = n̂− ×∇× eint(x) ; x ∈ ∂Γ (6)

In both cases the total electric field et in Γ+ is the sum of the primary incident
wave einc and the scattered wave es with the former being a solution of(∇×∇×− k2

0

)
einc(x) = ρ(x) ; x ∈ Γ+ . (7)

Because of (1) or (3) es has to fulfil the homogeneous vector wave equation in Γ+.
In the case of an ideal metallic scatterer the homogeneous Dirichlet condition (2)
can be replaced by the inhomogeneous Dirichlet condition

n̂− × es(x) = − n̂− × einc(x) ; x ∈ ∂Γ (8)

for the scattered field. Generally, the primary incident field is considered to be
given. ∇ denotes the ‘Nabla’-operator, and x represents the space vector (r, θ, φ)
in spherical coordinates. k0 and k are the wave numbers of the outer and inner
space of the scatterer if scattering on a dielectric scatterer is considered. These
quantities are given by

k0 =
√
ω2 · ε0 · μ0 =

(2π)
λ

(9)



124 Tom Rother

and
k =

√
εr · k0 (10)

with λ and εr being the free-space wavelength and the permittivity of the scatterer.
n̂− is the outward directed unit normal vector related to the inner boundary of Γ+.

To make the solutions unique we need an additional condition for the scattered
field at the outer but nonlocal boundary S∞ – the far-field of Γ+. This is the
so-called radiation condition

lim
|x|→∞

(
∇× − ik0

x
|x|×

)
es(x) = 0

(
1
|x|

)
. (11)

This condition must be fulfilled uniformly for any direction x/|x|. Please, note that
the plane wave does not obey this condition! We will see later why this is important
for the scattering problem. From the physical point of view we will also require the
regularity of the internal field inside a dielectric scatterer and the smoothness of
the scattered field outside.

4.2.2 Spherical coordinates and eigensolutions of the vector-wave
equation

Cartesian variables can be expressed by spherical variables according to

x = r · sin θ · cosφ
y = r · sin θ · sinφ
z = r · cos θ (12)

where the angle θ is within the interval [0, π], and the angle φ is within [0, 2π].
The corresponding relations between the unit vectors in Cartesian and spherical
coordinates can be seen from Table 4.1. The nabla-operator reads in spherical
coordinates

∇ =
∂

∂r
· r̂ +

1
r

∂

∂θ
· θ̂ +

1
r sin θ

∂

∂φ
· φ̂ . (13)

For the boundary surface ∂Γ = S of the scatterer we assume the parameter repre-
sentation

r = r(θ, φ) · r̂ . (14)

According to this representation we get for the surface element

dS =
∣∣∣∣∂r

∂θ
× ∂r

∂φ

∣∣∣∣ dθ dφ (15)

with
∂r

∂θ
× ∂r

∂φ
= r2 sin θ · r̂ − r sin θ · ∂r

∂θ
· θ̂ − r · ∂r

∂φ
· φ̂ . (16)

For a spherical surface with radius a this results in

dS = a2 sin θ dθ dφ , (17)
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for example. The unit normal vector at the surface (14) pointing into Γ+ is given
by

n̂ =

∂r

∂θ
× ∂r

∂φ∣∣∣∣∂r

∂θ
× ∂r

∂φ

∣∣∣∣ . (18)

Please, note that we have n̂− = −n̂.

Table 4.1. Relations between the unit vectors in Cartesian and spherical coordinates

x̂ ŷ ẑ

r̂ sin θ cosφ sin θ sinφ cos θ

θ̂ cos θ cosφ cos θ sinφ − sin θ

φ̂ − sinφ cosφ 0

The relevant vectorial eigensolutions of the vector-wave equation in spherical
coordinates can be calculated from the eigensolutions of the scalar Helmholtz equa-
tion and are explicitly given by

ψl,n,1(r, θ, φ) = γl,n · jn(kr) · cl,n(θ, φ) (19)

ψl,n,2(r, θ, φ) = γl,n ·
[
n(n+ 1)

kr
· jn(kr) · pl,n(θ, φ)+

1
kr

∂

∂r
(rjn(kr)) · bl,n(θ, φ)

]
(20)

ϕl,n,1(r, θ, φ) = γl,n · h(1)
n (kr) · cl,n(θ, φ) (21)

ϕl,n,2(r, θ, φ) = γl,n ·
[
n(n+ 1)

kr
· h(1)

n (kr) · pl,n(θ, φ)+

1
kr

∂

∂r

(
rh(1)

n (kr)
)
· bl,n(θ, φ)

]
(22)

χl,n,1(r, θ, φ) = γl,n · h(2)
n (kr) · cl,n(θ, φ) (23)

χl,n,2(r, θ, φ) = γl,n ·
[
n(n+ 1)

kr
· h(2)

n (kr) · pl,n(θ, φ)+

1
kr

∂

∂r

(
rh(2)

n (kr)
)
· bl,n(θ, φ)

]
(24)

where
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pl,n(θ, φ) := r̂ P l
n(cos θ) · e ilφ (25)

cl,n(θ, φ) :=
[
θ̂

il

sin θ
· P l

n(cos θ) − φ̂
dP l

n(cos θ)
dθ

]
· e ilφ (26)

bl,n(θ, φ) :=
[
θ̂
dP l

n(cos θ)
dθ

+ φ̂
il

sin θ
· P l

n(cos θ)
]
· e ilφ , (27)

and

γl,n :=

√
2n+ 1

4πn(n+ 1)
(n− l)!
(n+ l)!

. (28)

P l
n(cos θ) are the associated Legendre polynomials, and the radial dependent func-

tions jn(kr), h
(1)
n (kr), and h(2)

n (kr) are the spherical Bessel functions and spherical
Hankel functions of first and second kind. It should be mentioned that only the
eigensolutions (21) and (22) fulfil the radiation condition (11). Therefore, they are
called ‘outgoing’ or ‘radiating’ eigensolutions. (19) and (20) are the ‘regular’ eigen-
solutions, and (23) and (24) are the ‘incoming’ eigensolutions. For the outgoing
eigensolutions we know the far-field behaviour

lim
r→∞ϕl,n,1(r, θ, φ) =

(−i)n+1 eikr

kr
· γl,n · cl,n(θ, φ) (29)

lim
r→∞ϕl,n,2(r, θ, φ) =

(−i)n eikr

kr
· γl,n · bl,n(θ, φ) . (30)

c∗l,n(θ, φ) = (−1)l · (n+ l)!
(n− l)!

· c−l,n(θ, φ) (31)

b∗l,n(θ, φ) = (−1)l · (n+ l)!
(n− l)!

· b−l,n(θ, φ) (32)

and

cl,n(π − θ, φ± π) = (−1)n · cl,n(θ, φ) (33)
bl,n(π − θ, φ± π) = (−1)n+1 · bl,n(θ, φ) . (34)

are frequently used relations of the vector functions cl,n and bl,n. Furthermore,
they fulfil the orthogonality relations∫ 2π

0

dφ
∫ π

0

dθ sin θ b∗l,n(θ, φ) · cl,n(θ, φ) =∫ 2π

0

dφ
∫ π

0

dθ sin θ b∗l,n(θ, φ) · pl,n(θ, φ) =∫ 2π

0

dφ
∫ π

0

dθ sin θ c∗l,n(θ, φ) · pl,n(θ, φ) = 0 (35)

∫ 2π

0

dφ
∫ π

0

dθ sin θ b∗l,n(θ, φ) · bl,n(θ, φ) =∫ 2π

0

dφ
∫ π

0

dθ sin θ c∗l,n(θ, φ) · cl,n(θ, φ) =
1
γ2

l,n

· δll′δnn′ (36)
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0

dφ
∫ π

0

dθ sin θ p∗l,n(θ, φ) · pl,n(θ, φ) =
1

n(n+ 1) · γ2
l,n

· δll′δnn′ . (37)

One summation index i is customarily used instead of the two indices l, n. This
common index is defined by

i = n(n+ 1) + l . (38)

However, it can be resolved into the two indices l, n by the equations

n(i) = nint
[
1
2

(
−1 +√

1 + 4i
)]

(39)

l(i) = i− n(i) · [n(i) + 1] (40)

with function nint(a) being the integer number nearest to the real number a.
The regular eigensolutions can be expressed in terms of outgoing and incoming

eigensolutions by means of

ψi,τ (r, θ, φ) =
1
2
· [ϕi,τ (r, θ, φ) + χi,τ (r, θ, φ)

]
. (41)

For later purposes we introduce also the vector functions

ψ̃i,τ (r, θ, φ) = ψ̃l,n,τ (r, θ, φ) := (−1)l · ψ−l,n,τ (r, θ, φ) (42)

ϕ̃i,τ (r, θ, φ) = ϕ̃l,n,τ (r, θ, φ) := (−1)l · ϕ−l,n,τ (r, θ, φ) (43)

χ̃i,τ (r, θ, φ) = ϕ̃l,n,τ (r, θ, φ) := (−1)l · χ−l,n,τ (r, θ, φ) , (44)

ψ
n̂−
i,τ (r, θ, φ) := n̂− × ψi,τ (r, θ, φ) ; r ∈ ∂Γ (45)

ϕ
n̂−
i,τ (r, θ, φ) := n̂− × ϕi,τ (r, θ, φ) ; r ∈ ∂Γ (46)

χ
n̂−
i,τ (r, θ, φ) := n̂− × χi,τ (r, θ, φ) ; r ∈ ∂Γ , (47)

and

∂ n̂−ψi,τ (r, θ, φ) := n̂− ×∇× ψi,τ (r, θ, φ) ; r ∈ ∂Γ (48)
∂ n̂−ϕi,τ (r, θ, φ) := n̂− ×∇× ϕi,τ (r, θ, φ) ; r ∈ ∂Γ (49)

where τ = 1, 2. If k is a real number we have

ψ̃i,τ (r, θ, φ) = ψ∗i,τ (r, θ, φ) . (50)

The vector functions (45)–(47) are the projections onto the tangential planes at
the scatterer surface. Please note also that the curl operation in Eqs (48) and (49)
must be performed before the projection onto the tangential plane.

On the surface of a sphere with radius r = a we have the following orthogonality
relations:∫ 2π

0

dφ
∫ π

0

dθ r2 sin θ
[
ϕ

n̂−
i,τ (κa, θ, φ)

]∗
· ϕ n̂−

j,τ ′ (κ
′a, θ, φ) = a2 · d(ϕ,ϕ)

i,τ (κ, κ′) · δijδττ ′

(51)
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0

dφ
∫ π

0

dθ r2 sin θ
[
ϕ

n̂−
i,τ (κa, θ, φ)

]∗
· ψ n̂−

j,τ ′ (κ
′a, θ, φ) = a2 · d(ϕ,ψ)

i,τ (κ, κ′) · δijδττ ′

(52)∫ 2π

0

dφ
∫ π

0

dθ r2 sin θ
[
ψ

n̂−
i,τ (κa, θ, φ)

]∗
· ψ n̂−

j,τ ′ (κ
′a, θ, φ) = a2 · d(ψ,ψ)

i,τ (κ, κ′) · δijδττ ′

(53)∫ 2π

0

dφ
∫ π

0

dθ r2 sin θ
[
ψ

n̂−
i,τ (κa, θ, φ)

]∗
·ϕ n̂−

j,τ ′ (κ
′a, θ, φ) = a2 ·d(ψ,ϕ)

i,τ (κ, κ′) · δijδττ ′ .

(54)
The coefficients di,τ are given by

d
(ϕ,ϕ)
i,1 (κ, κ′) =

(
h

(1)
n(i)(κa)

)∗
· h(1)

n(i)(κ
′a) (55)

d
(ϕ,ψ)
i,1 (κ, κ′) =

(
h

(1)
n(i)(κa)

)∗
· jn(i)(κ′a) (56)

d
(ψ,ψ)
i,1 (κ, κ′) = j∗n(i)(κa) · jn(i)(κ′a) (57)

d
(ψ,ϕ)
i,1 (κ, κ′) = j∗n(i)(κa) · h(1)

n(i)(κ
′a) (58)

d
(ϕ,ϕ)
i,2 (κ, κ′) =

1
κ∗κ′a2

[(
∂

∂r

(
r · h(1)

ni (κr)
))∗

r=a

·
(
∂

∂r

(
r · h(1)

ni (κ
′r)
))

r=a

]
(59)

d
(ϕ,ψ)
i,2 (κ, κ′) =

1
κ∗κ′a2

[(
∂

∂r

(
r · h(1)

ni (κr)
))∗

r=a

·
(
∂

∂r
(r · jni(κ′r))

)
r=a

]
(60)

d
(ψ,ψ)
i,2 (κ, κ′) =

1
κ∗κ′a2

[(
∂

∂r
(r · jni(κr))

)∗
r=a

·
(
∂

∂r
(r · jni(κ′r))

)
r=a

]
(61)

d
(ψ,ϕ)
i,2 (κ, κ′) =

1
κ∗κ′a2

[(
∂

∂r
(r · jni(κr))

)∗
r=a

·
(
∂

∂r

(
r · h(1)

ni (κ
′r)
))

r=a

]
. (62)

4.2.3 Dyadics and Green’s theorems

4.2.3.1 Dyadics

A vector source given in Cartesian coordinates by

ρ = ρx x̂ + ρy ŷ + ρz ẑ (63)

produces an electric field

e = ex x̂ + ey ŷ + ez ẑ . (64)

Between the components of the source and the field we assume the linear relations

ex = φxx · ρx + φxy · ρy + φxz · ρz

ey = φyx · ρx + φyy · ρy + φyz · ρz

ez = φzx · ρx + φzy · ρy + φzz · ρz , (65)
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i.e., each component of the source contributes to all components of the field. To
bring this relation into the simpler form

e = ex x̂ + ey ŷ + ez ẑ = Φ · ρ (66)

we define the dyadic Φ according to

Φ := x̂� φx + ŷ � φy + ẑ � φz (67)

with φx,φy,φz given by

φx = φxx x̂ + φxy ŷ + φxz ẑ

φy = φyx x̂ + φyy ŷ + φyz ẑ

φz = φzx x̂ + φzy ŷ + φzz ẑ (68)

(Please note that a dyadic quantity will be denoted by bold capital letters to
distinguish it from a vector. The latter will be denoted throughout this paper by
bold lower case letters. For conventional matrices we will also use bold capital
letters. But from the context it should become clear whether dyadics or matrices
are meant.) The symbol ‘�’ in (67) denotes the dyadic product of the vectors. The
dyadic Φ reads explicitly

Φ := φxx x̂� x̂ + φxy x̂� ŷ + φxz x̂� ẑ +
φyx ŷ � x̂ + φyy ŷ � ŷ + φyz ŷ � ẑ +
φzx ẑ � x̂ + φzy ẑ � ŷ + φzz ẑ � ẑ . (69)

Φ is symmetric if
Φ = Φtp (70)

with
Φtp := φx � x̂ + φy � ŷ + φz � ẑ (71)

as the transpose dyadic. The scalar product of a dyadic
(
φ (1) � φ (2)

)
with an

arbitrary vector f is defined according to(
φ (1) � φ (2)

)
· f := φ (1) ·

(
φ (2) · f

)
. (72)

From this definition (66) follows immediately. It follows also that Φ · f �= f · Φ
holds, in general. The dyadic Φ of (67)–(69) can be represented by the matrix⎛⎝ φxx φxy φxz

φyx φyy φyz

φzx φzy φzz

⎞⎠ . (73)

We can represent correspondingly the transpose dyadic by the transpose of this
matrix. For the vector product of a vector with a dyadic we have the similar defi-
nition (

φ (1) � φ (2)
)
× f := φ (1) �

(
φ (2) × f

)
. (74)
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As for the scalar product Φ× f �= f ×Φ holds, in general. The sum of the dyadic
products of the unit vectors x̂i represents a special dyadic, the so-called ‘idem
factor’ I,

I :=
3∑

i=1

x̂i � x̂i . (75)

The idem factor is characterized by its feature

I · f(x) = f(x) · I = f(x) . (76)

Taking the gradient of a vector f will also produce a dyadic. In Cartesian coordi-
nates this operation provides

∇f = x̂� ∂f

∂x
+ ŷ � ∂f

∂y
+ ẑ � ∂f

∂z
, (77)

where f = fx · x̂+ fy · ŷ + fz · ẑ. In spherical coordinates, if the vector f is given
by f = fr · r̂ + fθ · θ̂ + fφ · φ̂, we have correspondingly

∇f = r̂ � ∂f

∂r
+ θ̂ � 1

r

∂f

∂θ
+ φ̂� 1

r sin θ
∂f

∂φ
. (78)

It must be taken into account that in spherical coordinates not only the components
fr, fθ, fφ but also the unit vectors must be differentiated with respect to θ und φ.
According to Table 4.1 we have

∂r̂

∂r
= 0 ,

∂r̂

∂θ
= θ̂ and

∂r̂

∂φ
= sin θ φ̂ , (79)

for example. Thus the gradient of the radial unit vector produces the dyadic

∇r̂ = 1
r

(
θ̂ � θ̂ + φ̂� φ̂

)
. (80)

Furthermore, taking the gradient of the product of a scalar function f with a vector
φ provides the dyadic

∇(fφ) = (∇f)� φ + f · ∇(φ) . (81)

The curl of the dyadic Φ in (67) is defined according to

∇×Φ := x̂� [∇× φx] + ŷ � [∇× φy

]
+ ẑ � [∇× φz] . (82)

In spherical coordinates this becomes

∇×Φ := r̂ � [∇× φr] + θ̂ � [∇× φθ] + φ̂� [∇× φφ

]
(83)

with ∇ × φr,∇ × φθ, and ∇ × φφ being the curl of the vector functions φr,φθ,
and φφ in spherical coordinates.

The following identities are of some importance for the ongoing considerations:

a · [b ×C] = − b · [a ×C] = [a × b] ·C (84)
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a ·B = Btp · a (85)

a ×B = − [Btp × a] tp (86)

Ctp · [a ×B] = − [a ×C] tp ·B (87)

[A× b] ·C = A · [b ×C] (88)

− [a ×Ctp] tp = C× a (89)

[A ·B] tp = Btp ·Atp . (90)

4.2.3.2 Green’s theorems

Green’s theorem for the two arbitrary vector functions ψ and φ is given in Γ+ by∫
Γ+

[ψ(x) · ∇ ×∇× φ(x)− φ(x) · ∇ ×∇× ψ(x)] dV (x) =∮
∂Γ ∪S∞

n̂− · {φ(x)× [∇× ψ(x)] − ψ(x)× [∇× φ(x)]} dS(x) . (91)

Obviously, this theorem relates two scalar quantities. To get a corresponding the-
orem which relates vector functions we have to introduce dyadic quantities into
this theorem. This can be achieved by taking the scalar product of a dyadic with a
constant vector into account. Since this operation yields a vector according to def-
inition (72) we can use such a scalar product within (91). The constant vector can
be removed afterwards. By means of this procedure we can derive the vector-dyadic
Green theorem∫

Γ+

{[∇×∇× ψ(x)] ·Q(x,x′) − ψ(x) · [∇x ×∇x ×Q(x,x′)]} dV (x) =∮
∂Γ ∪S∞

n̂− · {ψ(x)× [∇x ×Q(x,x′)] + [∇× ψ(x)]×Q(x,x′)} dS(x) (92)

as well as the dyadic-dyadic Green theorem∫
Γ+

{
[∇x ×∇x ×Q(x,x′)]tp ·P(x,x′′) −

Qtp(x,x′) · [∇x ×∇x ×P(x,x′′)]
}
dV (x) =∮

∂Γ ∪S∞

{
[n̂− ×Q(x,x′)]tp · [∇x ×P(x,x′′)] −

[∇x ×Q(x,x′)]tp · [n̂− ×P(x,x′′)]
}
dS(x) (93)

valid in Γ+. Similar theorems can be derived in Γ− which differs only in the surface
integral on the right-hand side of (92) and (93) (in Γ− we must only consider the
surface ∂Γ ), and in the use of the unit normal vector n̂ instead of n̂−. However, for
the free space without any scatterer, we have to consider only the surface integral
over S∞.
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4.3 Dyadic Green functions and light scattering

Since their introduction in the 19th century Green’s functions have become a pow-
erful mathematical tool for solving boundary-value problems. In [9] Freeman Dyson
compared the importance of these functions with the innovation of modern comput-
ers in science in our days. What makes these functions so useful for our purposes?
Mathematically seen, with the help of these functions we are able to transform the
formulation of the scattering problem in terms of partial differential equations into
an equivalent formulation in terms of integral equations. From a physical point of
view these functions describe the field in space point x caused by a unit source
located in a different space point x′. A given source, on the other hand, can be
considered as a distribution of unit sources within a located area in space. The field
of this given source is simply the sum of the fields of all unit sources. In this way
Green’s functions are able to decouple the properties of the source from the prop-
erties of the space where the latter is characterized by the properties (i.e., by the
geometry and permittivity) of the scatterer. Thus, if only the given source changes,
the Green function remains still the same and must be calculated only once. Last
but not least, Green functions can be used to express the fundamental Huygens
principle in terms of an integral equation which serves as a powerful starting point
for solving scattering problems, as we will demonstrate in this paper.

4.3.1 Dyadic free-space Green function

We will start with the well-known Green function of the free and unstructured space
Γ = Γ− ∪ Γ+. This free-space Green function is the most important prerequisite
for our further considerations. It is a solution of the inhomogeneous vector-wave
equation

[∇x ×∇x × − k2
0 ]G0(x,x′) = Iδ(x− x′) (94)

with I being the idem factor defined in (75). We require additionally the fulfil-
ment of the radiation condition (11) at S∞ with respect to variable x. Levine und
Schwinger could show that the solution of this boundary-value problem can be
expressed in terms of the scalar free-space Green function

G0(x,x′) =
eik0|x−x′|

4π|x− x′| (95)

which is the solution of the corresponding boundary-value problem of the scalar
Helmholtz equation. They found

G0(x,x′) =
[
I +

1
k2
0

∇x ∇x

]
G0(x,x′) . (96)

for the dyadic free-space Green function [10]. Because the nabla operator operates
twice on the scalar G0 the dyadic G0 has a pole of order 3 at x = x′ and exhibits
therefore a singularity of higher order than G0 in the same point. But because of

∇x ×G0(x,x′) = ∇x × IG0(x,x′) = ∇xG0(x,x′)× I (97)
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the curl of this function exhibits only a pole of the order 2. We will come back to
this aspect later on when dealing with the application of a singular surface integral
equation for solving the scattering problem of an ideal metallic scatterer. From

∇x ∇xG0(x,x′) = ∇x′ ∇x′ G0(x,x′) (98)

and Green’s theorem (93) the symmetry relation

Gtp
0 (x′,x′′) = G0(x′′,x′) = G0(x′,x′′) . (99)

follows for the dyadic free-space Green function. Another important property is its
behaviour for large distances between source and field points. It is given by

lim
|x′|→∞

G0(x,x′) = [ I − êx′ � êx′ ]
eik0|x′|

4π|x′| · e−ik0êx′ ·x . (100)

êx′ corresponds to the unit vector r̂′ in spherical coordinates.
Now, looking for the solution of Eq. (7), we get by use of Green’s theorem (92)

if applied with ψ(x) = einc(x) and Q(x,x′) = G0(x,x′)

einc(x) =
∫

Γ+

G0(x,x′) · ρ(x′) dV (x′) ; x,x′ ∈ Γ+ . (101)

einc(x) obeys therefore also the radiation condition (11). In deriving (101) we have
already applied the symmetry relation (99). For example, if we have the specific
source vector

ρ(x′) = 4π|x′| · e−ik0|x′| · δ(x′ − x′q) · e0 (102)

with
|x′q| � |x| , (103)

and if we denote
k = −k0 êx′q (104)

we obtain from (100) and (101) the plane wave

einc(x) = e0 · eik·x (105)

with polarization e0 in space point x. The importance of the plane wave which
does not fulfil the radiation condition at S∞ is discussed in more detail in the last
section of this paper.

For many electromagnetic wave problems it is convenient to split a general
vector field into two parts according to

f = f t + f l , (106)

i.e., into a transverse or solenoidal part f t with ∇ · f t = 0, and into a longitudinal
part f l with ∇×f l = 0. The latter part is only of interest if we ask for the field in
a source region with free charges. The same splitting can be done with the dyadic
delta-distribution Iδ which is defined according to∫

Γ

Iδ(x− x′) · f(x′) dV (x′) := f(x) . (107)



134 Tom Rother

Their transverse and longitudinal part, if applied to a general vector function f(x),
provides the transverse or longitudinal part of this vector function, respectively. In
doing so we can represent the dyadic free-space Green function by

G0(x,x′) = Gt(x,x′)− 1
k2
0

·Dl(x− x′) (108)

where Gt is its transverse part which solves the equation

[∇x ×∇x × − k2
0 ]Gt(x,x′) = Dt(x− x′) , (109)

and Dl(x− x′) in (108) is the longitudinal part of Iδ.
For the transverse part of the dyadic free-space Green function we know the

following expansions in terms of the eigensolutions of the vector-wave equation:

Gt(x,x′) = (ik0) ·
2∑

τ=1

∞∑
i=0

⎧⎨⎩ϕi,τ (k0,x)� ψ̃i,τ (k0,x′) ; |x| > |x′|

ψi,τ (k0,x)� ϕ̃i,τ (k0,x′) ; |x| < |x′|
(110)

[3]. If |x| > |x′| is valid we will denote the corresponding expansion withG>
t (x,x

′),
and if |x| < |x′| holds we will use the notation G<

t (x,x
′). Both approximations

G>
t and G<

t are solutions of the homogeneous vector-wave equation (94), and
G>

t fulfils additionally the radiation condition at S∞. Using the expansion G<
t

in conjunction with (101) and the vector source (102) results in the well-known
expansion of the plane wave (105) which is given in spherical coordinates by (see
[11], for example)

einc(k0r, θ, φ, θi, φi) =
2∑

τ=1

∑
l,n

cl,n,τ · ψl,n,τ (r, θ, φ) (111)

with

cl,n,1 = (−1)l · in

γl,n
· (2n+ 1)
n(n+ 1)

· e0 · c−l,n(θi, φi) (112)

cl,n,2 = (−1)l · i
n−1

γl,n
· (2n+ 1)
n(n+ 1)

· e0 · b−l,n(θi, φi) . (113)

This can be proven by taking (29) and (30) as well as (33) and (34) into account.
θi and φi are the angles related to the direction of incidence of the plane wave.

4.3.2 Dyadic Green functions of the scattering problems

Now we will consider the two Green functions which can be related to the two
scattering problems of our interest. As in the case of the dyadic free-space Green
function the Green function GΓ+ belonging to the ideal metallic scatterer as well
as the Green function G (d)

Γ+
belonging to the dielectric scatterer are solutions of

the inhomogeneous vector-wave equations
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0

]
GΓ+(x,x

′) = Iδ(x− x′)[∇x ×∇x × − k2
0

]
G (d)

Γ+
(x,x′) = Iδ(x− x′) ; x,x′ ∈ Γ+ .

(114)

Both Green functions must also obey the radiation condition (11) with respect to
x. But for the ideal metallic scatterer we require the additional boundary condition

n̂×GΓ+(x,x
′) = 0 (115)

at the scatterer surface ∂Γ . On the other hand, if looking at a dielectric scatterer,
we have to take into account the additional transmission conditions

n̂− ×G (d)
Γ+

(x,x′) = n̂− ×G (−/+)(x,x′) (116)

n̂− ×
[
∇×G (d)

Γ+
(x,x′)

]
= n̂− ×

[
∇×G (−/+)(x,x′)

]
(117)

at the scatterer surface. The dyadic Green functionG (−/+) solves the homogeneous
vector-wave equation[∇x ×∇x × − k2

]
G (−/+)(x,x′) = 0 ; x ∈ Γ− ;x′ ∈ Γ+ (118)

inside the scatterer and must be regular with respect to x. The primary source of
the incident field is assumed to be located in Γ+ but outside the smallest sphere
circumscribing the scatterer. This assumption holds throughout this paper!

By use of Green’s theorem (93) we can derive the symmetry relations[
GΓ+(x,x

′)
]tp = GΓ+(x

′,x) . (119)

and [
G (d)

Γ+
(x,x′)

]tp

= G (d)
Γ+

(x′,x) (120)

for both Green functions. The total field outside the scatterer can be calculated
from the relations

et(x) =
∫

Γ+

GΓ+(x,x
′) · ρ(x′) dV (x′) (121)

or
et(x) =

∫
Γ+

G (d)
Γ+

(x,x′) · ρ(x′) dV (x′) (122)

once we have found appropriate expressions for these Green functions. This is, of
course, the crucial question we will try to answer now.

For this we introduce the so-called dyadic interaction operator W∂Γ+ by the
definition

GΓ+(x,x
′) := G0(x,x′) +∮

∂Γ

G>
t (x, x̄) ·W∂Γ+(x̄, x̃) ·G<

t (x̃,x
′) dS(x̄) dS(x̃) . (123)
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if the ideal metallic scatterer is considered. In the case of dielectric scatterers we
introduce the two dyadic interaction operatorsW (d)

∂Γ+
andW (d)

∂Γ− by the definitions

G (d)
Γ+

(x,x′) := G0(x,x′) +∮
∂Γ

G>
t (x, x̄) ·W (d)

∂Γ+
(x̄, x̃) ·G<

t (x̃,x
′) dS(x̄) dS(x̃) , (124)

and

G (−/+)(x,x′) :=
∮

∂Γ

G<
ts (x, x̄) ·W (d)

∂Γ−(x̄, x̃) ·G<
t (x̃,x

′) dS(x̄) dS(x̃) . (125)

These defining equations can be considered as expressions of Huygens’ principle in
terms of Green functions where the interaction operator describes the interaction
of the transverse part of the dyadic free-space Green function with the scatterer
surface. G<

ts
in Eq. (125) corresponds to the lower expansion given in (110) but

with k0 replaced by k in the vector functions ψi,τ as well as in the pre-factor
(ik0). It solves the homogeneous vector-wave equation (118) in Γ− and is also
regular everywhere inside the scatterer. Thus expression (125) obeys equation (118)
together with the requirement of regularity. Similarly, since G>

t is a solution of
the homogeneous vector-wave equation in Γ+, and since it fulfils the radiation
condition with respect to x, expressions (123) and (124) obey equations (114)
together with the radiation condition. The remaining boundary conditions at the
scatterer surface can be used to approximate the interaction operators, and, thus,
the Green functions we are seeking for. This will be done for each scattering problem
separately in the next two subsections.

4.3.2.1 Ideal metallic scatterer

Applying boundary condition (115) to the representation (123) results in∮
∂Γ

[
n̂− ×G>

t (x, x̄)
] ·W∂Γ+(x̄, x̃) ·G<

t (x̃,x
′) dS(x̄) dS(x̃) =

− [
n̂− ×G<

t (x,x
′)
]

; x ∈ ∂Γ ; x′ ∈ Γ+ . (126)

In the next step we approximate G>
t and G<

t by use of the expansions given
in (110), but with a finite number N of expansion terms. We will denote this
approximation further on with a superscript ‘(N)’ on the relevant Green’s function.
This provides

− (ik0)
2∑

τ ′=1

N∑
k=0

{
ψ

n̂−
k,τ ′(k0,x)� ϕ̃k,τ ′(k0,x′)

}
=

(ik0) ·
2∑

τ=1

N∑
i=0

2∑
τ ′=1

N∑
k=0

[
W∂Γ+

]τ,τ ′

i,k
·
{

ϕ
n̂−
i,τ (k0,x)� ϕ̃k,τ ′(k0,x′)

}
(127)

with the vector functions given in (19)–(22) as well as in (45) and (46), and with
the matrix elements of the interaction operator defined according to
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W∂Γ+

]τ,τ ′

i,k
:= (ik0) ·

∮
∂Γ

ψ̃i,τ (k0, x̄) ·W∂Γ+(x̄, x̃) · ψk,τ ′(k0, x̃) dS(x̄) dS(x̃) .

(128)
For the Green function GΓ+ this results in the approximation

G(N)
Γ+

(x,x′) = G0(x,x′) +

(ik0) ·
2∑

τ=1

N∑
i=0

2∑
τ ′=1

N∑
k=0

[
W∂Γ+

]τ,τ ′

i,k
· {ϕi,τ (k0,x)� ϕ̃k,τ ′(k0,x′)

}
. (129)

This is the dyadic form of the ‘modified Green function’ discussed by Kleinman,
Roach, and Stroem in [7]. Explicit expressions for the matrix elements of the in-
teraction operator W∂Γ+ can be derived from (127) if we change on the left-hand
side of this equation in virtue of the transformation

ψ
n̂−
k,τ ′(k0,x) =

2∑
τ=1

N∑
i=0

[
T̃∂Γ

]τ ′,τ

k,i
· ϕ n̂−

i,τ (k0,x) ; x ∈ ∂Γ (130)

from the vector functions ψ
n̂−
k,τ ′(k0,x) to the vector functions ϕ

n̂−
i,τ (k0,x). (130)

reads in matrix notation[
ψ n̂−(k0,x)

]tp

= T̃∂Γ · [ϕ n̂−(k0,x)
]tp

. (131)

Equation (127) is obviously met if[
W

(N)
∂Γ+

]τ,τ ′

i,k
= −

[
T̃∂Γ

]τ ′,τ

k,i
= −

{[
T̃∂Γ

]τ,τ ′

i,k

}tp

= − [T∂Γ ]
τ,τ ′

i,k (132)

holds. The transformation matrix itself is given by the product of the two matrices
(see [12], for example)

[T∂Γ ]
τ,τ ′

i,k =
2∑

τ̄=1

N∑
l=0

[
A

(g,ϕn̂− )−1

∂Γ

]τ,τ̄

i,l
·
[
B

(g,ψn̂− )
∂Γ

]τ̄ ,τ ′

l,k
, (133)

where [
A

(g,ϕn̂− )
∂Γ

]τ,τ ′

i,k
=
〈
gi,τ (x) |ϕ n̂−

k,τ ′(x)
〉

∂Γ
(134)

and [
B

(g,ψn̂− )
∂Γ

]τ,τ ′

i,k
=
〈
gi,τ (x) |ψ n̂−

k,τ ′(x)
〉

∂Γ
. (135)

The scalar product denoted by the ‘bra’ and ‘ket’ symbols is defined in terms of
surface integrals along the boundary surface ∂Γ according to〈

gi,τ (x) |fk,τ ′(x)
〉

∂Γ
:=

∮
∂Γ

g ∗i,τ (x) · fk,τ ′(x) dS(x) . (136)

g ∗ denotes the conjugate-complex of g. {gi,τ}N
i=0 represents a system of as yet not

specified weighting vector functions thus providing an additional degree of freedom



138 Tom Rother

in determining the transformation matrix. This freedom can be used to match
the numerical procedure to a certain scattering geometry. (133) reads in matrix
notation

T∂Γ =
[
A(g,ϕn̂− )

∂Γ

]−1

·B(g,ψn̂− )
∂Γ (137)

with T∂Γ , A
(g,ϕn̂− )
∂Γ , and B(g,ψn̂− )

∂Γ being 2 × 2 block matrices, due to the τ, τ ′-
summation. Please, note also that the indices i, k, l are all combined summation
indices as introduced in (38). Of course, one has to ensure the existence of the

inverse of matrix A(g,ϕn̂− )
∂Γ . For certain scatterer geometries and the restriction that

the wave number k does not belong to an internal resonance problem the linear
independence of the vector wave functions ψ

n̂−
k,τ and ϕ

n̂−
k,τ is known mathematically

(for more details see Doicu et al. in [13], for example). Thus, if using one of those

sets as weighting functions the existence of
[
A(g,ϕn̂− )

∂Γ

]−1 is known in advance for
such geometries. For other geometries one can take up a pragmatic position and
prove this numerically. Please, note also that in deriving Eq. (129) it was tacitly
assumed that integration and summation can be interchanged. The transformation
character of the T-matrix employed above to determine the matrix elements of the
interaction operator has already been observed by Ursell (see [7], and the remark
therein).

The above given result runs into that of an ideal metallic sphere with radius
r = a if the weighting vector functions

gi,τ (x) = ψ
n̂−
i,τ (k0,x) (138)

are used. From the orthogonality relations given in (51)–(62) it follows[
A

(ψn̂− ,ϕn̂− )−1

∂Γ

]τ,τ ′

i,k
= δτ,τ ′δi,k · 1

a2
· 1

d
(ψn̂− ,ϕn̂− )
i,τ

(139)

and [
B

(ψn̂− ,ψn̂− )
∂Γ

]τ,τ ′

i,k
= δτ,τ ′δi,k · a2 · d(ψn̂− ,ψn̂− )

i,τ (140)

for the relevant matrix elements. The d-values are given by

d
(ψn̂− ,ϕn̂− )
i,1 = j∗n(i)(k0a) · h(1)

n(i)(k0a) (141)

d
(ψn̂− ,ϕn̂− )
i,2 =

1
k2
0a

2
·
{[

∂

∂r

(
r · jn(i)(k0r)

)]∗
r=a

·
[
∂

∂r

(
r · h(1)

n(i)(k0r)
)]

r=a

}
(142)

d
(ψn̂− ,ψn̂− )
i,1 = j∗n(i)(k0a) · jn(i)(k0a) (143)

d
(ψn̂− ,ψn̂− )
i,2 =

1
k2
0a

2
·
{[

∂

∂r

(
r · jn(i)(k0r)

)]∗
r=a

·
[
∂

∂r

(
r · jn(i)(k0r)

)]
r=a

}
. (144)

Hence, for the spherical geometry the dyadic Green function becomes

G(N)
Γ+

(x,x′) = G0(x,x′) − ik0 ·
N∑

i=0

{
ai,1 · ϕi,1(k0,x)� ϕ̃i,1(k0,x′) +

ai,2 · ϕi,2(k0,x)� ϕ̃i,2(k0,x′)
}
. (145)
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with

ai,1 =
jn(i)(k0a)

h
(1)
n(i)(k0a)

(146)

and

ai,2 =

∂

∂r

[
r · jn(i)(k0r)

]
r=a

∂

∂r

[
r · h(1)

n(i)(k0r)
]

r=a

. (147)

This result agrees exactly with that one presented in [4].

4.3.2.2 Dielectric scatterer

We can proceed in a similar way for the dielectric scatterer. If using again finite
expansions for G>

t , G
<
ts
, as well as G<

t in (124) and (125) we get with the defini-
tions[
W

(d)
∂Γ+

]τ,τ ′

i,k
:= (ik0)

∮
∂Γ

ψ̃i,τ (k0, x̄) ·W (d)
∂Γ+

(x̄, x̃) ·ψk,τ ′(k0, x̃) dS(x̄) dS(x̃) (148)

and[
W

(d)
∂Γ−

]τ,τ ′

i,k
:= (ik)

∮
∂Γ

ϕ̃i,τ (k0, x̄) ·W (d)
∂Γ−(x̄, x̃) ·ψk,τ ′(k0, x̃) dS(x̄) dS(x̃) (149)

of the matrix elements of the interaction operators W (d)
∂Γ+

and W (d)
∂Γ− the approx-

imations

G(d,N)
Γ+

(x,x′) = G0(x,x′) +

(ik0) ·
2∑

τ=1

N∑
i=0

2∑
τ ′=1

N∑
k=0

[
W

(d)
∂Γ+

]τ,τ ′

i,k
· {ϕi,τ (k0,x)� ϕ̃k,τ ′(k0,x′)

}
(150)

and

G(−/+,N)(x,x′) =

(ik0) ·
2∑

τ=1

N∑
i=0

2∑
τ ′=1

N∑
k=0

[
W

(d)
∂Γ−

]τ,τ ′

i,k
· {ψi,τ (k,x)� ϕ̃k,τ ′(k0,x′)

}
(151)

for the two Green functions G(d)
Γ+

and G(−/+).

Next, to calculate the matrix elements
[
W

(d)
∂Γ+

]τ,τ ′

i,k
of the interaction opera-

tor W (d)
∂Γ+

, we consider the following transformation problem. We ask for the two

matrices Tϕ and Tψ which allows us to express the eigenvectors ψ
n̂−
i,τ (k0r, θ, φ)

and ∂ n̂−ψi,τ (k0r, θ, φ) defined in (45) and (48) in terms of the eigenvectors
ϕ

n̂−
i,τ (k0r, θ, φ) and ∂ n̂−ϕi,τ (k0r, θ, φ) as well asψ

n̂−
i,τ (kr, θ, φ) and ∂ n̂−ψi,τ (kr, θ, φ)

according to
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ψ n̂−(k0r, θ, φ) = ϕ n̂−(k0r, θ, φ) ·Tϕ + ψ n̂−(kr, θ, φ) ·Tψ (152)
∂ n̂−ψ(k0r, θ, φ) = ∂ n̂−ϕ(k0r, θ, φ) ·Tϕ + ∂ n̂−ψ(kr, θ, φ) ·Tψ (153)

at the scatterer surface. Please note that both of these equations are represented
in a condensed noatation, i.e., all the eigenvectors are already summarized in
corresponding block vectors consisting of two blocks according to the index τ .
Within each block we have the usual eigenvectors as components. For example,
ψ n̂−(k0r, θ, φ) in (152) represents the block vector

ψ n̂−(k0r, θ, φ) =
(
ψ

n̂−
i,1 (k0r, θ, φ),ψ

n̂−
i,2 (k0r, θ, φ)

)
(154)

with i being again the combined index introduced in (38). Correspondingly, both
matrices Tϕ and Tψ are 2 × 2 block matrices where each block is a single square
matrix, due to the combined indices i, k. Thus the matrix elements of Tϕ are
denoted by

[Tϕ]
τ,τ ′

i,k (155)

for example. This condensed notation will ease the following derivation. Now, it is
quite interesting to realize that the negative matrix elements − [Tϕ]

τ,τ ′

i,k are identical

with the matrix elements
[
W

(d)
∂Γ+

]τ,τ ′

i,k
of the interaction operator W (d)

∂Γ+
we are

seeking for. To see this we have only to apply the transmission conditions (116)
and (117) to the approximations (150) and (151) (see [14], for example). Since this is
a straight forward analysis without further difficulties the reader may verify this by
himself. To determine Tϕ from the equation system (152)/(153) we apply a scalar
product as defined in (136) with the weighting vector functions g to Eq. (152), and
with different weighting vector functions h to Eq. (153). Both sets of weighting
vector functions are block vectors as shown in (154). But they are again not yet
specified to have an additional degree of freedom. From this procedure it follows
the matrix equation system

C(g,ψ n̂− )
∂Γ ·Tψ = − A(g,ϕ n̂− )

∂Γ ·Tϕ + B(g,ψ
n̂−
0 )

∂Γ (156)

C
(h,∂n̂−ψ)

∂Γ ·Tψ = − A
(h,∂n̂−ϕ)

∂Γ ·Tϕ + B
(h,∂n̂−ψ0)

∂Γ . (157)

The matrix elements of these matrices are defined by the scalar products[
A

(g,ϕ n̂− )
∂Γ

]τ,τ ′

i,k
:=

〈
gi,τ (x) |ϕ n̂−

k,τ ′(k0,x)
〉

∂Γ
(158)[

B
(g,ψ

n̂−
0 )

∂Γ

]τ,τ ′

i,k

:=
〈
gi,τ (x) |ψ n̂−

k,τ ′(k0,x)
〉

∂Γ
(159)

[
C

(g,ψ n̂− )
∂Γ

]τ,τ ′

i,k
:=

〈
gi,τ (x) |ψ n̂−

k,τ ′(k,x)
〉

∂Γ
(160)
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A

(h,∂n̂−ϕ)

∂Γ

]τ,τ ′

i,k
:=

〈
hi,τ (x) | ∂n̂−ϕk,τ ′(k0,x)

〈
∂Γ

(161)[
B

(h,∂n̂−ψ0)

∂Γ

]τ,τ ′

i,k
:=

〈
hi,τ (x) | ∂n̂−ψk,τ ′(k0,x)

〉
∂Γ

(162)[
C

(h,∂n̂−ψ)

∂Γ

]τ,τ ′

i,k
:=

〈
hi,τ (x) | ∂n̂−ψk,τ ′(k,x)

〉
∂Γ

. (163)

Resolving both Eqs (156) and (157) for matrix Tψ is one way to determine the
matrix Tϕ. This results in

Tϕ =
[
C(g,ψ n̂− )−1

∂Γ ·A(g,ϕ n̂− )
∂Γ − C

(h,∂n̂−ψ)−1

∂Γ ·A(h,∂n̂−ϕ)

∂Γ

]−1

×[
C(g,ψ n̂− )−1

∂Γ ·B(g,ψ
n̂−
0 )

∂Γ − C
(h,∂n̂−ψ)−1

∂Γ ·B(h,∂n̂−ψ0)

∂Γ

]
. (164)

In [15], for example, it was shown that for a specific choice of the weighting vector
functions gi,τ and hi,τ the matrix elements of the interaction operator runs exactly
into Waterman’s T-matrix derived in [5].

Another possibility consists in resolving both Eqs (156) and (157) for matrix
Tϕ at first. Thus we get

Tψ =
[
A(g,ϕ n̂− )−1

∂Γ ·C(g,ψ n̂− )
∂Γ − A

(h,∂n̂−ϕ)−1

∂Γ ·C(h,∂n̂−ψ)

∂Γ

]−1

×[
A(g,ϕ n̂− )−1

∂Γ ·B(g,ψ
n̂−
0 )

∂Γ − A
(h,∂n̂−ϕ)−1

∂Γ ·B(h,∂n̂−ψ0)

∂Γ

]
(165)

for the matrix Tψ. Next, in close analogy to (130), we can change from the eigen-
vectors ψ(k0,x) to the eigenvectors ψ(k,x) according to

ψ(k,x) = ψ(k0,x) ·Tψ0/ψ . (166)

at the scatterer surface. Finally, using (130) and (166), we can formulate Eq. (152)
in terms of the eigenvectors ϕ(k0,x) only. From this we get

Tϕ = T∂Γ · [E − Tψ0/ψ ·Tψ

]
(167)

with T∂Γ being the T-matrix given in (137). Obviously, if we chose Tψ = 0 we get
from (167) the known result for the ideal metallic scatterer.

We will finish this subsection with the remark that the same result would have
been obtained if the defining volume integral equations

G (d)
Γ+

(x,x′) := G0(x,x′) +∫
Γ−

G>
t (x, x̄) ·W (d)

∂Γ+
(x̄, x̃) ·G<

t (x̃,x
′) dV (x̄) dV (x̃) (168)

and

G (−/+)(x,x′) :=
∫

Γ−
G<

ts (x, x̄) ·W (d)
∂Γ−(x̄, x̃) ·G<

t (x̃,x
′) dV (x̄) dV (x̃) . (169)
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instead of the surface integral Eqs. (124) and (125) would have been used in the
course of the above given derivation. This choice affects only the definitions (148)
and (149) of the matrix elements of the interaction operators, i.e., then we get[
W

(d)
∂Γ+

]τ,τ ′

i,k
:= (ik0)

∫
Γ−

ψ̃i,τ (k0, x̄)·W (d)
∂Γ+

(x̄, x̃)·ψk,τ ′(k0, x̃) dV (x̄) dV (x̃) (170)

and[
W

(d)
∂Γ−

]τ,τ ′

i,k
:= (ik)

∫
Γ−

ϕ̃i,τ (k0, x̄) ·W (d)
∂Γ−(x̄, x̃) ·ψk,τ ′(k0, x̃) dV (x̄) dV (x̃) . (171)

These different options in the definition of interaction operators are related to
the equivalence principles which allows us to replace the scatterer by equivalent
currents on its surface or within its volume (see [16], for example). We will come
back to these latter definitions of the interaction operators in the next section when
considering singular volume integral equations for dielectric scatterers.

4.4 Singular integral equations

In this section we will demonstrate how a small but important change in the defin-
ing equations of the interaction operators will lead us to the conventional singular
integral equation approaches. The singular surface integral equation for the Green
function of an ideal metallic scatterer related to the magnetic field is considered
first. Once this ‘magnetic Green function’ is known the ‘electric Green function’
GΓ+ which is of our primary interest here can be calculated by a simple opera-
tion. This subsection ends with the derivation of the so-called Lippmann–Schwinger
equation which can serve as a starting point for iterative solutions. In the next sub-
section we will derive the singular volume integral equation known for the dielectric
scatterer which already exhibits the nature of a Lippmann–Schwinger equation.
This will be achieved by the same small change in the relevant defining equation
of the interaction operator. Finally, in the last subsection of this section we will
discuss why the abovementioned ‘small changes’ are strongly related to Rayleigh’s
hypothesis. Additionally, we will justify a pragmatic position concerning the valid-
ity of this hypothesis.

4.4.1 Ideal metallic scatter

4.4.1.1 Singular surface integral equation

We can define the magnetic Green function G(h)
Γ+

according to

G(h)
Γ+
(x,x′) := ∇x ×GΓ+ (172)

with GΓ+ being the electric Green function introduced in section 4.3.2. Instead of
(123) we will now employ the defining equation
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GΓ+(x,x
′) := G0(x,x′) +∮

∂Γ

G0(x, x̄) · Ŵ∂Γ+(x̄, x̃) ·G0(x̃,x′) dS(x̄) dS(x̃) . (173)

for the interaction operator. Unlike (123), where the quantities G>
t and G<

t have
been used within the surface integral, we have now changed to the full dyadic free-
space Green function G0. But the replacement of G<

t by G0 is not really a change
because we generally assumed throughout this paper that the source of the primary
field is located outside the smallest sphere circumscribing the scatterer. Thus, the
most significant change is the replacement of G>

t by G0. Please note that we used
the notation Ŵ∂Γ+ in (173) to distinguish it from the interaction operator defined
by (123). From (172) we can see that G(h)

Γ+
is a solution of[∇x ×∇x × − k2

0

]
G(h)

Γ+
(x,x′) = ∇x × Iδ(x− x′) . (174)

Furthermore, if looking at (97), we define the magnetic free-space Green function
according to

G(h)
0 (x,x′) := ∇x ×G0(x,x′) = ∇xG0(x,x′)× I . (175)

Applying (172) to (173) results therefore in

G(h)
Γ+
(x,x′) = G(h)

0 (x,x′) +∮
∂Γ

G(h)
0 (x, x̄) · Ŵ∂Γ+(x̄, x̃) ·G0(x̃,x′) dS(x̄) dS(x̃) . (176)

The necessary boundary conditionG(h)
Γ+

has to fulfil at the scatterer surface (beside
the radiation condition at infinity with respect to x, of course) is given by

n̂×G(h)
Γ+
(x,x′) =

∮
∂Γ

Ŵ∂Γ+(x, x̃) ·G0(x̃,x′) dS(x̃) . (177)

Once we know this magnetic Green function we obtain the corresponding magnetic
fields from the relations

hg(x) =
1

iωμ0
·
∫

Γ+

G(h)
Γ+
(x,x′) · ρ(x′) dV (x′) (178)

and
hinc(x) =

1
iωμ0

·
∫

Γ+

G(h)
0 (x,x′) · ρ(x′) dV (x′) , (179)

respectively. This is a consequence of Maxwell’s equations

∇× e(x) = iωb(x) (180)
∇× h(x) = − iωd(x) + ρ(x) (181)
∇ · d(x) = 0 (182)
∇ · b(x) = 0 (183)
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valid for time-harmonic fields, the linear material equations

d(x) = εe(x) = ε0 εr e(x) (184)
b(x) = μ0 h(x) , (185)

and the required boundary condition

n̂× h(x) = j∂Γ (x) ; x ∈ ∂Γ (186)

at the surface of the ideal metallic scatterer. j∂Γ is the induced surface current.
This unknown surface current is related to the unknown interaction operator by
(see [14], for example)

j∂Γ (x̄) = − i

ωμ0
·
∮

∂Γ

Ŵ∂Γ+(x̄, x̃) · einc(x̃) dS(x̃) . (187)

The prefactor −i/(ωμ0) ensures that the current will have the correct dimension
[A/m]. We are then able to determine the interaction operator Ŵ∂Γ+ from the
surface integral equation

1
2
·
∮

∂Γ

Ŵ∂Γ+(x, x̃) ·G0(x̃,x′) dS(x̃) −

p.v.

[
n̂×

∮
∂Γ

G(h)
0 (x, x̄) · Ŵ∂Γ+(x̄, x̃) ·G0(x̃,x′) dS(x̄) dS(x̃)

]
=

n̂×G(h)
0 (x,x′) ; x ∈ ∂Γ (188)

which results from the application of boundary condition (177) in conjunction with
(176). The factor 1/2 of the first contribution on the left-hand side results from
treating the singularity ofG(h)

0 at the scatterer surface appropriately (for the details
of this procedure see [17] especially sections 12 to 14, and section 77 therein!). The
‘principal value’ integration on the right-hand side of this equation means

p.v.

∮
∂Γ

· · · dS(x̄) := lim
∂Γδ→0

∫
∂Γ\∂Γδ

· · · dS(x̄) , (189)

i.e., a small surface element ∂Γδ containing the singularity is excluded from the
surface integration [17]. (188) is the Green’s function analogue to the conventional
surface integral equation for the induced surface current (see [17,19], for example).
Once knowing Ŵ∂Γ+ the magnetic Green function can be calculated according to
(176). By taking the curl of the magnetic Green function we get together with (114)

GΓ+(x,x
′) =

1
k2
0

· ∇x ×G(h)
Γ+
(x,x′) − 1

k2
0

· Iδ(x− x′) . (190)

This electric Green function obeys the homogeneous Dirichlet condition as demon-
strated for the related total electric field in [17]. That is the way we can choose
to circumvent the strong singularity of the dyadic free-space Green function G0

mentioned in section 4.3.1. Another advantage of using the interaction operator
instead of the induced surface current is the independence of the former from the
direction of the incident field. This will ease the orientation averaging process if
necessary. The induced surface current, on the other hand, depends on the incident
field as we can see from Eq. (187). This has been considered to be an essential
drawback of the boundary integral equations, so far [1].
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4.4.1.2 Lippmann-Schwinger equations

First, to derive the Lippmann–Schwinger equations for the ideal metallic scatterer,
we apply Green’s theorem (93) in Γ+ with the two Green functions

Q(x̄,x) = G0(x̄,x) (191)
P(x̄,x′) = GΓ+(x̄,x

′) . (192)

Taking the symmetry relation (99) into account this provides

GΓ+(x,x
′) = G0(x,x′) +∮

∂Γ

[
ˆ̄n− ×G0(x̄,x)

] tp · [∇x̄ ×GΓ+(x̄,x
′)
]
dS(x̄) . (193)

This expression can be reformulated by use of identity (87). We get

GΓ+(x,x
′) = G0(x,x′) −∮

∂Γ

G0(x, x̄) ·
[
ˆ̄n− ×∇x̄ ×GΓ+(x̄,x

′)
]
dS(x̄) . (194)

In close analogy to the ‘classical’ dyadic delta distribution (107) one can introduce
a dyadic surface delta distribution via the definition∮

∂Γ

D∂Γ(x′ − x) · f(x′) dS(x′) := f(x) ; x,x′ ∈ ∂Γ . (195)

But because of the boundary conditions (2) and (8) we should be more interested
in a corresponding delta distribution which is restricted to the tangential planes at
the scatterer surface ∂Γ . This is realized by the definition∮

∂Γ

D (n̂)
∂Γ (x′ − x) · f n̂′(x′) dS(x′) :=

f n̂(x) ; x′,x ∈ ∂Γ (196)

where f n̂(x) is the tangential projection of the vector function f(x) at the scatterer
surface [12]. This special delta distribution allows us to define the operator

U (ˆ̄n)
∂Γ (x̄, x̃) := − D (ˆ̄n)

∂Γ (x̃− x̄) ·
[
ˆ̃n×∇x̃×

]
I (197)

so that∮
∂Γ

U (ˆ̄n−)
∂Γ (x̄, x̃) ·GΓ+(x̃,x

′) dS(x̃) = − ˆ̄n− ×∇x̄ ×GΓ+(x̄,x
′) (198)

holds. Hence, (194) can be further reformulated to become

GΓ+(x,x
′) = G0(x,x′) +∮

∂Γ

G0(x, x̄) ·U (ˆ̄n−)
∂Γ (x̄, x̃) ·GΓ+(x̃,x

′) dS(x̃) dS(x̄) (199)
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or, in operator notation,

GΓ+(x,x
′) = G0(x,x′) + G0(x, x̄) ◦U (ˆ̄n−)

∂Γ (x̄, x̃) ◦GΓ+(x̃,x
′) . (200)

This is the Lippmann–Schwinger equation ofGΓ+ related to the scattering problem
of an ideal metallic scatterer. The lowest and first-order iterations of this equation
are given by

G(0)
Γ+
(x,x′) = G0(x,x′) (201)

(this is the unperturbed problem, i.e., if there is no scatterer) and

G(1)
Γ+
(x,x′) = G0(x,x′) + G0(x, x̄) ◦U (ˆ̄n−)

∂Γ (x̄, x̃) ◦G0(x̃,x′) (202)

or

G(1)
Γ+
(x,x′) = G0(x,x′) +∮

∂Γ

G0(x, x̄) ·U (ˆ̄n−)
∂Γ (x̄, x̃) ·G0(x̃,x′) dS(x̃) dS(x̄) =

G0(x,x′) −
∮

∂Γ

G0(x, x̄) ·
[
ˆ̄n− ×∇x̄ ×G0(x̄,x′)

]
dS(x̄) (203)

(this is the first deviation from the unperturbed problem). These two iterations are
not affected by the singularity of G0, but each higher-order iteration.

The Lippmann–Schwinger equation of the corresponding interaction operator
can be derived from the definition (173) which reads in operator notation

GΓ+(x,x
′) := G0(x,x′) + G0(x, x̄) ◦ Ŵ∂Γ+(x̄, x̃) ◦G0(x̃,x′) , (204)

An intercomparison of (204) with (200) results in

Ŵ∂Γ+(x,x
′) := U (ˆ̄n−)

∂Γ (x,x′) + U (ˆ̄n−)
∂Γ (x, x̄) ◦G0(x̄, x̃) ◦ Ŵ∂Γ+(x̃,x

′) . (205)

Obviously, the lowest-order iteration of this Lippmann–Schwinger equation pro-
vides the first-order iteration of the corresponding Green function GΓ+ .

4.4.2 Dielectric scatter

4.4.2.1 Singular volume integral equation

To derive the singular volume integral equation for the Green function related to
the dielectric scatterer Green’s theorem must be applied twice. First we use (93)
in Γ+ with the two dyadics

Q(x,x′′) = G0(x,x′′) ; x ∈ Γ+ (206)

P(x,x′) = G (d)
Γ+

(x,x′) ; x,x′ ∈ Γ+ (207)

(case 1). There are two possibilities concerning the location of x′′. It can be located
either in Γ+ (case 1a) or in Γ− (case 1b). Case 1a results in
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G (d)
Γ+

(x′′,x′) = G0
tp(x′,x′′) +∮

∂Γ

{
[n̂− ×G0(x,x′′)]

tp ·
[
∇x ×G (d)

Γ+
(x,x′)

]
−

[∇x ×G0(x,x′′)]
tp ·

[
n̂− ×G (d)

Γ+
(x,x′)

]}
dS(x) , (208)

and case 1b correspondingly in

0 = G0
tp(x′,x′′) +

∮
∂Γ

{
[n̂− ×G0(x,x′′)]

tp ·
[
∇x ×G (d)

Γ+
(x,x′)

]
−

[∇x ×G0(x,x′′)]
tp ·

[
n̂− ×G (d)

Γ+
(x,x′)

]}
dS(x) . (209)

Next we apply (93) in Γ− with the two dyadics

Q(x,x′′) = G0(x,x′′) ; x ∈ Γ+ (210)
P(x,x′) = G (−/+)(x,x′) ; x ∈ Γ− , x′ ∈ Γ+ (211)

Here we can again distinguish the two possible locations of x′′. x′′ ∈ Γ+ (case 2a)
provides

κ2
d ·

∫
Γ−

G0
tp(x,x′′) ·G (−/+)(x,x′) dV (x) =

−
∮

∂Γ

{
[n̂×G0(x,x′′)]

tp ·
[
∇x ×G (−/+)(x,x′)

]
−

[∇x ×G0(x,x′′)]
tp ·

[
n̂×G (−/+)(x,x′)

]}
dS(x) . (212)

x′′ ∈ Γ− (case 2b) provides on the other hand

− G (−/+)(x′′,x′) +

κ2
d ·

∫
Γ−

G0
tp(x,x′′) ·G (−/+)(x,x′) dV (x) =

−
∮

∂Γ

{
[n̂×G0(x,x′′)]

tp ·
[
∇x ×G (−/+)(x,x′)

]
−

[∇x ×G0(x,x′′)]
tp ·

[
n̂×G (−/+)(x,x′)

]}
dS(x) . (213)

κ2
d = k2 − k2

0 (214)

denotes the difference in the wave numbers of the scatterer material and the as-
sumed free space outside the scatterer. If one combines the two cases 1a/2a as well
as 1b/2b, if taking symmetry relation (99), identity (88), and the transmission con-
ditions (116) and (117) into account, and if one renames the variables afterwards
we get from the equality of the surface integrals in all of the above cases finally the
two volume integral equations

G (d)
Γ+

(x,x′) = G0(x,x′) + κ2
d

∫
Γ−

G0(x, x̄) ·G (−/+)(x̄,x′) dV (x̄)

x,x′ ∈ Γ+ (215)
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and

G (−/+)(x,x′) = G0(x,x′) + κ2
d

∫
Γ−

G0(x, x̄) ·G (−/+)(x̄,x′) dV (x̄)

x′ ∈ Γ+ , x ∈ Γ− . (216)

The essential step is the solution of Eq. (216). But the strong singularity of G0

inside the scatterer must be considered very carefully (see [18, 20], for example).
Once G (−/+) is known we can calculate the Green function of our primary interest
from Eq. (215). Both of these final equations serve as a starting point for differ-
ent numerical approaches like the Discrete Dipole Approximation (DDA) or the
different Method of Moment schemes, for example [1, 16].

4.4.2.2 Lippmann–Schwinger equation

Equation (216) exhibits already the nature of a Lippmann–Schwinger equation.
With the definition

G (d)
Γ+

(x,x′) := G0(x,x′) +∫
Γ−

G0(x, x̄)Ŵ
(d)
Γ− (x̄, x̃)G0(x̃,x′) dV (x̄) dV (x̃) , (217)

in which we have again replaced G>
t (x, x̄) by G0(x, x̄) if compared to (124), we

get after intercomparison with (215) and (216) the Lippmann–Schwinger equation

Ŵ (d)
Γ− (x̄, x̃) = κ2

d ·
[
Iδ(x̄− x̃) +

∫
Γ−

G0(x̄, x̂) · Ŵ (d)
Γ− (x̂, x̃) dV (x̂)

]
(218)

of the interaction operator related to the dielectric scatterer. Its lowest-order it-
eration, after insertion into (217), provides the first-order iteration of the Green
function which deviates from the unperturbed problem. Each higher-order iteration
has to consider again the strong singularity of G0 inside the scatterer.

4.4.3 Rayleigh’s hypothesis

Let us bring to our mind again the differences of sections 4.3 and 4.4. In section 4.3
we started from the definitions (123), and (124) or (168), respectively. In conjunc-
tion with the required boundary conditions at the scatterer surface we were then
able to derive appropriate equations for the matrix elements of the interaction op-
erators. By use of these matrix elements we could approximate the relevant Green
functions by finite series expansions which are in accordance not only with the
boundary conditions at the scatterer surface but also with the radiation condition
and the vector-wave equation. In the course of these derivations it was tacitly as-
sumed that appropriate expressions for the transverse parts G<

t and G>
t of the

dyadic free-space Green function are known. Such expressions were given in Eq.
(110).

In section 4.4, in contrast to what was done in section 4.3, we started from Eqs
(173) and (217), respectively, where the quantityG>

t (x, x̄) was replaced by the full
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dyadic free-space Green function G0. Applying again the boundary conditions we
could derive singular surface or volume integral equations to determine the interac-
tion operators explicitly. But as a consequence of using G0 instead of G>

t we had
to consider the strong singularity of this Green function appropriately. Exceptions
were only the lowest-order iterations of the Lippmann–Schwinger equations.

How is this difference related to the so-called Rayleigh hypothesis? Before we
will answer this question it should be noted that it is sufficient to restrict the
following discussion to the ideal metallic scatterer since the dielectric scatterer
provides no additional aspects to it. In 1907, surprisingly one year before Mie’s well-
known paper [21] on light scattering on spherical particles, Lord Rayleigh published
a paper in which he solved the scattering problem of a plane wave incident on a
sinusoidal surface (a grating) [22]. But this is a surface which does not coincide
with a constant coordinate line in Cartesian coordinates. Thus the conventional
separation of variables method was not supposed to become applicable to this
problem. By contrast, Mie’s problem of light scattering on a spherical scatterer
is appropriate for this method if applied in spherical coordinates. And that is
exactly what Mie did. To solve the scattering problem of the grating Rayleigh used
an expansion of the scattered field in terms of plane waves which propagate solely
away from the grating, i.e., which uses solely outgoing solutions of the homogeneous
wave equation. It became clear later on that Rayleigh’s approach is nothing but
an appropriate generalization of the separation of variables method to scattering
problems of nonspherical scatterers (see [15,23], for example). Moreover, Rayleigh’s
approach produces the same equation system as the application of Waterman’s T-
matrix approach will do [24]. We can state therefore that Rayleigh’s approach
coincides with the methodology presented in section 4.3 herein. More precisely, Eq.
(123) withG>

t (x, x̄) in the surface integral coincides with Rayleigh’s assumption of
using solely outgoing solutions to represent the scattered field everywhere outside
an ideal metallic scatterer. But why is this called a hypothesis?

In 1953 Lippmann published a very short comment on Rayleigh’s approach [25].
He argued that outside the grating but in its valleys the usage of solely outgoing
plane waves is not correct. It is just an assumption (a hypothesis) which results in
an incomplete solution scheme. In these regions incoming plane waves must addi-
tionally be taken into account. Concerning our scattering problem of nonspherical
particles treated in spherical coordinates this means that outside the scatterer but
within the smallest sphere Smin circumscribing the scatterer (see Fig. 4.2) the usage
of G>

t (x, x̄) is not complete because this quantity contains only outgoing eigen-
vectors with respect to x, according to Eq. (110). Especially in this intermediate
region we have points x = x1 which obviously violates the restriction

x > x̄ ; x̄ ∈ ∂Γ (219)

we fixed for G>
t in (110). In his comment Lippmann stated furthermore that this

problem does not appear if one uses the full free-space Green function as we did in
section 4.4. In other words: it is questionable whether Eq. (123) is able to produce
correct results especially outside the scatterer but inside Smin. Equation (173),
on the other hand, is assumed to produce correct results everywhere outside the
scatterer since the corresponding singular integral equations consider the full dyadic
free-space Green function which contains both sets of eigenfunctions, outgoing and
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scatterer

k,Γ−
Smin

k0,Γ+

x2

x1

Fig. 4.2. The region outside the scatterer but inside Smin is the crucial region for the
discussion of Rayleigh’s hypothesis.

incoming. This is the reason why in the presentation of the T-matrix approach
in the recent literature the near-field region outside the scatterer but inside Smin

is excluded from the considerations (see [11], for example). Within our Green’s
function formalism Rayleigh’s hypothesis is therefore equivalent to the questions
whether (123) or (173) or both equations will produce correct results for the Green
function of an ideal metallic but nonspherical scatterer.

There is no definite answer, so far, but it is quite interesting to study the
different answers given in the past. But since such a detailed treatment is outside
the scope of this paper we will solely justify a pragmatic position we take up
with respect to this question, based on numerical experiences and a few intuitive
arguments. We believe that both equations (123) and (173) produce correct results!
The numerical experience which supports our believe are the following:

– Scattering calculations for spheroidal particles based on the T-matrix approach
in spherical as well as in spheroidal coordinates produce the same results (see
[26], for example). So far, no inconsistencies in such calculations have been ob-
served [27–29]. Treating spheroidal particles in spheroidal coordinates by use of
the T-matrix approach is not influenced by Rayleigh’s hypothesis, as it happens
also for the sphere in spherical coordinates.

– Recent intercomparisons with Rayleigh’s approach and a geometrical optics ap-
proach if applied to random rough surfaces support the correctness of Rayleigh’s
approach [30].

– Very recently we solved the scattering problem of Rayleigh’s original paper by
use of a T-matrix approach based on (123), and by use of a singular surface
integral equation based on (173). The obtained results of both approaches agree
very well even in the near-field. These results are published in [31].

The intuitive arguments are:

– For a certain nonspherical geometry and a certain T-matrix approach based on
(123) Dallas could prove mathematically the least-squares convergence of the
scattering results [32].
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– The requirement x > x̄ for G>
t is only a necessary requirement if we intend

to approximate the dyadic free-space Green function by an appropriate series
expansion. But in the course of deriving the T-matrix from Eq. (123) we need
only the feature that G>

t is a solution of the homogeneous vector-wave equa-
tion which obeys the radiation condition with respect to x. And that is what
is warranted by use of G>

t , independent of whether it approximates the dyadic
free-space Green function correctly or not. For the determination of the ma-
trix elements of the interaction operator G>

t has ‘merely’ the meaning of an
auxiliary function.

– We have no additional boundary condition on the surface Smin to split the scat-
tering problem into a near-field and far-field part. The boundary value problem
as formulated in section 4.2 seems to be complete from a mathematical point
of view.

Therefore we will fall back on the results of section 4.3 for the ongoing considera-
tions. It should be also stated in this context that the various T-matrix approaches
developed so far have been proved to produce very accurate and highly reliable
results also if compared to experiments, not at least due to the improvements and
manifold applications made and performed by Mishchenko et al. [11]. The alter-
native singular surface integral equations, for example, are much less practicable.
Even in the limiting case of an ideal metallic sphere it is not simple to reproduce
the results of the Mie series (which is nothing but a special T-matrix approach)
with high accuracy (see [19], for example).

4.5 Symmetry and Unitarity

Summarizing the results of section 4.3.2 we can state that both Green functions
related to the scattering problems of our interest can be approximated by the
expansion

G (N)
Γ+

(x,x′) = G0(x,x′) +

(ik0)
2∑

τ,τ ′=1

N∑
i,k=0

[W ] τ,τ ′

i,k · {ϕi,τ (k0,x)� ϕ̃k,τ ′(k0,x′)
}

x,x′ ∈ Γ+ (220)

with [W ] τ,τ ′

i,k being the matrix elements of the matrix −T∂Γ according to (137) in
the case of an ideal metallic scatterer, and −Tϕ according to (164) or (167) in the
case of a dielectric scatterer. Approximation (220) can be reformulated by intro-
ducing the so-called ‘scattering matrix’ (S-matrix). This was done first by Wheeler
and Heisenberg in the context of quantum mechanical scattering but later on also
for electromagnetic wave scattering [33–35]. The symmetry and unitarity proper-
ties of this matrix are of special importance because they can be related to the
physical principles of reciprocity and energy conservation which must be fulfilled
under certain circumstances. It is quite interesting to note that in the literature
these physical principles, which are essentially based on our physical experience,
are used as preconditions to prove the symmetry and unitarity properties of the
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S-matrix. This holds also for the quantum mechanical considerations. But it seems
strange to use principles of our physical experience to prove mathematical prop-
erties of a matrix. That is, since there exists no proof for energy conservation, for
example, this would mean that we are never able to prove the unitarity property
of the S-matrix. But we should be able to prove the mathematical properties of
symmetry and unitarity of a matrix on a mathematical level without employing
reciprocity and energy conservation as preconditions. Furthermore, in the recent
literature these considerations are restricted to the far field only. But such a restric-
tion is not justified from a physical point of view. Therefore we want to show now
how these properties can be related to the mathematical properties of the Green
functions.

4.5.1 Symmetry

To consider the symmetry property we write down Eq. (220) once again but with
all indices:

G (N)
Γ+

(x,x′) = G0(x,x′) +

(ik0)
2∑

τ,τ ′=1

∑
l,n;l′,n′

(−1)l′ · [W ]τ,τ ′

l,n;l′n′ ·
{
ϕl,n,τ (k0,x)� ϕ−l′,n′,τ ′(k0,x′)

}
x,x′ ∈ Γ+ (221)

For both cases, the ideal metallic and the dielectric scatterer, the Green functions
must fulfil the same symmetry relation (119)/(120). Applying this relation to (221)
requires the equality of

2∑
τ,τ ′=1

∑
l,n;l′,n′

(−1)l′ · [W ]τ,τ ′

l,n;l′n′ ·
{
ϕl,n,τ (k0,x)� ϕ−l′,n′,τ ′(k0,x′)

}
=

2∑
τ,τ ′=1

∑
l,n;l′,n′

(−1)l′ · [W ]τ,τ ′

l,n;l′n′ ·
{
ϕ−l′,n′,τ ′(k0,x)� ϕl,n,τ (k0,x′)

}
. (222)

The four steps

– insert the identity factor 1 = (−1)l−l on the right-hand side of (222)
– interchange the notation n, l, τ and n′, l′, τ ′ on the right-hand side of (222)
– replace l by −l, and l′ by −l′ on the right-hand side of (222)
– compare the thus converted right-hand side with the left-hand side of (222)

result in the general symmetry relation

[W ]τ,τ ′

l,n;l′,n′ = (−1)l+l′ · [W ]τ
′,τ
−l′,n′;−l,n (223)

for the matrix elements of the interaction operator. This corresponds with Eq. (5.34)
in [11], for example, which was derived therein on the basis of reciprocity. It should
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be mentioned that in Waterman’s original paper [5] the simpler symmetry relation

[W ]τ,τ ′

l,n;l′,n′ = [W ]τ
′,τ

l′,n′;l,n (224)

was given. The difference between (223) and (224) results from the fact that we use
the complex φ-dependence e ilφ in our eigenvectors instead of the two real functions
sinφ and cosφ as Waterman did in his paper. Furthermore, since the symmetry
relation (119)/(120) holds for the exact Green’s function one may expect that (223)
holds only for infinite matrices, in general. Symmetry relation (223) can therefore
be used as a measure of numerical convergence for nonspherical scatterers, for
example. It should be also mentioned that (223) is independent of whether the
scatterer is absorbing or non-absorbing.

4.5.2 Unitarity

We assume that the source of the primary incident wave (which need not necessarily
be a plane wave!) is located somewhere outside the outer boundary ∂Γa of the now
considered volume Γ̃ (see Fig. 4.3). ∂Γa is not restricted to be a spherical surface
in the far field, i.e., to be identical with S∞ even though it can be S∞! The inner
boundary of Γ̃ is given by the surface ∂Γ of the scatterer. Furthermore, we assume
that |x| < |x′| holds for every point x ∈ ∂Γa. This gives us the justification to use
the lower expansion G<

t of (110) instead of G0(x,x′) everywhere inside Γ̃ as well
as on its outer surface. Thus (220) reads

scatterer
∂Γa

k,Γ−
∂Γ

k0, Γ̃

Fig. 4.3. Scattering configuration to consider unitarity. The outer space Γ̃ is assumed to
be source-free.
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G (<,N)
Γ+

(x,x′) = (ik0)
2∑

τ=1

N∑
i=0

{
ψi,τ (k0,x)� ϕ̃i,τ (k0,x′)

}
+

(ik0)
2∑

τ,τ ′

N∑
i,k=0

[W ] τ,τ ′

i,k · {ϕi,τ (k0,x)� ϕ̃k,τ ′(k0,x′)
}

x ∈ Γ̃ , x′ ∈ Γ+ . (225)

In view of relation (41) this expression can be converted into an expression which
contains only incoming and outgoing eigensolutions as expansion vectors,

G (<,N)
Γ+

(x,x′) = (ik0)
2∑

τ,τ ′

N∑
i,k=0

1
2
· {δi,kδτ,τ ′ · χi,τ (k0,x) +

[S]τ,τ ′

i,k · ϕi,τ (k0,x)
}
� ϕ̃k,τ ′(k0,x′) , (226)

with
[S]τ,τ ′

i,k = δi,k δτ,τ ′ + 2 · [W ] τ,τ ′

i,k (227)

being the matrix elements of the abovementioned S-matrix. (227) reads in matrix
notation

S = E + 2 ·W . (228)

We can state therefore that the elements of the S-matrix possess the same sym-
metry property (223) we derived already for the matrix elements of the interaction
operator. As a consequence of the above formulated precondition concerning the
location of the source of the primary incident wave the Green function G<

Γ+
(x,x′)

as well as its approximation (226) are solutions of the homogeneous vector-wave
equation with respect to x everyhere in Γ̃ . We assume further that the outer space
as well as the scatterer are non-absorbing, i.e., the parameters k0 and k are both
real quantities. Then the conjugate-complex Green functions

[
G<

Γ+
(x,x′)

]∗
and[

G−/+(x,x′)
]∗

are also solutions of the corresponding homogeneous vector-wave
equations.

With these preconditions we are now able to discuss the unitarity property of
the S-matrix. For this pupose we introduce the functional

{P(x,x′),Q(x,x′)}∂Γa
:=∮

∂Γa

{
[n̂a ×P(x,x′)] ∗

tp · [∇x ×Q(x,x′)] −

[∇x ×P(x,x′)] ∗
tp · [n̂a ×Q(x,x′)]

}
dS(x) (229)

for at first two arbitrary dyadics P and Q with n̂a being the outward-directed unit
normal vector at ∂Γa, and x′ being an arbitrary but fixed source point outside ∂Γa.
Due to the above formulated preconditions it can now be shown that{

G<
Γ+
(x,x′),G<

Γ+
(x,x′)

}
∂Γa

= 0 (230)
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holds for the Green function related to the ideal metallic as well as the dielectric
scatterer. The proof for the ideal metallic scatterer is straightforward because of the
homogeneous Dirichlet condition (115) which holds also for the conjugate-complex
Green function. We simply have to apply Green’s theorem (93) within Γ̃ with

G<
Γ+
(x,x′) and

[
G<

Γ+
(x,x′)

]∗
. To prove (230) for the dielectric scatterer we have

to apply additionally Green’s theorem (93) within the scatterer (i.e., within Γ−)
with G−/+(x,x′) and

[
G−/+(x,x′)

]∗
, and by taking the transmission conditions

into account which must hold also for the conjugate-complex Green functions. In
close analogy to (229) we introduce the additional functional

{ψ(x),φ(x)}∂Γa
:=

∮
∂Γa

{
[n̂a × ψ(x)] ∗ · [∇x × φ(x)] −

[n̂a × φ(x)] · [∇x × ψ(x)] ∗
}
dS(x) (231)

for at first two arbitrary vector functions ψ and φ. Next, by use of Green’s theorem
(91) the follwing identities for the eigenvector functions of the vector-wave equation
can be proven:{

χi,τ (k0,x),ϕi,τ (k0,x)
}

∂Γa
=
{
ϕi,τ (k0,x),χi,τ (k0,x)

}
∂Γa

= 0 , (232)

{
ϕi,τ (k0,x),ϕj,τ ′(k0,x)

}
∂Γa

=
{
χi,τ (k0,x),χj,τ ′(k0,x)

}
∂Γa

={
χi,τ (k0,x),ϕj,τ ′(k0,x)

}
∂Γa

= 0 (233)

if i �= j and τ �= τ ′, and{
χi,τ (k0,x),χi,τ (k0,x)

}
∂Γa

= − {
ϕi,τ (k0,x),ϕi,τ (k0,x)

}
∂Γa

= c (234)

for all i = 0, · · · , N and τ = 1, 2. (232) is a direct consequence of a real k0 and the
resulting identity

h(1)
n (k0r) =

[
h(2)

n (k0r)
]∗

(235)

valid for the Hankel functions of first and second order. To prove (233) we apply
Green’s theorem (91) within the volume included by the two surfaces ∂Γa and S∞
with ϕi,τ (k0,x) and ϕ∗j,τ ′(k0,x), χi,τ (k0,x) and χ∗j,τ ′(k0,x), and ϕi,τ (k0,x) and
χ∗j,τ ′(k0,x), respectively. Since for a real k0 follows{

f i,τ (k0,x), gj,τ ′(k0,x)
}

∂Γa
= − {

f i,τ (k0,x), gj,τ ′(k0,x)
}

S∞
(236)

we get (233) from the orthogonality of the eigenvectors on the spherical surface S∞.
Finally, (234) is a consequence of (236) in conjunction with the far-field behaviour
(29) and (30). The constant c in (234) must not even be known to prove the
unitarity. Now, using the approximations

G (<,N)
Γ+

(x,x′) = (ik0)
2∑

κ,κ′

N∑
p,q=0

1
2
· {δp,qδκ,κ′ · χp,κ(k0,x) +

[S]κ,κ′

p,q · ϕp,κ(k0,x)
}
� ϕ̃q,κ′(k0,x′) . (237)
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and [
G (<,N)

Γ+
(x,x′)

] ∗ tp
=

(ik0)
2∑

τ,τ ′

N∑
i,k=0

1
2
· [δi,kδτ,τ ′ ·

{
ϕ̃∗k,τ ′(k0,x′)� χ∗i,τ (k0,x)

}
+

[S∗]τ,τ ′

i,k · {ϕ̃∗k,τ ′(k0,x′)� ϕ∗i,τ (k0,x)
}]

(238)

in (230) we get from the identities (233)–(234){
G (<,N)

Γ+
(x,x′),G (<,N)

Γ+
(x,x′)

}
∂Γa

=

k2
0

4
·
∑
i,τ

{
χi,τ (k0,x),χi,τ (k0,x)

}
∂Γa

·⎡⎣∑
τ ′,k

δi,kδτ,τ ′ · ϕ̃∗k,τ ′(k0,x′)�
∑
κ′,q

δi,qδτ,κ′ · ϕ̃q,κ′(k0,x′) −

∑
τ ′,k

[S∗]τ,τ ′

i,k · ϕ̃k,τ ′(k0,x′)�
∑
κ′,q

[S]τ,κ′

i,q · ϕ̃q,κ′(k0,x′)

⎤⎦ = 0 . (239)

Because of (234) this can be transformed into

k2
0

4
· c ·

∑
k,τ ′

[ {
ϕ̃∗k,τ ′(k0,x′)� ϕ̃k,τ ′(k0,x′)

} −

∑
i,τ,q,κ′

[S∗]τ,τ ′

i,k · [S]τ,κ′

i,q · {ϕ̃∗k,τ ′(k0,x′)� ϕ̃q,κ′(k0,x′)
}⎤⎦ = 0 . (240)

The expression inside the square brackets will vanish obviously if∑
i,τ

[S∗]τ,τ ′

i,k · [S]τ,κ′

i,q = δk,qδτ ′,κ′ (241)

holds. But this is nothing but the expression of unitarity of the matrix elements
of the S-matrix. That is the way we can go to prove the unitarity of the S-matrix
independent of energy conservation and far-field restrictions as long as the initially
formulated preconditions hold. But, as in the case of symmetry, we may expect that
the unitarity condition (241) is valid only for infinite matrices, in general. Therefore,
beside the symmetry relation (223), we can also use the unitarity condition as a
measure of convergence of approximation (225).

If we consider only the ideal metallic scatterer there exists another but quite
interesting possibility to prove the unitarity of the S-matrix directly by employing
the transformation character (131)/(132) of the matrix elements

[
W∂Γ+

]τ,τ ′

i,k
of

the interaction operator at the scatterer surface ∂Γ . For this we define the scalar
product
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(
v n̂− ,u n̂−

)
∂Γ

:=
2∑

τ=1

N∑
i=0

∮
∂Γ

[
v n̂−(x)

] ∗
i,τ

· u n̂−
i,τ (x) dS(x) . (242)

of at first two arbitrary block vectors v n̂− and u n̂− in which each component of the
block vectors is a three-dimensional vector by itself. For the scalar product inside
the surface integral on the right-hand side of (242) we have in spherical coordinates[

v n̂−
] ∗
i,τ

·u n̂−
i,τ =

[
v n̂−

]∗
i,τr

· u n̂−
i,τr

+
[
v n̂−

]∗
i,τθ

· u n̂−
i,τθ

+
[
v n̂−

]∗
i,τφ

· u n̂−
i,τφ

, (243)

for example, with i = 0, · · · , N and τ = 1, 2. Next we consider the two special
block vectors

φ(k0,x) =
(
n̂− × ϕ0,1(k0r, θ, φ), · · · , n̂− × ϕN,1(k0r, θ, φ),

n̂− × ϕ0,2(k0r, θ, φ), · · · , n̂− × ϕN,2(k0r, θ, φ)
)

(244)

χ(k0,x) =
(
n̂− × χ0,1(k0r, θ, φ), · · · , n̂− × χN,1(k0r, θ, φ),

n̂− × χ0,2(k0r, θ, φ), · · · , n̂− × χN,2(k0r, θ, φ)
)

(245)

which consist of the tangential projections of the outgoing and incoming eigenvec-
tors of the vector-wave equation at the scatterer surface. By use of (131)/(132)
and (41) it can be shown that the S-matrix transforms the block vector φ into the
block vector χ according to

χ tp = − S tp · φ tp (246)

or, alternatively,
χ = − φ · S . (247)

Here we want to emphasize again that the S-matrix is a 2× 2 block matrix. Now,
since we have assumed a real k0, we get the identity

(χ,χ)∂Γ = (φ,φ)∂Γ (248)

for the two block vectors χ and φ. Together with (246) this results in(
φ,φ · S† · S)

∂Γ
= (φ,φ)∂Γ (249)

where S† is the conjugate-complex and transpose of S. From this we can infer the
unitarity condition

S† · S = E (250)

of the S-matrix directly. This way makes again clear that (250) holds only for
infinite matrices, in general, because the equals sign in (246) is in fact not strictly
valid for block vectors with a finite number of components. The only exception is
for the spherical scatterer as one can see from the definitions of the eigenvectors χ
and φ. In this case every finite S-matrix is already unitary. But this means that this
feature is not an appropriate measure of the accuracy of approximation (225) for
spherical scatterer geometries. Furthermore, it was shown by Waterman in [5] that
every finite S-matrix (or T-matrix, as well) belonging to a nonspherical scatterer
can be treated to become unitary to improve the convergence behaviour of the
approximation in certain cases. It should also be mentioned that, unfortunately,
we could not find a similar way to prove the unitarity of the S-matrix on the basis
of the transformation (152) and (153) for dielectric scatterers, so far.
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4.6 Far-field behaviour

If we speak about scattering in electromagnetic theory it is tacitly meant that we
consider scattering of plane waves on spatial structures characterized by certain
dielctric properties. A corresponding scattering theory interrelates the asymptotic
free states before and after the interaction of the plane wave with the scattering
structure, whereas the incoming plane wave expresses the asymptotic free state
before the interaction [36]. If we know the asymptotic state after the interaction
we can derive and define quantities which are appropriate to measure. Thus, from
scattering measurements we are able to infer information about the physical nature
of the scatterer itself. If we consider the steady state of scattering with an assumed
time-dependence of exp(−iωt) then the asymptotic states correspond to spatial
distances large compared to a characteristic distance of the scattering structure,
i.e., we look at the free states in the far field. From this understanding of scattering
the far field becomes an important region, i.e., we must ask for the behaviour of
the relevant fields in this region. All the following far-field considerations are based
on the general representation

GΓ+(x,x
′) = G0(x,x′) +∮

∂Γ

G0(x, x̄) ·W(x̄, x̃) ·G0(x̃,x′) dS(x̄) dS(x̃) (251)

of the Green function for both the ideal metallic and dielectric scatterer. In the
former case W∂Γ+(x̄, x̃) according to (123), and in the latter case W (d)

∂Γ+
(x̄, x̃)

according to (124) must be used in the right-hand side of (251). The quantities
G>

t and G<
t which appeared in Eqs (123) and (124) can be replaced by G0 since

both variables x and x′ are always outside the smallest sphere circumscribing the
scatterer. Gt will be identical with G0 because of (108), and if using the analytical
expression (96) there is no need to distinguish between G>

t and G<
t . In Fig. 4.1

we have shown the general scattering configuration. The far field is represented by
the spherical surface S∞ although it is a nonlocal condition valid for an infinite
distance from the scatterer, i.e., for lim|x|→∞. Its practical importance stems from
our experience that the far-field behaviour of a certain scattering quantity can
be sufficiently approximated within a finite distance from the scatterer in a real
experiment.

As discussed in section 4.3 the dyadic free-space Green functionG0(x,x′) solves
the inhomogeneous vector-wave equation (94) and obeys the radiation condition
(11) with respect to x. The primary incident field, generated by the source distri-
bution (102) is then be given by Eq. (101). To force this primary incident field to
become a plane wave at the scatterer location we applied the additional condition
(103). This allowed us to use the asymptotic expression (100) for G0 in (101). It
means that the source of the primary incident field must located somewhere in
the far field of the scatterer. But this statement concerning the location of this
source is not sufficient to define scattering quantities in an appropriate way. The
above-discussed understanding of scattering implies that the plane wave nature of
the primary incident field still remains in the far field. There it will be interfere
with the scattered field to a total field where the scattered field results from the
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interaction of the primary incident plane wave with the scatterer. This linear su-
perposition is expressed by the two contributions on the right-hand side of (251).
This becomes problematic since a plane wave is a solution of the homogeneous
vector-wave equation which does not fulfil the radiation condition in the far field.
Moreover, this is in contradiction to the solution of (101). Thus, the plane wave
seems to contradict somehow the concept of Green’s function because the latter
are essentially based on sources. The ideal plane wave represents ‘smoke without
fire’, so to speak. Anyway, to generate the required plane wave within a Green’s
function technique we have to place the corresponding source behind the conven-
tional far-field S∞, whatever this means theoretically. But it is not sufficient to
place the source only somewhere behind the conventional far field but in the far
field of the conventional far-field, just to generate a plane wave in the conventional
far field. Therefore we have to introduce a second far field SXXL

∞ (the enlarged
far field) with respect to the variable x′. Only this configuration will allow us to
generate a plane wave at the location of the scatterer as well as in the far-field
S∞ by use of the free-space Green function. This is the somehow strange situation
concerning the plane wave we already mentioned in section 4.3.1. Now we will go
into the details.

4.6.1 The plane wave

We have already said that the plane wave

einc(x) = e0 · eik·x = e0 · e−ik0·|x|·êx′ ·êx (252)

is a solution of the homogeneous vector-wave equation(∇×∇×− k2
0

)
einc(x) = 0 (253)

in Γ+. êx′ is the unit vector pointing toward the source of the primary plane wave
located in the enlarged far-field SXXL. êx, on the other hand, is pointing toward
the point of measurement. These unit vectors will be denoted further on with

n̂i = − êx′ (254)
n̂s = êx (255)

and should not be confused with the unit vectors n̂ or n̂− defined at the boundary
surfaces. For the plane wave Maxwell’s equations read

k× einc(x) = ωμ0hinc(x) (256)
k× hinc(x) = − ωε0einc(x) (257)
k · einc(x) = 0 (258)
k · hinc(x) = 0 (259)

since the ∇-operator, if applied to eik·x, provides simply ik. From these equations
(253) follows immediately. We can see furthermore that the polarizations e0 und
h0 are always perpendicular to each other and to the wave-vector k. k ·x = const.
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are points of constant phase, and the wave-vector k is always perpendicular to the
planes of constant phases. These are the important features of a plane wave.

In the far-field S∞ the plane wave enjoys an interesting representation. In (252)
there appears the term eik0·|x|·n̂i·n̂s . This expression can be rewritten in terms of
incoming and outgoing spherical waves according to

eik0·|x|·n̂i·n̂s =
2πi
k0

·
[
δ(n̂i + n̂s)

e−ik0|x|

|x| − δ(n̂i − n̂s)
eik0|x|

|x|
]

(260)

with
δ(n̂i ± n̂s) = δ(cos θi ± cos θs) · δ(φi ± φs) . (261)

From this we get

einc(x) =
2πi
k0

· e0 ·
[
δ(n̂i + n̂s)

e−ik0|x|

|x| − δ(n̂i − n̂s)
eik0|x|

|x|
]

(262)

for the plane wave in the far field (see [11], for example). Obviously, if looking into
the direction of the primary source (i.e., if n̂s = −n̂i) we are not able to distinguish
between an outgoing spherical wave and the plane wave. But the more important
aspect of (262) becomes clear if we consider this representation together with the
scattered field.

4.6.2 The scattered and total field

The total field in the far-field S∞ follows from (121) and (122), respectively, in
conjunction with the Green function (251). Together with the source (102) and
the asymptotic behaviour (100) of G0 (this can be used because of our SXXL

∞
construction!) we obtain from the first part of the right-hand side of (251) just the
above discussed plane wave (262) as the primary incident field. The scattered field
follows from the second term on the right-hand side of (251). Here we can use again
the asymptotic expression (100) resulting in

es(x) = A(n̂s, n̂i) · e0 · e
ik0|x|

|x| (263)

where

A(n̂s, n̂i) =
1
4π

·
∮

∂Γ

I(n̂s)t · e−ik0n̂sx̄ ·W(x̄, x̃) · I(n̂i)t · eik0n̂ix̃ dS(x̄) dS(x̃) . (264)

denotes the dyadic scattering amplitude. Because of

I(n̂s)t = θ̂s � θ̂s + φ̂s � φ̂s (265)

I(n̂i)t = θ̂i � θ̂i + φ̂i � φ̂i (266)

n̂s ·A(n̂s, n̂i) = A(n̂s, n̂i) · n̂i = 0 (267)

holds for this amplitude. It should be mentioned that the second relationA(n̂s, n̂i)·
n̂i = 0 is usually an additional requirement in the existing literature (see [11, 35],
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for example). Here it is a consequence of representation (251) and must not be
additionally required. The corresponding expression for the total field reads now

et(x) =
2πi
k0

· e0 ·
[
δ(n̂i + n̂s)

e−ik0|x|

|x| − δ(n̂i − n̂s)
eik0|x|

|x|
]
+

A(n̂s, n̂i) · e0 · e
ik0|x|

|x| . (268)

From this we can see that any other direction n̂s �= −n̂i will register only the
scattered field. Only in the forward direction n̂s = −n̂i we observe the interfer-
ence of the plane and scattered wave. However, if we had assumed a primary field
generated from a source located within a finite distance from the scatterer (this
corresponds to the general radiation problem in electrodynamics) then we would
observe in the far-field S∞ the interference of two outgoing spherical waves (one
from the primary source, and the other from the scatterer) for every direction n̂s.
It is exactly the former behaviour which makes the plane wave especially suited
for scattering experiments and their interpretation. Every measurement for which
n̂s �= −n̂i holds can be exclusively related to the scattered field, and, thus, to the
interaction of the given plane wave with the scatterer we want to analyse with a
scattering experiment. However, the convenience of plane wave scattering in the
far field is justified only by our experimental experience. Consequently, the appli-
cability of both models ‘plane wave’ and ‘far field’ in a real experiment must be
ensured from the beginning. But sometimes even this is not a simple task.

Equation (268) can be split into incoming and outgoing spherical waves accord-
ing to

et(x) = f1(n̂s) · e
−ik0|x|

|x| + f2(n̂s) · e
ik0|x|

|x| (269)

with the amplitude vectors

f1(n̂s) =
2πi
k0

· δ(n̂i + n̂s) · I(n̂i)t · e0 (270)

f2(n̂s) = − 2πi
k0

· S(n̂s, n̂i) · e0 , (271)

and the dyadic far-field scattering function

S(n̂s, n̂i) =
ik0

2π
·A(n̂s, n̂i) + δ(n̂i − n̂s) · I(n̂i)t . (272)

This function can now be used as the kernel of the following dyadic far-field scat-
tering operator:

Ŝ : f → g (273)

with
g(ˆ̄n) :=

∮
S∞

S(ˆ̄n, n̂) · f(n̂) dn̂ . (274)

‘
∮

S∞
· · · dn̂’ denotes the integral
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0

∫ π

0

· · · sin θ dθ dφ . (275)

This operator allows us to map the above given amplitude vector f1(n̂) of the
incoming wave according to

f2(n̂s) =
∮

S∞
S(n̂s, n̂) · [−f1(−n̂)] dn̂ (276)

to the amplitude vector f2(n̂s) of the outgoing wave.
The dyadic scattering amplitude as well as the dyadic far-field scattering func-

tion obey the symmetry relations

A(n̂s, n̂i) = Atp(−n̂i,−n̂s) (277)

and
S(n̂s, n̂i) = S tp(−n̂i,−n̂s) . (278)

The former is a consequence of the symmetry relations (99) and (119)/(120). Ap-
plied to (251), and by taking identity (90) into account we obtain at first the
symmetry relation

W(x̄, x̃) =Wtp(x̃, x̄) . (279)

From this relation and from (264), (277) follows in a straightforward way. The
consequential relation of (272) is (278).

[S] τ,τ ′

l,n;l′,n′ =
∮

S∞
y∗l,n,τ (n̂s) · S(n̂s, n̂i) · yl′,n′,τ ′(n̂i) dn̂s dn̂i (280)

are the matrix elements of the operator Ŝ. The transversal vector functions yl,n,τ

are related to the vector functions cl,n and bl,n given in (26) and (27) according to

yl,n,1(n̂) := in · γl,n · cl,n(θ, φ) (281)

yl,n,2(n̂) := i(n−1) · γl,n · bl,n(θ, φ) . (282)

Because of the orthogonality of (35) and (36) the transversal vector functions form
an orthonormal system on S∞, i.e.,∮

S∞
y∗l,n,1(n̂) · yl′,n′,1(n̂) dn̂ = δl,l′ δn,n′ (283)∮

S∞
y∗l,n,2(n̂) · yl′,n′,2(n̂) dn̂ = δl,l′ δn,n′ (284)

and ∮
S∞

y∗l,n,1(n̂) · yl′,n′,2(n̂) dn̂ =
∮

S∞
y∗l,n,2(n̂) · yl′,n′,1(n̂) dn̂ = 0 (285)

hold. The second contribution on the right-hand side of (272) provides therefore
the matrix elements

δτ,τ ′ δl,l′ δn,n′ . (286)
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To determine the matrix elements of the first contribution on the right-hand side
of (272) we have to go back to (264). First we note that the expression I(n̂i)t ·eik0n̂ix̃

is nothing but the plane wave (105) if multiplied with the polarization vector e0.
But for such a plane wave we already know the expansion (111)–(113). From this
and relations (31) and (32) it follows that we can use

I(n̂i)t · eik0n̂ix̃ = 4π ·
2∑

τ=1

∞∑
n=0

n∑
l=−n

ψl,n,τ (k0r̃, θ̃, φ̃)� y∗l,n,τ (n̂i) (287)

as an appropriate expansion for the dyadic I(n̂i)t · eik0n̂ix̃. Along the same lines we
get

I(n̂s)t · e−ik0n̂sx̄ = 4π ·
2∑

τ=1

∞∑
n=0

n∑
l=−n

yl,n,τ (n̂s)� ψ∗l,n,τ (k0r̄, θ̄, φ̄) (288)

for the dyadic I(n̂s)t · e−ik0n̂sx̄. Now, if we use both expansions in Eq. (264) and we
take (50) into account we obtain the matrix elements

ik0

2π
·
∮

S∞
y∗l,n,τ (n̂s) ·A(n̂s, n̂i) · yl′,n′,τ ′(n̂i) dn̂s dn̂i =

2 (ik0)
∮

∂Γ

ψ̃l,n,τ (k0, x̄) ·W(x̄, x̃) · ψl′,n′,τ ′(k0, x̃) dS(x̄) dS(x̃) . (289)

But the integral on the right-hand side of this relation is nothing but (128) or (148),
respectively. Thus we have finally

[S] τ,τ ′

l,n;l′,n′ = δτ,τ ′ δl,l′ δn,n′ + 2 · [W ]τ,τ ′

l,n;l′,n′ . (290)

This is identical with (228). Thus we have the interesting result that the matrix
elements of the S-matrix introduced in section 4.4.2 are identical with the matrix
elements of the above defined far-field operator Ŝ. Furthermore, since we have
already proven the unitarity of the former in the case of a lossless scatterer, we have
thus shown the unitarity of the far-field operator for a lossless scatterer without
assuming energy conservation. The unitarity property of this operator reads in
operator notation∮

S∞
S †(n̂, n̂′) · S(n̂, n̂′′) dn̂ =∮

S∞
S ∗(n̂′, n̂) · S(n̂, n̂′′) dn̂ = I(n̂

′)
t · δ(n̂′ − n̂′′) . (291)

Consequently, if we introduce the scalar product〈
u(n̂) |v(n̂)〉

S∞
:=

∮
S∞

u ∗(n̂) · v(n̂) dn̂ (292)

for two arbitrary transversal vector functions u(n̂) and v(n̂)
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f2(n̂) |f2(n̂)

〉
S∞

=
〈
f1(n̂) |f1(n̂)

〉
S∞

(293)

holds for the two special amplitude vectors f1 and f2 in (269), due to relation
(276) and the unitarity of the S-operator for lossless scatterer. According to our
initially formulated understanding we can state now that (231), if applied to the
total electric field by using ψ(x) = et(x) and φ(x) = et(x), is an appropriate
quantity to express energy conservation for lossless scatterer. Especially in the far-
field region, i.e., if ∂Γa is identical with the far-field surface S∞, and if the far-field
behaviour (269) of the total electric field is considered, it can be shown that (293)
is a consequence of

{et(x), et(x)}S∞ = 0 (294)

(see [35], for example). A further consequence of the unitarity property of the
S-operator is the so-called ‘generalized optical theorem’ of the dyadic scattering
amplitude. To derive this theorem we must simply insert (272) into (291). This
provides∮

S∞
A †(n̂, n̂′) ·A(n̂, n̂′′) dn̂ = 2π

ik0
· [A(n̂′, n̂′′) − A †(n̂′′, n̂′)

]
=

2π
ik0

·
[
A(n̂′, n̂′′) − A ∗tp(n̂′′, n̂′)

]
. (295)

The conventional optical theorem can be derived from this expression, as also
discussed already in [35].

4.7 Concluding remarks

The present paper aimed at providing a common methodical Green’s function basis
for different rigorous approaches developed so far for solving the problem of plane
wave scattering on a single, homogeneous, isotropic but nonspherical particle. The
considerations have been further restricted to the spherical coordinate system and
to ideal metallic and dielectric scatterers. It was shown that different definitions
of so-called interaction operators can be linked to different approaches. The well-
known T-matrix approach, originally developed by Waterman, could be derived
from definition (123) in the case of an ideal metallic scatterer, and from definitions
(124) or (168) if the dielectric scatterer is considered. Once the matrix elements
of the interaction operators are determined from the boundary conditions at the
scatterer surface we are able to approximate the corresponding Green functions
by finite series expansions. The derived matrix elements of the interaction opera-
tors are identical with the matrix elements of Waterman’s T-matrix if the needed
weighting vector functions are appropriately chosen.

It was shown afterwards that the conventional singular surface and volume
integral equations are a result of a small but important replacement in the defining
equations. We ‘simply’ replaced G>

t by the full dyadic free-space Green function
G0. The different possibilities of the definition of interaction operators are the
crucial aspect of Rayleigh’s hypothesis. Although there is no definite answer to
this hypothesis, so far, we gave some arguments for our position that these different
possibilities to define the interaction operators can be considered to be equivalent.
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In a further chapter we discussed the symmetry and unitarity property of the T-
matrix (or, equivalently, the matrix elements of the interaction operators) by use
of the corresponding Green functions but without using the physical experience
of reciprocity and energy conservation as a necessary prerequisite. Finally, the
well-known far-field behaviour of the scattered and total field was discussed as a
consequence of the Green function representation.

Acknowledgements

Special thanks are given to Dr K. Schmidt and Dr J. Wauer for valuable discussions,
and to one of the anonymous reviewers for helpful suggestions.

References

1. M. Kahnert. Numerical methods in electromagnetic scattering theory: J. Quant. Spec-
trosc. Radiat. Transfer 79-80, 775, 2003.

2. H.C. van de Hulst. Light Scattering by Small Particles, Dover Publications, New York,
1957.

3. P.M. Morse, H. Feshbach. Methods of Theoretical Physics, McGraw-Hill, New York,
1953.

4. C. Tai. Dyadic Green Functions in Electromagnetic Theory, 2nd edn, IEEE Press, New
York, 1994.

5. P.C. Waterman. Symmetry, unitarity, and geometry in electromagnetic scattering:
Phys. Rev. D 3, 825, 1971.

6. R.E. Kleinman, G.F. Roach. On modified Green functions in exterior problems for the
Helmholtz equation: Proc. R. Soc. Lond. A 383, 313, 1982.

7. R.E. Kleinman, G.F. Roach, S.E.G. Stroem. The null field method and modified Green
functions: Proc. R. Soc. Lond. A 394, 121, 1984.

8. M. Kahnert: Light scattering by particles with boundary symmetries. In Light Scat-
tering Reviews, Vol. 3, edited by A. Kokhanovsky, Springer-Praxis, Chichester, 2008.

9. F. Dyson. George Green and physics: Physics World 6, 33, 1993.
10. H. Levine, J. Schwinger. On the theory of electromagnetic wave diffraction by an
aperture in an infinite plane conducting screen: Appl. Math. 3, 355, 1950.

11. M.I. Mishchenko, L.D. Travis, A. Lacis: Scattering, Absorption, and Emission of Light
by Small Particles, Cambridge University Press, Cambridge, 2002.

12. T. Rother. Self consistent Green’s function formalism for acoustic and light scattering,
Part 2: Dyadic notation: Opt. Commun. 251, 270, 2005.

13. A. Doicu, Y. Eremin, T. Wriedt: Acoustic and Electromagnetic Scattering Analysis
Using Discrete Sources, Academic Press, New York, 2000.

14. T. Rother. Scalar Green’s function for penetrable or dielectric scatterers: Opt. Com-
mun. 274, 15, 2007.

15. K. Schmidt, T. Rother, J. Wauer. The equivalence of applying the Extended Bound-
ary Condition and the continuity conditions for solving electromagnetic scattering
problems: Opt. Commun. 150, 1, 1998.

16. J.J.H. Wang: Generalized Moment Methods in Electromagnetics, Wiley, New York,
1991.

17. H. Hoenl, A.W. Maue, K. Westphal: Theorie der Beugung. In Handbuch der Physik,
Vol. 25/1, edited by S. Fluegge, Springer, Berlin, pp. 218–584, 1961.



166 Tom Rother

18. J. Van Bladel: Singular Elelctromagnetic Fields and Sources, Clarendon Press, Oxford,
1991.

19. J.G. Fikioris, A.N. Magoulas. Scattering from axisymmetric scatterers: a hybrid
method of solving Maue’s equation: PIER 25, 131, 2000.

20. J.G. Fikioris. Singular integrals in the source region: J. Electromagn. Waves Appl. 18,
1505, 2004.

21. G. Mie. Beitraege zur Optik trueber Medien, speziell kolloidaler Metalloesungen: Ann.
Phys. 25, 377, 1908.

22. Lord Rayleigh. On the dynamical theory of gratings: Proc. R. Soc. Lond. A 79, 399,
1907.

23. W.C. Chew:Waves and Fields in Inhomogeneous Media, IEEE Press, New York, 1995.
24. M.L. Burrows. Equivalence of the Rayleigh solution and the Extended-Boundary-
Condition solution for scattering problems: Electr. Lett. 5, 277, 1969.

25. B.A. Lippmann. Note on the theory of gratings: J. Opt. Soc. Amer. 43, 408, 1953.
26. T. Rother, K. Schmidt. The discretized Mie-formalism for plane wave scattering on
dielectric objects with non-separable geometries: J. Quant. Spectrosc. Radiat. Transfer
55, 615, 1996.

27. J.P. Barton, D.R. Alexander. Electromagnetic fields for an irregularly shaped, near-
spherical particle illuminated by a focused laser beam: J. Appl. Phys. 69, 7973, 1991.

28. J.P. Barton. Electromagnetic field calculations for irregularly shaped, axisymmetric
layered particles with focused illumination: Appl. Opt. 35, 532, 1996.

29. J.P. Barton. Electromagnetic field calculations for a sphere illuminated by a higher-
order Gaussian beam. I. Internal and near-field effects: Appl. Opt. 36, 1303, 1997.

30. T. Elfouhaily, T. Hahn. Rayleigh’s hypothesis and the Geometrical Optics limit: Phys.
Rev. Lett. 97, 120404, 2006.

31. J. Wauer, T. Rother: Considerations to Rayleighs hypothesis. Opt. Commun. 282,
339, 2009.

32. A.G. Dallas: On the convergence and numerical stability of the second Waterman
scheme for approximation of the acoustic field scattered by a hard object. In Technical
Report, no. 2000-7, Dept. of Mathematical Science, Univ. Delaware, 2000.

33. J.A. Wheeler. On the mathematical description of light nuclei by the method of res-
onating group structure: Phys. Rev. 52, 1107, 1937.

34. W. Heisenberg. Die beobachtbaren Groessen in der Theorie der Elementarteilchen: Z.
Phys. 120, 513, 1943.

35. D.S. Saxon. Tensor scattering matrix for the electromagnetic field: Phys. Rev. 100,
1771, 1955.

36. M. Reed, B. Simon:Methods of Modern Mathematical Physics, Vol. 3, Academic Press,
San Diego, CA, 1979.



Part II

Radiative Transfer



5 Space-time Green functions for diffusive
radiation transport, in application to
active and passive cloud probing

Anthony B. Davis, Igor N. Polonsky, Alexander Marshak

5.1 Context, motivation, methodology, and overview

Clouds are a feast for the eye but, when contemplating their fluid beauty, it is im-
portant – at least for scientists – to bear in mind that they are also key elements of
the Earth’s climate system. They are indeed the first-order regulators of the intake
in solar energy: What portion goes back to space? What reaches the surface (then
warms the ground, drives photosynthesis, etc.)? Clouds also contribute strongly
to the vertical distribution of solar heating and, from there, the thermal balance
of the atmosphere. These are well-known and relatively well-understood/modeled
climate roles of clouds, as can be expected for such naturally occurring components
of the atmosphere. We note that these roles involve radiative transfer across the
electromagnetic spectrum. What is far less understood about clouds is how they
interact microphysically, chemically and thermo-hydrodynamically, with other nat-
ural and anthropogenic constituents, especially aerosols. These are known as cloud
feedback mechanisms in the parlance of climate science, and have been identified
as the single most resilient roadblock in the way of reducing uncertainty in future
climate prediction [1], an enterprise that relies heavily on models to explore various
scenarios in global greenhouse gas emissions.

The first order of business in addressing cloud feedback issues is therefore to
improve statistics and accuracy in cloud observation, which is prerequisite to the
improvement of cloud process models, which are in turn expected to enable the
progress we so desperately need in global and regional climate modeling. Policy-
makers need and deserve the absolute best climate science deliverables if they are
to propose in some ways painful regulations for greenhouse gas emissions in accord
with future international treaties. Because cloud systems have regional influence
and strong diurnal cycles, communities engaged in the meteorology, air-quality and
surface hydrology are also stakeholders in improved cloud science, both in obser-
vations and in models.

As soon as we realize that direct airborne probing of clouds is prohibitively
expensive on a per datum basis, it follows that improving cloud observations glob-
ally is primarily a charge to the cloud remote sensing community. Whether from
ground or from space – and these perspectives are in many ways complementary
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– we need better coverage (number of satellites, and their swaths),1 better sam-
pling (spatial and angular resolution), and better retrieval techniques (exploitation
of spectral and polarization measurements). This picture is overly simplistic. The
notion that we can infer all the cloud properties that matter using only spectral
and, with increasing appeal and availability, polarization data follows from the pre-
vailing ‘1D thinking’ behind all current cloud remote sensing products delivered by
space agencies world-wide. The operational assumption is indeed that clouds can
be represented, for the purposes of the unavoidable radiative transfer, as horizon-
tally infinite plane-parallel slabs at the pixel-scale, irrespective of the size of the
pixel. We thus ignore the pixel-to-pixel variations that make satellite cloud imagery
so interesting, not to mention the likely presence of sub-pixel variability. This as-
sumption may in fact be justified in view of other uncertainties: there is more than
just radiative transfer modeling error to worry about, and a relatively fool-proof
way of minimizing its impact is to steer away from cloud boundaries. This makes
cloudy- versus clear-column discrimination an important preliminary task.

However, those interesting interactions between clouds and aerosols happen
in the (often only partially [2]) cloudy pixels, as well as in those pixels at the
cloudyclear interface [3] – precisely where we are sure that neither cloud nor aerosol
retrievals are accurate due to unaccounted 3D radiative transfer effects. The emerg-
ing paradigm in cloud and aerosol remote sensing is therefore 3D and integrative:
multi-spectral and multi-polarization methods are merged with multi-pixel and
multi-angle ones and, ultimately, synergies across very different kinds of instru-
mentation are used to optimize cloud property retrievals.

No one ever said that cloud remote sensing is easy!
This review covers in detail the theory of radiation transport Green functions,

as it applies to optical probing of cloud structure by remote observers on both sides
of the clouds, as well as in situ observers. We are only interested in scattering – and
indeed multiple scattering – phenomenology based primarily, but not exclusively,
on solar and laser sources. Our focus will be on the more opaque clouds that form
in the Earth’s atmosphere, since we favor analytical methods based on mathemat-
ically tractable problems that arise in the diffusion (small mean-free-path) limit
of transport theory at large.2 Finally, we will make the standard assumption of
horizontally extended stratiform cloud geometry.3

In spite of this cascade of restrictions, the modeling framework we present sheds
new light on a wide variety of radiometric modalities: some active and some pas-
sive; some advanced concepts and some well-established ones; some from ground,

1From geostationary platforms, one sees the whole visible face of the Earth; however,
their distance limits the achievable spatial resolution.

2We are thus building on the shoulders of the giants that founded and developed
statistical physics: kinetic theory (going at least back to L. Boltzmann), neutron transport
theory (going back to J. von Neumann, N. Metropolis, R. Peierls, and others), stellar
astrophysics (going back to A. Eddington, A. Milne, V.A. Ambartsumian, V.V. Sobolev,
S. Chandrasekhar, and others), and even turbulence (going back to L.F. Richardson, A.N.
Kolmogorov, G.I. Taylor, and others).

3However, the space-time Green function is a 3D radiative property, and we will re-
visit the challenging problem of practical (i.e., efficient and targeted) 3D cloud radiative
transfer armed with said Green functions in various parts of the paper.
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some from space, and yet others from aircraft. The application field is so vast that
we have opted to survey the relevant theoretical and observational literatures as we
encounter different topics. Our main message is that they all branch away from the
same radiation transport theory, namely, the unifying framework of Green func-
tions. We present this body of theory up-front in a hierarchical manner: starting
with a very detailed incarnation of radiative transfer4 in three spatial dimensions
and with time dependence, implemented numerically mostly with slow-but-accurate
Monte Carlo methods, and ending with simple scaling arguments, implemented
with the proverbial back-of-the-envelope algebra. In our individual experiences, it
is this multi-tiered modeling toolkit that has enabled the pursuit of instrument de-
velopment ... even though our training is in applied theoretical and computational
physics and mathematics. This solid theoretical background also enabled us to pro-
pose new ways to use under-exploited components of existing radiometric signals,
some of them considered previously as contamination (for example, 3D adjacency
effects in remote sensing at high spatial resolutions) or even as noise (for example,
solar background in lidar).

Although no real-world data is used in this paper, we point the reader to nu-
merous publications by ourselves and others that are all about data analysis. They
are all success stories that, as a whole, have shored up our now firm belief in bal-
ance – as well as intense interaction – between (i) theory, (ii) computation, and
(iii) observation/experimentation. Stakes are often much higher for engineering
projects than for cloud remote sensing: we can think, for instance, of aircraft or
nuclear reactor safety and reliability. It is therefore not surprising to learn that
engineering scientists have developed a quite formal choreography for the interac-
tion between these three elements. In the process, the notions of ‘verification’ and
‘validation’ have been given precise meanings that Roache [6] has distilled into two
fundamental questions: Are the equations solved right? (Verification) Are they the
right equations? (Validation). The first V in ‘V&V’ leads in particular to code-
to-code comparisons, while the second invariably leads to model-to-measurement
comparisons. This framework can be adapted to the study of atmospheric radia-
tion transport in the presence of clouds [7,8]. We believe many other communities,
remote sensing included, have much to gain by adopting – or at least taking inspi-
ration from – this tested framework.

In the next section, we survey the necessary prerequisites in time-domain 3D
radiative transfer theory. In section 5.3, Fourier–Laplace transformation is intro-
duced, which will prove useful in several ways. Sections 5.4 and 5.5 are the core
material of the paper: formulation and solution of the diffusive Green function prob-
lem. In other words, how do we obtain analytic expressions for the Green function
in time and/or space, or for its marginal or conditional moments, for light either re-
flected or transmitted by clouds? Appendices provide the required technical details
as well as heuristic approaches to Green functions, in standard as well as anomalous
diffusion regimes, using random walk theory. A comprehensive list of symbols and
abbreviations is provided for reference at the end of the paper. Since the analyti-
cal expressions are delivered in Fourier and/or Laplace spaces, section 5.6 presents

4Radiative transfer has itself been connected to Huygens’ scalar wave theory [4], and
only quite recently in final form to Maxwell’s classic electromagnetic wave theory [5],
through rigorous methods of statistical optics.
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special cases where inverse transforms can be performed in closed-form. The short
section 5.7 on (airborne) in situ cloud ‘lidar’, a new probe of optically thick clouds
from the inside, is followed by two longer sections devoted to emerging technolo-
gies in cloud remote sensing per se. Both time-domain radiative transfer via O2

A-band spectroscopy (section 5.8) and multiple-scattering cloud lidar (section 5.9)
can be implemented in ground-, aircraft- or space-based configurations. We show
in particular that there is additional information to harvest in the spatial domain
by lidars if the stand-off distance is not too large. A selection of other theoretical
and observational applications of Green functions are described in section 5.10, for
the most part based on well-established instrumentation. We offer some closing
remarks in section 5.11 with an emphasis on future developments.

Notes on reproducibility and validation

The bulk of the analytic diffusion theoretical computations described in sections
5.5 to 5.10 were performed using a commercially available symbolic mathematics
package. We believe that any such product can be used at the reader’s convenience
for replicating, generalizing and/or applying these results. Although it is possible to
derive them by hand, the exercise can prove extremely tedious. We did it ourselves
only in the simplest of cases.

Furthermore, diffusion is in essence an asymptotic limit of radiative transfer.
Before trusting our diffusion results to give us insights about radiation transport
processes in real clouds, we compare them on a regular basis using a numerical
time-dependent radiative transfer solver, generally a straightforward Monte Carlo
scheme. Is this comparison of model outputs verification and validation? In our
view, it would be the former if the very same equations were solved, but that is
not the case. One model is higher in the accuracy-based hierarchy than the other,
so Monte Carlo can be used to validate diffusion. However, because of their role
in validation, our Monte Carlo simulations were designed to follow as closely as
possible the assumptions of the diffusion problem: single-parameter phase functions,
predictions for fluxes, and so on. This way, we are informed about the range of
cloud parameters where a specific diffusion model can be applied, and about the
magnitude of associated modeling error.

5.2 Elements of time-dependent three-dimensional radiative
transfer

5.2.1 Radiant energy transport

Let G(t,x,Ω) denote radiance at instant t and position x in 3D space propagating
into direction Ω (units are W/m2/sr). In view of the focus of the present study on
Dirac δ-sources introduced in the next subsection, we denote radiances here by G,
the usual mnemonic for Green functions, and reserve I for ‘at-detector’ radiances
discussed in various parts of the paper. At-the-detector is indeed where we quite
literally leave the realm of radiative transfer and enter that of radiometry.



5 Space-time Green functions for diffusive radiation transport 173

The flow of Green function radiance, G(t,x,Ω), in its (1+3+2)-dimensional
space is determined by the monochromatic time-dependent 3D radiative transfer
(RT) equation [9], written succinctly as

LG = SG+Q. (2.1)

On the l.-h. side, we identify the propagation operator

L = c−1 ∂

∂t
+Ω · ∇+ σ(x) (2.2)

where σ(x) is the extinction coefficient (in 1/m), assumed to depend only on posi-
tion. The two last terms in L represent losses for the intensity of the light beam as
it crosses an elementary volume aligned with Ω, respectively to advection across
boundaries and extinction.5 We caution here that � = 1/σ(x) may have a popu-
lar interpretation as the local value of the mean-free-path (MFP); however, it will
generally differ from the actual MFP, except in strictly uniform media [10].

On the r.-h. side of (2.1), we find the gains of the elementary volume aligned
with Ω. First comes the in-scattering operator

S = σs(x)
∫
4π

p(Ω′ ·Ω)[·] dΩ′ (2.3)

where σs(x) is the scattering coefficient. It is also assumed to depend only on
position and, for simplicity, in such a way that the single scattering albedo (SSA),

�0 =
σs(x)
σ(x)

(2.4)

remains constant. The scattering phase function (expressed here in 1/sr) is de-
noted p(Ωin ·Ωout); it is also assumed, for simplicity, uniform in space as well as
axisymmetric around the incident direction Ωin. The local source term, denoted
by Q(t,x,Ω) in (2.1), is another net gain for the elementary volume (expressed in
W/m3/sr).

Apart from boundaries, to be examined momentarily, the net losses of radiant
energy for the whole medium are determined locally by the absorption coefficient
σa(x) = σ(x)− σs(x) = (1−�0)σ(x).

The general RT equation spelled out in (2.1)–(2.3) is usually derived from purely
phenomenological considerations grounded in radiant energy conservation [11] or,
more formally, by analogy with particle kinetic theory leading to Boltzmann’s trans-
port equation, which is narrowed to the case of ‘photons’ [12], often viewed simply
as neutrons without the possibility of multiplication events (that cause the SSA to
exceed unity). However, when dealing with electromagnetic radiation, one cannot
be satisfied with these derivations since, in particular, they do not make clear the
conditions of validity of the transport model. Progress towards a wave-theoretical
foundation for radiative transfer was achieved steadily using a scalar wave approach

5As far as we know, extinction σ can only be negative inside a lasing medium due to
stimulated emission under conditions far from thermal equilibrium.
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to physical optics [4]. We refer the interested reader to Mishchenko’s recent review
[13, and several key references therein], to gain understanding of how the RT equa-
tion – without temporal or spatial variability, but plus polarization – follows from
Maxwell’s equations through the rigorous methods of statistical optics. The three
most important lessons from this definitive microscopic foundation for RT theory
are probably:

1. that the mesoscopic 3D RT equation is valid in all ‘dilute’ optical media, i.e.,
where inter-particle distances are much larger than the wavelengths of interest;

2. that multiple scattering paths ending in propagation exactly backwards toward a
source have a residual wave-theoretical signature in the interesting phenomenon
of ‘weak localization’ (resulting in an enhancement of radiance very near the
backscattering direction); and

3. that, in view of the purely classical derivation, ‘photons’ have nothing to do with
the story in spite of the often-used analogy with particle transport, especially
by Monte Carlo (MC) practitioners.

As an illustration of the last point, we should probably talk about e-folding dis-
tances rather than MFPs, a notion inherited from kinetic theory, which is patently
about particulate material.

In the following, we will continue to depend on the microscopic description of
radiation-matter interactions (Maxwell’s equations and, as needed, their quantum
mechanical counterparts) only to provide us with transport coefficients (σ’s) and
phase functions; see, for example, the monographs by Goody and Yung [14] for
molecules, Bohren and Huffman [15] for spherical particles, and Mishchenko et
al. [16] for nonspherical ones. We will actually be taking a step in the opposite
direction: from the above mesoscopic 3D RT equation to the macroscopic picture
where scattering dominates to such a degree that angular details are smoothed
down to just two spherical harmonics. That is the ‘diffusion’ (a.k.a. ‘P1’) limit
of RT theory. In this asymptotic (small MFP) approximation to RT, the analogy
between light (highly scattered) and particles (in Brownian motion) regains some
usefulness, bearing in mind the caveat in the above lesson #3; cf. Appendix E.

Strictly speaking, the new microphysical derivation of the RT equation [5] is for
spatially uniform, although not necessarily plane-parallel, media under steady and
uniform illumination by a collimated beam. Mishchenko [17] extended his derivation
to media with fluctuations at scales that are small with respect to the MFP; specif-
ically, one neglects the contributions of electromagnetic wave interactions between
particles inside the same (randomly placed) ‘inclusion’. However, extensions of this
rigorous framework to pulsed and/or narrow beams and/or larger-scale fluctuations
– all topics of interest here – are considered open problems [13]. Pending its deriva-
tion from first principles (Maxwell’s equations), we will use the time-dependent
3D RT equation in (2.1)–(2.3) as the ‘exact’ numerical benchmark against which
analytical diffusion-based approximations are assessed.

5.2.2 Dirac-δ boundary sources

In view of the potential for spatial variability of σ(x), no generality is lost by
bounding the cloudy medium by two horizontal planes at z = 0 and z = H. If we
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exclude from the definition of G the un-collided part of the radiance impinging on
the medium from an external source, then we can subject the 3D RT equation to
homogeneous boundary conditions (BCs):

G(t, x, y, 0,Ω) = 0, μ > 0, (2.5)
G(t, x, y,H,Ω) = 0, μ < 0, (2.6)

where we denote direction cosines as

Ω(θ, φ) =

⎛⎝ η cosφ
η sinφ
μ

⎞⎠
in Cartesian coordinates using polar angles, with μ = cos θ and η =

√
1− μ2. In

this case, nontrivial solutions of the RT equation require a non-vanishing source
term Q in (2.1). For boundary-source Green functions, we use

Q(t,x,Ω) = δ(t− z/c)δ(x)δ(y)σs(0, 0, z)p(μ)

× exp

⎛⎝−
z∫

0

σ(0, 0, z′) dz′

⎞⎠ (2.7)

where we assume, for the moment, vertical beam alignment (normal to the bound-
ary at z = 0). Note from the writing of the first δ-function that the instant t = 0
is when the the laser pulse hits the cloud at z = 0, precisely at x = y = 0 for con-
venience. Lasers are indeed physical sources that approximate Dirac-δ’s extremely
well in all the variables that matter here: time, location and directionality. In
other applications, their δ-in-wavelength and δ-in-polarization qualities also come
in handy.

Alternatively, we can set Q(t,x,Ω) ≡ 0 in the RT equation and model the
source in a revised statement of the BC (2.5) at z = 0:

G(t, x, y, 0,Ω) = δ(t)δ(x)δ(y)δ(Ω− ẑ), Ωz = μ > 0, (2.8)

where ẑ = (0, 0, 1)T orients the positive z-axis. In this case, the radiance field
contains both direct and diffuse components. Apart from this interpretation of
what is contained in G(t,x,Ω) or not, the two ways of modeling the normally
incident Dirac-δ source at a boundary are equivalent.

Figure 5.1 offers a comprehensive view of the spatial Green function excited by
a steady narrow beam normal to the upper boundary of a uniform non-absorbing
cloud assumed to be between altitudes 1 km and 2.2 km. Mean radiance, averaged
over all directions, is plotted. We immediately notice that the multiple-scattering
Green function permeates the whole optically thick (τ = 36) cloud. In view of
the logarithmic scale, we notice the exponential-type decay of the light field with
distance from the beam inside the cloud. This contrasts with the much slower decay
of overall light levels with distance to the cloud boundaries (viewed as sources for
remote observers), which is based on a 1/r2 law in the absence of any significant
scattering or absorption. Let us assume we have a single laser pulse with ∼1018

photons (for example, a 532 nm solid-state device with 5 W in cw power pulsing



176 A.B. Davis, I.N. Polonsky, and A. Marshak

Fig. 5.1. Mean radiance for the search-beam problem in a finite homogeneous slab. The
steady-state version of the RT problem defined in (2.1)–(2.7) was solved with the Spherical
Harmonic – Discrete Ordinate Method (SHDOM) [18, 19] for a uniform non-absorbing
(�0 = 1) cloud with thickness H = 1.2 km and uniform extinction σ = 30 km−1, hence
optical thickness τ = σH = 36. The phase function is for a ‘C1’ distribution of droplet size
[20] in a Mie scattering computation [15] for λ = 532 nm, which yields asymmetry factor
g ≈ 0.85 in (2.21). Mean radiance, J/4π from (4.5), is plotted for a domain larger than
the cloud itself. The ‘rays’ emanating from the source region near the top of the cloud are
an artifact of the discrete ordinates scheme (in this case, Nμ = 12 and Nφ = 24). This
result was graciously contributed by Dr K. Franklin Evans (University of Colorado).

at 10 Hz), and a modest (but highly efficient) detector with a modest aperture
of ∼1 mm2 and a 1-sr field-of-view (FOV) corresponding to ≈66◦ from side to
side. A typical number of photons detected per pulse by such a sensor in the light
shaded zone (for example, ground level, right below the source) is then ∼ 1018

×10−6/m2/sr ×1 sr ×(10−3)2 m2 = 106, which appears to be enough to spread
over, say, several 1000s of bins in space (direction) and/or time before the signal-
to-noise ratio (SNR) falls below

√
106/1000s ∼ 10s for shot noise alone. This leaves

plenty of room for a different FOV, reduced optical throughput, quantum efficiency,
and so on.6

For oblique illumination along Ω0(θ0, φ0), the internal source formulation with
(2.7) becomes

Q(t,x,Ω) = δ

(
t− z/c

μ0

)
δ

(
x− η0 cosφ0

z

μ0

)
δ

(
y − η0 sinφ0

z

μ0

)
σs(x, y, z)

× p(Ω0 ·Ω) exp
⎡⎣− z∫

0

σ

(
η0 cosφ0

z′

μ0
, η0 sinφ0

z′

μ0
, z′

)
dz′

μ0

⎤⎦ , (2.9)

while the BC source model in (2.8) becomes simply

G(t, x, y, 0,Ω) = δ(t)δ(x)δ(y)δ(Ω−Ω0), (2.10)

6If it dominates the shot noise, background noise (sun- or moonlight) can be dealt
with by appropriate filtering and time integration [21].
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where μ, μ0 > 0. Although we will focus primarily on uniform and slant (solar)
or pointwise and normal (lidar) illumination geometries, the above model for the
boundary source is general enough to cover all possible spatial, temporal and an-
gular distributions of sources by using straightforward space-time translations and
linear superposition (i.e., convolutions).

A final type of unitary source we are highly interested in is isotropic boundary-
point-sources, which can be expressed as

G(t, x, y, 0,Ω) = δ(t)δ(x)δ(y)/π, (2.11)

for all μ > 0 in the BC (2.5) at z = 0.
All of the primary sources of radiation, in the bulk or at the boundary of

the optical medium, have now been accounted for. In the same way that the in-
scattering operator in (2.3) produces a secondary source of radiance for a given
beam, boundaries can become secondary sources via partial reflection, as opposed to
the systematic absorption/escape described in (2.5)–(2.6). This process of boundary
scattering is formalized in a revised r.-h. side for the BC (2.6) at z = H for incoming
radianceG(t, x, y,H,Ω) with μ < 0. Specifically, we introduce in analogy with (2.3),

Ss = αH(x, y)
∫

μ′>0

ps(Ω′ → Ω)[·] dΩ′, (2.12)

which is applied to the local G; αH(x, y) is the local albedo of the boundary and
ps(Ω′ → Ω) is the surface phase function (in 1/sr).7 If necessary, we could similarly
define a reflective BC for the illuminated boundary at z = 0; this would only mean a
change of sign in μ and μ′. Two contrasting examples of surface scattering/reflection
are the isotropic (a.k.a. Lambertian) case, ps(Ω′ → Ω) = |μ′|/π, and the specular
(a.k.a. Fresnel) case, ps(Ω′ → Ω) = δ(μ′ + μ)δ(φ′ − φ).

We have now defined all the components of the RT equation, its BCs, and the
boundary δ-sources of primary interest here. This completes the determination of
the multiple-scattering Green function in the spirit of Bell and Glasstone [23], who
introduced it as a powerful modeling tool in nuclear reactor design and analysis.
The remainder of this section narrows our interest to outgoing boundary radiances
and their properties.

5.2.3 Remotely observable fields

In remote sensing applications, we use detectors outside the medium. We can there-
fore access only the outgoing radiance fields at cloud boundaries, which echo the
boundary conditions in (2.5)–(2.6) but with z-axis direction cosines of opposite sign:
G(t,−→ρ , 0,Ω), when Ωz = μ < 0, for reflection; G(t,−→ρ ,H,Ω), when Ωz = μ > 0,
for transmission. We denote here

−→ρ =
(
x
y

)
, hence x =

(−→ρ
z

)
.

7To connect with the popular ‘bidirectional reflection distribution function’ (BRDF)
[22]: ρ(Ω′ → Ω) = αHps(Ω

′ → Ω)/|μ′|.
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More precisely, we assume an imaging detector is measuring this radiance at some
finite stand-off distance dobs > 0 from the cloud boundary of interest: the sensor is
thus positioned at xobs = (

−→
0 ,−dobs)T or (

−→
0 , H+dobs)T. See schematic in Fig. 5.2.

Fig. 5.2. Schematic of boundary-source/boundary-detector Green function problem. We
illustrate the case of normal incidence and an observer along the incident beam.

Notice that we assume geometric alignment with the normally incident col-
limated beam. For reflected light, this is tantamount to modeling a monostatic
lidar (i.e., transmitter and receiver collocated). For transmitted light, the detec-
tor is looking straight at the point-source on the opposite boundary of the optical
medium, a typical configuration in imaging and visibility studies. In the latter case,
the proportion of the emitted light directly transmitted from the collimated source
in (2.7) or (2.8) to the detector is exp[−τ(−→0 )]. More generally, we define

τ(−→ρ ) =
H∫

0

σ(−→ρ , z) dz (2.13)

as the optical thickness of the medium at horizontal position −→ρ . The interesting
questions, however, are about the diffuse component generated by one or more
scatterings. We are thus restricting ourselves to coaxial source–detector geometry
(−→ρ 0 = −→ρ obs =

−→
0 ), simply because of the applications treated in the present study;

if necessary, generalization to −→ρ obs �= −→
0 is straightforward.

We denote the radiance recorded by the time-resolving/imaging detector as
Iobs(tobs,Ωobs). From this vantage point, we just sub-sample the Green func-
tion for boundary illumination, G(t,−→ρ , 0,Ω) or G(t,−→ρ ,H,Ω) is equated with
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G(t,−→ρ , ·,Ωobs(−→ρ )). In the time-domain, t refers to the time interval from entry
at the z = 0 boundary to escape from anywhere; however, unless the point of es-
cape is the closest to the detector, an observer at finite distance will see an extra
delay illustrated in Fig. 5.2. So we have

t = tobs −
(

1
cos θobs

− 1
)
dobs

c
. (2.14)

In the case of monostatic lidar observations (in reflection, when the detector is near
the source), one might use tround-trip = tobs + 2dobs/c. To equate ‘at detector’ and
‘at cloud’ radiances in the spatial domain, we must also factor into the independent
variables the finite distance to the observation point:

ρ(θobs) =
√
x2 + y2 = dobs tan θobs,

hence,
θobs(ρ) = tan−1(ρ/dobs),

and

Ωobs(−→ρ ) = ∓
⎛⎝ cosφobs sin θobs(ρ)

sinφobs sin θobs(ρ)
cos θobs(ρ)

⎞⎠ , (2.15)

where − is for reflection and + is for transmission.
In the limit dobs → ∞, a reasonable approximation for an orbital detector,

the connections in (2.14)–(2.15) still make sense by taking simultaneously the limit
θobs → 0, but keeping ρ constant. We thus denote the detector response as Iobs(t, ρ),
after accounting for the large but finite time delay; the last connection in (2.15)
simplifies to Ωobs(ρ) = (0, 0,∓1)T = ∓ẑ.

5.2.4 Flux-based spatial and temporal moments

To summarize, we are interested in computing and measuring the time-dependent
equivalent reflectance (or albedo) field

Robs(t,−→ρ ) = πG(t,−→ρ , 0,Ωobs(−→ρ ))/μ0 (2.16)

normalized by total source energy, and its counterpart in transmittance

Tobs(t,−→ρ ) = πG(t,−→ρ ,H,Ωobs(−→ρ ))/μ0. (2.17)

These are just alternatives to boundary-leaving radiance using

1. a Lambertian assumption about outgoing directions other than Ωobs (hence the
factor π), and

2. normalization by total incoming flux integrated over space, time and direction
(hence the 1/μ0 factor that accounts for the reduction in flux when illumination
is unitary but oblique).
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Temporarily ignoring angular sampling and truncation issues in real measurements,
we define

R(t,−→ρ ) = 1
μ0

+π∫
−π

π∫
π/2

| cos θ|G(t,−→ρ , 0,Ω(θ, φ)) sin θ dθ dφ, (2.18)

T (t,−→ρ ) = 1
μ0

+π∫
−π

π/2∫
0

cos θ G(t,−→ρ ,H,Ω(θ, φ)) sin θ dθ dφ, (2.19)

as the local time-dependent reflected and transmitted flux fields, respectively. The
equivalent and actual reflectance and transmittance fields displayed above are by
definition ratios of outgoing-to-incoming hemispherical fluxes, estimated or actual.
Lastly, we note that (2.19) is either diffuse or total transmittance depending on the
adopted formulation of the 3D RT equation. If we only have the diffuse transmit-
tance, then the total one is obtained by adding exp[−τ(Ω0)]/μ0 where

τ(θ0, φ0) =

H∫
0

σ

(
η0 cosφ0

z

μ0
, η0 sinφ0

z

μ0
, z

)
dz
μ0

is the optical path across the whole medium along the incident beam. It coincides
with (2.13) only when μ0 = 1 here and −→ρ =

−→
0 there.

Fig. 5.3. Space-time boundary Green functions of a uniform cloud under diffuse pointwise
illumination for reflection (left) and transmission (right). These responses in flux were
estimated numerically using a MC simulation with 109 histories that resulted in reflection
with probability R = 0.557 and transmission with probability T = 1−R. The logarithmic
grayscale is the same for both panels. Lateral transport distance ρ runs vertically from
0 to 1.5 km while in-cloud path ct runs horizontally from 0 to 3 km. Reproduced from
Ref. [24] with permission. More details in text.
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Figure 5.3 displays numerical (hence binned) estimates of R(ct, ρ) and T (ct, ρ)
for a uniform cloud, using the convenient units of in-cloud path ct rather than
transit time per se. The pointwise illumination is isotropic: boundary condition at
z = 0 from (2.11) and Q ≡ 0 in (2.1). The cloud has H = 0.3 km and τ = 16; there
is no absorption (�0 = 1) and scattering is according to the Henyey–Greenstein
(H–G) model [25]:

p(μs) =
(
1
4π

)
1− g2

(1 + g2 − 2gμs)3/2
, (2.20)

where μs is the cosine of the scattering angle, i.e., Ω′ · Ω. The new parameter g,
the well-known ‘asymmetry factor’, is critical to this study of diffusion regimes. In
general, it is defined as

g =
∫
4π

Ω′ ·Ωp(Ω′ ·Ω) dΩ′ = 2π

+1∫
−1

μsp(μs) dμs. (2.21)

In this case, we used8 g = 0.85.
The most striking difference between the two radiative responses in Fig. 5.3 for

a localized and pulsed excitation is that reflectance happens immediately, thanks to
low orders of scattering, while transmittance occurs only for ct ≥ H, with ‘=’ being
very unlikely since it calls for a direct transmission (at the e−16 ≈ 10−7 probability
level). Supports of both responses are inside the causality cone (ρ ≤ ct) dictated by
shallow quasi-ballistic lateral propagation away from the isotropic source followed
by a reflection. At large ct and ρ, the two responses are indistinguishable since after
a large number of scatterings escape is equally probable through either boundary.
Also, for fixed ct � H, we see that the value of ρ that maximizes the Green function
(where the tangent to the isophote is vertical in the panels of Fig. 5.3) follows a
roughly parabolic trend (ρmax(ct) ∼ √

ct). This is typical of diffusive radiation
transport, as we will see further on.

Figure 5.4 focuses on spatial Green functions. The l.-h. panels are the axisym-
metric fields F (−→ρ ) ≡ F (ρ), F = R, T , from (2.22) for a uniform cloud with τ = 13
and conservative g = 0.85 H–G scattering under normal collimated illumination by
a narrow beam. As in Fig. 5.3, the main differences between reflection and transmis-
sion are in the near-axis region. The top and r.-h. panels are F (−→ρ ), F = R, T , for a
randomly variable cloud with long-range spatial correlations. The fluctuating values
of the local optical depth in (2.13) have the same mean optical depth τ = 13; verti-
cal structure is assumed uniform.9 The boundary flux fields for this scaling (a.k.a.
‘fractal’) stratocumulus (Sc) cloud model of course have no axial symmetry. Closer
examination shows that there is less overall reflection and correspondingly more
transmission; in both cases, we see a slight increase in the horizontal dispersion
quantified by the root-mean-square (RMS) value of −→ρ .

8It is notable that phase functions for observed droplet-size distributions in boundary-
layer clouds yield g ≈ 0.85 with remarkably small variability [26].

9This stochastic cloud model was generated with a so-called ‘bounded cascade’ model
[27] tuned to have a Kolmogorov-type wavenumber spectrum in k−5/3 and an amplitude
of variation similar to those observed in marine stratocumulus [28]. More details on this
fractal cloud model are provided in section 5.10.6.
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Fig. 5.4. Spatial Green functions of homogeneous (left) and fractal (right) clouds with
the same mean optical depth under steady normal illumination by a narrow beam. These
are the outcome of two MC simulations, each with 108 histories; these events resulted in
reflection (b,b’) with probability R ≈ 0.5 in the uniform case and ≈ 0.3 in the fractal
case, or in transmission (c,c’) with probability T = 1−R. A 128×128 grid was used to bin
the boundary fluxes F (�ρ) with F = R, T . In the fractal case, we notice the systematically
larger spread towards rows with high rank, which correspond to the more tenuous region
in the top graphic (a) showing τ(x, y) from (2.13). Reproduced from Ref. with permission.
More details in text.
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Partly to improve the SNR and partly for conceptual simplicity, we like to
use spatial and/or temporal integrals of the observed flux field F (t,−→ρ ), for F =
R, T . We are particularly interested in statistical moments when it is viewed as
a probability density function (PDF) for escape in reflection or transmission. In
order to normalize the PDFs, we start by estimating

F =

∞∫
0

F (t) dt =

+∞∫∫
−∞

F (−→ρ ) d−→ρ (x, y) =
∞∫
0

dt

+∞∫∫
−∞

F (t,−→ρ ) d−→ρ (x, y), (2.22)

the cloud’s albedo (F = R) or transmittance (F = T ) for steady and uniform
illumination, either collimated or isotropic. We can then proceed to compute

〈tq〉F =
1
F

∞∫
0

tqF (t) dt =
1
F

∞∫
0

tq dt

+∞∫∫
−∞

F (t,−→ρ ) d−→ρ (x, y) (2.23)

for q = 1, 2, or more, and

〈ρ2〉F =
1
F

+∞∫∫
−∞

ρ2F (−→ρ ) d−→ρ (x, y) = 1
F

∞∫
0

dt

+∞∫∫
−∞

ρ2F (t,−→ρ ) d−→ρ (x, y). (2.24)

Angular brackets will always denote averages over space and/or time in cloud ra-
diative responses while an overscore denotes an average over spatial disorder, i.e.,
cloud structure. Examples of 〈ρ2〉1/2

F (RMS horizontal transport) for normal illu-
mination are rendered graphically with double-headed arrows in Fig. 5.4.

The above are ‘marginal’ moments; ‘joint’ moments 〈tqρp〉F and ‘conditional’
moments can also be estimated. Of particular interest in this last class is

〈ρ2〉F (t) = 1
F (t)

+∞∫∫
−∞

ρ2F (t,−→ρ ) d−→ρ (x, y), (2.25)

the mean-square horizontal transport at a fixed time, where F (t) follows from (2.22)
without the time integral.

Note that the moment estimations in (2.24)–(2.23) are immune to uncertainties
in a multiplicative constant for F (t,−→ρ ). From an observational standpoint, and
in sharp contrast with the estimation of cloud albedo or transmittance based on
(2.22), absolute calibration is not required. The easier task of flat-fielding of the
imager’s focal-plane array is, however, still necessary.

Of course, real-world observations give us no information on the boundary Green
function G(t,−→ρ , 0,Ωobs(−→ρ )), hence on R(t,−→ρ ), outside of the receiver’s FOV, i.e.,
the actual limits of all the above integrals over −→ρ (x, y) are finite when F = R, and
similarly for T . Moreover, for each value of −→ρ we only get one value of θ and φ
in (2.15). The latter problem is resolved by using an angular model to convert an
observed radiance into a boundary flux. The former problem is best addressed by
designing instruments with the widest possible FOV, such that it contains at least
a couple of the Green function’s e-folding distances away from the axis. We can
then assume quite safely that the residual truncation errors in both numerator and
denominator in (2.24)–(2.23) do not bias the estimates too much.
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5.2.5 Vertical variation of scattering coefficient

From this point on, we restrict our interest to stratiform clouds that can be rea-
sonably well represented by plane-parallel slabs of uniform thickness H,

M(H) = {x ∈ R
3; 0 < z < H},

still allowing for some degree of internal structure. In the above, we examined
cloud models with fractal behavior in the horizontal plane but uniformity in the
vertical. In the following, we will consider two complementary kinds of variability:
smooth (convection/radiation-driven) stratification along the z-axis and random
(turbulence-driven) 3D fluctuations. Discussion of the latter is postponed until
section 5.4.2.3, leaving us until then with σ(x) ≡ σ(z), and similarly for σs and
σa. The parameters of primary interest for a purely stratified cloud are its physi-
cal thickness H and optical depth τ from (2.13), but without the dependence on−→ρ (x, y).

Basic cloud physics informs us that stratus clouds are expected to be strongly
stratified. For instance, liquid water content (LWC) is predicted and widely ob-
served [30] to follow the adiabatic gradient in their ‘convective cores’, i.e., a linear
trend in z over the vertical extent of the cloud.10 This classic result from the base-
line ‘rising parcel’ theory in cloud microphysics (number density assumed constant)
leads to a 2/3 power-law in extinction, from straightforward dimensional analysis.
Formally, and depending on what side of the cloud is being illuminated by the
δ-source, we can write this as

σ0(γ; z) = σ × (1 + γ) (z/H)γ , or
σH(γ; z) = σ × (1 + γ) (1− z/H)γ , (2.26)

with γ ≥ 0 (in this case, 2/3) and σ denoting the mean extinction (obtained, say,
from cloud optical depth τ = σH).

Instead of the power-law model, it is advantageous to use a linear (constant
gradient) model,

σΔ(z) = σ × [1 + Δ (z/H − 1/2)], (2.27)

where |Δ| ≤ 2 is the relative difference in extinction at the two cloud boundaries
with respect to its mean value (invariably crossed at z = H/2). To put the linear
and power-law models in one-to-one correspondence, we propose to minimize their
difference squared (distance in L2). This exercise leads to

Δ(γ) = ±6×
(
2
γ + 1
γ + 2

− 1
)

(2.28)

where + is mapped to σ0(γ; z) and − to σH(γ; z). Values of special interest are
Δ = ±3/2 since they approximate γ = 2/3, the abovementioned expectations based
on parcel theory for a cloud illuminated from below (+) and above (−). Conversely,
we have

γ(Δ) = 2|Δ|/(6− |Δ|). (2.29)
10In a broader view of liquid water clouds, the maximum value of LWC is typically

reached at a depth of ≈H/3 from the top.
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Fig. 5.5. The impact of internal stratification on space-time cloud responses in flux to an
isotropic point-source (top) and a narrow collimated beam (bottom). These results are from
a number of MC simulations (2 · 108 histories) with H–G scattering (2.20). For simplicity,
the maximum cross-section algorithm was used to account for internal structure; see Refs
[19, 29]. Moments defined in (2.23)–(2.24) were computed, using their square-root for
second-order moments, and normalized to H = 1. We used τ = 15 with g = 0.46 in the
top panel, and τ = 20 with g = 0.85 in the lower panel. In spite of the larger optical
depth, we notice the smaller spread of results in the latter case (half the vertical range)
due to more forward-peaked scattering and a more anisotropic source. More discussion in
the main text.



186 A.B. Davis, I.N. Polonsky, and A. Marshak

Stratification in σ(z), as parameterized in the above, will directly affect the
spatial (2.24) and temporal (2.23) observables, even if it has no effect whatsoever
on the cloud’s albedo (F = R) or transmittance (F = T ) in (2.22). Indeed, the
local value of the MFP will be different at the top and bottom of the cloud and,
physically, this means that the random walk representing the diffusing light propa-
gation is scaled up (near cloud base) or down (near cloud top). Active and passive
instruments are already probing clouds from both sides and will continue to do so;
it is therefore imperative to quantify the effect of stratification on the observables.

Figure 5.5 shows numerical MC results for
√〈ρ2〉F /H, for 〈ct〉F /H and for√〈(ct)2〉F /H (F = R, T ) using both stratification models. The constant-gradient

model in (2.27) is sampled at 0.5 intervals from Δ = −2 to +2 for the prescribed
clouds and sources. The power-law model in (2.26) degenerates to the linear case
when γ = 1 (Δ = ±2), and of course when γ = 0 (Δ = 0), but it is interesting to
seek differences between the γ = 2/3 cases and the associated values of Δ = ±3/2
using (2.28). They are very small compared to the overall effect of stratification.
In turn, these effects are significantly larger for reflection than for transmission,
especially in the time domain. We also note in the top panel that, when illumina-
tion is pointwise but isotropic and the response is for boundary fluxes, the Green
functions for transmission depend only on |Δ| due to source–detector reciprocity
and a mirror-symmetry around z = H/2.

The qualitative differences between boundary-flux responses R and T we have
uncovered can be traced to the fact that reflected light is a balanced mix of low-
and high-order scattering. The low orders in the observed signal come almost surely
from near the source, hence from the illuminated side of the cloud, while the high
orders come from radiation that has permeated the whole cloud. In contrast, radia-
tion transmitted by optically thick clouds is made almost entirely of highly scattered
light.

5.3 Formulation in the Fourier–Laplace domain

Moment integrals in (2.23)–(2.24) are easy to compute by manipulation of trans-
forms in Fourier–Laplace space. In probability theory, the Fourier or Laplace trans-
form of a PDF is called its ‘characteristic’ function or, more tellingly, ‘moment-
generating’ function [31]. Which transform is used depends on the support of the
PDF. In our application, we need both Laplace for time t ∈ [0,∞) and 2D Fourier
for position −→ρ in the z = 0, H planes.

We are thus interested in the behavior of

F̃ (s,
−→
k ) =

∞∫
0

dt

+∞∫∫
−∞

exp(−st+ i
−→
k · −→ρ )F (t,−→ρ ) d−→ρ (x, y)

= F × 〈 exp(−st+ i
−→
k · −→ρ )〉F , F = R, T. (3.1)

We will apply a similar transformation to other ‘3+1D’ quantities as needed.
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5.3.1 Temporal Green functions and pulse-stretching problems

Consider the case of uniform, but still pulsed, illumination (
−→
k ≡ −→

0 ). One can
show [32] from (3.1) that coefficients of the Taylor expansion of F̃ (s,

−→
0 ) at s = 0

can be used to estimate temporal moments in (2.23). Specifically, we compute
F = F̃ (0,

−→
0 ), and then

〈tq〉F =
1
F

(
− ∂

∂s

)q

F̃

∣∣∣∣
s=0,k=0

. (3.2)

These numbers describe quantitatively how the incoming pulse is stretched out in
the responses of the scattering medium.

There is an interesting interpretation of the Laplace conjugate variable s in
terms of absorption by a uniformly distributed gas in the otherwise purely scat-
tering medium. Taking the Laplace transform of the general 3+1D RT equation,
boundary conditions, and source term in (2.1)–(2.7), we find notable changes, on
the one hand, in L̂Ĝ = SĜ+ Q̂ where

L̂ = Ω · ∇+ σ(x) + s/c (3.3)

and, on the other hand, in

Q̂(s,x,Ω) = δ(x)δ(y)σs(0, 0, z)p(μ)

× exp

⎛⎝−
z∫

0

σ(0, 0, z′) dz′ − s

c
z

⎞⎠ , (3.4)

and similarly using (2.9) if μ0 < 1. All is therefore as if the extinction coefficient is
boosted everywhere by s/c, but the scattering coefficient is unchanged.

This reading of (3.3)–(3.4) is known as the ‘equivalence theorem’ that attracted
considerable attention in the 1960s and early 1970s [33–39]. It clearly separates
absorption and scattering processes in the general RT problem, and states that
radiance at an absorbing wavelength can be calculated from the radiance at a non-
absorbing one and the attenuation along all possible paths from the sources to
the point/direction of interest. It is interesting to note that the earliest numerical
investigations (known to the authors) of time-domain RT with multiple scattering
(MC-based of course) were performed in the same time period; see Ref. [40].

Most of these early studies of pulse stretching, with or without the Laplace
transform, were focused on the F = R scenario. We will exploit it computationally
and observationally further on for both F = R and F = T , this balance being a
recurring theme in this review. We can thus gain access to temporal moments of
sunlight ... even though the source is steady and the detection system is passive
(cf. section 5.8).

5.3.2 Spatial Green functions and pencil-beam problems

The rotational symmetry acquired in section 5.2.5 for the cloud under already
normal/collimated or isotropic illumination conditions in direction space carries
over from physical to Fourier space; we therefore have F̃ (s,

−→
k ) ≡ F̃ (s, k).
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Consider now the case of steady illumination (s ≡ 0). One can easily show from
(3.1) that the Taylor coefficients of F̃ (0, k) at k = 0 can be used to estimate spatial
moments in (2.24). Specifically, we compute F = F̃ (0, 0), and then11

〈ρ2〉F =
−2
F

∂2F̃

∂k2

∣∣∣∣∣
s=0,k=0

. (3.5)

RT problems, generally in uniform semi-infinite (H → ∞) media, with localized
narrow (collimated) steady beams, are known in the literature as ‘pencil-beam’ or
‘search-light’ problems (cf. Figs 5.1 and 5.4). They have attracted quite a lot of
attention ever since the very earliest investigations of 3D RT we are aware of
[41–47]. Lately, such problems have been proposed as analytical benchmarks for
numerical transport code verification [48, 49]. There is not an exact equivalence
between horizontal wavenumber k > 0 with an effective absorption process, except
if we remove the dependence of the source on Ω (that controls the direction of the
derivative in L) and consequently forgo all but isotropic scattering. At any rate,
more effort and creativity is required than in the time-only problem.

5.4 Diffusion approximation for opaque scattering media

In the above, we have established a complete formalism for computing space-time
Green functions for scattering media illuminated and observed at a boundary.
However, it invariably leads to a numerical implementation, for example, a MC
algorithm. This is fine for case studies but impractical for applications in remote
sensing. Our goal now is to establish a physically reasonable theory leading to
F (t, ρ) or, equivalently, F̃ (s, k) in closed form (section 5.5). We can then use the
above definitions and relations that predict analytically the spatial, temporal, joint
or conditional moments of the Green functions (sections 5.8 and 5.9), even derive
closed-form expressions for the Green functions themselves (sections 5.6 and 5.7).

5.4.1 Derivation from the time-dependent 3D RT equation

Consider dense clouds, say, through which one cannot detect the silhouette and
maybe not even the general direction of the sun in the transmitted radiance field.
According to Bohren et al. [50], this translates to optical thickness �9 ± 1 (geo-
metrical thickness �9± 1 MFPs). We can then safely assume that the transmitted
light at least is transported via diffusion, the well-known approximation to RT per
se. That statement should carry over to reflected light as long as we focus on higher
orders of scattering; in space-time Green function studies, that translates to later
times and further distances from the source. In other words, while bearing in mind
the caveat in section 5.2.1 about thinking about RT as ‘photon’ transport, all is as
if the radiative fluxes measured in transmission or, for the most part, in reflection

11The factor of 2 originates, when the axial symmetry is applied, from the 2D dyadic

tensor
−→
k
−→
k used in the multivariate Taylor expansion of F̃ (0,

−→
k ) in (double-dot) combi-

nation with the second-order differential tensor operator
−→∇k

−→∇k.
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were currents of particles executing long convoluted random walks starting at the
localized and/or collimated source and ending at a cloud boundary.

Equations for this simplified transport theory can be derived by integrating
(2.1)–(2.3) angularly term-by-term over 4π, once directly and once after multipli-
cation by Ω. This leads to [51]:

c−1 ∂J

∂t
+∇ · F = −σa(x)J + qJ(t,x), (4.1)

c−1 ∂F

∂t
+∇ · K = −σt(x)F + qF (t,x). (4.2)

In (4.2), an important new coefficient appears: the ‘transport’ extinction,

σt(x) = (1− g)σs(x) + σa(x), (4.3)

equivalently (1−�0g)σ(x), with �0 from (2.4) and g from (2.21). The associated
(local) transport MFP [4,52] is denoted

�t(x) = 1/σt(x). (4.4)

There was been some controversy over the past 15 years about the exact role of
σa (i.e., absorption) in σt, hence in the diffusivity D, which we define further on as
c�t/3. In the mid-1990s, the rising importance of biomedical imaging applications
of ‘photon migration’ (diffusion) theory motivated several authors [53–58] to revisit
and confirm the idea originated by Furutsu [59] in 1980 that σa is not present in
(4.3)–(4.4). Rather, the effect of absorption is added to J after the fact with a mul-
tiplicative term in exp(−σact), assuming a uniform medium. This makes sense from
the standpoint of the equivalence theorem discussed in section 5.3.1. Subsequent
investigations [60–63], all based on steady-state transport, argued convincingly that
absorption does impact σt, although more weakly than in (4.3), for example, Aron-
son and Korngold [62] give D = 1/3(σs+σa/5) when g = 0. Cai et al. [64] re-ignited
the debate by framing D as dependent on time rather than absorption. We believe
that Pierrat et al. [65] have resolved the controversy by distinguishing between the
dynamical diffusion constant without σa, and steady-state one with it. All this is
for uniform media where one can gain insights by way of analytical manipulations,
even solutions, of the RT (not just diffusion) equation. In the presence of spatial
variability, we further need to distinguish absorption by a uniform interstitial gas
and by the clumped material that produces the scattering. The former case can
be treated with the equivalence theorem as stated, but not the latter unless it is
extended to include a discrete sum over successive orders of scattering [66].

We also introduced here the zeroth-, first-, and second-order angular moments
of Green-function radiance as

J(t,x) =
∫
4π

G(t,x,Ω) dΩ,

F (t,x) =
∫
4π

ΩG(t,x,Ω) dΩ, (4.5)

K(t,x) =
∫
4π

ΩΩG(t,x,Ω) dΩ,
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respectively, the scalar- (a.k.a. actinic-), vector- and (dyadic) tensor-fluxes. We
similarly define

qJ(t,x) =
∫
4π

Q(t,x,Ω) dΩ, (4.6)

qF (t,x) =
∫
4π

ΩQ(t,x,Ω) dΩ. (4.7)

For instance, based on (2.7), we have

qJ(t,x) = δ
(
t− z

c

)
δ(x)δ(y)σs(z) exp

⎛⎝−
z∫

0

σ(z′) dz′

⎞⎠ , (4.8)

qF (t,x) = qJ(t,x) g ẑ. (4.9)

More generally, (2.9) yields here

qJ(t,x) = δ

(
t− z/c

μ0

)
δ

(
x− η0 cosφ0

z

μ0

)
δ

(
y − η0 sinφ0

z

μ0

)

× σs(z) exp

⎛⎝−
z∫

0

σ(z′)
dz′

μ0

⎞⎠ , (4.10)

qF (t,x) = qJ(t,x) gΩ0, (4.11)

noting that in (2.9) we had not yet assumed that extinction is at most depen-
dent on z; here, the horizontal variations are driven only by the pointwise source
distribution.

In analogy with particle transport theory, (4.1)–(4.2) are local expressions of
the conservation of radiant energy and momentum respectively [12]. These are
the basic ingredients of a macroscopic theory of radiation transport where the
3D RT equation describes mesoscopic processes involving directional details while
Maxwell’s equations describe microscopic details involving wave phenomena.

As stated, the ‘continuity’ (or conservation) equations for energy (4.1) and mo-
mentum (4.2) are exact. The diffusion approximation follows from making two
simplifying assumptions about (4.2): first, the time-derivative is assumed negli-
gible and, second, a natural closure is introduced. The closure statement is that
the radiation pressure tensor K/c is isotropic, i.e., off-diagonal components vanish
and on-diagonal components are equipartitioned (each one is equal to 1/3 of the
radiant energy density J/c) [51]. This is indeed the expectation when radiation –
viewed as a monokinetic gas – is in local equilibrium with a dense highly scattering
medium. Small deviations from isotropy are then entirely captured by two spherical
harmonics, namely, a monopole and a dipole. Specifically, we have12

G(t,x,Ω) ≈ [J(t,x) + 3Ω · F (t,x)] /4π (4.12)
12We refer to the key paper by King, Radke, and Hobbs [67] for empirical evidence

of this representation of in-cloud radiance collected in extensive marine boundary-layer
stratocumulus clouds, which are of considerable interest here.
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and, accordingly,
p(Ω′ ·Ω) ≈ [1 + 3gΩ′ ·Ω] /4π (4.13)

for the phase function. These two expressions are often used as the point of depar-
ture in diffusion (a.k.a. ‘P1’) theory.

We notice right away that (4.13) is a rather poor representation of the phase
function of real distributions of cloud droplet size [20], most notably, the forward
diffraction-induced peak is absent. By the same token, (4.12) is a poor repre-
sentation of radiance anywhere near the highly collimated beam illuminating the
medium, whether localized like a laser source or spread out like the solar source.
The latter problem is mitigated by separating the un-collided beam from the diffuse
field and thus using internal source terms rather than a source in the boundary
conditions. The former problem is addressed in the following subsection.

No matter how one derives the diffusion transport model from the RT equa-
tion,13 we obtain the ‘constitutive’ equation:

∇J/3 = −σt(x)F + qF (t,x), (4.14)

a.k.a. Fick’s law, especially when the source term is absent (F = −∇J/3σt). This
defines the diffusion approximation as a first-order closure of the hierarchy of trans-
port equations started in (4.1)–(4.5). In the applications to come, we will focus on
wavelengths where the condensed water in cloud particles has negligible absorption:
σa(x) ≡ 0, hence �0 = 1 and σs(x) = σ(x). The continuity equation (4.1) then
simplifies to

c−1 ∂J

∂t
+∇ · F = qJ(t,x). (4.15)

These coupled partial differential equations (PDEs) encapsulate the diffusion trans-
port model we will exploit in the remainder of this paper.

5.4.2 Directional and spatial enhancements

Diffusion theory can easily be improved in highly relevant ways for cloud remote
sensing applications. Among many possibilities, we discuss one well-known ap-
proach in previously raised issues in direction space, and two quite recent develop-
ments germane to position space.

5.4.2.1 δ-Eddington rescaling for the impact of the diffraction peak in
the phase function

As previously mentioned, an inherent weakness of diffusion-based radiation trans-
port modeling is the smooth one-parameter phase function in (4.13) whereas real-
world phase functions have prominent forward peaks. We can partially mitigate this

13A more contemporary derivation of the 3D diffusion approximation would use asymp-
totic analysis of the general RT equation where the magnitude of the local MFP 1/σ(x) is
small and only large terms are kept; see Refs [68,69]. Yet another notable derivation [70]
makes use of a special limiting case of the discrete-angle phase function in the ‘six-flux’
model for 3D RT [71].
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disconnect by applying the classic δ-Eddington rescaling [72]. The phase function is
recast as a combination of a δ-function in the forward direction and a complemen-
tary term with two spherical harmonics. In the absence of absorption, this results
in a rescaling given by

σ′(x) = (1− f)σ(x), (1− g′) = (1− g)/(1− f), (4.16)

where f is the fraction of ‘δ-scattering’ (physically, just prolonged ballistic propaga-
tion). This operation decreases σ ≡ σs (increases the MFP), but leaves σt invariant
in (4.3). We will see in the next section that this scaling therefore leaves a large
class of diffusion models with isotropic boundary sources unaffected.

A popular choice is f = g2 because it fits the second as well as first spherical
harmonic coefficients of the H–G model phase function, hence

g′ = (g − f)/(1− f) = g/(1 + g). (4.17)

For liquid water clouds, where g ≈ 0.85, we get f ≈ 0.72, hence σ′ ≈ 0.28σ and
g′ ≈ 0.46. Alternatively, the whole diffraction peak – half of the scattered energy
for particles with very large size parameters (Babinet’s principle) – can be recast
as prolonged propagation in the original direction: f = 0.5, hence σ′ ≈ 0.5σ and
g′ ≈ 0.7.

5.4.2.2 Effects on bulk radiation transport of turbulence-driven
random 3D variability of extinction, general considerations

Although not our preferred approach in Green function calculation, F can be elim-
inated between (4.14) and (4.15), leading to

[∂t −∇ · (D∇)]J = cqJ −D∇ · qF (4.18)

where
D(x) = c/3σt(x) = c�t(x)/3 (4.19)

is the (local) radiative diffusivity.14 In an arbitrary 3D optical medium with neither
sources nor sinks (absorption), apart from boundaries, the local expression for
conservation of radiant energy is [∂t −∇D · ∇−D∇2]J = 0. In the Fokker–Planck
interpretation of this boundary-value diffusion problem, −∇D is an effective drift
velocity. Radiant energy thus flows naturally from low to high diffusivity (high to
low extinction) regions.

Dwelling on the no-source/no-sink media, we can use (4.18) to equate the clas-
sic operator for diffusion in a uniform medium with a specific variability term:
[∂t − D∇2]J = ∇D · ∇J . In the vector-flux picture, this new term on the r.-h.
side can be written as ∇ lnD · F , and it formally acts as a pseudo-source/sink
term for the mean flow in the hypothetical uniform medium. Davis and Marshak
[73] investigated the steady-state (∂tJ ≡ 0) problem in detail, showing systematic

14We recall that transport coefficients are the product of particle density and cross-
section for scattering, absorption, or both (extinction), per particle. Although there is no
compelling rationale for this, we tend to assign the random spatial fluctuations to the
particle density and hold the optical properties constant.
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effects of any given 3D structure on flux line geometry and, from there, domain-
average boundary flux (T = 1−R). The transport mechanisms behind systematic
3D effects observed in absorbing media and time-dependent deterministic flows re-
main open to investigation. For our present purposes, we now tap into a statistical
approach developed for steady sources to account for 3D effects, be they for tem-
poral characteristics – a conjecture that will eventually call for at least numerical
verification.

Barker and Davis [74] survey the two broad classes of models in 3D RT that
target large-scale effects of unresolved small-scale variability in cloud structure,
which is invariably assumed random in nature. Members of one class of such ‘mean
field’ theories lead to new transport equations to solve. Members of the other class
pursue homogenization: redefine coefficients in 1D RT so that the known solutions
of that problem capture the main 3D effects, which is clearly the path of least
resistance. Among these ‘effective medium’ approaches to random 3D variability,
we favor the rescaling techniques proposed by Cairns et al. [75] and by Larsen [76].
Although one-parameter solutions, they stem from careful treatments of both both
1- and 2-point statistics, i.e., the PDF of σ(x) and its autocorrelation function
respectively.

5.4.2.3 Homogenization via Cairns’ rescaling

Starting with the δ-rescaled (primed) quantities in (4.16) that account for the
problematic forward-scattering peak in the phase function, Cairns’ renormalization
theory leads to

σ′′(x) = (1− ε)σ′(x), (1− g′′) =
1− 2ε
1− ε

(1− g′), (4.20)

in the case of conservative scattering, where ε is the new variability parameter. We
see immediately that 1/2 is a strict upper limit for ε, and that it is probably best
to not approach too closely in practice, and especially not in diffusion modeling.
While δ-Eddington rescaling leaves the product (1 − g)σ invariant, it decreases
here both through σ and through 1− g as ε increases (since g′′ > g′). For diffusion
models with strict similarity (dependent only on σt = (1 − g)σ = (1 − g′)σ′), we
have

σ′′t (x) = (1− 2ε)σt(x). (4.21)

About the dependence of σ (or σt) on x, we should bear in mind here that, as
soon as we apply this rescaling, we have taken care of all the arguably random
small-scale variability – up to a few MFPs (see below). So, implicitly, we are now
interested only in cloud scale variations of the extinction, such as the stratification
trends discussed in section 5.2.5.

How does one compute ε? Recalling that overscores denote averages over the
spatial variability, Cairns et al. show specifically that, for moderate-amplitude fluc-
tuations, the 3D RT effects are captured with

ε = a−
√
a2 − v2 (4.22)

where



194 A.B. Davis, I.N. Polonsky, and A. Marshak

Fig. 5.6. Cairns’ scaling factor ε used in (4.20). The parameter ε is plotted as function

of σ2
1/2

/σ and σlc using (4.22)–(4.23). Values up to ∼1/3 can be used with some confi-
dence (this divides 1 − g at most by 2). Therefore at most moderate 1-point variability
ratio (RMS/mean for σ) can be considered (only slightly more than unity), unless the
correlations are very short range vis-à-vis the MFP (defined here as 1/σ, even though
this is known to be an underestimation [10]). More discussion in main text.

a =
1
2

(
1 +

1
σlc

)
, v =

√
σ2

σ2 − 1. (4.23)

Parameter v is the standard deviation to mean ratio, itself expressed with the
RMS-to-mean ratio, for σ and we denote here the characteristic correlation scale
of the spatial variability by lc. We see that

– for small-scale fluctuations (i.e., when lc � MFP ≈ 1/σ), we anticipate little
effect since ε ≈ (v/a)2/2≪ 1 (irrespective of v) as a becomes very large;

– for fluctuations at larger scales (i.e., when σlc � 1), we can have a strong
impact (ε � 1/2) although this scenario clearly stretches the validity of the
model, in particular, amplitude is then limited to cases where v2 � a − 1/4
(σ2/σ2 � 5/4 + 1/σlc);

– for fluctuations at the largest scales (σlc � 1, hence a ≈ 1/2 and v � 1/2),
one should average over macro-scale responses rather than try to find a single
effective medium to account for micro-scale variability effects.

Figure 5.6 illustrates this analysis of ε. In the last (‘slow’) variability regime, the
large-scale averaging of radiative responses can be computed locally using a strong
uniformity assumption, which is the essence of the independent pixel approximation
(IPA). See Ref. [74], references therein, and the penultimate section of this paper for
applications of the IPA to solar RT (section 5.10.3) and to a related time-dependent
problem (section 5.10.4).

The above scale-by-scale breakdown of spatial variability impacts is consistent
with the first-principles analysis by two of the present authors [10] who, incidentally,
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show that the actual MFP is ≈1/σ in a broad class of variable media with long-
range correlations, including clouds. Moreover, that estimate always exceeds 1/σ
(they are equal only when σ is uniform). This is a direct consequence of Jensen’s
inequality [77] in probability theory concerning averages of functions with definite
convexity (in this case, the exponential).

Those authors come to the same scale-based classification of variability effects in
RT from the standpoint of steady-state 3D diffusion theory [73]. The only difference
is that the transport MFP in (4.4) replaces the usual MFP used in the present
arguments based on propagation between successive scatterings (or, for example,
an emission or an absorption).

5.4.2.4 Homogenization via Larsen’s rescaling

As competition for Cairns’ model, we highlight another notable development in
homogenization theory by Larsen [76], who includes a diffusion limit of immediate
interest here. It builds on the ideas of Kostinski [78], Davis and Marshak [10]
who predict non-exponential step distributions between scatterings in randomly
variable media: sub-exponential distributions if spatial correlations are positive,
super-exponential otherwise [79]. Positive correlations are the norm in clouds, so we
anticipate the higher-order moments of to exceed the exponential-based prediction.

Let P (s) be the distribution of steps in the Markovian propagation process
of multiply scattered light. Recall that � = 〈s〉 is the well-known MFP. Then
the exponential case is completely defined, P (s) = exp(−s/�)/�, and it leads to
〈sq〉 = Γ (q)�q (for any real q > −1). The sub-exponential laws of interest here will
therefore have 〈sq〉 > Γ (q)�q for q > 1 because of the longer tail (slower decay).
Dwelling on moments of lowest integer order, we can use

r =
〈s2〉
2〈s〉2 > 1 (4.24)

to measure the deviation of P (s) from the exponential case.
By taking a careful asymptotic limit, Larsen finds (in different notations) that,

in the case where �0 = 1, homogenized diffusivity is

Deff = Dexp × [(1− g)r + g], (4.25)

which exceeds the classic value of Dexp = c�/3(1 − g) if r > 1, for all |g| <
1. Interesting things happen to radiation transport when 〈s2〉 = ∞ leading to
‘anomalous’ diffusion, which is out of the scope of this article; they are briefly
discussed in Appendix F and in Refs [80,81].

To implement this statistical 3D RT correction, we can assign the boost
Deff/Dexp in (4.25) to an effective reduction of σt in our diffusion models with
isotropic boundary or internal sources, hence strict similarity. Before application
to models with non-isotropic internal sources, the derivation in Ref. [76] would have
to be revisited. In analogy with Cairns’ rescaling in (4.21), we can use

εL =
1
2

(
1− 1

r − (r − 1)g

)
, (4.26)
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Fig. 5.7. Larsen’s scaling factor εL(g, r) from (4.26). Parameter εL is to be used in lieu
of Cairns’ counterpart in (4.21). It is plotted here as function of asymmetry factor g and
the ratio r of the second-order moment of P (s) and its predicted value based on the
exponential distribution. As expected from the definition in (4.21), εL does not exceed
1/2. We believe that values up to ∼1/3 can be used with confidence, which would at most
divide σt = (1− g)σ by 2, hence for 1 < r � 10 based on g = 0.85.

which of course does not exceed 1/2 for r ≥ 1 and |g| < 1. This homogenization
factor is plotted in Fig. 5.7 for the relevant range of its arguments (g, r). Larsen’s
εL depends on one local optical parameter, g, and only one variability parameter,
r. The later in turn depends however on both 1-point/PDF and 2-point/correlation
statistics in ways that are not yet well understood. Indeed, it can be shown that
if correlations are only very short range compared to the MFP, then P (s) is very
near exponential [10, 17]. Correlations that are very long by the same standard
of comparison are better treated by the above-mentioned IPA methods, leaving
correlations on the same scales as the MFP as the ones15 where homogenization
theories are truly helpful.

In short, exponential free-path PDFs prevail only in homogeneous optical media.
Random-but-correlated media have wider step PDFs, in particular, in the sense of
the moment inequality in (4.24). Consequently, they can sustain in steady-state
systematically larger fluxes thanks to greater effective diffusivity for the bulk of
the medium. Guided by the numerical results displayed in Fig. 5.4 for 〈ρ2〉F (F =
R, T ), we speculate that the spatial variability will also lead to increased horizontal
transport away from a localized source. Although their derivations may need to be
revisited for time-dependent transport, we will allow ourselves in the latter sections

15The plural is deliberate since, in stochastic optical media, the MFP is itself a random
variable dependent on position, direction, and realization. Although a mean MFP 〈s〉 can
be defined and investigated, it is no longer the only moment of interest in the step PDF
P (s) for the spatial-, directional- and ensemble-average [10]. So scales ‘commensurate with
the MFP’ could cover a wide range, at least going from 〈s〉 to 〈s2〉/2〈s〉 ≥ 〈s〉 (where ‘=’
is for the exponential case).
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of this paper to use Larsen’s or Cairns’ homogenizations of σt(x) for time-dependent
diffusion.

5.4.3 Boundary conditions, including boundary sources

Bearing in mind that the local optical properties that matter in diffusion
{σ(x), �0, g} can be rescaled to account for unavoidable phase function attributes
and 3D random variability, we now need to assign boundary conditions (BCs) to
the coupled first-order PDE problem at hand.

If the opaque (radiatively diffusive) cloud is reasonably stratiform, then we can
model it with slab geometry {x ∈ R

3; 0 < z < H}. We furthermore recall that, in
this plane-parallel framework, cloud optical depth τ is the integral of σ(z) from 0 to
H. BCs for the above coupled PDEs for J and F must then express hemispherical
fluxes crossing a constant-z plane in the ± directions, namely,

F± =

+π∫
−π

dφ

±1∫
0

G(·,Ω)μdμ = J/2± Fz

2
, (4.27)

obtained from (4.12). The no-incoming-radiance (a.k.a. ‘absorbing’) BCs for radi-
ance bring us flux-based BCs

4F+(t, x, y, 0) = J(t, x, y, 0) + 2Fz(t, x, y, 0) = 0, (4.28)
4F−(t, x, y,H) = J(t, x, y,H)− 2Fz(t, x, y,H) = 0, (4.29)

for all x, y, and t.
If we have partial reflectivity at the z = H boundary, which relates outgoing

(μ > 0) and incoming (μ′ < 0) radiances, as described in (2.12), then the associated
BC becomes

[1− αH(x, y)]J(t, x, y,H)− 2 [1 + αH(x, y)]Fz(t, x, y,H) = 0. (4.30)

The precise kind of reflection (for example, Lambertian vs. specular) is of course
inconsequential since only fluxes are modeled in diffusion theory.

Alternatively – but no longer equivalently – in the diffusion approximation, one
can put the pulsed source in the BC at z = 0. In that case, we set qJ = qF ≡ 0 in
the r.-h. sides of (4.14)–(4.15) and require

J(t, x, y, 0) + 2Fz(t, x, y, 0) = 4q0(t, x, y) (4.31)

for a general distribution of isotropic boundary sources, in lieu of (4.28). The pos-
tulated boundary source term q0(t, x, y) is the μ-weighted angular integral over
μ > 0 of the incoming radiance field. The radiance BC at z = 0 in (2.8) or in
(2.10), irrespective of Ω0, then yields

q0(t, x, y) = δ(t)δ(x)δ(y), (4.32)

as does the expression in (2.11) for an isotropic boundary source; all this while
the homogeneous BC at z = H in (4.29) or (4.30) is unchanged. Since flux alone
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tells us nothing about directionality, we are now effectively modeling the source as
pointwise and pulsed but isotropic in the μ > 0 hemisphere.

Equations (4.28)–(4.29), and their generalizations in (4.30) and (4.31) respec-
tively for secondary and primary sources, express the least usual ‘3rd-type’ of BCs
that occur in generic applications of diffusion-type PDE problems, both time-
dependent (parabolic) or steady-state (elliptical). They involve the density J at
the boundary and the boundary-crossing current Fz, equivalently, J and its nor-
mal derivative from (4.14). These BCs can be expressed as a variable mixture of
Dirichlet/first-type (fix J) and Neumann/2nd-type (fix Fz) BCs:

J(t,−→ρ , 0) + 3χFz(t,−→ρ , 0) = 4q0(t,−→ρ )
[1− αH(−→ρ )]J(t,−→ρ ,H)− 3χ [1 + αH(−→ρ )]Fz(t,−→ρ ,H) = 0. (4.33)

Although often referred to as ‘mixed’ BCs,16 these are known technically as ‘Robin’
BCs [82]. At any rate, they are the most general BCs we will need to consider in
the following applications of diffusion theory to cloud remote sensing.

When q0(t,−→ρ ) does not vanish, the BC mixing factor χ can differ from its 2/3
value used in (4.31), but typically not very much (at least in the most common
transport applications). This is basically a tuning parameter that was introduced by
early neutron transport theorists to help diffusion models reproduce high-precision
solutions of the transport equations in critical applications [52]; this boost in ac-
curacy is naturally applied where diffusion is at its weakest, namely, boundaries.
The physical interpretation of χ is that of an ‘extrapolation length’ measured in
transport MFPs. Indeed, in the absence of anisotropic internal sources, Fick’s law
in (4.14) tells us that Fz(t,−→ρ , 0) = −[∂zJ/3σt(z)]z=0, and similarly at z = H. By
substitution into (4.33), the l.-h. side reads as a linear extrapolation formula for J ,
given its derivative along the z-axis, over a distance χ/σt(0) into the z < 0 region;
we have a similar reading of the BC at z = H, going into the z > H region. Some
values for χ found in the literature are: 1/

√
3 (‘S2’ model [11]), 2/3 (Marshak flux

BCs [51]), 0.7104 · · · (Milne half-space problem [52]), 1/n (nD ‘discrete angle’ RT
model [70], including 3D ‘six-flux’ theory [71]), 4/3 (optically thin limit [52]).

This realization in fact opens the possibility of recasting the above Robin BCs
as ‘extrapolated’ Dirichlet BCs:

J

(
t,−→ρ ,− χ

σt(−→ρ , 0)
)
= 4q0(t,−→ρ ) (4.34)

J

(
t,−→ρ ,H +

χ

σt(−→ρ ,H)
1 + αH(−→ρ )
1− αH(−→ρ )

)
= 0.

We need to assume here that the transport extinction σt(−→ρ , z) in the bulk and the
surface albedo αH(−→ρ ) vary at most rather slowly (almost everywhere finite gradi-
ents). The support of the coupled PDE problem at hand has thus been formally
extended from 0 < z < H to

− χ

σt(−→ρ , 0) < z < H +
χ

σt(−→ρ ,H)
1 + αH(−→ρ )
1− αH(−→ρ ) ,

16In mathematically correct terminology, ‘mixed BCs’ refers to problems with some-
where Dirichlet and elsewhere Neumann BCs.
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which may be between two wavy boundaries. This Dirichlet-type approximation
of the exact Robin BCs normally required for diffusion theory is rarely used in
atmospheric radiation applications, a notable exception being work by E.P. Zege
et al. [83, and references therein]. As demonstrated below, these approximate BCs
lead to simpler expressions that in turn enable deeper results, albeit at a cost in
accuracy and/or reduction of the applicable parameter space.

Finally, we need to reconsider our parameterizations of internal stratification
from section 5.2.5 from a diffusion standpoint. Because g is assumed constant, σt(z)
will have the same behavior as σ0,H(γ; z) for the presumably superior power-law
model. However, the vanishing σt(z) at either z = 0 (source below cloud) or z = H
(source above cloud) is problematic for the diffusion model. Indeed, the BCs in
(4.33) make necessary the evaluation of Fz(t,−→ρ , z) in (4.14) for z = 0 and z = H,
one of which contains a division by σt(z) = 0; this problem is even more obvious in
the extrapolated BCs in (4.34). Physically, the local transport MFP is divergent at
one of the cloud boundaries. Diffusion, as an approximation to RT, is already known
to deteriorate near boundaries. However, if the associated extrapolation length is
infinite, then the failure is likely to be catastrophic. This is the main reason why
we introduced the linear gradient model as a surrogate.

5.4.4 Remote sensing observables

The quantities of interest in cloud remote sensing are local/instantaneous reflec-
tivity and transmittivity, in other words, the outgoing fluxes normalized by total
incident energy. This total energy is the space-time integral of qJ(t,x) always as-
sumed unitary in Green function analyses. Specifically, we seek:

R(t, x, y) =
F−(t, x, y, 0)

F+(0)
=
J(t, x, y, 0)/2− Fz(t, x, y, 0)

2μ0
, (4.35)

T (t, x, y) =
F+(t, x, y,H)

F+(0)
=
J(t, x, y,H)/2 + Fz(t, x, y,H)

2μ0
, (4.36)

where F+(0) is the incoming flux (in the hemisphere with μ > 0) integrated over
time and the illuminated cloud boundary. Allowing for the possibility of oblique
illumination, we have F+(0) = μ0 ≤ 1. Invoking the BC at z = 0 in (4.28), we can
express these basic cloud responses simply as

R(t, x, y) = J(t, x, y, 0)/2μ0, (4.37)
T (t, x, y) = J(t, x, y,H)/2μ0; (4.38)

we recall that when, as is the case here, the source is specified internally, then the
diffuse transmittance in (4.38) does not include the un-collided flux contained in
direct transmittance.

If the isotropic boundary-source model in (4.33) is used for the BCs, then J and
F necessarily contain the incident flux. We must therefore compute the required
space-time reflectivity and transmittivity fields in (4.35)–(4.36) from

R(t, x, y) =
F−(t, x, y, 0)

F+(0)
= J(t, x, y, 0)/2− q0(t, x, y), (4.39)

T (t, x, y) =
F+(t, x, y,H)

F+(0)
= J(t, x, y,H)/2. (4.40)
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The outcome in the latter case will contain the contribution of directly transmitted
flux, although that should not be a significant contribution in diffusion regimes.

If the extrapolated Dirichlet BCs in (4.34) are used then, in principle, reflectivity
R(t, x, y) should be computed as the backward hemispherical flux at z = 0 (now
a point inside the extended domain) combining J and Fz according to (4.27).
However, the gain in accuracy is likely to be small compared to the loss incurred
by simplifying the BCs; so, for simplicity, it can still be obtained from (4.39). The
same remark applies to transmittivity T (t, x, y) from (4.38).

Finally, we recall that diffusion theory only predicts fluxes at cloud boundaries
(and, for that matter, elsewhere). A zeroth-order estimate of cloud-leaving radiance
is given by R(t, x, y)/π, a Lambertian assumption that is not unreasonable for
highly scattered light. A first-order angular model would make use of (4.12). This
radiance-to-flux conversion can be done with better angular models, and should be
for actual cloud remote sensing applications; see, for example, Ref. [84].

We have now completed the modeling framework for predicting remote sensing
signals originating from internally variable stratiform clouds in the spatial and
temporal domains using diffusion theory. Moreover, several options are available to
control the degree of fidelity in the model’s representation of collimated sources.

5.4.5 Fourier–Laplace transformation for stratified media

In the case of constant coefficients, or simple-enough vertical variability models,
Fourier–Laplace transformation of the PDE system in (4.1) and (4.14), with the
appropriate boundary conditions, leads to a class of analytically tractable problems
for our representations of pulsed laser or solar sources. Equipped with an effective
medium approach such as Cairns’ or Larsen’s for small-scale random 3D variability,
we can now restrict ourselves to cloud structure that unfolds only along the z-axis
according to the previously introduced stratification models.

We therefore define

J̃(s,
−→
k ; z) =

∞∫
0

dt

+∞∫∫
−∞

exp(−st+ i
−→
k · −→ρ ) J(t,−→ρ , z) d−→ρ (x, y). (4.41)

We similarly transform all the components of F (t,−→ρ , z), yielding F̃ (s,
−→
k ; z). We

can now think of (s,k) as parameters rather than independent variables, hence the
deliberate insertion of the ‘;’ separator.

Furthermore, we let F = (
−→
F h, Fz)T, similarly for qF , and we recall that ∇ =

(∂/∂−→ρ , ∂/∂z)T transforms to (i
−→
k , d/ dz)T. Our PDE system in (4.1) and (4.14)

then becomes a system of three ordinary differential equations (ODEs):

(s/c)J̃ + i
−→
k ·

−→̃
F h + F̃ ′z = −σa(z)J̃ + q̃J

i
−→
k J̃/3 = −σt(z)

−→̃
F h +

−→̃
q Fh,

J̃ ′/3 = −σt(z)F̃z + q̃Fz. (4.42)

Note that
−→̃
q Fh ≡ −→

0 in all of our laser source models by axial symmetry, although
this is an assumption we can relax when dealing with extended uniform (solar)



5 Space-time Green functions for diffusive radiation transport 201

sources since it corresponds to the
−→
k =

−→
0 case. From (4.8)–(4.9), Fourier–Laplace

transformed internal source terms are

q̃J(s) = σs(z) e−(s/c)z−R z
0 σ(z′) dz′ , q̃Fz(s) = g × q̃J(s), (4.43)

independent of k in the case of normal laser-like incidence.

Under these conditions, elimination of
−→̃
F h between the first and second equa-

tions leads to

F̃ ′z = −
[
s

c
+

k2

3σt(z)
+ σa(z)

]
J̃ + q̃J . (4.44)

This last ODE is an expression of energy conservation (with transport) along the
z-axis where local time variation and horizontal divergence of J are recast as ‘ef-
fective’ absorption processes:

σ(e)
a (s, k; z) = s/c+ k2/3σt(z). (4.45)

This is a key coefficient that, in general, is stratified differently than σx(z) (with x
= s,a,t), which all vary together (since �0 and g are assumed constant).

The general boundary conditions in (4.33) become

J̃(s, k; 0) + 3χF̃z(s, k; 0) = 4q̃0(s, k), (4.46)
(1− αH)J̃(s, k;H)− 3χ(1 + αH)F̃z(s, k;H) = 0, (4.47)

where q̃0(s, k) ≡ 0 and χ = 2/3 if the distributed internal source model in (4.43) is
used. If the boundary point-source model is used instead, q0(t, x, y) in (4.32) leads
to q̃0(s, k) ≡ 1 in (4.46). For simplicity, the optional surface albedo at z = H is
assumed uniform; otherwise, we would need to interpret the product of two func-
tions of −→ρ as a convolution in

−→
k -space. Under the same simplifying assumption,

treatment of the extrapolated boundary conditions in (4.34) is straightforward.
We recall finally that in remote sensing our interests are limited to

R̃(s, k) = J̃(s, k; 0)/2μ0, (4.48)
T̃ (s, k) = J̃(s, k;H)/2μ0, (4.49)

for collimated (possibly oblique) illumination, depending on what side of the cloud
the observation is performed. We must bear in mind that the latter expression
is restricted to the diffuse (scattered) component of transmission; for total trans-
mittance, we need to add the un-collided component exp[−(σ + s/c)H/μ0], which
includes the Laplace-space signature of the time-delay going from z = 0 to the
point of escape. When using the (necessarily isotropic) boundary source option, we
instead use

R̃(s, k) = J̃(s, k; 0)/2− 1, (4.50)
T̃ (s, k) = J̃(s, k;H)/2, (4.51)

and recall that, in this case, T stands for total transmission.
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5.5 Solutions of diffusive Green function problems

Not all of our best representations of the source and of the cloud structure
and of the boundary conditions can be used at the same time, even when us-
ing computer-assisted algebra. The mathematical complexity becomes intractable.
However, boundary-source Green functions can be computed in closed-form for
useful regions of the flexible parameter space we have set up in the above diffusion-
theoretical framework. In the following, we will move through the models adding
and removing capability with specific applications in mind. These applications will
be called out here, but described in full detail in the remaining sections of the
paper. In particular, we restrict ourselves here to Fourier–Laplace expressions, and
move on to PDFs and space-time moments in the two following sections on cloud
probing applications, by remote sensing or by in situ radiometry.

Throughout, we assume conservative scattering (σa(z) ≡ 0, �0 = 1), hence
σs(z) ≡ σ(z) and σt(z) = (1− g)σ(z).

5.5.1 Homogeneous cloud with an isotropic boundary point-source

In this first approach to boundary-source Green function calculus, we do not bother
with internal stratification. Moreover, we do not attempt to capture the collimation
property of laser beams nor source anisotropy induced by the forward-peaked phase
function of cloud droplets (beyond the classic scaling of σ by 1− g in σt). This is
the entry-level model used by Davis, Love and co-workers in their 1999 [85] and
2001 [86] proof-of-concept papers on multiple-scattering cloud lidar (reflected laser
light), and by Davis and Marshak in their 2002 paper [24] on transmitted solar
light, primarily with ground-based O2 A-band observations in mind.

The resulting boundary-value problem is quite simple:

F̃ ′z = −σ(e)
a (s, k) J̃ , J̃ ′/3 = −σt F̃z, (5.1)

subject to boundary conditions

J̃ + 3χF̃z

∣∣∣
z=0

= 4, J̃ − 3χF̃z

∣∣∣
z=H

= 0, (5.2)

leaving χ as an unspecified tuning parameter. By inspection, we see that non-
dimensional cloud responses will depend only on the transport or ‘scaled’ optical
depth

τt = H/�t = σtH = (1− g)τ, (5.3)

and of course χ. This means in particular that the δ-Eddington rescaling in (4.16)
for forward scattering has no effect on this model. Furthermore, we will have similar
behavior between s/c and k2/3σt since they are interchangeable in the constant
coefficient σ(e)

a (s, k) in (4.45).
This coupled ODE problem can be formally mapped to the simplest version of

the well-known two-stream model for solar transport in plane-parallel clouds, with a
fixed amount of scattering and a variable amount of absorption; see Ref. [87]. This
identification is purely formal because, in spite of their connection in (4.3), σ(e)

a

varies from 0 to ∞ independently of σt. In practice, this means that the effective
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�0 varies from 1 to −∞. Nonetheless, the analogy can be used if necessary to
obtain the solution of (5.1)–(5.2).

We start with the s/c = k = 0 case, corresponding to steady/uniform illumi-
nation, hence for σ(e)

a = 0. It is easy to show, by direct integration of (5.1)–(5.2),
that radiation density decreases only linearly through the medium:

J̃(0, 0; z) = 2
[
(1 +R) + (1 +R− T )

z

H

]
(5.4)

where we use cloud transmittance T and albedo R given by

T (τt/2χ) =
1

1 + τt/2χ
, R(τt/2χ) = 1− T (τt/2χ). (5.5)

These are the classic results for the two-stream/boundary source model in solar ra-
diation transport at non-absorbing wavelengths, going back to Schuster’s landmark
1905 paper [88] about atmospheric RT in the presence of scattering.17

Letting
L

(e)
D (s, k) = (3σ(e)

a σt)−1/2 = 1/
√
k2 + 3σts/c (5.6)

be the so-called diffusion length (in this case, an ‘effective’ one), the solution we
seek is

J̃(s, k; z) = 4
∑
{±}

±(1±X) e±(1−z/H)Y /
∑
{±}

±(1±X)2 e±Y

= 4
sinh[(1− z/H)Y ] +X cosh[(1− z/H)Y ]

(1 +X2) sinhY + 2X coshY
. (5.7)

We have introduced here the length-scale ratios X = χ�t/L
(e)
D = (2χ/τt)Y where

Y = H/L
(e)
D . Expressions for the required boundary fluxes are then

T̃ (s, k;H, τt/2χ) =
2X cosech Y

1 +X2 + 2X cothY
(5.8)

from (4.51), and

R̃(s, k;H, τt/2χ) =
1−X2

1 +X2 + 2X cothY
(5.9)

from (4.50). L’Hôpital’s rule can be used to retrieve the above baseline limit where
s, k (hence σ(e)

a ) → 0, as do X,Y . Figure 5.8 illustrates this Fourier-space solution,
F̃ (0, k;H, τt/2χ)/F (τt/2χ) (F = T,R) from (5.8)–(5.5), therefore with a focus on
steady sources (s = 0).

For transmission through a diffusive cloud, we have

T̃ (kH; ξ)
T (ξ)

=
(kH/ξ)× (1 + ξ)

[1 + (kH/ξ)2/4] sinh kH + (kH/ξ) cosh kH
, (5.10)

17For the record, the remarkable result in (5.4)–(5.5) was in fact derived in two earlier
but lesser-known papers by Lommel [89] and Chowlson [90].
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Fig. 5.8. Flux-based MTFs for similar diffusing clouds. Top: Fourier space filters
T̃ (k;H, τt/2χ)/T (τt/2χ) are plotted against non-dimensionalized wavenumber kH for
fixed H and χ = 2/3; they determine the loss of definition in imaging (with local
flux, not radiance) through clouds with increasing optical depth, from bottom to top:
τt = 1,

√
10 ≈ 3.16, 10, and the somewhat academic case of∞ (where there is no light left

to transmit). The curvature of the MTF at k = 0 determines the variance of the lateral
transport in transmitted light 〈ρ2〉T . Middle: Same as top panel but for reflection, and
τt = 31.6 is used instead of ∞. Bottom: Same as top panel but plotting the reflection
MTF versus k�t rather than kH; ordering of optical depth (modulated here with H) refers
to r.-h. side, but we note the increasing curvature on the l.-h. side. More discussion in
main text.
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where we define
ξ = τt/2χ = R/T, (5.11)

using (5.5). This normalized response plotted in the top panel of Fig. 5.8 as a
function of kH using χ = 2/3. This is basically a poor-person’s solution of the
pencil-beam problem, with no attempt at accounting for collimation, only local-
ization. It can also be recognized as the flux-based modulation transfer function
(MTF) of the cloud for an isotropic point-source. The MTF has immediate ap-
plications in imaging theory as the spatial Fourier filter that the medium applies
to any pattern viewed by a sensor through the cloud. We refer to Weinmann and
Masutani [91] for an interesting atmospheric application: viewing cities through
clouds at night from space.

Notice how the more tenuous clouds have a narrower band-pass: the resulting
image is brighter but more blurry. This is counterintuitive and results from the
propagation away from the assumed isotropic point-source in a medium where
the transport MFP �t is increasing, thus promoting further horizontal transport.
However, we see that the MTF is not very sensitive to τt as it becomes large:
it rapidly approaches the limiting case, kH/ sinh kH, for ξ ∝ τt → ∞. Since the
negative curvature of T̃ (kH; ξ)/T (ξ) at the origin becomes asymptotically constant,
(3.5) tells us immediately that 〈ρ2〉T will be ∝ H2 (and somewhat larger at finite
τt). This last prediction will be verified and made quantitative in the next section;
see also Appendix E.

For reflection from a diffusive cloud, we have

R̃(kH; ξ)
R(ξ)

=
(1− (kH/ξ)2/4)× (1 + ξ)/ξ

[1 + (kH/ξ)2/4] + (kH/ξ) coth kH
, (5.12)

with the same definition for ξ in (5.11). This normalized response is plotted in the
middle and lower panels with the same value for χ. As in the top one, the middle
panel uses kH as the non-dimensional independent variable. By comparison with
the case of transmission, we see that curvature at the origin decreases as τt increases,
and so will 〈ρ2〉R; the size of the reflected spot on a very opaque/reflective non-
absorbing medium (such as this sheet of paper!) is hardly bigger than the laser
beam (as is easy to verify with a laser pointer).

Another asymptotic limit of interest is when ξ ∝ τt ∝ H → ∞ with H/ξ = 2χ�t
held constant; the limiting form of the reflected counterpart of the MTF is
(1−χ|k|�t)/(1+χ|k|�t). The bottom panel re-plots R̃(kH; ξ)/R(ξ) versus wavenum-
ber non-dimensionalized as k�t. Recalling that we are dealing with a necessarily
symmetric function of k (R(−→ρ ) is axisymmetric), we see that the curvature at the
origin is infinite. In other words, 〈ρ2〉R for semi-infinite non-absorbing media is
infinite.
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5.5.2 Stratified cloud with an isotropic boundary point-source

The above bare-bones model for a pulsed point-source was recently generalized [92]
to include stratification according to the constant gradient parameterization from
section 5.2.5.18

We thus wish to solve both the space-domain (s = 0) problem,

F̃ ′z = −[k2/3σt,Δ(z)] J̃ , J̃ ′/3 = −σt,Δ(z) F̃z, (5.13)

and its time-domain (k = 0) counterpart,

F̃ ′z = −(s/c) J̃ , J̃ ′/3 = −σt,Δ(z) F̃z, (5.14)

in both cases, subject to boundary conditions in (5.2) with χ as an floating param-
eter. By inspection, we see that non-dimensional cloud responses can only depend
on Δ and τt = σtH (and χ). This again implies that δ-Eddington rescaling will
have no effect on the results. In contrast with the previous Δ = 0 case, however,
we will not have similarity-induced behavior between s/c and k2/3σt since they are
interchangeable in σ(e)

a (s, k) only when σt is constant.
The spatial diffusion problem in (5.13) and (5.2) for J̃(0, k; z) is solvable in the

Fourier domain in terms of Bessel functions of the second kind (Yn(x), n = 1, 2) and
modified Bessel functions of the second kind (In(x), n = 1, 2); see Appendix A for
details. The temporal diffusion problem in (5.14) and (5.2) for J̃(s, 0; z) is solvable
in the Laplace domain in terms of Airy functions and their derivatives, which are
in turn related to modified Bessel functions with 1/3-integer orders. In both cases,
the expressions are too complex to be reproduced here from the computer-assisted
symbolic math tool and, at any rate, they are only used after setting z = 0 or
z = H. This leads to somewhat simpler expressions for F̂ (s) = F̃ (s, 0), F = R, T ,
in terms of (regularized) confluent hypergeometric functions 0F1(a, x)/Γ (a); see
Appendix B for details.

Boundary fluxes F̃ (s, 0) and F̃ (0, k) are obtained as above for F = R, T and,
at zeroth order in both k and s, we retrieve (again using L’Hôpital’s rule) the
standard result in (5.5) for cloud transmittance F = T and albedo F = R. As
expected, they are insensitive to internal structure since optical properties �0 and
g are held constant with respect to z.

5.5.3 Homogeneous cloud with normally incident illumination at a
point

Rather than an isotropic point-source specified in the boundary conditions, we now
move to a more accurate representation of the pulsed laser beam formalized in (4.8)–
(4.9), hence (4.43) in Fourier–Laplace variables, as an exponential distribution of
anisotropic internal sources along the z-axis. However, to achieve analytical results,
we must abandon the cloud-scale internal structure we just addressed; we can still
apply the Cairns rescaling to correct for the effect of small-scale turbulence.

18For another solvable diffusion model (with a steady isotropic point-source) that fea-
tures exponential stratification, we refer to Section 6.2.2 in Zege et al.’s monograph [83].
Like here, Bessel functions arise; see Appendix A.



5 Space-time Green functions for diffusive radiation transport 207

Following Ref. [92], we solve this space-domain (s = 0) problem,

F̃ ′z = −[k2/3(1− g)σ] J̃ + σ e−σz, J̃ ′/3 = −(1− g)σ F̃z + gσ e−σz, (5.15)

and its time-domain (k = 0) counterpart,

F̃ ′z = −(s/c) J̃ + σ e−(s/c+σ)z, J̃ ′/3 = −(1− g)σ F̃z + gσ e−(s/c+σ)z, (5.16)

subject to the Fourier–Laplace version of (4.28)–(4.29):

J̃ + 2F̃z

∣∣∣
z=0

= 0, J̃ − 2F̃z

∣∣∣
z=H

= 0. (5.17)

We anticipate here that non-dimensionalized responses will depend on both τ and g,
not just on (1−g)τ . Consequently, δ-Eddington rescaling can improve the accuracy
of the model by reducing the impact of forward-peaked phase functions, which we
recall is detrimental to diffusion. Also, we notice that s/c enters the exponential
source term, as an effective σa should since it participates in overall extinction, but
k2/3(1 − g)σ does not. This transformed 3D time-dependent problem is therefore
not formally identical to any known solar two-stream problem, at least when k �= 0.

The desired solution J̃(0, k; z) of (5.15), with (5.17), can be expressed as a
lengthy rational function of k, e±kH , e±kz and e±σz with coefficients containing
σ, g, and e±σH . The diffuse boundary fluxes are now computed from (4.48)–(4.49)
with μ0 = 1; details are provided in Appendix C. The counterpart J̃(s, 0; z) for
(5.16), with (5.17), can similarly be expressed as an even lengthier rational function
of s/c, e±

√
3s/c(1−g)σH , e±

√
3s/c(1−g)σz, e±(s/c)H and e±(σ+s/c)z with coefficients

containing σ, g, and e±σH ; details are given in Appendix D with μ0 = 1.
The zeroth-order result in both k and s, yet again calling for L’Hôpital’s rule,

yields the known expressions [87] for total (direct plus diffuse) cloud transmittance,

T =
5− e−τ

3(1− g)τ + 4
, (5.18)

and its albedo R = 1− T , leading to

R =
3(1− g)τ − 1 + e−τ

3(1− g)τ + 4
, (5.19)

for normal solar incidence, this is as expected when the source becomes steady
(s = 0) and uniform (k = 0). Following Meador and Weaver [87], we note that for
very small optical depths T can slightly exceed unity (hence R becomes slightly
negative) if g > 2/3. Although we do not expect to use diffusion theory for such
optically thin clouds, this underscores the need to use δ-Eddington rescaling in
(4.16), which maps g = 0.85 to g′ = 0.46 (thus crossing the critical 2/3 threshold
for obtaining physical values of R and T for all values of τ).19

19Since Cairns’ rescaling in (4.20) goes in the wrong direction of larger g-values, it is
better not to stretch the diffusion model toward media with insufficient opacity.



208 A.B. Davis, I.N. Polonsky, and A. Marshak

5.5.4 Homogeneous cloud with normally incident illumination at a
point from above and a reflective surface below

This scenario could apply to a down-looking lidar probing fog, low-level arctic
clouds, or turbid coastal water. However, to represent accurately the later situa-
tion one would need to add: (i) a flexible combination of collimated (normal) and
diffuse (isotropic) illumination to account for roughness of the air–water interface;
(ii) partial reflection at the illuminated boundary determined by total internal re-
flection; (iii) the related conservation of flux when crossing a discontinuity in index
of refraction, another Brewster-angle effect [93]; and (iv) some level of absorption
in the optical medium. We explore here the simple version.

In this case, we activate the boundary albedo αH in the boundary condition at
z = H. We thus need to solve the space- and time-domain problems in (5.15) and
(5.16) subject to (4.46)–(4.47) with q0 = 0 and χ = 2/3, specifically,

J̃ + 2 F̃z

∣∣∣
z=0

= 0, J̃ − 2
1 + αH

1− αH
F̃z

∣∣∣∣
z=H

= 0, (5.20)

assuming 0 < αH < 1 (and F̃z(H) = 0, a Neumann boundary condition, when
αH = 1). There is no new or fundamental difficulty in this enhanced version of the
previous problem. The analytical expression of the solution will of course be more
complex. Rather, we have here the opportunity to demonstrate a superposition
principle of 3+1D RT in (s,

−→
k )-space using a physical argument.

If αH = 0, we already know what happens: some light is reflected, some is
transmitted spread over space and time, and we know the Laplace and Fourier
transforms of these distributions. Since the surface at z = H is partially reflective,
each point on it becomes a secondary source for the medium with a space- and
time-dependent intensity determined by the problem with αH = 0. We know from
section 5.5.1 how the homogeneous medium responds to each isotropic point-source
on a boundary.

Let F̃col and F̃iso (F = R, T ) be the boundary fluxes for the two problems in
(s,

−→
k )-space and let us focus on the remote sensing signal R̃(s, k), hence R(t, ρ),

accessible from above the scene.
The zeroth-order contribution, in the sense of lower surface reflections, is

R̃col(s, k). The first-order contribution to the signal is T̃col(s, k)αH T̃iso(s, k). In-
deed, if we think of t and ρ as random variables with PDFs PF (t, ρ) = F (t, ρ)/F ,
then the associated P̃F (s, k) = F̃ (s, k)/F̃ (0, 0) are their characteristic functions.
In probability theory, addition of two independent random variables calls for a
convolution of their PDFs, but just a simple product of characteristic functions.
Consequently, we can read

T̃col(s, k)αH T̃iso(s, k) = Tcol P̃T,col(s, k)× αH × Tiso P̃T,col(s, k)

as the properly composed probability of three sequential but independent ran-
dom events: (1) transmission from z = 0 to z = H and dispersion according to
PT,col(t, ρ); (2) isotropic reflection by the uniform surface; (3) re-transmission back
to z = 0 and dispersion according to PT,iso(t, ρ).

Generalization to the next order is straightforward. Rather than transmission
back to z = 0 the once surface reflected light is reflected back to the surface by
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the cloud/fog, surface reflected again and then transmitted: T̃colαHR̃isoαH T̃iso. By
induction, the contribution for n ≥ 1 surface reflections is T̃col[αHR̃iso]n−1αH T̃iso.
By summing up all the contributions, we have for the requested flux

R̃(s, k) = R̃col(s, k) + T̃col(s, k)×
∞∑

n=0

[
αHR̃iso(s, k)

]n

× αH T̃iso(s, k),

hence

R̃(s, k) = R̃col(s, k) + T̃col(s, k)
αH T̃iso(s, k)

1− αHR̃iso(s, k)
. (5.21)

When working in a software environment for symbolic math, it is easy to implement
this expression once we have solved the two coupled ODEs problems with different
types of source and stored the results.

5.5.5 Homogeneous cloud with uniform oblique illumination

We do not foresee the immediate need to investigate the axially asymmetric spatial
patterns of reflected (and even less transmitted) light that would result from oblique
illumination by a narrow laser beam.20 However, it is of interest to understand the
impact of slant illumination on the temporal properties (path-length distributions
and moments) of reflected and diffusely transmitted light. This is largely because
of the emerging capability of measuring such properties from ground and space
using sunlight and differential absorption spectroscopy in the oxygen A-band (to
be discussed in detail in section 5.8).

As always with diffusion, we only obtain responses in flux, at the cloud bound-
aries in particular. However, one can invoke optical reciprocity to find new appli-
cations. In this case, we have spatially and angularly integrated but time-resolved
observation of a pulsed collimated source. This situation can be transposed to a
large-scale single-direction (i.e., radiance) observation of an isotropic burst of light,
which may or may not be localized at a single point (there is no attempt at imag-
ing). This scenario is directly applicable to light-curve analysis, for example, for
optical detection of cloud-to-ground lighting [95–98].

Referring back to (4.10)–(4.11) as needed, with φ0 = 0, it is straightforward
to generalize to μ0 < 1 the source terms in the time-domain problem in (5.16) for
normal (μ0 = 1) illumination. We thus need to solve

F̂ ′z = −(s/c) Ĵ + σ e−(s/c+σ)z/μ0 ,

Ĵ ′/3 = −(1− g)σ F̂z + μ0gσ e−(s/c+σ)z/μ0 , (5.22)

subject to boundary conditions similar to those in (5.17). However, this is only for
Laplace-transformed variables, so we use ·̂ rather than ·̃ symbols, referring back
to section 5.3.1. The sought solution Ĵ(s; z) is a nontrivial generalization of the
already complex expression for J̃(s, 0; z) obtained in section 5.5.3; see Appendix D
for details.

20See Section 6.3 in Zege et al.’s monograph [83] and the paper cited therein by Zege,
Polonsky and Chaikovskaya [94] where this problem is addressed in steady state to obtain
the non-axisymmetric MTF.



210 A.B. Davis, I.N. Polonsky, and A. Marshak

From Ĵ(s; z) we derive R̂(s) and T̂dif(s) using (4.48) and (4.49), ignoring the
horizontal wavenumber k. When s → 0, along with the effective absorption, we
retrieve classic formulas from, for example, Ref. [87], for total cloud transmittance,

T = Tdif + e−τ/μ0 =
(2 + 3μ0) + (2− 3μ0) e−τ/μ0

3(1− g)τ + 4
, (5.23)

and albedo

R = 1− T =
3(1− g)τ + (2− 3μ0)(1− e−τ/μ0)

3(1− g)τ + 4
, (5.24)

resulting from slant illumination by the (steady) solar beam. Here also there are
caveats about unphysical outcomes if g > 2/3μ0 and τ is too small. The same
remedy as above is recommended, namely, to use δ-Eddington rescaling and also
to steer away from grazing solar zenith angles (SZAs) if τ is small.

As demonstrated in the previous case, we can easily add surface reflectivity to
the model without going through the whole derivation. Indeed, since each term in
(5.21) has a physical meaning, it is not hard to transpose it to a different problem.
For instance, what if we were to remotely observe an isotropic point-source on a
reflective surface (0 ≤ α0 ≤ 1) with a non-imaging but time-resolving radiometer
through a cloud layer? This could be a cloud-to-ground lightning stroke viewed
from satellite. Either way, we need to partition what time-dependence belongs to
the source and what ‘pulse stretching’ was added by the intervening scattering
medium. The Laplace transform of the radiance time evolution for a unitary δ-
source viewed at an angle θ = cos−1 μ ≥ 0 (away from nadir) is predicted to
be

Îobs(s) ≈ 1
π
× T̂col(s;μ)
1− α0R̂iso(s)

, (5.25)

where we have used reciprocity and emphasized that the T̂ (s) computed here is
for a slant illumination (μ0 < 1) by a uniform collimated beam or, by reciprocity,
remote observation (μ < 1) with a large footprint.

As in all of the previous cases, we postpone discussion of higher-order terms
in the Taylor expansion of R̂(s) and T̂ (s) around s = 0 (in this case, moments
of path-length ct) until we address specific applications to cloud remote sensing
in the following sections. In the interim, we describe what can be done about the
challenge of inverse Fourier–Laplace transformation.

5.6 Inverse Fourier–Laplace transformation

We now face the difficult task of performing inverse Fourier and/or Laplace trans-
forms of analytical (but not simple) expressions to obtain explicit expressions for
cloud remote sensing signals. Or else we need to look for other ways of exploiting the
diffusion models in remote sensing applications, a route we explore in sections 5.8
and 5.9. Since none of the above models have known analytical inverse transforms,
we show here (1) the outcome of a numerical approach and (2) how a somewhat
degraded representation of the laser beam source enables the inverse transforms to
be performed analytically.
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5.6.1 Uniform clouds with an isotropic boundary point-source in (5.1),
using exact boundary conditions in (5.2)

It is highly desirable to validate the diffusion model for Green functions using
numerical solutions of the 3D RT equation, say, by way of Monte Carlo techniques.
It is possible to compute Fourier and/or Laplace transforms of radiative responses
using MC, i.e., characteristic functions of the MC random variables. However, it is
more compelling to see the diffusion predictions and MC benchmarks in physical
space.

Unfortunately, not even the simplest of the above models, isotropic boundary
point-sources in (5.1)–(5.2), has analytical inverse transforms, so we need to imple-
ment them numerically. Figure 5.9 shows an example using the normalized spatial
Green function for transmission PT (ρ) obtained from P̃T (k) = T̃ (0, k)/T in (5.10),
itself plotted in Fig. 5.8(a). In imaging terminology, we are deriving the cloud’s
point spread function (PSF) from its MTF via inverse 2D Fourier transformation.

In axial symmetry, the 2D Fourier transform in (4.41) morphs into the Hankel
transform:

P̃T (k) = 2π

∞∫
0

PT (ρ)J0(kρ)ρ dρ↔ PT (ρ) =
1
2π

∞∫
0

P̃T (k)J0(kρ)k dk, (6.1)

Fig. 5.9. Normalized spatial Green function for transmitted light according to analyti-
cal diffusion theory and numerical transport theory. The cloud optical depth was set to
τ = 16 and illumination was isotropic from a point; the outcome is the PSF for this
diffusive medium. The extrapolation length parameter was set to χ = 0.7 for the diffusion
expression in Fourier space, which was inverted numerically. Other details about the MC
transport simulation are as in Fig. 5.3, which was replicated here for isotropic as well as
forward (H–G) scattering. Adapted from Ref. [24].
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where J0(x) is the zeroth-order Bessel function of the first kind. Agreement between
transport (MC results) and diffusion theories is excellent for the prescribed τ = 16
cloud, especially for isotropic (g = 0) scattering, when χ = 0.7. As is appropriate
for a validation exercise, the MC scheme mimicked the isotropic boundary source
used in the diffusion model. The only noticeable difference is for the near-axis field
when g = 0.85.

5.6.2 Uniform clouds with an isotropic internal point-source, using
extended boundary conditions in (4.34)

The above numerical approach to inverse Fourier or Laplace transformation is vi-
able for case studies, but not for routine application to remote sensing signal anal-
ysis. So we still need an analytical predictor for space-time Green functions, es-
pecially for the multiple-scattering cloud lidar application where both dimensions
are exploited. Since none of the models in the previous section are amenable to
analytic inversion, we first need to modify the diffusion model.

Polonsky and Davis [99] revisited the way the pulsed laser-type sources for the
Green function are represented. Following the path blazed by Zege, Katsev and
Sherbaf [100] for weakly absorbing semi-infinite media and Bushmakova, Zege and
Katsev [101] for finite media, they proposed to compute the radiative Green func-
tion at z = 0 (the illuminated boundary) and z = H (the opposite boundary)
using an isotropic source concentrated at a single point inside the cloud, but judi-
ciously positioned. For the moment, however, we will denote this roaming position
as z0 ∈ (0, H). With the 3D RT equation in mind, we write this as21

Q(t,x,Ω) = δ(t)δ(x)δ(y)δ(z − z0)/4π (6.2)

in the RT equation, which translates to

qJ(t,x) = δ(t)δ(x)δ(y)δ(z − z0), qF (t,x) = 0, (6.3)

for the diffusion model. In Fourier–Laplace space, this translates simply to q̃J(z) =
δ(z − z0) and q̃Fz = 0 (hence no attempt at capturing internal source anisotropy
in this particular diffusion model).

We now need to solve22

F̃ ′z = −σ(e)
a (s, k) J̃ + δ(z − z0), J̃ ′/3 = −σt F̃z, (6.4)

which we subject to homogeneous extended Dirichlet boundary conditions,

J̃(−χ/σt) = 0, J̃(H + χ/σt) = 0. (6.5)

This is a textbook boundary-value problem [103] leading to
21For lidar applications at least, causality dictates that we also shift the δ-in-time by

z0/c. However, this only modulates the Laplace-transformed source q̃J(z) by a constant,
exp(isz0/c), and the shift itself can be implemented simply in the end-result anyway. By
omitting it here, there is thus no loss in generality, but some gain in simplicity.

22Incidentally, this model found an application in one of the earliest papers in 3D RT
known to the present authors: Richards’ 1956 study of point-sources in plane clouds [102].
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J̃(s, k; z0, z) =
cosh[m(τt + 2χ− σt|z − z0|)]− cosh[m(τt − σt(z + z0))]

χm sinh[m(τt + 2χ)]
, (6.6)

where we recognize τt = σtH from (5.3) and define23

m(s/c, k)2 =
3σ(e)

a (s, k)
σt

= 3
s/c

σt
+
(
k

σt

)2

=
s/D + k2

σ2
t

, (6.7)

recalling that D = c/3σt. This Green function reflects reciprocity, i.e., z0 � z
symmetry between the positions of the isotropic source and detector (in this case,
a ‘J-meter’). It also has space-time similarity in the sense that k2 is interchangeable
with s/D in the expression for m2; this will translate in physical space to ρ2 ↔ Dt
maps in, for example, the marginal moments. Most importantly, the analytical
expression contained in (6.6)–(6.7) can be inverse Fourier–Laplace transformed.

Details of the inverse 2D Fourier–Laplace (actually, Hankel-Laplace) transfor-
mation of J̃(s/c, k; z, z0) can be found in Ref. [99]. The most interesting aspect is
that the straightforward expansion of the solution into a series (invertible term-by-
term) that converges slowly at large times and distances from the source – precisely
the regions we are most interested in. Application of Poisson’s sum-rule resolves
this issue and delivers a series with reasonably fast convergence in the regime of
interest. The end-result is:

J(t, ρ, z; z0) =
2cσt

τt + 2χ

(
1
π
× e−ρ2/4Dt

4Dt

)

×
∞∑

n=1

sin
(
πn

σtz + χ

τt + 2χ

)
sin

(
πn

σtz0 + χ

τt + 2χ

)

exp

[
−
(

πn

τt + 2χ

)2

σ2
tDt

]
. (6.8)

A closely related quantity of interest is net flux in the vertical, from Fick’s law:

Fz(t, ρ, z; z0) = − D

c

∂J

∂z
= − 1

3σt

∂J

∂z
,

= − 2πcσt

3(τt + 2χ)2

(
1
π
× e−ρ2/4Dt

4Dt

)

×
∞∑

n=1

n cos
(
πn

σtz + χ

τt + 2χ

)
sin

(
πn

σtz0 + χ

τt + 2χ

)

exp

[
−
(

πn

τt + 2χ

)2

σ2
tDt

]
. (6.9)

In particular, the two above expressions can be combined according to (4.27) to
obtain the hemispherical fluxes F± that are directly measured with standard (2π
FOV) radiometers.

23In the case of real absorption in steady-state asymptotic 1D RT, this key non-
dimensional ratio is known as the ‘similarity’ parameter [104].
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At this point, a well-known physical defect of diffusive transport theory be-
comes apparent: one obtains J(t, ρ, z; z0) > 0 for all t > 0, and not just t >√
ρ2 + (z − z0)2/c. For instance, although it is in very small amounts, light reaches

the opposite cloud boundary without delay, thus violating basic causality and in
sharp contrast with the MC simulation outcome in Fig. 5.3(b). This artifact can
be traced back to the choice of neglecting in (4.2) the ∂tF term. Not dropping
that term leaves us with the so-called telegrapher’s equation (system). In some
applications, it is desirable to enforce causality in signal modeling [105–107]. In
our present application, however, we prefer to commit to not use the diffusion re-
sults in regions of space-time where the theory has known defects, over and beyond
the present issue with infinite propagation velocity. Avoidance of the problematic
short times/paths and distances from the source is especially easy when one has
an explicit representation in space and/or time. We discuss another advantage at
the close of section 5.9.

In principle, the response to the correct distribution of internal sources in can
now be reconstructed by linear superposition (integrating over z0).24 However, to
preserve the relative simplicity of the above expression, we propose to select a
single representative value of z0 rather than integrate over all the sources, i.e.,
exponentially weight and integrate25 over z0 between 0 and H (even if we can
safely assume here that the upper limit is ∞).

A physical argument for positioning such an ‘effective’ isotropic point-source
goes as follows. If we were to collapse the axial exponentially decaying distribution
of anisotropic point-sources in (5.15) or (5.16) into a single isotropic point, we would
likely place it at z0 ∼ �t, hence σtz0 ∼ O(1), recalling that χ ∼ O(1) as well.26

Indeed, the basic idea of the transport MFP is to prolong ballistic propagation
just far enough for the memory of the original direction to be erased by multiple
forward-biased scatterings [108]. In essence, �t is the medium’s effective MPF for
an isotropic scattering [80] and, for the same physical reasons, defines the depth of
the radiative boundary-layer in the cloudy medium.

5.6.2.1 Transmission properties

For transmission, we evaluate

T̃ (s, k) =
J̃(s, k;H, z0)

2
=

cosh[m(σtz0 + 2χ)]− cosh[mσtz0]
2χm× sinh[m(τt + 2χ)]

, (6.10)

and we note that the combined numerator and the 2χm factor in the denominator
are well-approximated by cosh′[m(σtz0 + χ)] = sinh[m(σtz0 + χ)] if 2χm � 1. In

24There is, however, no q̃Fz = gq̃J term here, hence no account of first-scattering source
anisotropy.

25This superposition of point-source solutions would change the second sine term in
(6.8)–(6.9) into a combination of two trigonometric functions, four if the upper bound is
set to H < ∞.

26A closer look at the spatial Green function plotted in Fig. 5.1 reinforces this choice.
The assumed cloud has τt = H/�t = 5.4. We can see overall light levels decreasing radially
with distance from a point at ∼1–2 transport MFPs �t = 1/σt ≈ 0.2 km below the upper
(illuminated) boundary.
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this case, the desired asymptotic (τt � χ) behavior when m→ 0 is

Tts(τt) ≈ 2χ
τt + 2χ

, (6.11)

from basic two-stream theory (5.5). It is obtained when we set σtz0 = χ. It can
be shown that this choice also gives the correct leading terms for 〈ρ2〉T and 〈ct〉T
because the leading term in m2 has the ‘correct’ pre-factor for both k2 and s/c,
using as a benchmark the solutions of (5.1)–(5.2). By enforcing correct small (s, k)
behavior, we are sure to obtain the correct behavior for large (t, ρ) after inverse
transformation.

Rather than using (6.10) in (s, k)-space, we can thus use the somewhat simpler
model27

T̃ (s, k) ≈ sinh[m(2χ)]
sinh[m(τt + 2χ)]

. (6.12)

Figure 5.10 demonstrates how close this model is to (6.10), with σtz0 = χ, and how
well these internal point-source models approximate the boundary-source model in
(5.8) where it matters, i.e., as k → 0.

Fig. 5.10. Three models for T̃ (0, k). We compare in semi-log axes the ‘exact’ diffusion
model in (5.8) for an isotropic boundary source expressed in Robin BCs, its counterpart
in (6.10) based a judiciously positioned internal point-source (σtz0 = χ) with extended
Dirichlet BCs, and the approximation in (6.12). The first of these MTFs is also plotted
in Fig. 5.8 (top panel), but here we use τt = (1 − g)τ = 8.1 and χ = 2/3. Notice the
osculating curvatures at k = 0, meaning that the predicted value for 〈ρ2〉T will be the
same; cf. (3.5).

27Viewed, like in Fig. 5.10, as a model for the MTF, T̃ (0, k), this expression is adapted
from Bushmakova et al.’s 1972 article [46], generalized by the same authors in 1974 to
space-time Green functions. However, those studies use σtz0 = (5/4)χ in our notations
to achieve slightly better accuracy for a collimated beam at normal incidence. See also
Katsev and Zege’s 1986 paper [109] and the monograph by Zege et al. [83, Section 4.3.3].
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Adapting the Fourier–Laplace inversion procedure in [106], we find

T (ct, ρ) ≈ 2π
3H

R2
ts

τt

(
1
π
× 3τt e−3τt ρ2/4Hct

4Hct

)

×
∞∑

n=1

n sin(πnRts) exp
[
− (πnRts)

2 1
3τt

ct

H

]
. (6.13)

where Rts(τt) is given by 1−Tts(τt) from (6.11), equivalently, the classic two-stream
model outcome in (5.5). We have somewhat rewritten here the Green function to
emphasize the two main cloud remote-sensing unknowns, H and τt = (1− g)τ . As
expected, we see in particular that the outcome of (6.13) does not change, for a
given value of H, within a class of similar clouds, i.e., where (1− g)τ is constant.

We recognize in (6.13) a Gaussian spatial profile of flux with an increasing
value of the variance 〈ρ2〉(t) of the lateral transport at each instant t (or path ct);
specifically,

〈ρ2〉(t) = 4c
3σt

t. (6.14)

This is as expected for 〈ρ2〉 = 〈x2〉+ 〈y2〉 recalling that, for boundary-free isotropic
diffusion away from a point-source, we have 〈r2〉 = 〈x2〉+ 〈y2〉+ 〈y2〉 = 6Dt with
D = c/3σt [103].

Detailed time-only dependence is obtained from (6.13) by multiplying both sides
by 2πρdρ and integrating from 0 to ∞:

T (ct) ≈ π

2H
R2

ts

3τt
×

∞∑
n=1

n sin(πnRts) exp
[
− (πnRts)

2 1
3τt

ct

H

]
. (6.15)

This result can be applied to the monitoring of cloud-to-ground lightning [97] and
other rapidly varying time-dependent sources, through dense clouds from space.
We see in (6.15) a linear superposition of exponential decays in time, the dominant
(slowest, n = 1) rate being [101]

ct� = H ×
(
3
π2

)
× τt
Rts(τt)2

, (6.16)

where we continue to emphasize the invariance within similarity classes (constant
τt).

Integrating (6.13) over path ct from 0 to ∞ yields the spatial response to a
steady source as observed with an imaging detector:28

T (ρ) ≈
(
Rts

H

)2

×
∞∑

n=1

n sin(πnRts)K0

(
πnRts

ρ

H

)
. (6.17)

where K0(·) is the zeroth-order modified Bessel function of the second kind. This
would apply to the monitoring cloudy regions from space for steady localized
sources using imaging sensors; missiles during their boost phase are possible targets.

28Use identity
R∞
0
exp[−(at+ b/t)] dt/t = 2K0(2

√
ab).
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Although defined above as a sum of Gaussians, the dominant (n = 1) term
decays radially as an exponential approached from above with a relatively slow
power law [110]:

T (ρ) ∼ exp(−ρ/ρ�)√
ρ

, (6.18)

where the e-folding radius is
ρ� = H/πRts. (6.19)

As expected from k2 ↔ s/cD similarity (D = c/3σt), examination of (6.16) shows
that we have (ρ�)2 = (c/3σt) t�. This connection serves as a reminder that the key
space-time variability parameter m defined in (6.7) is ∝ k when s = 0, but ∝ √

s
when k = 0. Consequently, for this class of models cunningly designed to delivery
explicit expressions in space end/or time, moment predictions will be accurate for
〈ρ2〉 and 〈ct〉, but not 〈(ct)2〉.

5.6.2.2 Reflection properties

With reflection in mind, we propose to set σtz0 ≈ 1, this time irrespective of χ
(although we also have σtz0 ≈ (3/2)χ since χ ≈ 2/3). This leads to

R̃(s, k) =
J̃(s, k; 0, (3/2)χ/σt)

2
=

cosh[m(τt + χ/2)]− cosh[m(τt − (3/2)χ)]
2χm× sinh[m(τt + 2χ)]

.

(6.20)
In the asymptotic regime where τt � σtz0 ∼ χ ∼ O(1), one notes that cosh[m(τt+
χ/2)]− cosh[m(τt−(3/2)χ)] will be very close to 2χm sinh[m(τt−χ/2)] if 2χm� 1.
The boundary flux at z = 0 can therefore be written even more simply as [106]

R̃(s, k) ≈ sinh[m(τt − χ/2)]
sinh[m(τt + 2χ)]

. (6.21)

The above expression still gives us in the limit m → 0 the correct asymptotic
(τt � χ) form of cloud albedo in (5.19) for the collimated-beam model when the
short-lived exponential terms are omitted:

R ≈ τt/2χ− 1/4
1 + τt/2χ

. (6.22)

Here also, we get the correct leading terms for 〈ρ2〉R and 〈ct〉R since the leading
term in m2 has the correct pre-factor for both k2 and s/c.

Figure 5.11 shows how this coarsest of all representations of the pulsed laser
source (in terms of directionality and spatial distribution) compares with our best
model for the pencil-beam problem in reflection. Although there are interesting
deviations at large wavenumbers,29 there is no apparent difference at small k (nor

29We note that the exact diffusion model in Fig. 5.11 leads to negative values of R̃(0, k)
if g > 0; the behavior of this model for k � H, not plotted here, is R̃(0, k) ∼ −3g/2k
(following a single negative minimum). This is unphysical since characteristic functions
(Fourier transforms of PDFs) are everywhere non-negative if the PDF is axisymmetric. In
this sense, the proposed approximation is more useful than the exact theory in applications
where R̃(0, k) must make physical sense over the full range of k. In our case, its utility is
to yield tractable inverse Fourier–Laplace transforms.
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Fig. 5.11. Two models for R̃(0, k). We plot as functions of k (in units of 1/H) results
for both ‘exact’ diffusion theory that models a collimated incident beam that excites
anisotropic sources (details in Appendix C) and a more practical approximation in (6.21)
that uses a single judiciously placed isotropic point-source. Two cases with (1 − g)τ =
(1 − g′)τ ′ = 8.1 are examined. When working with moments and/or long-path and/or
far-field properties, only the behavior near k = 0 matters. In this case, we have identical
behavior up to O(k2), having set χ = 2/3 in the approximate model.

would there be for small s), where it matters for spatial (temporal) moment esti-
mation as well as long-path and far-field trend analyses.

The end-result of the inverse Fourier–Laplace transform of (6.21) is [106]

R(ct, ρ) ≈ 2π
3H

R2
ts

τt

(
1
π
× 3τt e−3τt ρ2/4Hct

4Hct

)

×
∞∑
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n sin
(
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4
πnTts

)
exp

[
− (πnRts)

2 1
3τt

ct

H

]
, (6.23)

where Tts = 1− Rts is from (6.11). This result can be applied directly to imaging
cloud lidar systems with a wide field-of-view, but maybe not wide enough for robust
moment estimation [84].

Integration over space yields

R(ct) ≈ π

2H
R2

ts

3τt
×

∞∑
n=1

n sin
(
5
4
πnTts

)
exp

[
− (πnRts)

2 1
3τt

ct

H

]
. (6.24)

This result can be applied directly to non-imaging (for example, space-based) lidar
systems with wide-enough footprints [111].

Figure 5.12 shows how well the model in (6.24) performs with respect to the
usual ‘gold standard’ of Monte Carlo simulation. In this case, no effort was made
to mimic the actual source used in the diffusion model, namely, an isotropic point-
source at about one transport MFP from the observed cloud boundary; as in real
cloud lidar, a collimated source was used. So deviations at early times are expected
and observed, but diffusion-based models are not to be used in this regime anyway.
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Fig. 5.12. Diffusion theoretical and MC estimates of the temporal Green function for
reflected fluxes. We have plotted the closed-form expression in (6.24) for the diffusion-
based model and two numerical solutions of the basic radiative transfer problem for slab
geometry in (2.1)–(2.7). The inset shows the noise level for the adopted MC scheme with
2 · 108 histories. Cloud thickness is H = 1 km. The diffusion prediction is the same for
all similar clouds, i.e., with the same scaled optical depth (1 − g)τ = 8.1, while slightly
different answers are obtained numerically with the RT model (only at early times). All
results are normalized to their respective predictions for steady-state albedo, which are
quoted to the accuracy of the MC simulations; only ≈2% of the signal lies beyond the
cutoff at ct = 10H. We see that the diffusion model is an accurate representation of the
radiation transport when ct � H for the similar cases of H–G scattering with g = 0.85
(τ = 54) and g = 0.46 (τ = 15).

At long times, the agreement is excellent. The vertical double-headed arrow indi-
cates the range (path ct/2) where the single scattering contribution to the signal
vanishes. All the signal beyond this point is from multiple scattering only but none
of it is in the standard model for backscatter lidar signals. It would be interpreted
in classic lidar as a spurious distribution of scattering particles on the opposite side
of the cloud.

Integrating (6.23) over path ct yields:

R(ρ) ≈
(
Rts

H

)2

×
∞∑

n=1

n sin
(
5
4
πnTts

)
K0

(
πnRts

ρ

H

)
. (6.25)
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This spatial response would be observable with an imaging detector for a steady
narrow-beam source such as a cw laser. An interesting laboratory application is
described in Refs [112,113] targeting oxygen levels in blood.

As noted already for Fig. 5.3, there is no difference in the far-field behavior
between reflected and transmitted light in either space or time. So the relations
between observables and cloud parameters in (6.14), (6.16) and (6.19) apply to
both sides of the cloud [114], and has proven useful in remote sensing applications
mentioned previously, but that we now discuss in detail.

5.7 Temporal Green functions applied to in situ cloud lidar

5.7.1 Forward model for the radiometric signal

The bulk of this review is about fluxes emerging from cloud boundaries since they
are the only ones accessible by remote sensing methods. This section is the excep-
tion. We discuss here an interesting new application of forward models for internal
radiative properties: in situ cloud lidar.30

In their feasibility study for in situ (airborne) cloud lidar, Evans et al. [21] stud-
ied the special case z = z0 = H/2 in (6.8) as a first-cut model for a proposed time-
resolving wide-FOV radiometry. Notably, they solved the Green function problem
directly in the space-time domain using the method of images to satisfy extended
Dirichlet BCs (with χ = 2/3). In this highly symmetric situation, the two sine
terms reduce to sin2(nπ/2) = 1 if n is odd, 0 if even. Thus

J(t, ρ,H/2;H/2) =
2cσt

τt + 2χ

(
1
π
× e−ρ2/4Dt

4Dt

)

×
∞∑

j=0

exp

[
−
(
π(2j + 1)
τt + 4/3

)2
σtct

3

]
. (7.1)

where we recall that diffusivity D = c/3σt = cτt/3H. The authors also argue that,
for short times, one can use the classic diffusion Green function for an isotropic
pulse at the origin in the absence of boundaries:

J(t, ρ, z) =
c

(4πDt)3/2
exp

(
−ρ

2 + z2

4Dt

)
, (7.2)

where z is now reckoned from the position of the isotropic point-source. For sim-
plicity, Evans et al. assume a monostatic configuration where source and detector
are essentially collocated, hence ρ = 0 in (7.1) and ρ = z = 0 in (7.2). From a
cloud characterization perspective, early times can be used to determine a volume-
averaged estimate of opacity σ = σt/(1 − g) from D, knowing g ≈ 0.85, and later
times to determine H = τt/σt.

30Lidar stands for LIght raDAR, or LIght Detection And Ranging, but there is obviously
no cloud ranging to be done in this case. The present time-domain signal is entirely about
multiple scattering while the conventional ranging application in Lidar assumes necessarily
a single scattering or reflection.
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This model for in situ lidar signals can easily be improved by setting the detector
at a horizontal distance ρ ≈ �t = 1/σt from the effective isotropic point-source of
light pulses. Instead, Evans et al. moved to qualitatively better forward modeling by
using a 3+1D MC code in conjunction with many realizations of a realistic (data-
driven) 3D stochastic cloud model [115]. They used this extensive forward modeling
to train a neural network to solve the inverse problem at hand: determine from
the temporal signal the cloud unknowns {σt, H}. Notably, in situ lidar retrieval
methods must also consider the distance to cloud base (z in our present notation)
as an unknown, and its determination calls for estimates of both down- and up-
welling fluxes that can be modeled (for arbitrary z) using (6.8) and (6.9) combined
according to (4.27). The more recent paper by the same authors [116] concludes
the proof-of-concept with the successful exploitation of real cloud data gathered
from a LearJet operated by the Stratton Park Engineering Company (SPEC), Inc.,
in Boulder (Colorado).

5.7.2 Illustration with SNR estimation

Figure 5.13 shows F±(ct) = J(ct, �t, · · · )/4, based on (4.27) and (7.1) in this special
situation were Fz ≡ 0 in (6.9). We upgraded the model only for the radial offset
of the effective isotropic source (to the side of the aircraft the laser is pointing
away from) and the time-resolving radiometer (looking up or down somewhere on
the aircraft). We factored into the result a hypothetical path-bin width of Δct =
20 m, which is easily achievable with laser and detector technology currently used
in airborne lidar. The two panels illustrate the sensitivity of this observable as a
function of ct for (a) varying H (equivalently, σ) at fixed τ and (b) viceversa. We
have high sensitivity to σ at all times. Sensitivity to H increases at later times,
which is explained immediately by the dependencies of ct� in (6.16). Increasing
optical depth (equivalently, extinction) for fixed cloud thickness of course increases
the general level of the signal. However, we may not want to depend on absolute
calibration of the radiometer as well as accurate monitoring of the laser power; so
we should rely only on the shapes of the radiative responses in Fig. 5.13, and not
their relative positions on the flux scale.

The positions of the plots in Fig. 5.13 along the vertical (flux) axis can, how-
ever, be used for a rough but informative SNR computation for the airborne in situ
cloud lidar. Lasers used in airborne lidar studies can easily reach 5 W of equivalent
cw radiant power, translating to ≈1018 photons/pulse at 532 nm (assuming here
a frequency-doubled Nd:YAG solid-state laser with a typical 10 Hz rep rate). The
lowest major tick of both plots corresponds to a 10−15 probability of detection per
laser photon by a (non-imaging) sensor with a reasonable 1 cm2 aperture. At the
100s of m/s air speed of a jet aircraft, one should not integrate temporally for more
than a few pulses, or else cloud structure will not be captured at the natural res-
olution of multiple-scattering cloud lidar, as determined by ρ� in (6.19). This still
leaves Nγ ≈ 103 multiply-scattered laser photons available for detection. Ignoring
background (solar/lunar) and electronic noises, this Poisson count rate yields an
estimated SNR of

√
Nγ ≈ 30: enough leeway for losses by optical throughput,

quantum efficiency, an aperture less than 1 cm2 and/or a FOV reduced from 2π sr.
We therefore anticipate all the signals predicted in Fig. 5.13 to be measurable with
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Fig. 5.13. Sensitivities of in situ lidar signal to changes in cloud thickness H and optical
depth τ . As a surrogate for flux captured by a large (but still practical) FOV, we use here
hemispherical fluxes estimated at mid-cloud. Both H and τ are varied over one order-of-
magnitude around a typical value: H = 1 km in upper panel (a) and τ = 31.6 in lower
panel (b). Other parameters used to estimate F± = J/4 from (7.1) are χ = 2/3 and
g = 0.85 to compute τt, hence σt and D; we also assume a finite path bin Δct of 20 m.
The presence of a maximum signal at finite time reflects the offset of the detector from the
effective origin of the pulse, which is represented here by a effective isotropic point-source.
The late-time exponential decay and even the details of the approach to this asymptotic
behavior are known to be accurate in the present diffusion model for dense enough clouds,
cf. Fig. 5.12.
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current lidar technology. Evans et al. [116] did just that (with a detector that had
an effective aperture of ≈20 cm2 and a quantum efficiency estimated to be ≈0.1.)
and they successfully inferred cloud thickness and volume-averaged extinction. Val-
idation was conveniently done by executing a ‘porpoising’ flight pattern where the
aircraft goes in and out of cloud base and cloud top.

With variable vertical positions (z, z0) restored, as in (6.8), plus the possibility
of ρ > 0 already exercised in Fig. 5.13, this model can be applied to a conceptually
simple cloud observation system based on miniaturized (for example, efficient fiber-
laser) sources and detectors flying inside the cloud, but now on two or more separate
unmanned aerial vehicles (UAVs). This would enable sufficient sampling of the
cloud’s Green function, in both t and ρ, to retrieve the standard set of in situ lidar
unknowns {z, (1−g)σ,H}, given (−→ρ , z0−z) from accurate relative GPS positioning;
cloud base altitude would of course follow from absolute GPS estimation of the
altitude of the various aircraft. We anticipate that Fz = F+ − F−, obtained by
differencing signals from up- and down-looking radiometers, will be sensitive to z
(assuming z0 ≈ z); Fz ≈ 0 would mean near the center of the cloud (z ≈ H/2), and
proximity to the z = 0 and z = H boundaries signaled by different signs. Last but
not least, these slow-moving platforms would enable longer time-integrations, hence
improved SNRs; we indeed expect integration will compensate for the diminished
transmitted and received power due to size/weight limitations. Another possibility
is to outfit UAVs with stand-alone high-resolution spectrometers dedicated to the
A-band of O2 (dispersive devices can be made very compact).

We now show that this is indeed a passive (no-laser-required) approach to time-
domain information. Imagine a uniform pulsed source incident at cloud top with
some zenith angle cos−1 μ0 ≥ 0. The basic theory for the absorption spectrum (i.e.,
uniform gas with variable absorption) is laid out in section 5.5.5 and the associated
Appendix D. However, we now broaden our interest from internal fluxes to those
at the cloud boundaries, specifically about how they depend on cloud properties.

5.8 Temporal Green functions applied to oxygen A-band
spectroscopy of overcast skies

5.8.1 A-band spectroscopy as observational time-domain RT

Oxygen A-band (759–771 nm) spectroscopy has attracted interest in atmospheric
remote sensing for at least four and a half decades. The earliest discussions
[117–119] were already about using it systematically for cloud observations from
space, and the earliest A-band cloud data was indeed collected with a hand-held
camera aboard Gemini 5 [120,121]. Multiple scattering effects were considered from
very early on, especially in the Former Soviet Union [34,35], first in modeling and
eventually in data analysis. Both airborne instruments and spectral models pro-
gressed steadily in the United States [122,123], Europe [124,125] Japan [126,127],
and FSU [128–147]. The oxygen B-band (c. 687 nm) was also investigated, for
example, in Ref. [123].

We are dealing here with a typical differential absorption spectroscopy that tells
us how much O2 was cumulated along the optical path of the light dispersed across
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wavelengths. The lower panel of Fig. 5.14 illustrates the fine spectral structure of the
A-band with its absorption optical depth across an assumed low-level cloud layer.
The upper panel shows examples of simulated spectra for typical clear and cloudy
conditions over a dark ocean surface as observed in reflection, normal viewing with
a 60◦ solar zenith angle (SZA); the inset gives the values of the corresponding nadir
radiance in the continuum.31

What can one do with knowledge of exactly how much of a major gaseous con-
stituent is in the optical path? Some early proposals were to determine atmospheric
pressure in remote locales, especially over oceans where there is a dearth of surface
stations and radiosonde data, the driving application being numerical weather pre-
diction.32 It quickly became clear that atmospheric scattering was a wild card in
this proposition. The optical path is not always straight down from the sun through
an oblique airmass followed by another airmass (say) straight up to a spectral de-
tector. There are both longer and shorter paths because of atmospheric scattering.
Details of the line profiles thus depend on the amounts of aerosol, cloud, etc.

It was soon realized that this nuisance could be turned around and exploited
to study the scattering components of the atmosphere. One can possibly quantify
and qualify the aerosol load, from ground or from space. Concerning clouds, A-
band spectroscopy was first thought to be a means of deriving cloud-top pressure
using the same logic as for the original idea of measuring surface pressure. This
concept also proved problematic because clouds are not optically ‘hard’ targets.
In fact, they are optically speaking very ‘soft’ in that incident light can permeate
the whole cloud before being reflected, i.e., returned from possibly very deep inside
the cloud back to the illuminated boundary. Single- and multiple-scattering are of
course the mechanism for reflection, as well as for diffuse transmission. Current
modeling of reflected A-band signals fully and accurately accounts for multiple
scattering [150–155], and more and more includes 3D RT effects [156–158]. As
will soon become obvious, the standard retrievals from A-band data are cloud-top
pressure and cloud (pressure) thickness.

In this study, we take the standpoint that O2 A-band spectroscopy at high res-
olution is a portal to time-domain radiative transfer in clouds, but using steady
sources. This powerful connection is encapsulated in the so-called equivalence theo-
rem already discussed in differential form in section 5.3.1. This relation states that,
if we know the time-dependent radiance field G(t,x,Ω) resulting from a sudden
burst of light in an arbitrary scattering medium, then we can predict the radiance
that would be observed at the same point in the presence of a uniform gas with a
variable absorption coefficient κν > 0.

31We note that the A-band sits at the peak of the solar spectrum when reckoned in
photons/s/m2 (as opposed to W/m2), which is optimal for the SNR.

32The competition for cloud-top height retrieval from remote sensing data at large
comes (1) from signatures in thermal bands (sometimes called ‘CO2 slicing’) [148], but
the atmosphere’s thermal structure varies far more than its pressure profile, and (2) from
direct geometric method using multi-angle imaging [149], which is foolproof as long as the
clouds have enough ‘texture’ for automated stereo matching. Because of the time-delay
between the observations of a given cloud at different angles (as the satellite moves along
its orbit), the latter method furthermore provides mean wind at the cloud-top altitude.
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Fig. 5.14. Simulated O2 A-band spectra in reflection. Bottom: Fine structure of the A-
band displayed using, as a relevant example, the O2 optical thickness across a layer from
860 to 911 hPa (c. altitudes 0.85 and 1.3 km), where one could find a typical low-level
cloud. Top: The reference spectrum is for a background aerosol atmosphere above an ocean
surface (Cox-Munk BRDF for 5 m/s wind speed). The other is for the same situation plus
a liquid water (Mie scattering) cloud between 911 and 860 hPa with optical depth 64. Line-
by-line computations were coarsened to the 0.0146 nm resolution of the Orbiting Carbon
Observatory (OCO) spectrometer. Both spectra were normalized to maximum radiance
(given, for reference, in the inset). Computations were kindly provided by Dr Hartmut
Bösch (University of Leicester, Dept. of Physics & Astronomy, Earth Observation Science,
Space Research Centre).



226 A.B. Davis, I.N. Polonsky, and A. Marshak

Formally, we let L denote the a priori random path that the light has followed
in the medium. Then the optical path for gaseous absorption is κνL and Beer’s law
of exponential extinction states that light with path L is absorbed with probability
exp(−κνL). In summary, for a fixed κν , radiance is33

I(κν ,x,Ω) =
1
c

∞∫
0

G(L/c,x,Ω) e−κνL dL. (8.1)

The different absorption values are realized at different wavelengths λ, equivalently,
frequency c/λ or (more conventionally) wavenumber ν = 107/λ in cm−1 when
wavelength is expressed in nm. We have thus assumed up front that the coefficient
κν is a function of wavenumber ν, in compliance with spectroscopic tradition. At
any rate, we recognize in (8.1) the Laplace side of (3.1) with radiance rather than
flux and identifying κν with s/c. So, as in (3.2), we can compute path moments
using the spectrometry:

〈Lq〉 = 1
I(0, · · · )

(
− ∂

∂κν

)q

I(κν , · · · )
∣∣∣∣
κν=0

, (8.2)

where the normalizing factor is simply radiance in the continuum near the A-band.
Conveniently, all of our diffusive temporal Green function theory has ended up in

Laplace space, or at least used it as a stepping stone. We can therefore obtain, after
the usual radiance-to-flux conversion, empirical estimates of F̂ (s) = F̃ (s, 0). Identi-
fication of observed and theoretical estimates of radiative properties is of course an
opportunity for cloud remote sensing: retrieval of cloud parameters, for example,
{H, τ}, by standard fitting procedures. Once we have a theoretical fit, one can de-
rive other cloud radiative properties such as the temporal/path-length moments in
(8.2). Another possibility is to use the observed F̂ (s) = I(κν , · · · )/I(0, · · · )|κν=s/c

in (8.2) to derive the path-length moments directly. In practice, both groups cur-
rently engaged in high-resolution A-band spectroscopy from ground (SUNY-Albany
[160–163] and University of Heidelberg [159,164,165]) use a convenient parameter-
ization of F̂ (s) using the first two moments of L, namely,34

F̂ (s) ≈ 1
(1 + 〈L〉s/ca)a , where a =

1
〈L2〉/〈L〉2 − 1

.

Both of these approaches avoid the problem of inverse Laplace transforming noisy
data from instruments, a numerical process known to be highly unstable.

A third group, from NOAA, has performed ground-based spectroscopy of oxy-
gen under cloudy skies at somewhat lower resolution and focusing on the γ-band of

33We assume in (8.1), purely monochromatic RT. No forward model for A-band spec-
troradiometry is complete without a convolution of this expression with the spectrome-
ter’s ‘slit function’. This issue of spectral resolution, as well as out-of-band rejection, is
absolutely critical to the a priori estimation of how many pieces of path-length/cloud
information can be extracted robustly from the radiometric data [159,160].

34This leads back to a Gamma distribution of path-lengths, cf. (10.1)–(10.2) with τ
replaced by L. We owe to van de Hulst [166] the original idea of approximating the
temporal Green functions with Gamma distributions.
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O2 (c. 628 nm) [167]. Following previous work on low-resolution A-band observa-
tions from space, they preferred to directly compare their spectroscopy to a forward
1D RT model (adapted from [168]) with an assumed cloud, which they varied to
fit the data. Another interesting development from the NOAA group was to adapt
their instrumentation and RT model to work with the spectrally much smoother
absorption features of cloud droplets in the near-IR (0.9 to 1.7 μm). Because ab-
sorption cross-section (where it exists) is ∝ droplet volume, Daniel et al. [169] were
able to retrieve liquid water path (LWP).

It is important to bear in mind that a forward model for A-band spectroscopy
will have more than just the component for in-cloud multiple scattering we have just
described. However, the other contributions are essentially deterministic. Consider
a narrow FOV ground-based instrument measuring zenith radiance. The spectrum
is formed, on the one hand, by the cloud’s temporal multiple-scattering Green
function by identifying s with cκν (a pressure-weighted average over the cloud layer)
in the Laplace transform for transmitted light; on the other hand, this contribution
must be convolved with two degenerate (zero-variance) distributions of optical path
through the absorbing gas, namely, τ (a)

ν /μ0 and τ
(b)
ν , the absorption optical depths

of the above- and below-cloud layers respectively. Now, in Laplace/κν-space, the
convolutions translate to simple products and the two δ-like path distributions
transform to constants, T (a)

ν = exp(−τ (a)
ν /μ0) and T

(b)
ν = exp(−τ (b)

ν ). In summary,
the forward model for the spectroscopy is

I(κν) = I(0)× T̂ (cκν)× e−(τ
(a)
ν /μ0+τ(b)

ν ).

For light reflected back to an instrument on an aircraft or satellite with oblique
viewing capability, the forward model is

I(κν) = I(0)× R̂(cκν)× e−(1/μ0+1/μ)τ (a)
ν .

Substitution of these models into the expression (8.2) for path moments will of
course yield the moment based on F̂ (s), for F = T or R, but offset by a known
constant. Alternatively, one can correct the data for the spectral offsets before
computing the path moments or retrieving cloud properties directly.35

In the remainder of this section, we will exploit a subset of our explicit Laplace-
space solutions (from section 5.5) for the temporal Green function to assess the
cloud information content of O2 A-band data. Specifically, we will formally identify
the random light path L through the absorbing gas with ct, the path covered
between emission from a δ-in-time boundary source and escape in transmission
(F = T ) or in reflection (F = R). We will then determine the dependence of path
moments 〈(ct)q〉F (F = T,R, q = 1, 2) on cloud properties, which we have not
yet done in framework of diffusion, and we will continue to validate the diffusion
model with MC simulations. These are in essence the observables in O2 A-band
spectroscopy. Spatial moments 〈ρ2〉F also play a role. Insights from this kind of a
priori cloud information content analysis are useful in planning for remote sensing
mission objectives as well as in the development of retrieval algorithms.

35The contributions of multiple reflections between the cloud and the surface can also
be added, recalling that green vegetation can have a relatively high albedo at A-band
wavelengths; see Scholl et al. [165].
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5.8.2 Path-length moments from below

5.8.2.1 Isotropic boundary point-source

Using the same assumptions as in our 2002 paper [24] investigating light trans-
mitted by the cloud to a ground-based sensor, we start with the simple diffusion
model based on an isotropic boundary point-source. Applying (3.5) and (3.2) to
(5.8) with all ancillary definitions, we find

〈ct〉T /H =
1
2
τt ×

[
1 + C

(1)
T,ct(τt/2χ)

]
, (8.3)

〈(ct)2〉T /H2 =
7
20

τ2
t ×

[
1 + C

(2)
T,ct(τt/2χ)

]
, (8.4)

〈ρ2〉T /H2 =
2
3
×
[
1 + C

(2)
T,ρ(τt/2χ)

]
, (8.5)

for three low-order moments of interest, all normalized by H. We have highlighted
here the asymptotic trends. The pre-asymptotic correction terms are given by

C
(1)
T,ct(ξ) = C

(2)
T,ρ(ξ) = (4ξ + 3)/2ξ(ξ + 1),

C
(2)
T,ct(ξ) = (56ξ3 + (166ξ2 + 15(10ξ + 3)))/14ξ2(ξ + 1)2,

recalling that ξ = τt/2χ. The leading terms made explicit in (8.3) and (8.5)
make sense from the random-walk perspective on diffusion exposed in Appendix E
wherein the scaling exponents of τt are derived. However, in all cases, pre-factors
and pre-asymtotic corrections terms in (8.3)–(8.5) call for the PDE-based approach
promoted throughout this review.

It is worthwhile to compare these results with those provided by Zege et al. [83].
In their Section 4.8 on pulsed sources, their Eq. (4.8.38) gives, in our notations,
the same asymptotic trends for τt � 1 and � 1 for mean optical path σ〈ct〉T
as in (8.3): respectively, we find (1 − g)τ2/2 (irrespective of χ) and (3χ/2)τ (=
τ when χ = 2/3).36 Zege et al.’s same equation gives the trend of the st.dev.
σ
√〈(ct)2〉T − 〈ct〉2T of the optical path when τt � 1; in our notations, it yields
a pre-factor of 11/20 rather than 7/20 in (8.4). We interpret this discrepancy as
the result of requiring only second-order accuracy in m(s, k) for (6.21), on which
their temporal moment computations are predicated; to obtain the correct trend
for 〈(σct)2〉T , one needs fourth-order accuracy in m ∼ √

s when k = 0. Finally,
Zege et al.’s counterpart of (8.5) is in their Table 4.1 and follows from Ref. [46].
That paper by Bushmakova et al. generalizes to anisotropic scattering the studies
by Romanova in Refs [44, 45] that focused on the case of g = 0. In our notations,
the early prediction is 〈(σρ)2〉T ≈ τ/3 when τt � 1, irrespective of g and χ. We
find twice that value. It is not clear where this systematic difference comes from

36The relation 〈ct〉T ≈ H = τ/σ for vanishing σ (hence τ) makes intuitive sense:
most of the light goes straight through the medium in direct transmission. However, a
straightforward flux -based estimate of mean path for light transmitted through an optical
vacuum of thickness H under isotropic illumination is 2H (and, interestingly, the RMS
path is divergent). This serves as a reminder (cf. section 5.4.3) that the effective value of
χ for optically thin media (τt  1) is 4/3.
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but we will see further on that it occurs again with 〈(σρ)2〉R, for reflected light, and
that our MC simulations agree with our diffusion estimates for both transmission
(Fig. 5.15) and reflection (Figs 5.18 and 5.21). We suspect that the factor of 2 in
(3.5), which is nontrivial, may have been omitted.

Figure 5.15 shows the low-order moment predictions in (8.3)–(8.5), making RMS
values out of second-order moments; this suite is augmented with the zeroth-order
transmission term T in (5.5) for the classic two-stream model corresponding to the
s/c, k → 0 limit of this case. MC simulations of the same transport problem, includ-
ing the isotropic boundary point-source, using H–G and isotropic phase functions
show excellent agreement with the diffusion model, as long as the proper χ-value is
used. We note however that χ is not present in the leading terms of the moments
in (8.3)–(8.5).

Fig. 5.15. Cloud responses to a pulsed isotropic point-source in transmission. Diffusion
predictions from (8.3)–(8.5), with correction terms, and (5.5) are in solid lines; MC vali-
dation data are plotted with symbols (two values of χ used to reproduce the MC bench-
marks). The circled points identify parameters used for the space-only case studies in
Fig. 5.9. We note the striking similarity between the two temporal moments. Adapted
from Ref. [24].
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What do these moments tell us about O2 A-band spectroscopy from ground?
The fact that we have 〈(ct)2〉T ≈ (7/5)〈ct〉2T over the whole range of τt, i.e., that one
moment predicts the other one, is not good news for cloud property remote sensing
with stand-alone O2 A-band sensors. If we can somehow merge the time-domain
A-band data with a spatial methodology that yields 〈ρ2〉T (cf. section 5.10.6) or
conventional radiometry with absolute calibration that yields T , then we are in
a far better position. Indeed, the fact that we have different asymptotic scaling
exponents for all three observables (including a null exponent for 〈ρ2〉T ) makes it
at least theoretically possible to determine τt, say, from T and then H from the
measured value of, say, 〈ct〉T and the non-dimensional ratio in (8.3).

Even if there is no direct empirical estimate of 〈ρ2〉T because the sun is a uni-
form source, the utility of (8.5) is to inform other retrievals (A-band or radiometric)
about their minimum effective spatial resolution. It is indeed the fundamental ra-
diative smoothing scale [170] for the transmitted light field [24], below which spatial
details are lost for the remote observer due to horizontal radiative transport caused
by multiple scattering. In ground-based cloud remote sensing, spatial sampling is
determined by temporal sampling Δt and the mean wind v at cloud level – Taylor’s
classic ‘frozen turbulence’ hypothesis. For instance, if vΔt <

√〈ρ2〉T ∼ H, then
there is redundancy in the spatial sampling.37 This redundancy can be viewed as
desirable or not, depending on circumstances. A case were spatial redundancy is
counter-indicated is when compiling statistics that target spatial correlations.

5.8.2.2 Stratification effects

We showed in section 5.5.2 that the above model could be generalized to clouds
endowed with internal stratification according to the linear (constant gradient)
model in (2.27). Should we worry about this issue in ground-based O2 A-band
spectroscopy?

We are here in the case of −2 < Δ < 0 in the upper panel of Fig. 5.5 (gray curves
only), which plots MC results for an isotropic point-source at z = 0 and distributed
flux detectors at z = H, In passing, we note that the converse (0 < Δ < +2)
yields the same answer, by optical reciprocity. We see that, for the prescribed
cloud (τ = 15, g = 0.46), the spatial statistic in (8.5) is essentially unaffected by
stratification, but there is a ∼10% effect in the time-domain properties of primary
interest here in (8.3)–(8.4). In many modeling applications, this level of accuracy
is worth pursuing.

Further computer-assisted algebra based on the solution presented in sec-
tion 5.5.2 (and Appendix A), following the same guidance as above, leads to

37This estimate of the smoothing scale is for ground-based narrow FOV radiometry.
That is indeed how one can access radiance, hence flux, at the lower cloud boundary. In
ground-based radiometry with a wide FOV (for example, 2π sr, hemispherical flux sen-
sors), the same rule applies but 〈ρ2〉T must account for the extensive horizontal transport
in the sub-cloud layer. Being about a fundamentally non-diffusive transport process, this
problem is out of scope for the present review.



5 Space-time Green functions for diffusive radiation transport 231

Fig. 5.16. Effects of stratification on Green functions for transmission. Diffusion pre-
dictions for the prescribed cloud (τt = 8.1) are in solid lines; they were obtained from
(8.6)–(8.8), including correction terms, with χ = 0.71. MC validation data are plotted
with symbols; they are extracted from Fig. 5.5, gray curves in upper panel. We note the
nearly flat behavior of 〈ρ2〉T away from |Δ| = 0 and up to the onset of the logarithmic
singularity at |Δ| = 2 in (8.8), which is discussed in the main text. This is because the
prescribed cloud, with τt/2χ = 5.7, happens to be very close to (5+

√
35)/2 = 5.46 · · · , the

value that cancels the coefficient of Δ2 in (8.9). For larger values of τt/2χ, the diffusion
model for stratification will improve with respect to MC results, and for smaller values it
is expected to worsen.

〈ct〉T /H =
(
1
2
− Δ2

40

)
τt ×

[
1 + C

(1)
T,ct(ξ,Δ

2)
]

ξ=τt/2χ
, (8.6)

〈(ct)2〉T /H2 =
(
7
20

− Δ2(30−Δ2)
800

)
τ2
t ×

[
1 + C

(2)
T,ct(ξ,Δ

2)
]

ξ=τt/2χ
, (8.7)

〈ρ2〉T /H2 =
1
4

⎛⎝[(
2
Δ

)2

− 1

]2
Δ
2
ln

√
1−Δ/2
1 + Δ/2

+

[
1 +

(
2
Δ

)2
]⎞⎠

×
[
1 + C

(2)
T,ρ(ξ,Δ

2)
]

ξ=τt/2χ
, (8.8)

which are all symmetric in Δ and lead back to (8.3)–(8.5) in the limit |Δ| → 0.
Figure 5.16 shows how well the full expressions reproduce the MC results from the
gray curves in the upper panel of Fig. 5.5. Overall, the diffusion results are just
slightly offset from their MC counterparts.

The most remarkable difference between the diffusion and MC predictions in
Fig. 5.16 is the logarithmic divergence of 〈ρ2〉T at |Δ| → 2 that is manifest in (8.8).
All is as if the effective diffusivity constant 〈ρ2〉T /〈t〉T , as observed at the cloud
boundary (in this case, opposite the δ-source), becomes infinite with the value of
the transport MFP at z = 0 or z = H, for example, �t(0) = 1/σt(1 − Δ/2).
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Diverging �t is clearly a challenge for diffusion models since trajectories become
more ballistic within a transport MFP of cloud boundaries.38 However, this spatial
statistic is only of marginal importance in O2 A-band observations. We therefore
recommend using the uniform cloud (Δ = 0) estimate of 〈ρ2〉T when and where
needed. If more accuracy is needed, one can expand (8.8) in a short series with
respect to Δ:

〈ρ2〉T /H2 =
(
2
3

)
ξ(ξ + 3) + 3/2

ξ(ξ + 1)
− 2ξ(ξ − 5)− 5

60ξ(ξ + 1)
Δ2 +O(Δ4), (8.9)

recalling that ξ = τt/2χ. The full variation of 〈ρ2〉T in diffusive clouds is quite
small anyway, cf. MC results in Fig. 5.15. Although there is less and less light to
speak of, diffusion becomes quasi-exact deep inside the medium when τt � 1. In
this limit, 〈ρ2〉T is ≈2/3 when Δ = 0 and using (8.8), with correction term, one
can show that this moment becomes ≈1/2 when |Δ| = 2 in the same limit. For a
start, the two terms in (8.9) yield 8/15 when ξ → ∞. The range in RMS ρ is even
smaller.

5.8.2.3 Uniform oblique collimated illumination

It is of interest to go beyond isotropic sources in A-band transmission studies since
solar illumination comes at a specific incidence depending on geographic location,
season, and time of day. This can be done for uniform sources using the model
introduced in section 5.5.5 (supplemented by Appendix D).

The same steps as in the previous section are followed: obtain T̂ (s) from Ĵ(s, z =
H)/2μ0; expand into a short Taylor series at s = 0; estimate low-order moments
from coefficients of sq. We find that the scaling, including pre-factors, for τt =
(1− g)τ in (8.3)–(8.4) is unchanged, but that the pre-asymptotic correction terms
are affected. In other words, the simple expression for C(q)

T,ct((1− g)τ/2χ) becomes

a rather complex expression C(q)
T,ct(τ, g, μ0) for q = 1, 2.

This SZA-independence of the leading terms is not too surprising since we
are characterizing light that has filtered through an optically thick medium, and is
therefore almost always highly scattered. Recall that memory of the initial direction
of propagation is all but forgotten after∼1–2 transport MFPs. Clouds with diffusive
RT regimes have H � 1 transport MFP, so only a subtle dependence on μ0 is
expected in the transmitted radiation emerging at z = H. Figure 5.17 illustrates
for g = 0.46 the effects of SZA on the first two moments of path ct. These plots show
us where in {τ, μ0} parameter space and what is the magnitude of the difference
with the isotropic source prediction.

5.8.3 Path-length moments from above

To summarize so far, we have established that ground-based O2 A-band spec-
troscopy is poised to become a valuable asset in cloud remote sensing as long as

38This problem could probably be fixed by introducing an ad hoc parameterization
χ(Δ) where χ → 0 as |Δ| → 2.
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Fig. 5.17. SZA dependence of temporal moments for light transmitted through diffusive
clouds. Rescaled optical depth τ for such clouds must exceed unity using the rescaled
g = 0.46 (original τ , for g = 0.85, is then 3.6× more); we explore up to τ = 101.5 (≈114
for g = 0.85). The upper panel addresses predictions for mean path 〈ct〉T and ranges
from 0.5 to 1.8; we see very little difference between the collimated and isotropic sources
for any μ0 when τ � 3 (11 for g = 0.85), less if μ0 ≈ 1/2. The lower panel compares
the RMS/mean ratio for ct with the quasi-constant prediction for isotropic illumination,
namely,

p
7/5 = 1.183 · · · (cf. Fig. 5.15). The variation is only from 1 to 1.5, and we

see deviations only when τ � 3 and μ0 � 1/2 (SZA less than about 60◦). The ratio for
collimated beams slightly exceeds the isotropic value for all but a small area of low τ
under near-grazing incidence angles.

cloud morphology is approximately plane-parallel. When cloud geometry is far from
plane-parallel, O2 A-band spectroscopy can be used in cloud-radiation diagnostics
that probe the complex (and highly climate-relevant) process of gaseous absorption
in the presence of 3D clouds [161,163–165]; see Appendix F for a brief description.

At the time of writing, a satellite mission with high-resolution oxygen A-band
capability is being prepared for launch in early 2009: the Orbital Carbon Observa-
tory (OCO) [171]. Space-based precursors of OCO with A-band coverage at lower
resolutions – but sufficient to initiate cloud studies – are POLDER/Parasol [172],
GOME [173], and SCIAMACHY/ENVISAT [174]. There are also opportunities for
airborne O2 A-band at high resolution from above the clouds, for example, the Lan-
gley Airborne A-Band Spectrometer (LAABS) instrument. It is therefore timely
to hone our predictive skills for A-band products for clouds when observed from
above, namely, path-length moments 〈(ct)q〉R (q = 1, 2, . . . ).
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We will start our investigation of reflected light, as we did for transmission,
with the simple diffusion model for isotropic illumination of a uniform plane-parallel
cloud. We will then examine the effects of internal stratification. While the emphasis
is on temporal responses, we will keep a tangential interest in spatial properties.
Finally, we turn to SZA effects strictly in the time-domain.

5.8.3.1 Isotropic boundary point-source

A bare-bones model for radiative Green functions was introduced in section 5.5.1
using an isotropic pulsed source at a boundary point. Davis et al. [85] and Love
et al. [86] developed this model with multiple-scattering cloud lidar in mind – an
application to discussed in the next section. However, some of the time-domain
signals of this active remote sensing technology and O2 A-band cloud products
are indistinguishable from the Green function perspective. We are thinking here of
low-order moments of in-cloud path-lengths for reflected light.

The simple diffusion model predicts the following dependencies on cloud prop-
erties:

〈ct〉R/H = 2χ×
[
1 + C

(1)
R,ct(τt/2χ)

]
, (8.10)

〈(ct)2〉R/H2 =
4χ
5
τt ×

[
1 + C

(2)
R,ct(τt/2χ)

]
, (8.11)

〈ρ2〉R/H2 =
4
3

(
2χ
τt

)
×
[
1 + C

(2)
R,ρ(τt/2χ)

]
, (8.12)

where

C
(1)
R,ct(ξ) = C

(2)
R,ρ(ξ) = (ξ + 3/2)/2ξ(ξ + 1),

C
(2)
R,ct(ξ) = (8ξ3 + 41ξ2/2 + 75ξ/4 + 1/8)/2ξ2(ξ + 1)2.

We use here the same definition for ξ as in (5.11). Figure 5.18 shows the outcome of
the above model, in excellent agreement with MC validation data in the regime that
matters (τt > 1). Recalling that Monte Carlo simulation is grounded in random
walk theory, it is in fact possible to perform a very simple form of MC simulation
analytically. We can thus derive the various scaling exponents of the leading terms
in (8.10)–(8.12) from heuristic arguments based on random walk (a.k.a. Brownian
motion) theory; see Appendix E.

In contrast with the corresponding expressions for transmitted light in (8.3)–
(8.5), we see that the idiosyncratic extrapolation length parameter χ in diffusion
theory now affects the leading terms directly. We interpret this difference as a
reminder that, in the case of optically thick (diffusive) cloud, the main physical
difference between reflected and transmitted light is that the latter is almost always
highly scattered while the former is a balanced mixture of low- and high-order
scatterings. Light that has suffered only a few scatterings originates necessarily from
the radiative boundary layer near the source. The present incarnation of diffusion
theory uses χ to mitigate its known weakness in the boundary layer. Unsurprisingly,
this ‘signature’ boundary condition parameter of diffusion theory appears in the
leading terms of reflected characteristics, but not those of transmitted ones.
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Fig. 5.18. Cloud responses to a pulsed isotropic point-source in reflection. Diffusion pre-
dictions from (8.10)–(8.12), with correction terms, and (5.5) are in solid lines; MC vali-
dation data are plotted with symbols. The best overall fit was obtained for χ = 1/

√
3 =

0.577 · · · . In contrast with the corresponding Fig. 5.15 for transmitted light, we see that the
first- and second-order moments of path-length scale differently with τt (cf. Appendix E).
This turns out to be an opportunity for active as well as passive cloud remote sensing.
Adapted from Ref. [86].

As made clear in Appendix E, another consequence of the balanced mixture
of low- and high-order scatterings in reflected light is the different scaling expo-
nents for 〈ct〉R and 〈(ct)2〉1/2

R with respect to τt. This gives a unique advantage
to the cloud remote sensing application of O2 A-band spectroscopy from above
the observed cloud layer. Indeed, without any need for radiometric calibration, a
stand-alone O2 A-band spectrometer can now deliver two pieces of information
from the two path-length moments in reflected light. The ratio 〈(ct)2〉R/〈ct〉2R is
now a sensitive function of τt alone, which can be unambiguously inverted; from
there, the known value of τt and the observed value of 〈ct〉R can be used in (8.10)
to infer cloud thickness H.

As was the case for transmitted light, O2 A-band spectroscopy alone does not
give us access to information on the horizontal transport captured in 〈ρ2〉R. How-
ever, the predicted value in (8.12) gives us insight into the spatial resolution of the
A-band spectroscopic cloud remote sensing process. We notice that, again because
of the non-negligible contribution of lower orders of scattering to reflected light,
〈ρ2〉R contracts as τt increases while 〈ρ2〉T in (8.5) remains essentially constant,
on the order of H2. On the other hand, since reflected light also has non-negligible
contributions from light that has diffused almost down to the non-illuminated
boundary and back, the volume of cloud being sampled is effectively ≈H3. We
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will therefore retain H2 as a reasonable estimate of the effective footprint of the
A-band approach to cloud property retrieval.

Finally, we notice in Fig. 5.18 that the diffusion prediction for mean path ex-
ceeds the one for RMS path for scaled optical depths less than about unity (more
precisely, τt/2χ < 0.798); this is a clear violation of Schwartz’s inequality, as it
applies to statistics, and is of course not observed in the corresponding MC results.
This anomaly results ultimately from the fact that solutions of diffusion equations
are not constrained by causality; probabilistically speaking, they need not have
all the defining properties of characteristic (moment-generating) functions, even
though we have used them as reasonable approximations thereof throughout this
paper.

Although we have not found predictions for the temporal moments in (8.10)–
(8.11) for reflected light in the early literature, we did find one for the variance
of horizontal transport distance 〈ρ2〉R in Zege et al.’s [83] Table 4.1. That table is
compiled from 1972 results by Bushmakova et al. [46] that generalize to cases with
g �= 0 results from Romanova’s 1971 papers [44, 45] based on isotropic scattering.
In our notations, they predict that 〈(σρ)2〉R ≈ (8/9)τ/(1 − g) when absorption is
weak and τt � 1. We find precisely twice39 that value when we set χ = 2/3 in
(8.12), 16/9 rather than 8/9. The origin of this factor-of-2 discrepancy is not clear,
but our estimate is validated by high-precision MC simulations in Fig. 5.18. Since
the same factor-of-2 difference was found for transmitted light in section 5.8.2, we
speculate that it originates at a higher level, possibly with the nontrivial factor of
2 in (3.5).

5.8.3.2 Stratification effects

Looking back at the black curves in Fig. 5.5(top), we see that internal stratification
matters for reflected light, more than for its transmitted counterpart. In particular,
the impact of positive and negative gradients in the extinction (equivalently here,
scattering) coefficient away from the illuminated boundary have opposite effects on
all the space-time moments. This is sufficient numerical evidence for attempting
to capture these effects in the diffusion framework. Moreover, in this observation
geometry, we note that the stratification affects multiple-scattering cloud lidar (spa-
tial moment) as well as O2 A-band (temporal moments only). That is indeed what
first motivated two of the present authors to develop in [92] the diffusion model
described in section 5.5.2 that generalizes the above results to media with a linear
gradient in extinction.

39We show further on that the pre-factor of τt is actually 20/9 for a collimated narrow
beam normally incident on the cloud, as opposed to an isotropic boundary point-source,
cf. (9.4) and Fig. 5.21. This extra offset is traceable to the term we incorporate in (4.14),
hence in (5.15)–(5.16), for the anisotropy of the first-scattering source, i.e., the P1 in the
truncated phase function in (4.13).
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Fig. 5.19. Effects of stratification on Green functions for reflection. Diffusion predictions
for the prescribed cloud (τt = 8.1) are in solid lines; they were obtained from (8.13)–(8.15),
including correction terms, with χ = 2/3. MC validation data are plotted with symbols;
they are extracted from Fig. 5.5, black curves in upper panel. We note the presence of a
logarithmic singularity in 〈ρ2〉R at Δ = +2, which is manifest in the leading term written
explicitly in (8.15) and discussed in the main text. Adapted from Ref. [92].

Following the usual procedure, we find

〈ct〉R/H = 2χ
(
1 +

Δ(10 +Δ)
40

)
×
[
1 + C

(2)
R,ct(ξ,Δ)

]
ξ=τt/2χ

, (8.13)

〈(ct)2〉R/H2 =
4χ
5

(
1 +

Δ(80−Δ(20 +Δ(10 +Δ)))
360

)
τt

×
[
1 + C

(2)
R,ct(ξ,Δ)

]
ξ=τt/2χ

, (8.14)

in the time domain, and in the spatial domain,

〈ρ2〉R/H2 =
1
4
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2
Δ
+ 1

]4 Δ
2
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√
1 + Δ/2
1−Δ/2

−
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1 + 2

(
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Δ

)
2
Δ
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2χ
τt

×
[
1 + C

(2)
R,ρ(ξ,Δ)

]
ξ=τt/2χ

. (8.15)

These all lead back to (8.10)–(8.12) in the limit Δ → 0. Figure 5.19 compares the
above predictions with the MC results from the black curves in the upper panel
of Fig. 5.5. The analytical results for the temporal responses are in very good
agreement with the numerical benchmarks.

As was the case for transmission, the most notable discrepancy is the logarith-
mic divergence in (8.15). However, this now happens only at Δ → +2, i.e., when
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the extinction vanishes at the illuminated boundary. We attribute this to the same
physical cause we assign to the appearance of χ in all the pre-factors: the extrap-
olation length (outside the cloud) – as well as the estimated depth of the dreaded
radiative boundary layer (inside the cloud) – goes to ∞ as 1/σ(z) ∝ 1/z when
Δ = +2 in (2.27). This is a clear harbinger of catastrophic failure of the diffusion
model.

In his discussion of multiple-scattering cloud lidar applications, Davis [92] no-
tices that the ‘true’ MC values for the logarithms of 〈ct〉R and 〈ρ2〉R are almost
linear in Δ. He therefore suggests using the diffusion model only to predict the
response at Δ = 0 from (8.10) and (8.12), or something better, and then use the
new model with stratification capability only to estimate the logarithmic partial
derivatives ∂ ln〈ct〉R/∂Δ and ∂ ln〈ρ2〉R/∂Δ at Δ = 0; then a log-linear extrapola-
tion is performed that will closely follow the MC validation data. For the spatial
response in (8.15), one can use the short series expansion

〈ρ2〉R/H2 =
(
4
3ξ

)
ξ(ξ + 3/2) + 3/4

ξ(ξ + 1)
+

2
3ξ
Δ+O(Δ2), (8.16)

recalling that ξ = τt/2χ, to make this estimation. As noted in Ref. [92], the log-
arithmic derivative for

√〈ρ2〉R at Δ = 0, namely, ξ(ξ + 1)/(4ξ2 + 6ξ + 3), is the
same as for 〈ct〉R (cf. Fig. 5.19). Moreover, we note that the useful range for this
quantity is rather small: ≈2/13 to 1/4 for 1 � ξ ≤ ∞.

5.8.3.3 Uniform oblique collimated illumination

Oxygen A-band spectroscopic observations of clouds from above need to account for
the fact that sunlight is collimated and incident under all possible angles. The dif-
fusion model for uniform-but-possibly-slant illumination presented in section 5.5.5
can again be brought to bear, this time, for reflected light. The usual procedure in
computer-assisted calculus and algebra leads to

〈ct〉R/H =
1
3
(2 + 3μ0)×

[
1 + C

(1)
R,ct(τ, g, μ0)

]
, (8.17)

〈(ct)2〉R/H2 =
2
15

(2 + 3μ0) (1− g)τ ×
[
1 + C

(2)
R,ct(τ, g, μ0)

]
, (8.18)

〈(ct)3〉R/H3 =
4
35

(2 + 3μ0) [(1− g)τ ]2 ×
[
1 + C

(3)
R,ct(τ, g, μ0)

]
. (8.19)

We notice that μ0 finds its way into the pre-factor of the dominant power-law rela-
tion for each moment. This is a strong dependence in comparison with counterparts
for transmission described in the previous subsection, where μ0 only influences the
pre-asymptotic correction terms. Revisiting Fig. 5.17 for quantification of the sub-
tle SZA effects in transmission, using the isotropic source predictions as reference.
This difference in sensitivity to SZA between transmitted and reflected fluxes in
the time-domain is once again attributable to the fact that reflected light is a mix-
ture of low and high orders of scattering ns ≈ σct. Indeed, all the light observed
in reflection originates from some last scattering event within the upper radiative
boundary layer of the cloud (i.e., between z = 0 and z ≈ �t); in this mix, the least
scattered light will certainly have a memory of its original direction of incidence.
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Fig. 5.20. SZA dependence of temporal moments for light reflected from diffusive clouds.
Upper panel: (8.17) is plotted for 0 < μ0 ≤ 1 and 1 ≤ τ ≤ 101.5 with g = 0.46, cor-
responding to 3.6 ≤ τ � 114 for the original g = 0.85 if we interpret these values as
δ-rescaled (cf. section 5.4.2.1); the vertical range is between 2/3 (limit for τ → ∞ when
μ0 → 0) and 2.5. Lower panel: (1/2) log10[〈(ct)2〉R/〈ct〉2R)] is plotted for the same range of
parameters; the vertical axis ranges only from 0 (log101, the minimum theoretical value)
to 0.544 (log103.5). Further discussion in the main text.

Figure 5.20 illustrates SZA effects in reflected light, which are easy to show in
their own right. (Unlike transmitted light, there is no need here to refer back to
the isotropic source model as a baseline.) In the upper panel, (8.17) is plotted over
the relevant range of parameters, namely, 0 < μ0 ≤ 1 and 1 ≤ τ ≤ 101.5 for the
δ-Eddington rescaled g = 0.46 (3.6 ≤ τ � 114 for the original g = 0.85). We see
that in-cloud path increases significantly with μ0 at any given τ , which is to be
expected since the light is injected deeper into the cloudy medium as μ0 approaches
unity. The lower panel plots the log of the RMS-to-mean path ratio over the same
region of parameter space. We see a monotonic dependence of the non-dimensional
moment ratio with τ , which confirms our above prediction that cloud optical depth
can be retrieved unambiguously from the two observable moments for any given
SZA.
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5.9 Space-time Green functions applied to
multiple-scattering cloud lidar (MuSCL) observations

We now turn to a new active technology for cloud remote sensing in the diffu-
sive regime: Multiple-Scattering Cloud Lidar (MuSCL),40 that we first proposed
in 1996 on purely theoretical grounds [176]. Although developed independently,
this cloud-probing technique is a direct extension of Multiple-FOV (MFOV) lidar,
which targets aerosols [177–181] as well as clouds [182–184]. MFOV lidar itself ex-
tends the standard design of elastic backscatter lidar implemented, for instance,
in the eye-safe design of micro-pulse lidars [185]. In the classic lidar equation, the
assumption is single scattering through 180◦ for the most common configuration,
so-called ‘monostatic’ systems, where the transmitter and receiver are collocated.
This is indeed the opposite asymptotic limit in RT theory to the diffusion/P1 ap-
proximation used throughout this paper: it is valid only in optically thin media.

In essence, MFOV lidar capitalizes on the strong forward peaked of the scat-
tering phase function for cloud droplets and most aerosol types. To this effect, the
small-angle approximation to time-dependent RT with multiple scattering is in-
voked, and it is known to work well close to the incident beam [83,186,187, among
others]. Although the MFOV lidar project brought it to a high level of sophistica-
tion and application, the time-dependent41 small-angle approximation was applied
to pulse propagation through turbid media at least going back to Belyantsev et
al. in 1967 [193], Romanova in 1970 [194], and Weinman and Shipley in 1972 [195]
who all considered a one-way transit, ending in transmission.42 Investigations of
reflected laser pulses in the same approximation soon followed [196–199].

Because of the necessarily narrow FOV used in classic lidar, which only needs to
contain the volume illuminated by the highly-collimated laser beam, there is little
penetration into opaque media such as the clouds. Even if we could separate the
single-scattering signal from contamination by multiple-scattering, which we can-
not, there would be no photons left to count after two-way propagation to optical
depths in the 10–100 range. MFOV does vastly better by indeed exploiting the mul-
tiple scattering signal coming from relatively near the laser beam. Optical depths
up to 8–10 can be reached; after that wide-angle scattering starts to dominate the
signal and we therefore enter the realm of MuSCL.

MuSCL signal physics are the same as in the in situ cloud lidar discussed in
section 5.7 and, to a large extent, also those of the reflected O2 A-band spec-

40This obvious and compelling acronym is closely related to, but not to be confused
with, MUSCLE (MUltiple-SCattering Lidar Experiments), an on-going series of interna-
tional workshops; see Ref. [175] for a special section of Applied Physics – B that followed
from one of them.

41In steady-state, application of the small-angle approximation to the pencil-beam
problem goes back much further. In charged particle transport, it has been known as
the Fermi–Eyges/Fokker–Planck approximation since c. 1950. This modeling framework
has recently regained considerable interest, largely motivated by emerging applications to
the accurate computation of minimal-yet-effective dosimetry in electron-beam radiation
therapy [188–192].

42Formally, this is an isotropic diffusion process in the non-Euclidean space of directions,
starting from a given initial position and slowly but surely filling the whole unit sphere,
one scatter at a time [81,108].
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troscopy covered in the previous section. The main difference is that, having a
pulsed laser as a source and observing the Green function from a significant stand-
off distance to the cloud, MuSCL can access and exploit the signal in the spatial
domain . . . although not always easily, as we now show, by starting our discussion
with past and future space-based MuSCL systems.

5.9.1 Space-based MuSCL systems

If the lidar instrument is at a very great distance to the cloud, as in space-based
systems, then there will be limited, if any, information about the horizontal radi-
ation transport away from the beam. We have estimated this span of the spatial
Green function to be ∼H (∼km scales). Although imaging technology exists for
much smaller scales, it would soon be ‘photon-starved’ if also required to resolve
the rapid time evolution. Furthermore, the laser beam itself will be spread out to
a significant diameter, thus diluting the spatial Green function (by convolution).
That said about the present and near-future, systems may prove far more capable
in the longer term.

Following Miller and Stephens [200], we make the safe assumption that we only
have access to time-domain information. But this is exactly what the proposed
cloud remote sensing using reflected oxygen A-band spectroscopy is about. The
difference is that a lidar system will access the temporal signal directly with fast
radiometry, while the spectroscopic technique delivers the path-length moments as
‘products’ derived from the differential absorption spectroscopy. The only other
difference is the in down-looking lidar we have μ0 = 1 while passive A-band obser-
vation can have any incidence angle. So we are in fact looking at a special case of
(8.17)–(8.19):

〈ct〉R/H =
5
3
×
[
1 + C

(1)
R,ct(τ, g, 1)

]
, (9.1)

〈(ct)2〉R/H2 =
2
3
(1− g)τ ×

[
1 + C

(2)
R,ct(τ, g, 1)

]
, and (9.2)

〈(ct)3〉R/H3 =
4
7
[(1− g)τ ]2 ×

[
1 + C

(3)
R,ct(τ, g, 1)

]
, (9.3)

where, following Ref. [92], we have returned to the model for normal incidence
in section 5.5.3. Figure 5.21 illustrates (9.1)–(9.3) along with MC validation data
and the predicted asymptotes using both g = 0.85 and its δ-rescaled counterpart
g′ = 0.45. As expected, the later case is more accurate with respect to the MC
simulation benchmarks. We see that the higher the order of the moment, the longer
it takes to approach the asymptote; this underscores the practical importance of
knowing the C(q)

R,ct terms with high accuracy.
At present, the prime application of this limited set of results is for the analysis

of the nighttime orbit #135 of the Lidar-In-space Technology Experiment (LITE),
which flew on Space Shuttle Discovery (STS-64 mission), September 9–20, 1994
[111]. The LITE payload was in essence a standard research lidar system: 5 W laser
transmitting at 532 nm (the popular ‘doubled Nd:YAG’ solid-state technology)
with a pulse rep-rate of 10 Hz and a diffraction-limited beam divergence leading to
≈0.3 km diameter at cloud level); receiver composed of a ≈1-m telescope feeding
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Fig. 5.21. Spatial and temporal moments of the reflected Green function for normal
illumination by a pulsed narrow beam. From the top down, we have plotted 3

p〈(ct)3〉/H,p〈(ct)2〉R/H, and 〈ct〉R/H from (9.1)–(9.3) and
p〈ρ2〉R/H from (9.4) as functions of

rescaled optical depth. We note the different results for the canonical g = 0.85 value for
liquid water clouds and its rescaled counterpart g = 0.45. Indeed, when the un-collided
and diffuse components of the radiance field are treated separately, we no longer have
exact similarity in (1− g)τ . Adapted from Ref. [92].

a high-efficiency photon-counting detector with a deliberately large FOV, namely,
0.2◦ (footprint at cloud level with ≈0.9 km diameter (at least during nighttime
orbit #135). That data collection targeted a dense marine Sc layer and geometry
tells us that the measured light was transported up to 1.2 km horizontally. Since
the anticipated spatial Green function for such clouds has RMS-ρ ∼ H ≈ 0.3 km,
we can safely assume that very high orders of scattering were present in the LITE
signal. We refer the reader to the studies by Davis et al. [114,201] for quantitative
analyses of temporal moments and other time-domain characteristics of the small-
but-interesting subset of non-saturated LITE returns from this orbit. It suffices to
say here that the inferred cloud properties, i.e., {H, τ} pairs, are consistent with
what we know about such clouds.

5.9.2 Ground-based and airborne MuSCL systems

We now assume that the MuSCL system is at a finite distance from the cloud.
In other words, going back to notation from section 5.2.3 for the distance of the
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observer to the closest cloud boundary, we have dobs � H,� H, but not�H (a case
covered in the previous subsection) nor43 �H. In short, platforms include those
on the ground [84] or in an aircraft (including blimps) flying above the cloud top
[202], up to the ≈20 km limit for high-altitude aircraft; as described in the provided
references, both kinds of MuSCL system have been deployed and demonstrated.
We can then easily measure spatial characteristics such as

〈ρ2〉R/H2 =
20
9

1
(1− g)τ

×
[
1 + C

(2)
R,ρ(τ, g, 1)

]
, (9.4)

given here for the same normal/narrow-beam illumination used for the temporal
moments in (9.1)–(9.3). The RMS value for ρ obtained from the above is also
plotted in Fig. 5.21 with its MC validation data and estimated asymptote. Note
that, for consistency, we have reserved in C(2)

R,ρ(τ, g, 1) a slot for the possibility of
μ0 < 1 although there is no longer axial symmetry in that case, and one would
need to modify the diffusion model to capture other spatial statistics than the RMS
horizontal transport. At present, however, we have no practical reason to take the
diffusion transport modeling to that level of complexity. But that is only because of
the limited scope of our applications; we refer the interested reader to Zege et al. in
Ref. [83, Section 6.3, and citations therein] who address this steady-state problem in
order to derive the non-axisymmetric MTF that controls off-axis imaging through
a turbid medium.

The random-but-correlated variability of extinction in clouds driven by turbu-
lence affects all aspects of the 3+1D RT, and we have promoted in section 5.4.2.3
a straightforward homogenization approach developed by Cairns et al. [75] to cope
with this issue. We recall that in homogenization theory we simply use new val-
ues of optical properties σ and g dependent on original values – possibly already
δ-rescaled (to account for the anisotropic source and phase function) – and variabil-
ity parameters. Although all the time-domain responses in (9.1)–(9.3) are affected,
we choose to illustrate with the RMS ρ. Figure 5.22 shows the relative effect (in
%-difference) of Cairns rescaling for ε up to 0.4 on

√〈ρ2〉R. It is systematic and
positive: turbulence makes the RMS horizontal transport larger.

For a more quantitative validation of this prediction, we can turn back to Fig. 5.4
where we see that, going from the uniform to the fractal stratus cloud, the RMS
ρ increases by ≈15–20%. That simulation was for a mean cloud optical depth
τ ≈ 13, hence τ ′ ≈ 3.6 after δ-Eddington rescaling (log10 τ

′ ≈ 0.56). This is
about in the middle of Fig. 5.22 where we see that a 15–20% effect is obtained
for ε(σ2/σ2, σ′lc) ≈ 0.1–0.15. Looking at Fig. 5.6, we see that this magnitude is
delivered by a variety of values of the one-point PDF parameter σ2/σ2 = σ′2/σ′

2

and of the two-point correlation parameter lc (knowing that σ′ = τ ′/H ≈ 3.6/0.3 =
12 km−1). Fractal clouds have, by definition, long-range correlations: horizontally,
the variability spectrum observed for marine Sc goes from tens of meters to tens of

43For dobs = 0, the detector is at the cloud boundary, so no imaging (discrimination
between different values of ρ > 0) is possible, at least in monostatic systems where source
and detector are collocated. This is in fact a limiting case of in situ cloud lidar covered
in section 5.7, corresponding to the occurrence of dense fog for a ground-based system.
Recalling the source/detector geometry for that technique, it may prove useful to decouple
the axis of the receiver FOV from the laser beam.
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Fig. 5.22. The impact of random internal variability on 〈ρ2〉1/2
R in %. We have plotted

100× ([〈ρ2〉R(ε)/〈ρ2〉R(0)]1/2 − 1) where ε, obtained from (4.22)–(4.23), is used in (4.20)
to change both σ′ and g′. In turn, this rescaling of optical properties changes the outcome
of (9.4) for 〈ρ2〉R, as an example. We see that over the useful range of ε the parameterized
impact of turbulence-driven variability is significant, but only weakly dependent on optical
thickness.

kilometers [203–205]. However, we are only interested here in the spatial correlations
over the horizontal extent of the spatial Green function, which is ∼H; so we can
take σ′lc ∼ τ ′ ≈ 3.6. Similarly, we are only interested in the relative one-point
variability, as captured by the RMS/mean ratio, over the horizontal extent of the
spatial Green function; this implies that σ′2/σ′

2
is only slightly more than unity. For

this combination of (σ′2/σ′
2
, σ′lc), we indeed find that ε has the right magnitude

in Fig. 5.6.
In summary, we have presented upfront (Fig. 5.4) numerical evidence that, for

the moderate variability found in Sc cloud layers at scales ∼H, we can expect a
boost in

√〈ρ2〉R on the order of ≈15–20% with respect to strictly uniform clouds
with the same (domain-average) optical depth. Furthermore, this observation is
consistent with our implementation of Cairns’ parameterization for small-scale vari-
ability effects in the spatial Green function.

Finally, it is important to compare quantitatively the impacts of random tur-
bulence and of deterministic stratification (sections 5.2.5, 5.5.2 and 5.8.3) on the
characteristics of reflected light. We summarized the latter effect by estimating the
relative effect of a change in relative gradient |Δ| of unity on either 〈ρ2〉1/2

R or 〈ct〉R:
it varies between 2/13 (≈15%) and 1/4 (25%) as (1− g)τ goes from ≈1 to �1. We
therefore retain that, under typical circumstances, the two effects are of the same
order of magnitude.

5.9.3 Moment-based methods for MuSCL

Figure 5.23 illustrates how a hypothetical MuSCL retrieval of cloud thickness H
and optical depth τ would proceed, including error propagation. We assume here an
observational technology that can deliver one spatial and two temporal moments.
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Fig. 5.23. A typical moment-based cloud remote sensing algorithm for MuSCL data
processing. The lower curves show the non-dimensional ratio of observable moments
〈ρ2〉R/〈(ct)2〉R as a function of rescaled cloud optical depth (1 − g)τ for g = 0.85 and
the related value of g′ = 0.46. Although not very different, the curve for g′ is favored,
and gives us τ , via scaled optical depth τ ′ (upper axis). We then use the corresponding
prediction for H/〈ct〉 in the upper curves to determine cloud thickness H. The numerical
example uses rescaled g′ = 0.46, which is expected to be the more accurate. A ratio of
second-order moments of (3.0± 0.5) 10−2 is assumed, and yields τ ≈ 34± 4 (12% uncer-
tainty) and, from there, H ≈ (0.560±0.005)× the mean in-cloud path 〈ct〉 (whatever that
may be). Note that the observational error on this first-order moment will very likely over-
whelm the ≈1% error on the multiplier (associated with ≈12% on τ , resulting itself from
the hypothetical ≈17% on the ratio of second-order moments). Adapted from Ref. [92].

As already suggested in our discussion of cloud remote sensing based on A-band
spectroscopy, the non-dimensional property τ is determined from a non-dimensional
ratio of moments, and then the dimensional cloud property H is determined from
any one of the dimensional observables. Here, we opt for the mean in-cloud path.

Hogan and Battaglia [107] recently developed a time-dependent two-stream
model, which is akin to the diffusion model, but with better performance at
early times (in terms of causality in particular). Their model furthermore fea-
tures an improved representation of the source of diffuse radiation by embedding a
propagation-with-dispersion model by Hogan [187] for the pulsed laser beam (in the
small-angle approximation). This idea was pioneered by Dolin [206] and Zege et al.
[207] 20–25 years ago with analytical methods, but Hogan and Battaglia designed
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their model from the start as a numerical tool. In particular, arbitrary vertical
structure can be accommodated. In view of the alternation between physical-space
modeling (requiring inverse Fourier and Laplace transforms) and moment-based
methods in the present study, they offer an interesting middle road. The tempo-
ral signal is modeled in detail (as straightforward outcome of the numerical PDE
solution) and, for space, they predict the conditional moment 〈ρ2〉R(ct) (basically
by assuming, as in diffusion theory, that the instantaneous profile is Gaussian).
This framework should prove very fruitful for all future MuSCL-type probes, and
especially those in space from whence information about horizontal transport will
necessarily be limited.

5.9.4 Deeper mining of MuSCL observations for cloud information

Can we use Cairns’ parameterization of internal variability from section 5.4.2.3 in
cloud remote sensing with MuSL? When using moment-based retrievals, there is
certainly no harm in improving the fidelity of the forward model by prescribing a
value of ε(σ2/σ2, σlc) from the climatology of cloud variability; see Fig. 5.22 for
the impact in the ρ-domain. However, if we wish to determine ε (hence a met-
ric of internal cloud variability) empirically, we would have to start with at least
three moments. We can thus form two or more dimensionless ratios and we in-
clude here, along with moments, cloud albedo R; albedo is indeed the zeroth-order
moment, but also the ratio of overall reflected flux to incoming flux. These data
in principle enable us to determine simultaneously the twice-rescaled τ ′′ and g′′

using the full nonlinear dependence on both parameters (rather than simply pre-
scribe the asymmetry factor); see Fig. 5.24 for an illustration. Then one can derive
ε = 1 − 1/[2 − (1 − g′′)/(1 − g′)] from (4.20) for known g′ = 0.46; from there,
we work back to τ ′ and τ . Knowing τ (and τ ′) and having prescribed g (and g′),
any predicted moment from (9.1)–(9.4) continues to give us H along the way by
comparison with the corresponding observed value.

In the same spirit, a three-moment retrieval scheme can be devised that tar-
gets Δ (on top of H and τ) using the parameterizations of stratification impact in
(8.13)–(8.15). In principle, a four-moment scheme could target all four cloud pa-
rameters. That, however, may be overextending MuSCL capability in cloud remote
sensing. Only practice in modeling and in the field with specific implementations
will determine how much reliable cloud information can be extracted. Of course,
beyond its ‘validation-by-intercomparison’ phase of development [84,202], MuSCL
can eventually be combined with other cloud remote sensing instruments in opti-
mal multi-modality approaches. We anticipate particularly fruitful integration with
millimeter cloud radar and multi-channel passive microwave radiometers. Natural
complementarity with thermal and solar radiometers should also be examined care-
fully and thoroughly.

Proximity of the observer to the cloud will naturally increase the SNR [92].
However, a serious problem arises when the finite FOV of the instrument prevents
one from estimating moments reliably – the far-field tail of the spatial Green func-
tion is truncated! Although it may not be as obvious, the temporal Green function
will be truncated if the spatial one is. If the receiver is a true imager, then it can be
tilted with respect to the laser beam, thus gaining theoretically (in the absence of
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Fig. 5.24. Feasibility of joint retrieval of the effective τ and g, hence of a metric of
random variability, with MuSCL. Gray-scale plots of cloud albedo R (left) and the non-
dimensional moment ratio 〈ρ2〉R/〈ct〉2R (right) as functions of log10 τ ′′ and g′′, the twice
rescaled cloud parameters in (4.20). Observational determination of R, which requires
absolute calibration, 〈ct〉R and 〈ρ2〉R can lead to physical and optical thickness as well as
the internal variability parameter. As explained in the main text, ε(g′, g′′), τ ′(g′, g′′, τ ′′)
and τ(g, g′, τ ′) are determined in that order, assuming we can take g = 0.85 and the
associated g′ = 0.46 for granted. However, visual inspection of the two panels reveals that
joint retrievals of τ ′′ and g′′ (hence Cairns’ ε) – the cloud’s physical thickness H being
determined later – will not be easy in general because isophotes and ‘iso-moment-ratio’
lines are more parallel than perpendicular. The most favorable region is where τ ′′ is low
(reinforcing the importance of δ-Eddington rescaling as an intermediate step) especially
when g′′ (hence ε) is large.

noise) up to a factor of 2 in off-beam distance at the focal plane. A radical solution
is, however, to return to the models that express the Green function in space and
time, i.e., the PDFs that lead to the moments, cf. section 5.6 and Refs [84,99].

5.10 Further applications to passive solar observations
of clouds

Having covered in detail the application of radiative Green functions to two emerg-
ing cloud remote sensing technologies in the previous sections, we now survey briefly
their application to more tested approaches.

5.10.1 Operational cloud remote sensing in the solar spectrum

Reflected and transmitted sunlight has always been a resource in cloud remote
sensing in the solar spectrum, as long as absolute radiometric calibration is main-
tained. The standard model for retrieving cloud properties is, like here, the plane-
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parallel slab treated at various levels of accuracy in the RT ranging from a two-
stream/diffusion model (with separation of direct and diffuse components) from
section 5.5.5 to a full multi-stream 1D RT model such as DISORT [168]. In the
latter case, the computational burden is heavy enough that the forward modeling
is done ahead of time and used to generate extensive look-up tables used to map
cloud properties to radiances and vice versa [208–210].

Excluding O2 A-band, cloud thickness H is not accessible by passive remote
sensing since all one has is steady-state reflected (R) or transmitted (T ) radiances44

at one or more wavelengths, both being functions of τ,�0 and45 g, as well as of
μ0 and the viewing angle coordinates μ, φ− φ0. The targeted cloud properties are
invariably optical depth τ and the effective radius of the droplet size distribution
re = r3/r2. The latter is obtained indirectly, via an estimate of the SSA, �0(re), at
a wavelength where liquid water has non-negligible absorption. This joint retrieval
is based on the fact that, to a first approximation, σ ∼ r2 and σa ∼ r3, hence
1−�0 ∼ re for the co-SSA.

5.10.2 Opacity-driven 3D radiation transport

The question of how applicable 1D RT is to remote sensing of real (3D) cloud has
been investigated quite thoroughly; see Ref. [211] for a recent survey. Since 1D
RT is applied irrespective of the pixel scale, one must distinguish two qualitatively
different kinds of modeling error:

1. if the pixel size is somewhat greater than the characteristic scale of the spatial
Green function (namely, ∼H), then there is a high probability that there is
significant sub-pixel variability and, because of the nonlinear dependence of
radiance on cloud properties (τ and re), the retrieved values will be biased with
respect to their mean values;

2. if the pixel size is � than H, then the observed radiance is surely ‘contaminated’
(in the 1D RT sense) by horizontal fluxes coming from adjacent pixels.

In the former case (problem #1), so-called ‘plane-parallel’ biases occur, which are
generally systematic in sign [212]; in the latter case (problem #2), so-called ‘in-
dependent pixel approximation’ biases occur, which are of both signs (depending
on structural details) [213–215]. Solutions adapted to both of these situations are
discussed in the remainder of this section.

5.10.3 The independent pixel approximation for steady/uniform
illumination

The above problem #1 (sub-pixel variability) can be addressed simply by averaging
(linearly mixing) the radiances predicted in 1D RT over an assumed variability
in cloud properties. We can anticipate nontrivial results because radiances are

44It is conventional to normalize the observed radiance by estimating the effective
Lambertian reflectivity, R(μ, φ;μ0, φ0) = πI(μ, φ;μ0, φ0)/μ0F0, where F0 is the spectral
solar flux integrated over the band of interest, and similarly for T .

45In this context of multi-stream 1D RT, we understand ‘g’ to symbolize the whole
phase function representation, in whatever space that may be (Ω or Pn).
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nonlinear functions of all the cloud optical properties. This procedure is known
in 3D RT as the independent pixel approximation (IPA) [212]. It is natural and
convenient to choose a model for the variability that leads to analytical treatment.

In stratiform clouds, τ is by far the most variable property in comparison with
H, g and re (or �0). The preferred variability model for τ has been the two-
parameter Gamma distribution:

Pa(τ) =
1

Γ (a)

(a
τ

)a

τa−1 e−aτ/τ , (10.1)

where
a =

1
τ2/τ2 − 1

. (10.2)

Its popularity follows from the ease of integrating rational functions over arbi-
trary combinations of power laws and exponentials, resulting at most in exponen-
tial integral functions and/or incomplete Gamma functions (possibly infinite series
thereof).

In the context of radiation budget parameterization for the large-scale domain-
averages required in GCMs, Barker [216] worked out the integrals

F a(τ ,�0, g;μ0) =

∞∫
0

Pa(τ)F (τ ;�0, g, μ0) dτ (10.3)

for boundary fluxes F = R, T (hence also cloud absorptance A = 1−R−T ) resulting
from uniform collimated illumination in the Eddington/diffusion-based version of
the two-stream approximation [87]. This ‘Gamma-Weighted Two-Stream’ model
was later generalized to multiple partially cloudy layers by Oreopoulos and Barker
[217], thus calling for the same computations for the R and T responses to a
uniform isotropic source, which depend only on 1 −�0 and τt = (1 −�0g)τ . For
instance, at non-absorbing wavelengths (�0 = 1), they use the simple expression
for transmittance in (5.5) and obtain

T a(τ t) =

∞∫
0

1
1 + τt/2χ

Pa(τt) dτt = X eXEa(X)
∣∣
X=2χa/τt

, (10.4)

although in a different notations; here, Ea(X) is the exponential integral of (any
real) order a > 0, and we note that X = a/ξ from (5.11). This leads to
the systematic positive bias observed in Fig. 5.25(a) of T a(τ t) with respect to
T∞(τ t) = 1/(1 + τ t/2χ). This is a well-known result in 3D RT: structured clouds
transmit more than their homogeneous counterparts with the same mean τ . This is
an immediate consequence of Jensen’s [77] inequality in the case of a convex func-
tion like T (τt/2χ). Kokhanovsky [218, 219] performed similar computations, with
satellite remote sensing in mind, using the asymptotic 1D RT [166,220] expressions
for reflected radiances I(τ,�0, g;μ0, μ), which become Ia(τ t, �0, g;μ0, μ).
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5.10.4 The independent pixel approximation for space/time Green
functions

There is no reason why the same averaging procedure cannot be performed on
the spatial or temporal Green functions or associated moments obtained in the
previous sections, as need be. This computation would apply, as for the above
steady-state RT, to solar O2 A-band spectroscopy at coarse scale. In that respect,
it complements the homogenization approaches based on Cairns (section 5.4.2.3) or
Larsen (section 5.4.2.4) rescaling, which applies primarily to small-scale variability.
At any rate, that is precisely how Davis and Marshak [24] preemptively approached
the problem of spatial variability for the spatial dimension in transmitted light,
without considering homogenization. They used (10.3) with τ = 10 and a = 4.5,
typical values found by Barker et al. [221] for stratocumulus, to average T × 〈ρ2〉T
from (5.5) and (8.5), and then normalized by T in (10.4). Davis and Marshak thus
captured quantitatively the ≈10–15% difference in RMS ρ clearly visible in Fig. 5.4
between uniform and fractal plane-parallel clouds.

Here is another example, this one in the time-domain hence directly applicable
to passive (solar) remote sensing of clouds based on O2 A-band spectroscopy. We
apply (10.3) with F (τ ;�0, g, μ0) replaced by 〈ct〉T from (8.3) times the correspond-
ing T (τt) from (5.5). After dividing by T from (10.4), we obtain for the mean path
in variable clouds:

〈ct〉T /H =
T 〈ct〉T
T ×H

=
χ

2
[
1 + a+X + (2−X)/T a(X)

]∣∣∣
X=2χa/τt

, (10.5)

Fig. 5.25. Transmittance and mean path-length for a Gamma-weighted two-stream model.
(a) The expression in (10.4) is plotted versus τ t for selected values of a in log-log axes;
we note the increasing transmission as the unresolved variability increases (a decreases)
at fixed τ t. (b) Mean path-length, in units of H, from (10.5) versus τ t for the same values
of a as in panel (a); we note that paths decrease on average as variability increases (a
decreases) at fixed τ t. See text for more explanation.
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where T a(X) is expressed in (10.4). Figure 5.25(b) shows 〈ct〉T /H for represen-
tative values of a over a relevant range of τ t. We see that, for a given H, the
unresolved variability reduces the observed mean path with respect to the pre-
diction for a uniform cloud with the same optical depth. The physical reason for
this outcome is the same dominance of high transmission values (low τt) that af-
fect T in Fig. 5.25(a). Indeed, the whole variation of flux-weighted mean path,
T × 〈ct〉T = χ(τ2

t + 6χτt + 6χ2)/(τt + 2χ)2, is between χ � 1 and 3χ/2 ≈ 1 for all
choices of χ near its canonical value46 of 2/3.

We note that, if the application is ground-based O2 A-band spectroscopy of
clouds, then the Gamma- or otherwise-weighted averaging should actually be per-
formed on the prediction of the forward RT model in Laplace space, namely,
F̃ (s, 0, τt, χ) from (5.8), or (5.9) for space-based, since that is the quantity ob-
served at a scale so coarse that sub-pixel variability needs to be accounted for.
That is a harder computation yielding the same expressions for the path-length
moments, but it can be used directly with A-band observations.

5.10.5 Landsat-type observations of clouds from space, and the
nonlocal IPA

How can we address the above problem #2 of pixel ‘adjacency’ effects? In this case,
the pixel scale is too small for 1D RT to be realistic. More precisely, the pixel foot-
print is so small that, even if it were internally homogeneous, net horizontal fluxes
coming from denser or more tenuous neighboring pixels would affect the observed
radiance at cloud top. With their 30 m pixels, NASA’s series of Landsat/Thematic-
Mappers are by far the most popular assets delivering imagery that fall in this
category. To the best of our knowledge, the first systematic attempt to go beyond
quantification and actually attempt to mitigate this inescapable 3D RT effect was
by Marshak et al. [222] who proposed the ‘nonlocal IPA’ (NIPA).

NIPA is based on the intuitive idea that multiple scattering processes cause
an apparent smoothing of the cloud structure, as observed in the remotely sensed
radiance field [170,223–225]. Rather than run a full 3D RT simulation with an ex-
pensive MC code, or even a more efficient grid-based solver such as SHDOM [18],
one can simply apply a low-pass filter (smoothing kernel) to the IPA prediction.
This approximate 3D RT method works well, at least for stratiform clouds under
near-normal illumination. At more oblique illumination, brightening/shadowing ef-
fects produce a radiative roughening in the sense of enhanced amplitudes in Fourier
space [226,227] at scales � H.

We note that what is required here is the Fourier transform P̃ (
−→
k ) of the smooth-

ing kernel P (−→ρ ) since we wish to perform the convolution product of P and the
2D IPA-derived radiance field IIPA(−→ρ ):

INIPA(−→ρ ) =
+∞∫∫
−∞

P (−→ρ ′)IIPA(−→ρ −−→ρ ′) d−→ρ ′, (10.6)

46We note that 〈ct〉T /H = 3χ/2 at τt → 0(X → ∞) in (10.5), which is unity when
χ = 2/3, for all values of a (cf. Fig. 5.25(b)). As remarked earlier (in section 5.8.2), this
limit should yield 2 (the mean μ-weighted value of 1/μ) and, accordingly, we should be
using χ = 4/3 for optically thin media, as suggested in section 5.4.3.
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which becomes a simple product in Fourier space, ĨNIPA(
−→
k ) = P̃ (

−→
k )ĨIPA(

−→
k ).

Any one of the Fourier-space reflected Green functions computed in section 5.5
for illumination can be used. They depend parametrically on H, τt and g or Δ.
Depending on whether local albedo or nadir radiance is targeted, we would choose
a spatial Green function for isotropic or normal illumination.

Marshak et al. [222] had an even more empirical approach, however. Eschewing
normalized solutions from section 5.5 in Fourier space, they used a convenient
two-parameter expression like (10.1) but for ρ instead of τ and averages based on
cloud radiative Green functions (in 〈·〉’s) instead of averages over cloud structural
disorder (indicated with ·). The 2D Fourier–Hankel transform in (6.1) of a Gamma-
shaped radial Green function (normalized with the appropriate 2πρ weighting) can
be expressed as an Euler hypergeometric function:

P̃ (k) = 2F1

(
1 + a

2
,
2 + a

2
, 1;−

( 〈ρ〉k
a+ 1

)2
)
. (10.7)

However, the authors did their proof-of-concept computations with cloud models
having optical depth variability in a single horizontal direction, say, x. The required
1D Fourier transform of (10.1), with τ �→ |x| and division by 2 (to cover the new
support, all of R), is a simpler expression:

P̃ (k) =
cos

[
a tan−1( 〈|x|〉ka )

]
[
1 +

(
〈|x|〉k

a

)2
]a/2

. (10.8)

Just like the diffusion-based MTFs for reflections presented in section 5.5.1 (Fig. 5.8),
these smoothing kernels act in Fourier space as low-pass filters; however, they fea-
ture gentle power-law cutoffs in k−a at wavenumber kc ≈ 1/〈ρ〉R (2D) or 1/〈|x|〉R
(1D).47

Power-law tails in P̃ (k) are a natural choice to reconcile the spatial correlations
observed in satellite images of extensive stratocumulus [225] with those observed
with airborne in situ probes [204] for the same type of cloud system. The lat-
ter have scale-invariant (power-law) internal structure (obviously driven by turbu-
lence); specifically, one finds extinction (actually, liquid water content) fluctuations
in k−5/3, typically over scales from ∼tens of kilometers down to ∼tens of meters.
Satellite (nadir-looking) radiances also have this trend, which follows from the IPA
(a nonlinear but one-to-one mapping of local τ to local radiance), but only down to
a scale found by numerical simulation to be ≈ √〈ρ2〉R [170]. Above the associated
cut-off wavenumber, a trend approaching k−3 is found, which translates to a func-
tion at least once differentiable.48 Noting that the low-pass filtered NIPA radiance
goes as k−(5/3+a) when k → ∞. This sets a to a value � 4/3. Only slightly smaller

47Recall that this substitution of Gamma-type functions for Green functions derived
from transport physics was also done in the time-domain, in particular, for practical data
exploitation in O2 A-band spectroscopy of cloudy skies [159,160]. This is largely because,
as for Fourier transformation, it has a closed-form Laplace transform.

48This level of smoothness is quite remarkable since the 3D RT equation puts no con-
straints on gradients perpendicular to the beams (which, in this situation, are vertical).
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Fig. 5.26. A simple and convenient stochastic cloud model for radiative smoothing studies.
Left: In the first step, a fraction f1 of cloud ‘mass’ is transferred in a random horizontal
direction from one half to the other. For every step after that, a fraction fn is similarly
transferred at scale 1/2n such that fn/fn−1 = · · · = f2/f1. Right: The outcome for one
realization at n = 14 when the parameters are f1 = 1/4 and f1/f2 = 2

1/3. This so-called
‘bounded cascade’ model [27, 228] has been tuned to yield a 1-point st.dev. of 1/3 of
the (unit) mean and 2-point correlations reflecting a Fourier spectrum in 1/k−5/3. These
values are typical of the observed variability of local optical thickness for real marine
stratocumulus clouds [28]. Both panels are reproduced with permission from Ref. [229].

values (a � 1) are required for consistency between the Landsat observations [225]
and the near-field behavior of simulated [170] and observed [85] spatial Green func-
tions for reflected laser light. In short, the anticipated range for a is quite narrow
and, in any event, its precise value is not as important as that of 〈|x|〉 (or 〈ρ〉) that
determines the spatial extent of the running average.

Figures 5.26 and 5.27 illustrate the NIPA procedure for a fractal cloud model.
The stochastic ‘bounded cascade’ model used to generate horizontal cloud structure
for a stratocumulus is explained graphically in the l.-h. panel of Fig. 5.26 while the
resulting transect of cloud variability normalized to yield a unit mean is plotted in
the r.-h. panel; its wavenumber spectrum is prescribed to be ∝ k−5/3, as observed in
real stratocumulus layers. This model is illustrated for 1D and used here as such, but
it is readily generalized to 2D [230]. Figure 5.27 exemplifies the differences between
MC, IPA and NIPA. The upper panel shows, on the one hand, τ(x) for a 2-km
portion of the synthetic fractal cloud that extends to 12.8 km (and is periodically
replicated beyond that). On the other hand, both MC and IPA predictions are
plotted for the local albedo: we see how the IPA responds immediately to the fractal
variability while the MC results are much like a running mean over several pixels.
The lower panel shows MC, IPA and NIPA predictions for the local value of nadir
radiance over the same portion of cloud. By comparing the two registered panels,
we see that the MC radiance field is not as smooth as its counterpart for albedo,
patently because there is no longer angular averaging. The NIPA computation used
the smoothing kernel in (10.8) with a = 0.5, 〈|x|〉 = 0.1 km (eight pixels). Finally,
we see how much the prediction error with respect to MC ‘truth’ is reduced by
going from the IPA to the NIPA.

That completes the description of the forward NIPA where we improve the
realism of the IPA by introducing scale-specific smoothness. The inverse NIPA
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Fig. 5.27. Comparison of simulated reflectivity fields using MC, IPA and NIPA for a
portion of a 1D fractal stratoculmulus cloud. Top: On the l.-h. axis, we read the 1D
horizontal variation in x of the local optical depth τ(x) (lower curve); the vertically
uniform cloud is generated with a 10-step bounded cascade process from Fig. 5.26 with
τ = 13 and H = 0.3 km (pixel/grid-scale = 12.5 m). The upper curves (r.-h. axis) in the
same panel show the associated fluctuations of albedo R(x), the normalized up-welling
flux in (2.18) for steady and uniform illumination, using both IPA and MC schemes;
SZA is 22.5◦ and scattering is according to a Deirmendjian C1 phase function for a
red wavelength for simplicity (both water- and land-surface albedo is negligibly small).
Bottom: The r.-h. axis is the same as in the top panel but for normalized nadir radiance
in (2.16) rather than hemisphericial flux, under the same conditions of spatially uniform
and steady illumination, and the computational NIPA scheme is added. The lower curves
(l.-h. axis) highlights the reduced error with respect to MC when NIPA is used instead of
IPA. Both panels are reproduced, with permission, from Ref. [229].

consists in taking actual cloud radiances and applying the corresponding rough-
ening filter to restore the IPA and, from there, perform straightforward retrievals
of (say) the cloud optical depth field. Formally, that amounts to solving (10.6),
viewed as an integral equation, for IIPA(−→ρ ) knowing INIPA(−→ρ ) from observation
or 3D RT computation.

In an ideal (infinite-accuracy, noiseless) world, one only needs to perform the
inverse FFT of ĨIPA(

−→
k ) = ĨNIPA(

−→
k )/P̃ (

−→
k ). However, 1/P̃ (

−→
k ) is a high-pass filter

that will amplify any noise or small-scale numerical error. This is a classic ill-posed
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(i.e., numerically unstable) inverse problem. Marshak et al. [222] demonstrate on
‘observations’ obtained with a MC code (where the ‘truth’ is known), that careful
Tikhonov-type regularization [231] can be used to estimate IIPA(−→ρ ) even in the
presence of considerable noise from the MC scheme itself and, from there, obtain
reasonable estimates of the local value of τ from a pre-computed inverse map of τ
to nadir radiance from 1D RT.

While the inverse NIPA can be applied to inject more realism into retrieved
values of τ for stratocumulus-type clouds, the prerequisite determination of the
critical wavenumber kc where the scale break occurs is an opportunity for cloud
remote sensing in its own right. Specifically, it can be used to infer H, knowing the
mean value of τ . Indeed, the reflected MTF used to inverse filter the quasi-nadir
radiance data can only be a function of kH and dimensionless cloud or modeling
parameters (τ , g, maybe χ, maybe a for Gamma-weighting, etc.). So, if we know
kc in 1/km from observations and the suite of cloud parameters, we can estimate
H in km.49 This idea is pursued using physical- rather than Fourier-space methods
in the next example.

5.10.6 Zenith radiance reaching ground, and the nonlocal IPA

Ground-based narrow-FOV radiometers that capture down-welling radiance from
zenith have proven at once quite simple to build/maintain and extremely useful
in cloud probing. One monospectral approach uses the solar background from the
sensitive and well-calibrated detector in an operational ground-based micro-pulse
lidar system [185] to infer optical depth of stratiform clouds by comparison with the
predictions of 1D RT models for spectral zenith radiance at the laser wavelength
[232].50

From the 3D RT standpoint, narrow-FOV observations from ground (or space)
complement the more classic flux-based measurements from ground (and at least
moderately large pixels in MODIS-type instruments): the latter have the above
3D problem #1 while the former present #2. Another application of zenith cloud
radiance measurements proposed by Marshak et al. [235] works around the 3D RT
effects by using a bi-spectral technique for inference of cloud optical depth above
green vegetation; the method works even for a field of broken clouds and, moreover,
does not require absolute calibration.

Viewed as a time-series, rapidly sampled zenith radiance from an overcast sky
contains information about the spatial correlations in the radiance field in essen-
tially the same way high-resolution satellite imagery does. The only difference is

49The simplest approach is to equate 1/kc with the RMS value for ρ, which appears
parametrically in Gamma-approximated MTFs, since the ratio of 〈ρ2〉R andH2 is a known
function of known dimensionless cloud parameters.

50This same calibration-based technique was proposed almost a decade ago [233] for
the ultra-narrow FOVs in space-based lidar systems, but just recently applied to the
Geophysical Lidar and Altimeter System (GLAS) lidar onboard the current ICESat (Ice,
Cloud, and land Elevation Satellite) mission. In this time configuration, a comparison
with 1D RT predictions for nadir reflected radiance at the laser wavelength is performed
[234].
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the nontrivial but standard time-to-space conversion using Taylor’s frozen turbu-
lence hypothesis: just use the mean wind at cloud altitude to account for advection
across the instrument’s FOV.

In this context, the transmitted spatial Green function can be used in both
forward and inverse NIPA, applied respectively

– to approximate a rigorous 3D RT computation of zenith radiance, given the
cloud’s detailed structure, and

– to derive the column optical thickness from a time-series of zenith radiance
observations.

Recall that the transmitted spatial Green function required for NIPA work has the
same exponential decay in the far-field as its reflected counterpart, but it is flat
rather than quasi-singular in the near-beam region. That implies in particular that
the only reasonable Gamma-based parameterization of this Green function is for
the special value of a = 1, yielding a simple exponential for the radial profile in
(10.1); this choice is equivalent to stating that the RMS-to-mean ratio for ρ is

√
2.

There is, however, the possibility of directly exploiting the outcome of the spatial
correlation analysis to derive a key cloud property, namely, the physical thickness
H of the (unbroken) layer. Beyond the Fourier wavenumber spectrum invoked in

Fig. 5.28. Simulated structure functions for local transmittance and zenith radiance. Scale
breaks between smooth (h ≈ 1) and turbulent (h ≈ 1/3) behaviors are clearly visible,
respectively at ≈ H and ≈ H/2. The ensemble of 10 simulated realizations of cloud
optical depth were generated using a 10-step 1D bounded cascade model from Fig. 5.26
with the same parameters. Other cloud parameters of interest are mean optical depth
τ = 13 and the constant physical thickness H = 0.3 km (indicated with a vertical dash-
dotted line). Scattering follows the usual H–G model (2.20) with g = 0.85. SZA is 30◦.
This plot is adapted from Ref. [24].
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the previous subsection, a popular statistical characterization of spatial correlation
is the (second-order) ‘structure function’: SF(r) = [Izen(x+ r)− Izen(x)]2 for a
one-dimensional horizontal transect of zenith radiance, assumed to be along the x
axis; r is a given scale parameter and the average is over a large interval in x. As
for the Fourier spectrum, one naturally seeks power-law behaviors in r:√

SF(r) = [Izen(x+ r)− Izen(x)]2
1/2 ∼ rh, (10.9)

where h is the ‘Hurst’ exponent (a.k.a. the global Hölder–Lipschitz exponent).51

Recognizable scaling behaviors are h = 0 for all stationary processes (i.e., that are
decorrelated over the associated range of r), h = 1/3 for turbulence-like variability
(corresponds to a Fourier spectrum in k−5/3, as for the fractal model in Fig. 5.26),
and h = 1 for all smooth (i.e., differentiable) fields.

One can of course find different values of h in (10.9) over different ranges in r.
Indeed, von Savigny et al. [236,237] found that the time-averaged structure function
of ground-based zenith radiance at a non-absorbing (red) wavelength went from
h ≈ 1 scaling to h = 1/3 and ended with h = 0 at very long time lags, in excess of
1/2 to 1 hour or so (translating to 5–10 km for a nominal 5 m/s wind speed). Their
sampling rate was 2 Hz and the longest records covered ≈4 hours. The authors
found the predicted transition from smooth behavior to turbulence-like behavior
at time lags that translated (via Taylor’s hypothesis) to scales commensurate with
the thickness of the cloud deck (known through collocated mm-wavelength radar).

Another way to ‘calibrate’ this simple method of estimating H from zenith
radiance records (without a cloud radar present) is to use 3D RT simulations for
stochastic cloud models tuned to reproduce the amplitude and scaling of real-
world stratus. Figures 5.26(a) and (b) showed how to generate such a model in
one horizontal direction and the outcome for one realization. Figure 5.28 shows
SFs for both the simulations of zenith radiance field and of the local flux field
transmitted at cloud base. Recall from (8.5) and Fig. 5.15 that the RMS radius of
the Green function T (ρ) for transmitted steady-state flux is ≈H over the full range
of interest in transport optical depths. We see in Fig. 5.28 that the scale break
for flux is, as expected, at ≈H. In contrast, the numerics show on the same figure
that the scale-break for zenith radiance – the remotely observable quantity – is at
≈H/2. As was just noted for reflected light, this smaller value (favoring roughness)
is understandable since, unlike oblique views (let alone the angular integration for
flux), a zenith radiance characteristic (i.e., a vertical beam) does not average by
propagation over spatial variability unfolding in the horizontal.

This is clearly an opportunity for a remote-sensing retrieval of H using very
simple ground-based instrumentation described in Ref. [236]. Only a single non-
absorbing wavelength is required; it could be from a few spectral pixels in the
continuum of an O2 A-band spectrometer. Knowing H, one can look back at the
cloud information contained in the main cloud product anticipated from ground-
based A-band spectrometers, namely, the mean in-cloud path-length 〈ct〉T . The
ratio with the estimated values of 〈ct〉T and H can then be used to infer τ from

51A variant of the Weiner–Khintchin theorem for non-stationary processes with sta-
tionary increments relates the Fourier spectrum and the second-order structure function.
In particular, if the spectrum scales as k−β with 1 < β < 3 then β = 2h+ 1.
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a consistently randomized diffusion-theoretical result, such as (10.5), given g, χ
and52 a, or a homogenization approach.

5.10.7 Green functions at work in the adjoint perturbation approach
to 3D radiation transport effects

Finally, we briefly describe here another approach altogether to the above problem
#2 (traced to pixel adjacency effects) that is also grounded in Green function
formalism. Adjoint perturbation theory is very general and can therefore be applied
to many aspects of atmospheric RT [238–241], estimation of 3D transport effects
is just one example [238,242–244].

Focusing on steady sources, we start by recasting the 3D RT problem in formal
operator language:

ΛI = Q where
Λ = L − S, (10.10)

is the linear transport (i.e., propagation and scattering) operator; it is obtained
from (2.2), without the time derivative, and (2.3). In this application, we think of
Q as a general distribution of sources over (x,Ω). We also define the adjoint 3D
RT problem

Λ+I+ = Q+ where
Λ+ = L+ − S+. (10.11)

The general definition of adjoint transport system is that, for all ‘reasonable’ test
functions g and h of x and Ω, we have (g, Λh) = (Λ+g, h) where

(f1, f2) =
∫∫∫
M(H)

∫
4π

f1(x,Ω)f2(x,Ω) dx dΩ (10.12)

is the scalar product in the function space of interest. In cases of interest here, the
optical medium is M(H) = {x ∈ R

3; 0 < z < H}.
In particular, we require that the response of a detector with a response function

D(x,Ω) is the functional
E = (D, I) = (I+, Q). (10.13)

With these definitions, it can be shown [245] that

– L+ is L with Ω �→ −Ω,
– S+ is S with Ω �→ −Ω′ and Ω′ �→ −Ω,
– Q+(x,Ω) is D(x,Ω).

Furthermore, the applicable boundary conditions for (10.11) at z = 0, H express
that no adjoint radiance I+ escapes the medium M.

In other words, when going from the direct to adjoint transport problems,
light sources and detectors reverse their roles and, correspondingly, the direction

52The Gamma-weighting parameter a = 9 for the model in Fig. 5.26, generally less in
real Sc.
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of propagation is reversed in space and in scattering. While the response in (10.13)
describes how an arbitrary sensing device samples the radiance field, it also de-
scribes how the adjoint radiance samples an arbitrary distribution of sources. Con-
sequently, adjoint radiance is often called ‘importance’ (of any localized source for
a given detector).

Now suppose we are interested in the nadir radiance generated by reflected
sunlight, as can be observed from space, at a horizontal position −→ρ obs. We then
have Q(x,Ω) = F0δ(z)δ(Ω−Ω0) and D(x,Ω) = δ(z)δ(−→ρ −−→ρ obs)δ(Ω− ẑ), noting
that both distributions at z = 0 can also be expressed in the boundary conditions.
This means that (10.11) is the adjoint counterpart of the defining RT equation for
the spatial Green function. Therefore, I+ ≡ G+ in the present problem.

Adjoint perturbation theory seeks to determine the deviation δE of E in (10.13)
with respect to some known ‘base case’ when Λ goes from Λb to Λb+ δΛ (and sim-
ilarly for the adjoints). In the present problem of 3D RT effect quantification, we
naturally take Λb as the uniform plane-parallel case, while δΛ captures deviations
from uniformity in the extinction and scattering coefficients and the ensuing hori-
zontal gradients. Assuming uniform scattering properties (only extinction varies),
this operator perturbation is

δΛ = η
∂

∂−→ρ + δσ(x)

⎛⎝1−�0

∫
4π

p(Ω′ ·Ω)[·] dΩ′
⎞⎠ , (10.14)

where δσ(x) = σ(x)− σ.
A general result from perturbation theory is that [241]

δE = −(I+
b , δΛIb) (10.15)

to a first-order approximation. For the present problem in remote sensing of hetero-
geneous clouds, we have I+

b = G+
b , the adjoint Green function for an adjoint source

at a roaming point on the illuminated boundary. The above expression (10.15)
therefore reads in (x, y)-space as the convolution product of G+

b with δΛIb. We
note immediately that the horizontal gradient term in (10.14) contributes nothing
to δΛIb since the base-case radiance field is invariant under arbitrary horizontal
translation.

Such convolutions are of course best done in Fourier space, which is precisely
where we can obtain closed-form expressions for Green functions in the diffusion/P1

approximation. Assuming a non-absorbing wavelength in the example of the nadir-
viewing satellite imager probing an heterogeneous cloud layer, we could determine
G+

b in Fourier space from the following system of ODEs

−F̃+′
z = −[k2/3(1− g)σ] J̃+ + σ e−σz,

−J̃+′/3 = −(1− g)σ F̃+
z + gσ e−σz, (10.16)

subject to
J̃+ − 2F̃+

z

∣∣∣
z=0

= 0, J̃+ + 2F̃+
z

∣∣∣
z=H

= 0. (10.17)

Note the changes in sign with respect to (5.15) and (5.17) that are dictated by the
time-reversal implicit in adjoint transport. The solution of this problem has about
the same complexity as the one presented in Appendix C.
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Since the receivers in the direct problem in section 5.5.3 measure radiation
density J inside the medium and hemispherical boundary fluxes F±z, the easiest
sources to model here are isotropic, either internal or at a boundary. The expression
for Ib has to take this into account. It can of course also be estimated within the
same diffusion approximation. In that case, we would turn to the solution of (5.1),
when σ(e)

a = 0, subject to (5.2), with χ = 2/3, for a uniform boundary source at
z = 0; for an internal source distributed evenly over a horizontal plane at z = z0,
we would use (6.4)–(6.5), with the same restrictions.53

Recalling that the angular integral implicit in (10.15) is easily carried out in
the diffusion limit, cf. (4.12)–(4.13), the beginning-to-end computation of the 3D
RT effect captured by δE can be done analytically. This is unique in the 3D RT
literature, which is dominated by numerical techniques.

For a glance at computational recipes for higher-order perturbations in 3D
RT, we refer to Box et al. [243]. It is instantly clear that Green functions play a
central role, much like propagators in perturbation expansions used in quantum
mechanics. Incidentally, for domain-average 3D RT effects, the first-order estimate
in (10.15) is zero because the integrated contribution of the second term in (10.14)
vanishes identically. Thus, according to adjoint perturbation theory, large-scale 3D
RT effects are second-order at best. This is corroborated by countless numerical
experiments: the domain-average impact of 3D RT is accurately captured by the
IPA. Physically, the local horizontal fluxes will indeed lead to both positive and
negative deviations from the 1D RT prediction that tend to cancel upon spatial
integration.

This leads us to the idea of using the IPA as the base case instead of the strictly
uniform plane-parallel medium. Details for this approach are out of the scope of
the present review; we refer to Polonsky et al. [244]. However, the three panels of
Fig. 5.29 illustrate the power of the IPA-based adjoint perturbation approach to 3D
RT using a cloud model adapted from the two-dimensional ‘Case 2’ stratus cloud of
the Intercomparison of 3D Radiation Codes (I3RC) project [246]. Rather than the
boundary-leaving radiance of interest in cloud remote sensing, this computation was
for the redistribution of the solar heating inside the cloud due to 3D RT, namely,
J(x, z). Both perturbation and 3D RT results are reduced to the uniform plane-
parallel result based on the mean optical depth. Being based on an implementation
in code of closed-form expressions, the perturbation estimate is instantaneous in
comparison with the full 3D RT estimate. At the same time, most of the 3D RT
effect is reproduced in the right locations.

5.11 Summary and outlook

Our primary goal in this review was to establish the sweeping utility of radiative
Green functions in both passive and active cloud remote sensing, extended to in-
cloud radiometry and used to retrieve cloud properties. We naturally pursue those

53More sophistication is required to account for slant illumination, not for the base-case
radiance (where the diffusion solution for a slant uniform collimated beam is well-known),
but for the adjoint Green function (where a superposition of spatially distributed isotropic
and anisotropic detectors along a narrow line is in order).
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Fig. 5.29. Adjoint perturbation approach to 3D RT. Top: Cloud model structure varies
only in one horizontal (x) direction, from x = 0 to x = 32 km (periodic replication beyond
and before); the local value of the extinction plotted here is uniform in the vertical (z)
direction, from z = 1 km to z = 2.2 km hence H = 1.2 km (the rest of the 0 < z < 2.5 km
domain is empty). Middle: J(x, z)− J1D(z) is plotted for the SHDOM estimate. Bottom:
Same as above, but for the adjoint perturbation estimate. These panels are reproduced
with permission from Ref. [244].
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properties of importance in climate science. The parameters of an opaque stratiform
cloud of primary interest here are therefore, beyond the cloud’s altitude, its physical
thickness H and optical thickness τ (equivalently, its volume-averaged extinction
coefficient σ = τ/H). Properties of secondary interest address internal variabil-
ity of the cloudy medium, both cloud-scale stratification and small-scale random
fluctuations driven respectively by radiation/convection processes and inescapable
turbulence.

For the remote sensing of cloud particle size, also an essential quantity in cli-
mate and precipitation studies, we point the interested readers to the appropriate
passive and active techniques. These methods capitalize either on polarization [247]
or wavelengths where condensed water has non-negligible absorption (sensitive to
particle effective radius) [210], primarily in passive approaches, or on the multiple-
scattering lidar signal coming from short times/ranges and, therefore, from very
near the laser beam. In the latter active approaches, that early/near-beam signal
is indeed dominated by the phase function, especially the forward diffraction peak
(itself sensitive to the particle size distribution) [184]. Neither polarization (a means
of selecting low orders of scattering), nor strong particle absorption processes, nor
small-angle scattering are amenable to diffusion-based modeling presented here for
conservative scattering. They are all serviced, however, by Green function theory
in the broader framework of radiative transfer, including diffusion in the presence
of weak absorption; see, for example, [248] on polarization, [249] on absorption,
[250] on forward scattering.

Our focus has been exclusively on optical wavelengths in the visible and near-
IR where one can confidently assume that absorption by cloud particles is small
and often negligible. Scattering therefore dominates the radiation transport and,
consequently, the physics of radiometry signals. Indeed we soon made the safe as-
sumption for sufficiently opaque clouds – when it is all but impossible to see where
the sun comes from in transmission (τ � 9) – that diffusion theory can be used
to model the multiple scattering. The main benefit of this classic approximation
is that, in many relevant situations, the Green functions can be computed analyt-
ically; either in closed-form for direct comparison with observations, or else their
space-time moments can be expressed analytically and compared with observational
estimates. In this respect, we have simply opened new space-time dimensions in
radiative transfer models that have already served the GCM community very well
for uniform and steady sources, namely, the solar flux.

Another one of our goals was to show that the diffusion-theoretical approach
to Green function estimation provides a powerful signal modeling framework, built
largely with computer-assisted symbolic math, that unifies very diverse modalities
in the remote sensing of clouds. There are at least two emerging technologies that
directly target the Green functions in space and/or time: (1) multiple-scattering
cloud lidar with a very wide FOV, and (2) high-resolution differential absorption
spectroscopy in the oxygen A-band. We have discussed implementations of these
techniques from ground, space, and aircraft, each platform having its own partic-
ularities. In airborne systems, we include those designed to work from inside the
cloud itself. The signal from so-called ‘in situ’ cloud lidar – and probably in situ O2

A-band spectroscopy as well – contains information to glean about the macroscopic
cloud structure, thus complementing the usual microphysics instrumentation car-
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ried by aircraft into the depths of clouds to sample particle sizes, composition, and
so on.

It is not common, at least in atmospheric science, that the kind of advanced
radiative transfer theory surveyed herein influences major thrusts in instrument
development. Yet that is precisely what happened in the case of multiple-scattering
cloud lidar, as well as for the cloud remote sensing application of oxygen A-band
spectroscopy. We wish to reinforce this theory-driven approach to innovation in the
design of actual instruments and/or algorithms for data exploitation. To this effect,
we have (1) revisited better-established methodologies in cloud remote sensing,
showing them to rely implicitly on Green function formalism, and (2) pointed
out throughout this review a number of avenues yet to be explored. Some of these
proposed optical observation techniques target unknown sources below or imbedded
in clouds, for example, lightning strokes. Others simply look for cloud-like media
in Nature: turbid coastal waters, snow packs, sea-ice floes [251], dense vegetation
canopies [252], etc. We have no doubt that, some day, lidars with multiple scattering
capability will probe Europa’s ice cover, Titan’s thick haze, and worlds beyond.

Meanwhile, back on planet Earth, there are applications of atmospheric optics
that are not driven by meteorology or climate science. Visibility studies come to
mind. It has been shown that a large proportion of small aircraft crashes – too often
with fatalities – are due to pilot error that could be avoided with better knowledge
of the prevailing low-visibility conditions. Multiple-scattering lidars are not expen-
sive compared to both the cost of even a single accident and that of the competing
technology in active cloud probing, mm-wave radars.54 So small airports, including
aircraft carriers, will eventually be outfitted with such instruments that reliably
deliver immediately actionable diagnostics on low clouds and fog. First responders
on all-weather rescue missions can also benefit from real-time quantitative knowl-
edge of reduced visibility conditions. And what if that approaching aerosol cloud
is transporting a toxin?

For this potentially life-saving diagnostic, we can take a clue from recent de-
velopments in medical optics. Multiple-scattering cloud lidar was developed simul-
taneously and independently of optical tomography (OT), although they share a
large amount of signal physics. OT [255] uses light diffusely transmitted through
soft tissue, which is highly scattering in the near-IR, to locate and gauge anomalous
(absorbing or vacuous) inclusions indicative of pathology, for example, aneurysms
and tumors. This is made possible by fast and widely available numerical solvers
for Laplace’s equation with a given, although nontrivial, outer geometry and ar-
bitrary internal boundaries; the latter are varied until the forward model fits the
radiometric (Green function) data from as many source and sensor positions as
necessary.55 OT has made tremendous progress as a low-resolution but inherently

54The strategy in mm-wave cloud radar is to retain the single-scattering radar/lidar
equation, and therefore to seek a wavelength in the electromagnetic spectrum where its
assumptions are valid [148,253]. This leads to ∼mm wavelengths, with the extra burden on
theory to connect radar reflectivities from cloud droplets (∝ r6) to properties of interest
in the radiation budget (r2) and hydrology (r3) [254].

55In this picture, multiple-scattering cloud lidar determines the unknown distance of
the absorbing cloud boundary opposite the laser source, as well as the unknown opacity
of the cloud in between. With very restricted Green function sampling by OT standards,
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non-invasive medical imaging technique. A relatively recent development, reviewed
in this volume by Klose [256], is inspirational for our problem of detecting toxic
material in an optically thick cloud of scattering particles from a safe stand-off
distance: we can excite fluorescence with the laser light scattered throughout the
cloud, and tune the detectors to the tell-tale fluorescence wavelengths.

Finally, the scope of this survey was limited to ‘normal’ diffusion modeling,
i.e., amenable to classic PDEs and closely related to standard random-walk theory
(used, for example, in Appendix E to derive a coarse but insightful characteriza-
tion of Green functions based on their asymptotic scaling behavior). Furthermore,
cloud structure was limited to horizontal plane-parallel slabs with random 3D opac-
ity fluctuations around a deterministic stratification in the vertical. Although the
climatically and hydrologically important class of single-layer stratocumulus clouds
can be represented in this framework, many other cloud types require full-blown 3D
radiative transfer with time-dependence. Yet Green functions can still be brought
to bear on this more complex cloudiness, and analytical results (supported by real-
world observations) are achievable using ‘anomalous’ diffusion; a brief overview is
provided in Appendix F.

In conclusion, we strongly advocate systematic exploitation of multiple-scatter-
ing Green functions, particularly for boundary sources and boundary fluxes, which
apply most directly to remote sensing. In the case of the dense clouds that have so
far been our foremost concern, they have proven useful far beyond the effort invested
in a refresher in mathematical physics. We are confident that many other insights
and applications will follow. We also advocate hierarchical modeling frameworks in
any application area. In our case, the fact that we have approaches to Green func-
tion computation that range from back-of-envelope estimations to detailed numeri-
cal simulations of radiation transport physics has enabled us to advance with confi-
dence into quite foreign territory, for instance, completely new instrument concepts.
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one has to make assumptions about inner and outer cloud structure, as described in the
main text.
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A Responses T̃ (k) and R̃(k) for horizontal transport away
from an isotropic boundary source in stratified clouds

A.1 Definitions

We recall from Bessel function theory [110] that

In(x) = i−nJn(+ix),

and we define by analogy
Xn(x) = i+nYn(−ix),

as an alternative modified Bessel function of the second kind; like In(x), it is a
real-valued function for real-valued x. We also define

f(x, y; z) = xI0(z) + yI1(z),
g(x, y; z) = xX0(z) + yX1(z).

Finally, we define

DF (kH; τt/2χ,Δ) = f(+kH, (2 + Δ)τt/2χ; (2/Δ+ 1)kH/2)
× g(−kH, (2−Δ)τt/2χ; (2/Δ− 1)kH/2)
+ f(−kH, (2−Δ)τt/2χ; (2/Δ− 1)kH/2)
× g(−kH, (2 + Δ)τt/2χ; (2/Δ+ 1)kH/2).

A.2 Transmitted light

As required in section 5.5.2, the definition in (4.51) leads to

T̃ (kH; τt/2χ,Δ) =
8
π
× Δ τt/2χ
DF (kH; τt/2χ,Δ)

. (A.1)

A.3 Reflected light

Similarly, the definition in (4.50) leads to

R̃(kH; τt/2χ,Δ) =
NR(kH; τt/2χ,Δ)
DF (kH; τt/2χ,Δ)

, (A.2)

where

NR(kH; τt/2χ,Δ) = f(−kH, (2 + Δ)τt/2χ; (2/Δ+ 1)kH/2)
× g(+kH, (2−Δ)τt/2χ; (2/Δ− 1)kH/2)
+ f(+kH, (2−Δ)τt/2χ; (2/Δ− 1)kH/2)
× g(+kH, (2 + Δ)τt/2χ; (2/Δ+ 1)kH/2).
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B Responses T̂ (s) and R̂(s) for pulse stretching for an
isotropic boundary source in stratified clouds

B.1 Definitions

For a given cloud (τt,Δ) and χ, we define the following eight functions of s′ = s/c,
i.e., the Laplace conjugate variable for path ct (expressed in 1/m):

A±n (s
′H; τt,Δ) =

1
Γ (n/3) 0F1(

n

3
;
τt s

′H
3Δ2

(1±Δ)3), n = 1, 2, 4, 5,

where Γ (a) is Euler’s Gamma function and 0F1(a, x) is the confluent hypergeomet-
ric function. We also define

DF (s′H; τt, χ,Δ) =
(
A−1 − [χs′H(1−Δ/2)/Δ]A−4

)
× (

A+
2 + [τt(1 + Δ/2)2/3χΔ]A+

5

)
+

(
A+

1 + [χs′H(1 + Δ/2)/Δ]A+
4

)
× (

A−2 − [τt(1−Δ/2)2/3χΔ]A−5
)
.

B.2 Transmitted light

As required in section 5.5.2, the definition in (4.51) leads to

T̂ (s′H; τt, χ,Δ) =
√
3
π

× 1
DF (s′H; τt, χ,Δ)

. (B.1)

B.3 Reflected light

Similarly, the definition in (4.51) leads to

R̂(s′H; τt, χ,Δ) =
NR(s′H; τt, χ,Δ)
DF (s′H; τt, χ,Δ)

, (B.2)

where

NR(s′H; τt, χ,Δ) =
(
A−1 + [χs′H(1−Δ/2)/Δ]A−4

)
× (

A+
2 − [τt(1 + Δ/2)2/3χΔ]A+

5

)
+

(
A+

1 − [χs′H(1 + Δ/2)/Δ]A+
4

)
× (

A−2 + [τt(1−Δ/2)2/3χΔ]A−5
)
.

C Responses T̃ (k) and R̃(k) for steady illumination by a
normally incident pencil-beam

C.1 Definitions

It is of interest to compare the system of ODEs at hand in (5.15) with the classic
two-stream model (cf. Appendix D). Indeed, if one can find an analogous choice
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of parameters, even allowing for an alternative choice of g and (more formally)
for μ0 �= 1, then one would have a solution. However, no such choice of ODE
parameters exists because our effective absorption coefficient, σ(e)

a = k2/[3(1−g)σ],
contributes neither to the inverse of the diffusivity constant, which multiplies Fz

in the constitutive equation (the lower one), nor to the extinction coefficient in the
exponential source terms. Thus, there are too many constraints, and we therefore
need solve the stated ODEs directly.

We are brought to define

DF (kH; τ, g) =
[
τ2 − (kH)2

]
× [

(3(1− g)τ + 2kH)2 − (3(1− g)τ − 2kH)2 e−2kH
]
.

C.2 Transmitted light

Define

NT (kH; τ, g) = τ ×[
− (τ + kH)(3(1− g)τ + 2kH)(3(1− g)τ + gkH)

+ 2kH(3(5− g(7− 2g))τ2 + 2(kH)2) e−kH

+ (τ − kH)(3(1− g)τ − 2kH)(3(1− g)τ − gkH) e−(τ+kH)
]
.

Applying the definition in (4.49), as required in section 5.5.3, with μ0 = 1 (and
s = 0), for diffuse transmittance then leads to

T̃ (kH; τ, g) = e−τ +
NT (kH; τ, g)
DF (kH; τ, g)

(C.1)

for total (direct + diffuse) transmittance.

C.3 Reflected light

Define

NR(kH; τ, g) = τ ×[
− (τ − kH)(3(1− g)τ − 2kH)(3(1− g)τ + gkH)

+ (τ + kH)(3(1− g)τ − 2kH)(3(1− g)τ − gkH) e−kH

+ 2kH(3(1− g(3− 2g))τ2 − 2g(kH)2) e−(τ+kH)
]
.

The definition in (4.48), as required in section 5.5.3, with μ0 = 1 (and s = 0), then
leads to

R̃(kH; τ, g) =
NR(kH; τ, g)
DF (kH; τ, g)

(C.2)

for reflectance.
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D Responses T̂ (s) and R̂(s) for pulsed normal or oblique
uniform illumination

D.1 Definitions

The ‘Eddington’ (diffusion-based) version of the classic two-stream model for
steady-state solar radiation transport in uniform plane-parallel clouds is, at first
glance at least, a resource. This is especially attractive since we have easy access
to Meador and Weaver’s [87] definitive treatment. In our notations, this problem
is described by this system of first-order ODEs:

F ′z = −σaJ + σs e−(σs+σa)z/μ0 ,

J ′ = −3[(1− g)σs + σa]Fz + 3μ0gσs e−(σs+σa)z/μ0 .

They are subjected to the same boundary conditions in (5.17) as our model from
section 5.5.3, bearing in mind that Meador and Weaver’s cloud optical depth τ ′ =
τ + σaH. The case of normal incidence (μ0 = 1) is of particular interest in the
application covered in section 5.9.

Comparison of the above classic two-stream problem and the system of present
interest in (5.22) shows that there is no simple analogy to be made because s′ = s/c,
the effective absorption coefficient, does not contribute to the inverse of diffusivity
that multiplies Fz in the constitutive equation (the lower one). A formal analogy
can nonetheless be made, but at the cost of recasting the asymmetry factor as
g� in Meador and Weaver’s expressions. We would then use σa = s′ and σs = σ,
hence SSA (in Meador and Weaver’s notation) ω0 = 1/(1 + s′/σ) ≤ 1, with g� =
g/(1 − gs′/σ) ≥ g (its magnitude can exceed unity!) and τ ′ = τ + s′H. We can
exploit this approach, or solve the stated ODEs directly.

In the end, we define

DF (s′H; τ, g, μ0) =
√
3(1− g)τs′H

× (
τ2 + τs′H(2− 3(1− g)μ2

0) + (s′H)2
)

×
[
(3(1− g)τ + 4s′H)(1− e−2

√
3(1−g)τs′H)

+ 4
√
3(1− g)τs′H(1 + e−2

√
3(1−g)τs′H)

]
.

D.2 Transmitted light

Applying the definition in (4.49), as required in section 5.5.5, with μ0 ≤ 1 (and
k = 0), for diffuse transmittance then leads to

T̂ (s′H; τ, g, μ0) = e−τ ′/μ0 +
NT (s′H; τ, g, μ0)
DF (s′H; τ, g, μ0)

(D.1)

for total (direct + diffuse) transmittance, where
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NT (s′H; τ, g, μ0) = 3τs′H ×
[
((1 + 2μ0 − 3gμ2

0)(1− g)τ

− (2gμ0)s′H − (1− g)τ2)

×
√
3(1− g)τs′H(1− e−2

√
3(1−g)τs′H) e−(τ+s′H)/μ0

− [(2 + 3μ0)τ + (2 + 3gμ0(1 + 2μ0))s′H]× (1− g)τ

× ((1 + e−2
√

3(1−g)τs′H) e−(τ+s′H)/μ0 − 2 e−
√

3(1−g)τs′H)
]
.

D.3 Reflected light

The definition in (4.48), as required in section 5.5.5, with μ0 ≤ 1 (and k = 0), leads
to

R̂(s′H; τ, g, μ0) =
NR(s′H; τ, g, μ0)
DF (s′H; τ, g, μ0)

(D.2)

for reflectance, where

NR(s′H; τ, g, μ0) = 3τ ×
[√

3(1− g)τs′H[(1− g)τ2 − gμ0s
′H]

− τs′H[(1− g)τ(3μ0 − 2)

+
√
3(1− g)τs′H(2μ0 − (1− g)(1 + 3gμ2

0))]

×
(
1 + e−2

√
3(1−g)τs′H

)
− (1− g)τ(s′H)2[2 + 3gμ0(2μ0 − 1)]

×
(
1− e−2

√
3(1−g)τs′H

)
− 2(1− g)τs′H[2− 3gμ0(2μ0 − 1) + (2− 3μ0)τ ]

× e−
√

3(1−g)τs′H
]
.

E Scaling exponents for diffusive Green function moments
from the random walk approach

In this extensive survey of diffusion theory in application to multiple-scattering
Green function estimation, we have systematically used Monte Carlo simulation
to validate numerically the radiative transfer approximation leading to convenient
closed-form results. It is informative to go to the other extreme of this hierarchy of
Green function modeling and perform a highly simplified version of MC simulation
analytically, namely, estimate statistical properties of random (a.k.a. drunkard’s)
walks. This approach reveals the physical essence of the problem of transport in
dense clouds. In particular, one can derive the scaling exponents for τt = (1− g)τ
in all the dominant terms of the expressions we have derived for Green function
moments, viz. (8.3)–(8.5) for transmitted light and (8.10)–(8.12) for reflected light.
The same scaling appears in all other such groupings based on more sophistication
in the cloud or source representation: the novelty affects only pre-factors and pre-
asymptotic corrections.

We note that in random walk theory τt is the ratio of the only two scales that
matter:
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– H, the outer scale (size of the domain bounding the stochastic process);
– �t, the inner scale (one MFP for an effectively isotropic scattering).

The latter scale defines diffusivity D = c�t/3 in three spatial dimensions.

E.1 Caveat about photons as ‘particles’ of light

The term ‘photon’ was coined by Gilbert Lewis in 1926 to describe the quantum of
the electromagnetic field, of which light is a prime example. Even if this so-called
‘second quantification’ assigns energy E = hν, momentum p = Ωh/λ, and spin
S = ±h to photons, it is fundamentally incorrect to think of them as either classic
or quantic particles traveling through space-time at velocity c. For instance, by
definition, it is not the same photon that is incident and re-emitted by a scattering
entity. Photons can populate energy levels in, for example, thermal sources and
laser cavities; they can also be detected using photoelectric materials. In between,
it is light – not photons – that propagates in optical media according to the laws
of radiative transfer theory, which is a nontrivial construct from statistical optics
[5]. The radiance field predicted by the radiative transfer equation, and associ-
ated boundary conditions, is only a probability of detecting a photon (per photon
emitted at the source) with a roaming virtual instrument.

In Monte Carlo computation, it is very tempting to talk about the ‘photons’
launched in a simulation. This should be avoided, proper terminology is ‘histories’
or ‘trajectories’ or ‘realizations’. Recall that Monte Carlo is only a random quadra-
ture approach for estimating integrals over radiances. The random walk theory
presented here is basically a poor person’s Monte Carlo: too poor to own a com-
puter, and only has some elements of probability theory to work with. So, although
strongly reminiscent of wandering particles, we are dealing with light intensities,
to be interpreted as probability densities for detection events.

E.2 Elements of Brownian motion theory

In boundary-free homogeneous 3D space, an isotropic source at x = y = z = 0
emits a diffusing ‘wavefront’ of particles propagating at a decreasing ‘velocity’ such
that the mean distance from the origin, ≈√〈r2〉, grows only as √Dt. This is just
a reading of the classic unbounded diffusion relation [257]

〈r2〉 = 6Dt, (E.1)

which results directly from the well-known Green function for the basic diffusion
equation for particle density n(t, r) = J(t, r)/c: [∂t+D∇2]n = δ(t)δ(r)⇔ n(t, r) =
e−r2/4Dt/(π4Dt)3/2, as stated in (7.2) for the short-time/near-field in situ cloud
lidar signal.

In the statistical physics of Brownian motion, a lesser known but extremely
useful result is the ‘law of first returns’ [258]. Focusing, for simplicity on 1D random
walks (where D = c�t) along the z-axis, we seek the PDF of t > 0, the random
epoch when the coordinate of Brownian particle (that left z = 0 at t = 0) first
changes sign. It can be shown [31,259], that
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Pr{t, dt} = c√
π�t

(
�t
ct

)3/2

e−�t/2ct dt

∼ dt
t3/2

, (E.2)

if we ignore the exponential cutoff at early times. This is an interesting PDF asso-
ciated with the gambler’s ruin problem: How long does it take a person who comes
to the roulette table with $1, and always bets on ‘red’, to walk away with nothing.
There is no mean time – it is divergent – and that may go a long way in explaining
why gambling is addictive, and why casinos should never close. Before loosing ev-
erything in time with probability one to this casino with an infinite reserve, gains
can be considerable.

The corresponding RT problem in this review is that of reflection from a semi-
infinite (H → ∞) non-absorbing medium, where 〈ct〉 is indeed infinite, as are all
higher moments. Fractional-order moments of order q < 1/2 are, however, finite.

E.3 Transmitted light

Now r2 = x2 + y2 + z2 and, by symmetry, all three components are equal in
magnitude on average. Therefore, since z = H where 〈ρ2〉T is computed, ρ2 =
x2 + y2 ≈ H2. This immediately explains the independence of that moment in
(8.5) with respect to cloud opacity, i.e., optical depth.

As soon as the diffusing wavefront reaches the opposite boundary, i.e., t ≈
3H2/D ∼ H2/c�t = (H/c) × τt based on (E.1), we will detect the transmitted
Green function. In other words, reinterpreting the fixed t in (E.1) as a random
variable, we can anticipate 〈ct〉T /H ∼ τt. This expectation is confirmed by ‘exact’
(PDE-based) diffusion theory in (8.3).

There is no simple argument for the scaling of the second-order moment in time
in (8.4). The fact that it goes as 〈ct〉2T tells us that the distribution of arrival times
at the boundary opposite the source of particles is relatively narrow.

It is interesting that we can estimate at least the scaling of Green function mo-
ments in transmission without knowledge of the overall probability of transmission
for given H and D = c�t/3 (alternatively, τt = H/�t). This calls for the law of first
returns in (E.2). Real clouds have finite physical and optical thicknesses and real
casinos have finite banks. We can approximate the probability of transmission –
breaking the casino’s bank – by truncating the PDF in (E.2) at 〈t〉T ∼ H2/c�t.
This leads to

T ≈ Pr{t > 〈t〉T } =
∞∫

〈t〉T

Pr{t, dt}, (E.3)

which scales as �t/H = 1/τt. That is indeed the asymptotic behavior for T (τt)
in (5.5) and all other transmission laws we have come across for �0 = 1; see, for
example, Fig. 5.15.

E.4 Reflected light

Temporal/path moments for reflected light can be estimated for a finite domain,
namely, 0 < z < H, by defining a truncated (and renormalized) version of the



272 A.B. Davis, I.N. Polonsky, and A. Marshak

PDF in (E.2) for the first-return process. Allowing time for the particle to return
to z = 0 from almost being transmitted at z = H, we compute specifically

Iq =

2〈t〉T∫
0

tq Pr{t, dt},

〈tq〉R ≈ Iq
I0

∼
(
�t
c

)1/2 (
H

c�t

)q−1/2

, (E.4)

where we have neglected the difference between I0 and unity, namely, T in (E.3).
Recalling that H/�t = τt, this leads to 〈(ct)q〉1/q

R ∼ H × (τt)1−1/q, as was found in
the limit τt → ∞ for (8.10)–(8.11) and all other reflection laws.

It is remarkable that the moments 〈(ct)q〉R all scale differently with τt whereas
we fully expect that 〈(ct)q〉T ∼ 〈ct〉qT , for q ≥ 2. We can trace this property to the
mixture, made clear in (E.4), of short and long paths. We have emphasized several
times in the main text how much this helps the cloud remote sensing enterprise.

As we did for the spatial Green function in transmission, we can roughly es-
timate the RMS value of ρ for reflection from (E.1), with D ∼ c�t and (E.4) for
q = 1. We obtain 〈ρ2〉R ∼ D〈ct〉R ∼ H�t. In other words, the RMS ρ for reflected
light goes as the harmonic mean of �t and H, the inner and outer scales of the
diffusion problem at hand.

F Scaling exponents for time-domain anomalous diffusion by
extending the random walk approach

F.1 Anomalous diffusion

At first glance, the problem of 3D RT through an atmospheric column populated
with broken and/or multiple cloud layers seems intractable, except maybe with
heavy-duty numerical methods. Depending on what radiative properties are tar-
geted, that first impression may be quite inaccurate. For instance, Pincus, Barker,
et al. [260, 261] developed (with GCMs in mind) the McICA model, a numerical
but efficient and unbiased method of estimating large-scale boundary fluxes and
flux-divergence profiles, hence radiative heating/cooling rates. McICA creatively
merges the concepts

– of MC, viewed as a robust method of random quadrature (rather than a nu-
merical solution of the 3D RT equation), and

– of IPA, appropriately renamed ICA (for independent column approximation)
in this context of radiation energy budget computation where no pixels exist.

Moreover, two of the present authors have explored the alternate theory of ‘anoma-
lous’ diffusion, which is still far from being well developed, for estimating large-
domain/ensemble average fluxes (currently, only at the boundaries).

In their original paper, Davis and Marshak [80] generalized the random-walk
approach used in Appendix E to situations where steps are usually small (inside
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clouds) but not infrequently very large (between clouds). They assumed distribu-
tions of step size s with power-law tails, ∼ 1/s1+b, such that all moments of an
order greater than b > 1 are divergent; it indeed seems natural to require that the
MFP (average value of s) be finite. We continue to use here the transport MFP
�t = 〈s〉/(1−g) as the effective MFP for an isotropic scattering. Davis and Marshak
then addressed finite cloudy media with slab geometry (thickness H), showing

1. that transmittance Tα scales as τ−α/2
t , and

2. that mean path for transmitted light 〈ct〉T goes as H × τα−1
t ,

where τt = H/�t is the total scaled optical depth of the variable cloudy layer, and
α = min{b, 2}. These scaling laws revert to our present findings for any b ≥ α = 2
(cf. Appendix E). Succinct derivations of these generalized scaling laws are as
follows:

– First, we need to consider Lévy’s generalizations [31, 262, 263] of the central
limit theorem. The standard result is that the variance of a sum of indepen-
dent random variables is the sum of their variances, and it becomes normally
distributed as the length of the sum increases without bound. But what if the
variances are infinite? Then other cumulants than variance are additive, and
the PDF of the (normalized) sum becomes asymptotically close to a class of
distributions known as ‘Lévy-stable’. These PDFs are parameterized in partic-
ular by the Lévy ‘index’ α < 2, which is the order of the smallest diverging
moment. Let zn be the coordinate of a 1D random-walking Lévy particle after
n isotropic scatterings, starting at z0 = 0. In the absence of boundaries, it obeys

〈(zn/�t)α〉 ∼ n. (F.1)

where α = min{b, 2} ∈ (1, 2) (restricted here to cases where the MFP �t is fi-
nite). The angular brackets have a somewhat different meaning here: the above
relation can be interpreted as an attempt to estimate the lowest (logarithmi-
cally) diverging moment of the symmetric (randomly oriented) steps ±s when
b < 2 (step variance is then ∞), viz. zn/n =

∑n
i=1 ±si/n. This replaces 〈z2

n〉 =
(variance of ±s) ×n in classic diffusion, the 1D equivalent in discrete time of
〈z(t)2〉 = 〈r(t)2〉/3 = 2�tct from (E.1). Noting that n ≈ ct/�t if sufficiently large,
we can now obtain from (F.1) the scaling of 〈ct〉T for a finite medium of thickness
H and scaled optical depth τt: Hα ∼ �αt × (〈ct〉T /�t), hence 〈ct〉T /H ∼ τα−1

t .
QED.

– Second, we need to update the continuous law of first returns in (E.2) for path
ct in a semi-infinite domain with a discrete version for n:

Pr{n ≥ N} ∼ N−1/2, (F.2)

where n is the number of scatterings suffered by a light beam before crossing
the z = 0 plane where it departed from. This expression is far more general
than (E.2), which assumes Gaussian steps: (F.2) only only requires that the
distribution of algebraic steps (±s) to be symmetric, i.e., ± with equal prob-
ability [264, 265]. By definition, transmittance is then Tα ∼ Pr{n � 〈ct〉T /�t},
which equals τ−α/2

t . QED.
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It is interesting to note that, in order to estimate a steady-state transport prop-
erty like Tα, we need to go through the framework of time-dependent transport.
Transport unfolds in time, even for steady sources.

F.2 Observational validation, and evolution toward anomalous
transport

Surprisingly – or maybe not – empirical evidence has cumulated over the past
decade that supports anomalous diffusion theory [161, 164, 165]. It is based on
estimates of 〈ct〉T from ground-based O2 A-band spectroradiometry collected under
all kinds of cloudy skies; see section 5.3.1 and, for the special case of uniform clouds,
section 5.8.2. Although that theory was first inspired by research in contemporary
statistical physics [266], it was later justified by investigations of light propagation
in random-but-correlated media56 [10, 78,79,267,268].

Further justification of the P (s) ∼ 1/s1+b ansatz for RT in cloudy atmospheric
columns comes in retrospect from the 1996 paper by Barker et al. [221]. Their
finding of Gamma distributions for the optical depth in a wide variety of Landsat
cloud fields can indeed be interpreted as an observation of Gamma-distributed
optical paths across a fixed distance that happens to be H and happens to be along
the vertical. Recall from section 5.10.3 that the Gamma distribution’s parameters
are the mean τ and the variability parameter a = 1/(τ2/τ2 − 1). We then find for
mean direct transmittance

Tdir(τ , a) = Tdir(τ) =
∫ ∞

0

exp(−τ) Pr{τ , a; τ, dτ}

=
1

(1 + τ/a)a
.

It is easy to verify that Tdir(τ , a) → exp(−τ) as a → ∞. The transmission law
in (F.3) can in turn be interpreted as a new propagation kernel with a power-law
tail that can be used in a mean-field 1D RT model. As shown by the first author
in Ref. [81] using the more recent observational evidence [165], this anomalous
transport model supersedes the older anomalous diffusion model where the steps
are effectively Lévy stable; it is however, only a numerical recipe at present.

Interestingly, Barker et al.’s original goal was to motivate Barker’s [216]
Gamma-weighted two-stream model, which develops in the opposite logic: first
solve the multiple-scattering 1D RT problem for cloud optical depth τ , then ran-
domize the result and determine the domain average (cf. section 5.10.3). Here, we
start by averaging the propagation kernel over the spatial disorder, then formulate

56Three of these papers were by Kostinski, Shaw, and Lanterman [78, 79, 267] who
start from very general considerations in discrete-point statistics; these authors challenge
the ability of 3D radiative transfer, a theory grounded in a continuum representation of
optical media, to account for the likely deviations from Poissonian behavior that they
speculate about. The last one in the chronological series is by two of the present authors
[10] who pick up the challenge, and leave only media with the intriguing possibility of
‘super-homogeneity’ (i.e., negatively correlated particle positions discussed in Ref. [79]),
as an open frontier for radiative transfer theory.
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and solve the resulting new 1D RT equation that targets domain average fluxes,
radiances, etc.

As competition for the anomalous diffusion/transport models in explaining the
emerging cloudy-sky climatology of 〈ct〉T /H from O2 A-band (it decreases as vari-
ability increases), we offer the Gamma-weighted diffusion model described in sec-
tion 5.10.4. Equations (10.4) and (10.5) in the main text yield respectively

T ∝ τ
−min{a,1}
t and

〈ct〉T ∝ τ
min{a,1}
t

in the limit of asymptotically large τt. Only future simulations and observations
can help decide which is the more accurate representation of Nature’s way of prop-
agating solar radiation in the Earth’s cloudy atmosphere.

Finally, the importance of pre-factors and pre-asymptotic behavior was amply
demonstrated in the present survey. Since it is based entirely on classic diffusion
theory, we are of course curious about how to predict them for its anomalous coun-
terpart. The Gamma-weighted time-dependent diffusion model from section 5.10.4
delivers the desired pre-factors and pre-asymptotic corrections; see Fig. 5.25. Scholl
et al. [165] propose an ad hoc hybrid of the scaling results from Davis and Mar-
shak [80] and the details they obtained for homogeneous clouds [24]. At present,
all we know [81, 269] is that a rigorous approach to anomalous transport theory
will involve pseudo-differential equations (fractional-order PDEs [270]) that can
be cast as integral equations with singular kernels. This program remains to be
implemented.

List of abbreviations

nD n-dimensional (n = 1, 2, 3)
3+1D three-plus-one-dimensional (i.e., space-time)
BC boundary condition
BRDF bi-directional reflection distribution function
cw continuous-wave (describes steady-source lasers)
FFT Fast Fourier transform
FOV field-of-view
GCM Global Climate Model
GPS Global Positioning System
H–G Henyey–Greenstein (scattering or phase function) from Ref. [25]
IPA independent pixel approximation
LWC [kg/m3] (cloud) liquid water content, (4π/3)r3× the density of water (103

kg/m3 = 1 g/cm3) × droplet concentration (1/m3)
LWP [cm] (cloud) liquid water path, LWC ×H ≈ (2/3)τre in the limit of large

size parameters (2πr/λ)
MC Monte Carlo
MFOV multiple field-of-view (lidar)
MFP mean-free-path
MTF modulation transfer function
MuSCL multiple-scattering cloud lidar
NIPA nonlocal independent pixel approximation
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ODE ordinary differential equation
OT optical tomography
PDE partial differential equation
PDF probability density function
PSF point spread function
RMS root-mean-square
RT radiative transfer
Sc stratocumulus, a frequent cloud formation (especially in the marine

boundary layer) with relatively flat top and bottom, but often with quite
variable opacity in between (observed to have long-range/fractal-like cor-
relation structures).

SF second-order structure function
SNR signal-to-noise ratio
SSA single scattering albedo
SZA solar zenith angle
UAV unmanned aerial vehicle

List of notations

a [-] characteristic exponent in Gamma PDF, inverse of reduced variance
b [-] generic exponent for PDFs with ‘fat’ tails, i.e., decaying in a power law

with exponent 1+b (hence b for the cumulative probability of the random
variable exceeding a given value)

c [m/s] speed of light in vacuum
ct [m] path-length of light since emission from pulsed source
dobs [m] distance from remote observer to nearest cloud boundary
D [m2/s] radiative diffusivity, c�t/3
f [-] fraction of forward vs. P1 scattering in δ-Eddington rescaling
F [J/s/m2] generic for a hemispherical radiative flux, possibly space- or time-

integrated
F [J/s/m2] radiative vector (net) flux
g [-] asymmetry factor of phase function
G [J/s/m2/sr] radiative transfer Green function, almost but not quite always

for a boundary source and boundary observation
H [m] physical thickness of (horizontal) plane-parallel cloud
I [J/s/m2/sr] radiance at detector
J [J/s/m2] radiative scalar flux (radiant energy density ×c)−→
k [rad/m] horizontal wavenumber (2D Fourier–Hankel conjugate of −→ρ )
K [J/s/m2] radiative tensor flux (radiative pressure ×c)
� [m] mean-free-path (MFP), 1/σ
�t [m] transport MFP, �/(1−�0g) = 1/σt

m [-] non-dimensional effective similarity ratio in space-time Green function
estimation,

√
(k/σt)2 + 3s/cσt

p [1/sr] (volume) scattering phase function
ps [1/sr] surface scattering phase function, its relation to the BRDF being

ps(Ω′ → Ω) = |μ′|ρ(Ω′ → Ω)/α0

P [1/(random variable units)] generic for probability density functions
q [-] integer or fractional order of a statistical (non-centered) moment
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qF [J/s/m3] anisotropic volume source term (for F )
qJ [J/s/m3] isotropic volume source term (for J)
q0 [J/s/m2] isotropic boundary source term in diffusion theory
Q [J/s/m3/sr] radiative transfer volume source term
r [μm] cloud droplet radius (hence moments rq over the size distribution)
re [μm] effective cloud droplet radius, r3/r2
R [1/s/m2] local/instantaneous reflectance, or integrals thereof
s [1/s] Laplace conjugate variable of t
s/c [1/m] Laplace conjugate variable of ct
t [s] time, typically starting at the release of a radiant energy pulse
T [1/s/m2] local/instantaneous transmittance, or integrals thereof
x [m] position in 3D space (x, y, z)T, where ẑ is vertical (oriented along the

direction of source-beam propagation)

α [-] Lévy index, relating to sums of independent identically distributed
(iid) random variables, infimum of 2 and the order of smallest diverging
moment of the PDF decaying as a power law with exponent −(1 + α)

α0,H [-] surface albedo, ground at z = 0, H
β [-] characteristic exponent of power-law wavenumber spectrum in turbu-

lent media, which decays in 1/kβ

γ [-] exponent for power-law model of internal stratification
Δ [-] parameter for linear gradient model of internal stratification
ε [-] rescaling parameter for Cairns’ or Larsen’s homogenization theories of

small-scale 3D RT effects
η [-] sin θ =

√
1− μ2

η0 [-] sin θ0 =
√
1− μ2

0

θ [◦ or rad] zenith angle for propagation direction
θ0 [◦ or rad] zenith angle for solar source
κν [1/m] absorption coefficient for a gas
λ [nm] wavelength
μ [-] vertical direction cosine, Ωz = cos θ
μ0 [-] μ for solar source, cos θ0
ν [cm−1] wavenumber = 107/λ, when wavelength is in nm
ξ [-] reserved for τt/2χ in strictly similar diffusion models
�0 [-] single scattering albedo, σs/σ−→ρ [m] position in horizontal plane, typically reckoned from a normally inci-

dent laser beam
σ [1/m] local extinction coefficient, cross-section (in m2) × droplet concen-

tration (in 1/m3), where cross-section ≈ 2πr2 in the limit of large size
parameters (2πr/λ)

σa [1/m] local absorption coefficient
σs [1/m] local scattering coefficient
σt [1/m] local transport extinction coefficient
τ [-] cloud optical depth
τt [-] rescaled or transport optical depth, (1−�0g)τ
φ [◦ or rad] azimuthal angle for propagation direction
φ0 [◦ or rad] azimuthal angle for solar source
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χ [-] extrapolation length in units of transport MFPs �t
Ω [-] direction of propagation
dΩ [sr] infinitesimal solid angle, dμdφ
Ω0 [-] propagation direction for source
Ωobs [-] direction of observation (opposite of propagation toward instrument)
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moyennes. Acta Math., 30:175–193, 1906.

78. A.B. Kostinski. On the extinction of radiation by a homogeneous but spatially cor-
related random medium. J. Opt. Soc. Amer. A, 18:1929–1933, 2001.

79. R.A. Shaw, A.B. Kostinski, and D.D. Lanterman. Super-exponential extinction of
radiation in a negatively-correlated random medium. J. Quant. Spectrosc. Radiat.
Transfer, 75:13–20, 2002.



282 A.B. Davis, I.N. Polonsky, and A. Marshak
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6 Radiative transfer of luminescence light in
biological tissue

Alexander D. Klose

6.1 Introduction

Radiative transfer of light in biological tissue plays a vital part in in vivo biomed-
ical optics. Tissue constitutes a highly scattering and absorbing medium for light
at wavelengths of the visible and near-infrared spectrum, and its light-tissue inter-
action can be exploited not just for therapeutic but also for diagnostic purposes
[1–3]. In biomedical optics, light sources are placed on top of the tissue surface,
either in contact or non-contact, and illuminate the tissue. Optical images of the
reflected or trans-illuminated light are taken, which subsequently provide valuable
biomedical information about macroscopic tissue changes. These optically detected
tissue changes are mostly based on the absorption contrast that is caused by intrin-
sic tissue chromophores. The optical contrast of the detected images is, however,
relatively poor due to the multiple scattered light inside tissue. Optical imaging has
already been utilized in clinical and pre-clinical practice in order to detect these
macroscopic tissue changes. Advances have been made in, for example, studying
brain function [4,5], optical mammography and detecting breast cancer [6,7], small
animal (for example rodents) imaging [8–11], or in detecting the inflammatory
progression of rheumatoid arthritis in finger joints [12].

Optical molecular imaging of small animals utilizes luminescent imaging probes
as imaging contrast, instead of intrinsic absorption properties of tissue. These
probes emit light that can be utilized for studying gene expressions, protein–protein
interactions, and drug effects at a cellular and molecular level prior to the ap-
pearance of macroscopic tissue changes [13–21]. Images of the luminescence light
intensities on the tissue surface can directly be taken, but they do not reveal the
actual location and strength of the sources deep inside tissue due to strong light
scattering. Luminescence tomography, on the other hand, measures the light inten-
sities on the tissue surface and, subsequently, an image reconstruction algorithm
recovers the spatial location of the unknown luminescent probe distribution [20].
In this regard, radiative transfer models play an important role for image recon-
struction by predicting the luminescence light intensities on the tissue boundary.
The correct choice of a radiative transfer approximation impacts the accuracy of
the final image reconstructions and the speed of computation.
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Solving the radiative transfer model for a given luminescent probe distribution
is also referred to as solving the forward problem of the image reconstruction task.
Whereas, finding the unknown luminescent probe distribution from the measured
luminescence light intensities on the tissue surface is considered as solving the in-
verse problem. Both entities are closely intertwined within an image reconstruction
algorithm [1].

A major difficulty in solving the inverse problem is imposed by strong light scat-
tering of tissue, which limits the application of well-established image reconstruc-
tion algorithms as used in x-ray computed tomography (CT) [22]; see Table 6.1
for the abbreviations used. CT only deals with non-scattered or single-scattered
high-energy photons and radiative transfer can be approximated by a solution of
an integral equation. Inversion methods, such as the inverse Radon transform or the
back-projection technique, yield the spatial distribution of the x-ray attenuation
coefficient in tissue. Tomographic imaging of luminescent probes, however, requires
solving an inverse problem based on an integro-differential equation, namely the
equation of radiative transfer (ERT). Solving the inverse source problem based on
the ERT for tissue with nonuniform optical parameter distributions and complex
geometries still remains a challenging task.

Table 6.1. Abbreviations

ART algebraic reconstruction technique
BLT bioluminescence tomography
CCD charged-coupled-device
CT x-ray computed tomography
DD diamond-differencing
DE delta-Eddington
DOT diffuse optical tomography
EGFP enhanced green fluorescent protein
ERT equation of radiative transfer
FD finite difference
FMT fluorescence molecular tomography
FV finite volume
GMRES generalized minimal residual
GTLS gaseous tritium light source
Hb hemoglobin
HbO2 oxyhemoglobin
ICG indocyanine green
LED light-emitting diode
mfp mean free path
PN spherical harmonics
RFP red fluorescent protein
SD step-differencing
SI source iteration
SPN simplified spherical harmonics
SOR successive overrelaxation
SN discrete ordinates
tmfp transport mean free path
TSVD truncated singular value decomposition
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This paper will provide an overview about the ERT in steady-state, time, and
frequency domain for modeling fluorescence and bioluminescence light propagation.
We will discuss in detail different radiative transfer approximations to the ERT that
are currently used in optical molecular imaging of luminescent in small animal
tissue. These approximations are the methods of discrete ordinates, the spherical
harmonics method, the simplified spherical harmonics method, and the diffusion
method. Last, we will give some examples of numerical techniques for solving the
forward and the inverse luminescent source problem of radiative transfer.

6.2 Light–tissue interaction

Light–tissue interaction is governed by the optical tissue parameters, i.e. the scat-
tering coefficient, μs, the absorption coefficient, μa, the anisotropy factor, g, and the
refractive index, nm [23,24]. The scattering and absorption coefficients, in units of
cm−1, are the product of the microscopic scattering and absorption cross-sections
and the particle density of scatterers and absorbers. All optical parameters are
wavelength-dependent. Table 6.2 shows some examples of optical tissue parame-
ters.

Absorption of light in tissue is caused by chromophores, such as hemoglobin,
oxyhemoglobin, NADH, and cytochrome oxidase [3]. The absorption coefficient is
the product of the extinction coefficient, ε, in units of cm−1M−1, and the concentra-
tion, C, with unit M, of the chromophore. Light absorption of hemoglobin can vary
over several orders of magnitude for wavelengths of the visible and near-infrared
spectrum (Figure 6.1). Typical absorption parameters are in the range of 0.5 cm−1

to 5 cm−1 at wavelengths λ < 600 nm. In the red and near-infrared regions with
λ > 600 nm, the absorption coefficient varies between 0.01 cm−1 and 0.5 cm−1.

Scattering of light is caused by optical interfaces with different refractive in-
dices. Mitochondria and nuclei in tissue cells have been found responsible for most
scattering events in tissue [25–28]. The scattering coefficient varies only slightly as
a function of wavelength and typical values can be found between 10 to 200 cm−1

for different tissue types [29]. Light scattering events are strongly forward-peaked
and are well-described by the Henyey–Greenstein scattering phase function with
the mean scattering cosine g (also termed anisotropy factor) [30]. The anisotropy
factor varies typically between 0.5 to 0.98 depending on the tissue type. The re-
duced scattering coefficient is defined as μ′s = (1− g)μs. Typical reduced scattering
coefficients of most tissue types are between 5 and 50 cm−1. The mean free path
(mfp) in radiative transfer is the length (μs + μa)−1, whereas the transport mean
free path (tmfp) is defined as the length (μ′s+μa)−1, which plays an important role
in diffusion theory (section 6.7.4).

The index of refraction nm of bulk tissue is mostly due to the predominant
water content of tissue (nm = 1.33). Its values in tissue approximately range from
1.3 to 1.5 [31–34]. The refractive index mismatch at the tissue–air interface is
responsible for partial reflection of light that tries to escape through the tissue
boundary. Moreover, a refractive index nm > 1 has an impact on the speed of
light inside tissue and is, thus, important for time and frequency domain radiative
transfer. We refer the reader to [23] and [29] for a comprehensive review of optical
tissue parameters.
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Table 6.2. Examples of optical tissue properties in vitro

Tissue Wave- Scattering Aniso- Reduced Absorption Reference
length coefficient tropy scattering coefficient

factor coefficient
λ μs g μ′

s μa

[nm] [cm−1] [n.u.] [cm−1] [cm−1]

aorta (human) 633 31 0.9 3.1 2.3 [35]
bladder (human) 633 29.3 0.91 2.64 1.4 [29]
brain (human):
– white matter 633 51 0.96 2.04 1.58 [29]
– gray matter 633 60.2 0.88 7.22 2.63 [29]
liver (human ) 630 414 0.95 — 3.2 [29]
liver (bovine) 633 — — 5.23 3.21 [29]
liver (rat) 500 — — 13 12 [23]
liver (rat) 633 — — 7.5 3 [23]
liver (rat) 750 — — 6.5 1.3 [23]
lung (human) 635 324 0.75 — 8.1 [29]
muscle (chicken) 633 229 0.965 8 0.12 [29]
muscle (rabbit) 630 110 0.846 16.5 1.4 [23]
skin (human) 633 187 0.81 35.5 2.7 [29]
skin (rat) 500 — — 45 0.48 [23]
skin (rat) 633 — — 23 0.22 [23]
skin (rat) 750 — — 17 0.25 [23]

Fig. 6.1. Extinction coefficient of hemoglobin (Hb) and oxyhemoglobin (HbO2) as a
function of wavelength. Light absorption significantly increases towards wavelengths of the
visible spectrum. (Data taken from http://omlc.ogi.edu/spectra/hemoglobin/index.html,
Dr Scott Prahl, Oregon Medical Laser Center, Portland.)
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6.3 Luminescent imaging probes

Luminescent imaging probes, also termed contrast agents or , provide the optical
imaging signal originating from a specific molecular or cellular event. These imag-
ing probes are either administered from outside or are genetically expressed inside
a living small animal. Luminescent probes are mainly divided into two large groups
depending on the mechanism of their light emission activation. A fluorescent probe
requires an external energy source for light emission activation. The excitation en-
ergy is usually provided by a light-emitting diode (LED) or a laser, which illuminate
the tissue surface. In contrast, a bioluminescent probe does not require an external
energy source for activation, but instead draws its energy for light emission from a
chemiluminescent reaction inside tissue [36].

6.3.1 Fluorescent probes

The simplest fluorescence imaging probe is indocyanine green (ICG) [37]. This
non-specific probe, however, is not targeted to any specific biological processes at
the cellular level and, hence, is mainly used for vascular imaging [38]. Fluores-
cent probes that report only on a specific molecular or cellular event are generally
characterized as active , activatable , or reporter proteins [20,21,39]. Active and ac-
tivatable are administered to the animal from outside, whereas fluorescent reporter
proteins are genetically expressed at the target site inside the animal.

6.3.1.1 Active

Active consist of an affinity and a signaling component. The signaling component is
a fluorophore, for example a fluorescent dye or quantum dot, that constantly emits
fluorescence light upon photonic activation. The affinity component is a ligand
(for example peptide, protein, antibody) that binds to target molecules, such as to
specific cell-surface receptors [17, 40–45]. Hence, active accumulate at target sites,
while most nonbound active probes are cleared. The remaining nonbound probes
inside tissue, however, are a limiting factor for detecting the specific fluorescent
target signal and they contribute to the background noise of fluorescence light.

6.3.1.2 Activatable

Activatable , also termed smart probes, have been designed for overcoming the
limitations of active by partially eliminating the fluorescent background signal of
nonbound probes. Their signaling component, usually two identical fluorophores in
close proximity being in a quenched state, is activated by a specific target enzyme.
This enzyme cleaves the peptide of the probe molecule, which kept the two fluo-
rophores in close proximity. Therefore, activatable are used for imaging of enzyme
activity in tissue [46,47].
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6.3.1.3 Fluorescent proteins

A fluorescent protein is an intrinsic fluorophore that has initially been isolated
from the jellyfish Aequorea victoria [39]. Different mutants, for example, enhanced
green fluorescent protein (EGFP) or red fluorescent protein (RFP), are nowadays
available for molecular imaging. The difference between a fluorescent protein and
a fluorescent dye or quantum dot is such that the protein is expressed by a re-
porter gene inside the cell instead of being administered from outside. Hence, the
fluorescent protein is an intrinsically produced reporter at the site of transcrip-
tion of the reporter gene. Fusing the reporter gene to a gene of interest allows for
imaging of almost any protein inside living small animals. Therefore, fluorescent
proteins are mostly used for studying gene expression and gene regulation (Fig. 6.2)
[14,20,39,48].

6.3.1.4 Fluorophores

The imaging contrast of a reporter probe in tissue is impacted by the optical
properties of the fluorophore. Most common fluorophores in fluorescence molecular
imaging are fluorescent dyes, quantum dots, and fluorescent proteins [21,39,49–51].
A fluorophore, after being administered as part of the reporter probe or being ex-
pressed, changes the light absorption and fluorescence properties of the targeted
tissue site to a different extent relative to the surrounding normal tissue. The choice
of a fluorophore with specific optical properties determines whether its fluorescence
light is detectable on the tissue surface, thus, providing a sufficiently large image
contrast. First, a fluorophore should preferably possess an excitation and emission
spectrum with maxima between 600 nm and 900 nm. This spectral constraint is de-
rived from the necessity that light absorption by endogenous tissue chromophores
(for example, hemoglobin, NADH) and autofluorescence of tissue is minimal. Sec-
ond, the fluorophore should have a high Stokes shift that exhibits the spectral
difference between excitation and emission wavelengths. Third, a prerequisite for
high sensitivity detection is a large extinction coefficient and a high quantumyield
[50]. A list of different fluorescent dyes and proteins is given in Table 6.3.

6.3.2 Bioluminescent probes

Bioluminescent follow a similar reporting strategy as fluorescent proteins, except
that bioluminescent probes are not intrinsically luminescent but instead require an
additional substrate for chemiluminescent activation. This substrate needs to be
administered to the animal. External light sources for photonic activation are not
required [19,60–62].

In imaging of bioluminescent , cells of biological interest are transfected with
a luciferase gene, which expresses an enzyme luciferase [19, 61, 63]. For example,
firefly luciferase (reporter gene: Fluc) catalyzes the emission of visible light from
a substrate luciferin, when ATP and oxygen are present. The emission peak is
at 560 nm. Renilla luciferase (reporter gene: RLuc) catalyzes light emission at
shorter wavelengths from a substrate coelenterazine without the aid of ATP. The
emission peak is at 482 nm. Both bioluminescent reporter systems have relatively
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Table 6.3. Optical properties of different fluorophores: ICG, fluorescein, CyDye family,
AlexaFluor family, and fluorescent proteins.

Fluorophore Excitation Emission Extinction Quantum- Life- Reference
wavelength wavelength coefficient yield time

λx λm ε η τ
[nm] [nm] [cm−1M−1] [n.u.] [ns]

ICG 780 830 41,000 0.012 0.52 [37,52]
fluorescein 492 515 81,000 0.97 4 [53,54]
Cy5 649 670 250,000 0.28 1 [18]
Cy5.5 675 694 190,000 0.23 1 [18]
Cy7 743 767 200,000 0.29 < 0.3 [18]
AlexaFluor488 495 519 71,000 0.92 4.1 [53]
AlexaFluor700 702 723 192,000 0.25 1 [18,53]
AlexaFluor750 749 775 240,000 0.12 0.7 [18,53]
EGFP 488 509 63,000 0.65 2.3 [55]
DsRed 558 583 57,000 0.79 3.6 [57,58]
mRFP1 584 607 44,000 0.25 2.05 [57,59]
mCherry 587 610 78,000 0.22 1.4 [56]

Fig. 6.2. Luminescence light distribution on top of tissue surface of a small animal. Light
originates from a dual reporter with location in proximity to spine. The dual reporter is
a fused red fluorescent protein and a firefly luciferase reporter. Left: fluorescence image.
Right: bioluminescence image. (With courtesy from Dr Inna Serganova, Memorial Sloan-
Kettering Cancer Center, New York City.)

broad emission spectra. Luciferase-substrate systems function as light-emitting for
molecular events occurring within cells, such as levels of gene expression under
different conditions or in response to specific stimuli. Moreover, high detection
sensitivities can be achieved in bioluminescence imaging due to low background
light and the absence of autofluorescence (Fig. 6.2) [62,64].
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6.4 Radiative transfer model

In general, propagation of light through a scattering host medium, such as biological
tissue, is termed radiative transfer [65–67]. The goal of a radiative transfer model
is to determine the distribution of light in the host medium, taking account of the
light interaction with the host medium. In particular, the radiative transfer model
of luminescence light in tissue describes the propagation of light that originates
from luminescent sources inside small animal tissue. The amount of light that
leaks through the tissue boundary is a quantity that is subsequently used in image
reconstruction of luminescent in small animals.

6.4.1 Equation of radiative transfer

The basic equation (see Table 6.4 for notation) for radiative transfer of luminescence
light in small animal tissue is the time-dependent ERT [65–67]. It is a balance
equation for the radiance or angular photon flux ψ(r,Ω, t) at spatial location r,
direction Ω, and time t. The physical units assigned to ψ are either Wcm−2 sr−1 or
photons s−1 cm−2 sr−1. The spatial position and direction of ψ are defined by means
of two coordinate systems. First, a laboratory coordinate system describes the
spatial geometry of the host medium, i.e. the small animal tissue geometry, and a
spatial point inside tissue is given by r = (x, y, z). Second, a local coordinate system
at point r describes the local scattering process of light into the differential solid
angle dΩ around the direction Ω with spherical coordinates (ϕ, ϑ). The direction
Ω can also be expressed by the coordinates of the laboratory coordinate system
Ω = (Ωx, Ωy, Ωz) = (sinϑ cosϕ, sinϑ sinϕ, cosϑ). Thus, the ERT is an equation
with six independent variables (x, y, z, ϑ, ϕ, t) and is given by:(
1
v

∂

∂t
+Ω · ∇+ μt(r)

)
ψ(r,Ω, t) = μs(r)

∫
4π

p(Ω · Ω′)ψ(r,Ω′, t) dΩ′ +
Q(r, t)
4π

.

(1)
The attenuation coefficient, μt, with units of cm−1, is the sum of the absorption,
μa, and scattering, μs, coefficients. The phase function p(Ω · Ω′) is the distri-
bution function for photons anisotropically scattering from direction Ω′ into the
differential solid angle dΩ around direction Ω. The term Q(r, t) describes the time-
dependent luminescent source power density of a luminescent probe. This source
term will differ for bioluminescence and fluorescence radiative transfer, as well as
for light transfer in steady-state, time, and frequency domain. The speed of light,
v, in tissue is given by the ratio v = c n−1

m of the speed of light in vacuum and the
refractive index of tissue. The fluence or photon flux φ(r, t) in units of W cm−2 or
photons s−1 cm−2 is defined by:

φ(r, t) =
∫
4π

ψ(r,Ω, t) dΩ . (2)

6.4.2 Partly-reflecting boundary condition

A significant difference between radiative transfer of luminescence light in tissue
and other particle transport problems (for example neutron transport in reactor
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Fig. 6.4. Calculated partial boundary current J+ on top of tissue surface of a nude
mouse. The source location (GTLS cylinder in animal rectum) was known from CT co-
registration. The absorption coefficient of tissue varies; from left to right: 0.1, 0.2, 0.5, 1,
and 2 cm−1. The light distribution becomes less diffuse for large absorption coefficients
(far right). All data are normalized to their maximum light intensity value.

for given optical tissue properties, for example scattering and absorption coeffi-
cients, and luminescent probes with defined concentration, extinction coefficient,
quantumyield, and lifetime. Generally, we will refer to the source term Q when also
speaking of individual source properties such as concentration, lifetime, or quan-
tumyield, since a direct relationship between Q and these physical quantities was
shown in sections 6.5 and 6.6. A functional relation F between the given and sought
variables is given by the forward problem J+ = F (Q, μs, μa).

In optical molecular imaging, however, scientists are interested in the quantifi-
cation of the luminescent probes instead of the directly observed light intensities
on the tissue surface. As already outlined in section 6.3, luminescent probes reveal
information about biological processes in living small animal models of human dis-
ease, for example, cell-trafficking, protein interaction, or tissue oxygenation. These
probes, however, cannot directly be observed with an optical imaging system be-
cause of multiple scattering of luminescence light in tissue, and no information
about the luminescent probe’s properties is directly accessible. Therefore, optical
image reconstruction methods have been developed, which reconstruct the lumines-
cent source Q or its properties (for example concentration, lifetime, quantumyield)
as a function of location inside tissue from the measured luminescence light inten-
sities on the tissue boundary. In opposite to the forward model F of luminescence
light transfer, the inverse source problem is now defined as Q = F−1(J+, μs, μa). It
is an ill-posed and underdetermined inverse problem that will be further discussed
now [148].

The instrumentation, necessary for performing light intensity measurements on
the tissue boundary, in conjunction with image reconstruction techniques, which
transform the measured light intensity data into spatial maps of luminescent probe
properties, is also termed optical luminescence tomography. The reconstructed
source maps of Q̄ = (Q1, . . . , Qm, . . . , QM ) are displayed in three-dimensional im-
ages with voxels Qm. Different experimental instrumentation and imaging protocols
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the solution obtained with any known numerical method for solving a finite sys-
tem of linear algebraic equations. In particular when ν ∈ Γ and |ν| is not more
than some positive number ς0 (it is of the order of several tens) it is useful to
apply the right sweep method (see, for example, [105]). If ν ∈ Γ and |ν| ∈ [

ς0, ξ0
]

where ξ0 is of the order of hundreds or thousands then to calculate the values
b2(ν; 0;μ11), . . . , bn(ν; 0;μ11) the straight recursion can be used (it is not difficult
to write the straight recursion using the equations of system (110) itself). It should
be noted that the selection of concrete numbers ς0, ξ0 depends on values μ1 and
a phase function model selected. In performing calculations it is necessary to take
into account that for all ν ∈ Γ the values b0(ν; 0; μ1, 1) and b1(ν; 0; μ1, 1) are
given analytically with formulas (111). When the absolute value of ν situated on Γ is
more then ξ0 it is useful to apply asymptotic formulas for the values b0(ν; 0; μ1, 1),
b2(ν; 0;μ11), . . . , bn(ν; 0;μ11) required (they are valid for |ν| → ∞). The technique
for obtaining these asymptotic formulas was given in [65].

Once the values b0(ν; 0; μ1, 1), b1(ν; 0; μ1, 1), b2(ν; 0;μ11), . . . , bn(ν; 0;μ11)
on the contour Γ (or Γ0;m) have been obtained (within the framework of the polyno-
mial approximation of the phase function) the values of the functions Q1(|μ|, |μ1|)
(or |μ1|G̃∗∗∞;0

(
+0,−|μ|; 0,−|μ1|, 1;m

)
and Q2(|μ|, |μ1|) can be calculated using for-

mulas (107), (108) (proper modifications and simplifications pointed out above
should be introduced into these formulas). Knowing the values of these functions it
is possible to calculate the values of the required function R0(|μ|, |μ1|, 1), u0(|μ1|, 1)
using formulas (103), (104) and the iteration algorithm described in this subsec-
tion. In Table 7.1 the relations and the equalities which allow one to calculate the
function R0(|μ|, |μ1|, 1), u0(|μ1|, 1) within the framework of the simplest variant

Table 7.1. The simplest variant of the iteration algorithm to calculate functions
R0(|μ|, |μ1|, 1), u0(|μ1|, 1)

No. The required values The relations and equalities which allow one to calculate
these values

1. Υ0(|μ|) Υ0(|μ|) = lim
s→+∞

χs(|μ|),
χs+1(|μ|) = 1−

R 1

0
Q1(|μ|, μ′)χs(μ

′) dμ′,
χ0(μ

′) ≡ 1.
2. Υ1(|μ|, |μ1|) Υ1(|μ|, |μ1|) = lim

s→+∞
χs(|μ|, |μ1|),

χs+1(|μ|, |μ1|) = |μ1|−1Q2(|μ|, |μ1|)−
− R 1

0
Q1(|μ|, μ′)χs(μ

′, |μ1|) dμ′,
χ0(|μ|, |μ1|) = |μ1|−1Q2(|μ|, |μ1|).

3. σ0 σ0 =
R 1

0
μΥ0(μ) dμ.

4. b∗(|μ1|) b∗(|μ1|) = 1−
R 1

0
μΥ1(μ, |μ1|) dμ.

5. u0(|μ1|, 1) u0(|μ1|, 1) = (2σ0)
−1b∗(|μ1|).

6. W1(|μ|, |μ1|) W1(|μ|, |μ1|) = σ−1
0 b∗(|μ1|)Υ0(|μ|) + Υ1(|μ|, |μ1|).

7. R0(|μ|, |μ1|, 1) R0(|μ|, |μ1|, 1) = 1
2
W1(|μ|, |μ1|).
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of this algorithm (i.e. when the function K(μ, μ′) in the integral operator (101) is
substituted by the function Q1(|μ|, |μ1|)) are presented.

In conclusion of this subsection we give a block scheme (Scheme 7.1) of the sim-
plest variant of the algorithm to calculate the functions R0(|μ|, |μ1|, 1), u0(|μ1|, 1)

Finding out the solution of the system (105) (or of the system 
(110)) on the contour  

The function  
is calculated using the formula 
(107)  

The function  
is calculated using the formula 
(108)  

The function  
is calculated using the iteration 
procedure  No. 7.1 from Table 7.1 
 

The function  
is calculated using the iteration 
procedure  No. 2 from Table 7.1 

The value  
is calculated with the formula  
No. 3 from Table 7.1 

The function  
is calculated with the formula 
No. 4 from Table 7.1 

The function  
is calculated with the formula 
No. 6 from Table 7.1 

The function  
is calculated with the formula 
 No. 5 from Table 7.1 
 

The function  
is calculated with the formula 
No. 7 from Table 7.1 

Scheme 7.1.
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7.5.4 Numerical results for the case of water cloud C.1 model

The method presented above for calculating the azimuthally averaged reflection
function R0

(|μ|, |μ1|, 1
)
and the reflection function R0

(
1, |μ1|, 1

)
is effective for

any phase functions (both are isotropic and peaked in the forward direction). Of
special interest is this method for the case of phase functions highly peaked in
forward directions which are inherent in geophysical turbid media. The reason is
that the integral operator (101) for the case of such phase functions has a norm
(for example, in the space of absolutely integrable functions on [0, 1], i.e. in the
space L1(0, 1)) much less than unity. Such a situation takes place even when the
function |μ′|G̃∗∞;0

(
+0,−|μ|; 0,−|μ′|, 1) is used as a kernel K(|μ|, |μ′|) of integral

operator (101). If the degenerative part (it is generated by the presence of discrete
roots of equation (40) for r = 0 not equal to zero) is extracted from this function
then the corresponding norm of integral operator (101) will be still smaller. Fur-
ther to illustrate the aforesaid, a number of results obtained numerically using the
algorithm of this chapter for the case of water cloud C.1 model (λ = 0.6457μm; λ
is a wavelength) [155] is presented. For this model the single scattering albedo ω0 is
equal to 1. In performing the concrete calculations the polynomial approximation
of the phase function was used, n being equal to 471.

In Fig. 7.3 the dependence of the phase function p(μ) of the argument μ is
shown. In Table 7.2 the values of roots of equation ℘0(−k2, 0) = 0 (see equation
(40)) situated on [0, 0.99999] and written in ascending order are presented. Recall
that the parameter k is connected with the parameter ν of IE (32) by the relation
ν = ± ik. In this table the normalization constants cl(1; 0)of relations (95) (l ≥ 2)
corresponding to these roots is also given.

In Figs 7.4 and 7.5 the dependences of the functions Q1

(∣∣μ∣∣, ∣∣μ1

∣∣) =∣∣μ1

∣∣G∗∞;0(+0,−|μ|; 0,−∣∣μ1

∣∣, 1) and Q2

(∣∣μ∣∣, ∣∣μ1

∣∣) =
∣∣μ1

∣∣G∗∞;0(+0,−|μ|; 0, ∣∣μ1

∣∣, 1)
of the arguments

∣∣μ∣∣ and ∣∣μ1

∣∣ are shown. The first of these functions defines the
kernel K(μ, μ1) of IE (100). The second term of the right-hand side of IE (100) is
expressed through the second function.

Fig. 7.3. The dependence of the phase function p(μ) for the case of water cloud C.1
model of the argument μ.
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Table 7.2. The roots of the equation ℘0(−k2, 0) = 0 and their normalization constants.

kl(0) 0 0.41270 0.55819 0.60515 0.63992

cl(1; 0) – 0.68721 0.12242 0.06567 0.05227

kl(0) 0.67043 0.69839 0.72451 0.74914 0.77251

cl(1; 0) 0.04498 0.03997 0.03616 0.03305 0.03040

kl(0) 0.79472 0.81585 0.83595 0.85502 0.87307

cl(1; 0) 0.02808 0.02599 0.02408 0.02229 0.02059

kl(0) 0.89007 0.90602 0.92089 0.93464 0.94724

cl(1; 0) 0.01897 0.01741 0.01589 0.01441 0.01295

kl(0) 0.95865 0.96882 0.97771 0.98525 0.99138

cl(1; 0) 0.01149 0.01005 0.00858 0.00709 0.00554

kl(0) 0.99600 0.99897

cl(1; 0) 0.00391 0.00211

Fig. 7.4. The dependence of the function Q1

`˛̨
μ
˛̨
,
˛̨
μ1

˛̨´
of the arguments

˛̨
μ
˛̨
and

˛̨
μ1

˛̨
; 1

– |μ| = 0.0003125, 2 – 0.003125, 3 – 0.0175, 4 – 0.045, 5 – 0.095, 6 – 0.19, 7 – 0.39, 8 –
0.69, 9 – 1.

It is seen that the function Q1

(∣∣μ∣∣, ∣∣μ1

∣∣) for all ∣∣μ∣∣, ∣∣μ1

∣∣ ∈ (0, 1] has values less
than unity. In addition, the norm of the integral operator in IE (100) in the space
L1(0, 1) (see Appendix A) is not more than a number sup

μ1∈(0,1]

∫ 1

0
Q1(μ,

∣∣μ1

∣∣) dμ that
is equal about to 0.1055.

In Fig. 7.6 the dependences of the azimuthally averaged reflection function
R0

(∣∣μ∣∣, ∣∣μ1

∣∣, 1) of the arguments ∣∣μ∣∣, ∣∣μ1

∣∣ for the semi-infinite plane-parallel conser-
vatively scattering turbid medium are shown. The results of numerical calculations
satisfy general constraints imposing on the function R0

(∣∣μ∣∣, ∣∣μ1

∣∣, 1). This func-
tion is non-negative, symmetrical with respect to the arguments

∣∣μ∣∣ and ∣∣μ1

∣∣ and
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Fig. 7.5. The dependence of the function Q2

`˛̨
μ
˛̨
,
˛̨
μ1

˛̨´
of the arguments

˛̨
μ
˛̨
and

˛̨
μ1

˛̨
; 1

–|μ|=0.0003125, 2 – 0.045, 3 – 0.095, 4 – 0.29, 5 – 0.69, 6 – 1

Fig. 7.6. The dependence of the function R0(|μ|, |μ1|, 1) of the arguments |μ| and |μ1|; 1
– |μ| = 0.0475, 2 – 0.19, 3 – 0.39, 4 – 0.59, 5 – 0.89, 6 – 1.

satisfies the normalization condition 2
∫ 1

0
μR0(μ, μ1, 1) dμ = 1 for all

∣∣μ1

∣∣ ∈ (0, 1]
and van de Hulst–Sobolev relation [7]. In Fig. 7.7 the dependence of the function
u0

(∣∣μ∣∣, 1) of the argument ∣∣μ∣∣ is shown.
In Table 7.3 values of the reflection function R0

(
1,
∣∣μ1

∣∣, 1) calculated with the
algorithm described above are given.

In Fig. 7.8 the dependence of the reflection function R0
(
1,
∣∣μ1

∣∣, 1) of the argu-
ment

∣∣μ1

∣∣ is shown. In addition, in this figure values of the function R0
(
1,
∣∣μ1

∣∣, 1)
calculated with the algorithm presented in [156] at points situated on the segment
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Fig. 7.7. The dependence of the function u0(|μ|, 1) of the argument |μ|.

Table 7.3. Values of the reflection function R0
`
1,

˛̨
μ1

˛̨
, 1

´

μ1 R0(1, μ1, 1) μ1 R0(1, μ1, 1) μ1 R0(1, μ1, 1)

0.00000 0.29151 0.225 0.67210 0.6500 1.0018
0.00125 0.30331 0.250 0.69688 0.6750 1.0197
0.00250 0.31369 0.275 0.72069 0.7000 1.0398
0.00375 0.32259 0.300 0.74375 0.7250 1.0628
0.00500 0.33055 0.325 0.76607 0.7500 1.0880
0.00625 0.33779 0.350 0.78771 0.7750 1.1116
0.00750 0.34447 0.375 0.80879 0.8000 1.1270
0.00875 0.35067 0.400 0.82924 0.8250 1.1299
0.01000 0.35647 0.425 0.84913 0.8500 1.1264
0.02500 0.40664 0.450 0.86833 0.8750 1.1286
0.05000 0.45710 0.475 0.88682 0.9000 1.1368
0.07500 0.49567 0.500 0.90467 0.9250 1.1449
0.10000 0.52982 0.525 0.92173 0.9500 1.1525
0.12500 0.56143 0.550 0.93817 0.9750 1.1631
0.15000 0.59116 0.575 0.95406 0.9950 1.1937
0.17500 0.61937 0.600 0.96966 0.9975 1.2192
0.20000 0.64631 0.625 0.98541 1.0000 1.2607

[0.01, 1] are marked by black circles. The maximal relative deviation of reflection
function values obtained with the algorithms mentioned above is less than 0.004%
at these points.
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Fig. 7.8. The dependence of the reflection function R0
`
1,

˛̨
μ1

˛̨
, 1

´
of the argument

˛̨
μ1

˛̨
:

the straight line is the reflection function calculated with the algorithm of this work, black
circles are the reflection function calculated with the technique of [156].

7.6 Conclusions

We have presented in close detail the qualitative and constructive mathematical
theory of the classical variant of the characteristic equation of radiative transfer
theory. This theory has been used as a basis of correct and effective methods for
solving CVCE, RCE and boundary-value problems of RTT. The theory pointed
out above substantially differs from the qualitative mathematical theory of CVCE
constructed on the basis of ideas and methods of functional analysis and Case’s
method [23, 24, 53–60]. In fact this theory is based on wide use of classical results
of mathematical analysis, difference equation theory and continuous fraction the-
ory. In virtue of this fact, in presenting the results obtained, it was necessary to
give and formulate initial statements and important theorems of difference equa-
tion theory and continuous fraction theory. Also, to make easier the perception
of this chapter, results concerning functional analysis (in particular, elements of
linear operator theory and linear operator equation) were included. On the base of
the developed theory of CVCE we have succeeded in obtaining solutions of CVCE,
RCE in an analytical form in the case of arbitrary phase functions (in particular,
for phase functions highly peaked in the forward direction). In addition, with the
help of this theory, rigorous general analytical expressions for all azimuthal har-
monics of Green’s functions of the radiative transfer equation (RTE) were obtained
for the case of a plane-parallel infinite turbid medium. As, in general, phase func-
tions corresponding to real turbid media cannot be specified exactly in numerical
algorithms, particular attention has been given to stability analysis of solutions of
CVCE, RCE (and also expressions involved in them). It has been shown that all
supposed algorithms for obtaining these solutions and expressions are stable and
allow a convenient numerical realization for the case of arbitrary phase functions. In
section 7.5 the effective algorithm for calculating the azimuthally averaged reflec-
tion function and the reflection function for the case of a plane-parallel semi-infinite
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turbid medium has been presented. In constructing this algorithm the usefulness of
simultaneous use of the CVCE theory presented above and also general invariance
relations [8, 66–72] which allow simple physical interpretation have been shown.
It should be noted that this algorithm is effective both for isotropic phase func-
tions and for phase functions peaked in the forward direction at arbitrary values of
albedo single scattering. It should be noted that the first attempts at constructive
use of the simplest notions of the continuous fraction theory to solve RCE were
undertaken in [162, 163]. In generalizing the results of this chapter for the case of
the vector characteristic equation the information given in [125, 164] can be useful.

The results given in section 7.5 for the case of the water cloud C.I model (λ =
0.6457 μm) show that the approach presented allows not only one to find rigorous
(or numerical) solutions but also to obtain highly accurate approximate analytical
solutions of RTT boundary-value problems. It should be noted that, on the basis
of the approach presented in this chapter, boundary-value problems of RTT can be
solved for the case of turbid media of non-concave forms (see, for example [8, 66–
90]). Also the presented results can be used to obtain new analytical approximate
solutions of RTE for the case of plane-parallel turbid media of any optical thickness.
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Appendix A: General mathematical notations, notions and
constructions

A set is one of major general mathematical notions. If A is a finite set it is written
in the form A =

{
a1, a2, . . . , an

}
where a1, a2, . . . , an are its elements, and n is the

number of elements belonging to A. The relation of belonging of an element b to
a set B is denoted by a symbol ∈ (i.e. b ∈ B). A general way to write any set M
is the following presentation: M =

{
m
∣∣S(m)} where S(m) is some condition (or

their collections) to which the elements of this set should satisfy. If the condition
S(m) does not hold (or S(m) is a false assertion) we write m /∈ S(m), i.e. m does
not belong toM . In set theory the symbols ⊂, ∪, ∩, \ are used. A notation A ⊂ B
means that any element of the set A belongs to the set B, i.e. A is a subset of the
set B. Sets A and B are considered to be equal, i.e. A = B if relations A ⊂ B,
B ⊂ A hold simultaneously. Further, for brevity, a symbol ∀ will be used instead of
the term ‘for all’ in writing mathematical expressions. By a symbol ∪ is meant the
union operation of sets. It means that A∪ B =

{
x
∣∣x ∈ A or x ∈ B

}
. An expression

A ∩ B defines an intersection of the sets, i.e. A ∩ B =
{
x
∣∣x ∈ A and x ∈ B

}
. A



7 The characteristic equation of radiative transfer theory 409

construction A\B means a difference of sets, i.e. A\B =
{
x
∣∣x ∈ A and x /∈ b

}
. An

empty set ∅ is thought to be a set containing no elements.
Another major general mathematical notion is the notion of a map (function,

operator) of a set A into a set B. Symbolically a map f is written as f : A → B.
The symbol f is thought to be a rule (law, algorithm) that ∀a ∈ D(f) (D(f) ⊂ A)
points out even if one element b ∈ B. The symbol D(f) is thought to be the domain
of the map f . For all a ∈ D(f) the map f defines one or a collection of elements
of the set B. If b = f(a) where a ∈ D(f) and b ∈ B then a is a prototype of the
element b and b is an image of the element a. An image Im f of the set A into the
set B is referred to as a set Im f =

{
b
∣∣ b is the image of the element of the set

D(f)
}
. The set Imf is the range of the map f : A → B. The map f : A → B is

referred to as simple if ∀a ∈ D(f) there exists the unique image b = f(a) ∈ B. A
map f : A → B is said to be injective if ∀b ∈ Im f there exists only one prototype
a ∈ D(f) (b = f(a)). If a map f : A → B is injective, D(f) = A and Im f = B a
map is said to be a bijective map of the set A onto the set B. A map f : A → B
generates the inverse map. By definition the inverse map f−1 : B → A to the map
f : A → B is referred to as such a map in which an element a ∈ A is an image of
an element b ∈ B iff f(a) = b (in addition b ∈ Im f). A map that is inverse to a
simple map is not always simple. But a map that is inverse to a bijection map is
always simple.

Let us denote sets {1, 2, 3, . . .}, {0, 1, 2, 3, . . .}, {. . . ,−2,−1, 0, 1, 2, . . .} and
the set of the real numbers by N, N0, Z and R respectively (N0 = N ∪{0}). A set
A is called denumerable if there exists a bijection map of this set onto the natural
number set N (or the set of the integer numbers Z). Finite and denumerable sets
are referred to as discrete sets. The open set of the complex numbers is denoted
by a symbol C and by a symbol i is meant the imaginary unit (i2 = −1). If
z ∈ C then z = x + i y, where x, y ∈ R. By a complex-valued function is meant
a map f : A → C. If D(f) ⊂ A ⊂ C the function w = f(z) is a complex-valued
function of the complex variable z. To isolate single-valued branches of multi-valued
analytical functions it is necessary to make cuts of the complex plane C with the
help of curves or straight lines. In theory CVCE and RCE a set C\! is used
where ! =

(−i∞,−i] ∪ [
i,+i∞)

is the union of two non-crossing rays lying on
the imaginary axis of the complex plane C and coming from the points z1 = −i
and z2 = +i.

A set C =
{
(a, b)

∣∣ a ∈ A and b ∈ B
}
where (a, b) is an ordered pair is called

a Cartesian product C = A × B of sets A and B. By a set C = A1 × A2 × · · · ×
An is meant the set of all ordered collections of elements (a1, a2, . . . , an) where
a1 ∈ A1,. . . , an ∈ An (n ∈ N\{1}). Let Ar = R ∀r = 1, n =

{
1, 2, . . . , n

}
.

Introduce operations of addition and multiplication in the set R × R × · · · × R
consisting of all ordered collections of n real numbers. These operations are defined
in the following way: (x1, x2, . . . , xn)+ (y1, y2, . . . , yn) = (x1+ y1, x2+ y2, . . . , xn+
yn); α(x1, x2, . . . , xn) = (αx1, αx2, . . . , αxn) for any collections of real numbers
x1, x2, . . . , xn and y1, y2, . . . , yn and ∀α ∈ R. Denote this set by Rn. It is a particular
case of an n-dimensional real linear space [102]. If a scalar product (!x, !y) = !x · !y
for any vectors !x = (x1, x2, . . . , xn) and !y = (y1, y2, . . . , yn) is introduced into
Rn with the help of an expression (!x, !y) =

[∑n
j=1 xjyj

]1/2 then Rn will be an
n-dimensional Euclidean space En. Two vectors !x, !y ∈ En are called orthogonal if
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(!x, !y) = !x · !y = 0. A value
∣∣!x∣∣ = [(

!x, !x
)]1/2 is called a length of a vector !x ∈ En.

In the space En an equation
∑n

j=1 x
2
j = 1 defines a unit sphere. By a symbol Ω

is meant a unit sphere in the space E3. A unit sphere is formally defined by an
equality Ω =

{
!Ω
∣∣!Ω = (Ω1,Ω2,Ω3),

∣∣!Ω∣∣ = [
Ω2

1 +Ω2
2 +Ω3

2

]1/2 = 1
}
.

Consider a number of classes of functions used in theory CVCE, RCE. By C(Ω)
denote the class of all continuous complex-valued functions defined on the unit
sphere Ω. Any of these functions is a map of a type f : Ω→ C. By a symbol L2(Ω)
is meant a class of all complex-valued square-integrable on Ω functions. Any func-
tion of this class satisfies a condition

∫
Ω

∣∣f(!Ω)∣∣2 dΩ < +∞ (!Ω ∈ Ω). By C
[−1, 1]

and L2(−1, 1) are meant respectively classes of all complex-valued continuous and
square-integrable on segment [−1, 1] functions. In mathematics classes of all abso-
lutely and square integrable on a set X complex-valued functions are denoted by
L1(X) and L2(X) respectively.

Let f(μ) be a complex-valued function defined on [−1, 1]. If ∀μ1, μ2 ∈ [−1, 1]
an inequality

∣∣f(μ1)− f(μ2)
∣∣ < a

∣∣μ1 − μ2

∣∣γ holds where a, γ ∈ (
0, +∞)

, then
the function f(μ) is said to satisfy Holder’s condition of index γ. If γ > 1, then
∀μ ∈ [−1, 1] f(μ) = const. Therefore it is further assumed that γ ∈(0, 1]. A class
of all complex-valued functions satisfying Holder’s condition of index γ is denoted
by Hγ [−1, 1].

A class of all numerical sequences
{
bs
}
=

(
b0, b1, b2, . . . , bn, . . .

)
satisfying a

condition
∑+∞

s=0

(
2
(
s+ r

)
+ 1

) (
s! /

(
s+ 2r

)
!
)∣∣bs∣∣2 < ∞ is denoted by l2(r) where

r ∈ N0. Such sequence each is a map f : N0 → C, i.e. it is a complex-valued
function of a discrete argument s ∈ N0.

Appendix B: Metric spaces and their simplest properties

A set X is called a metric space if the unique non-negative number ρ
(
x, y

)
corre-

sponds to each ordered pair
(
x, y

) ∈ X×X.This number is called a distance (or met-
ric) of the spaceX and satisfies the following condition: (1) ρ

(
x, y

)
= 0 iff x = y; (2)

∀(x, y) ∈ X ×X ρ
(
x, y

)
= ρ

(
y, x

)
; (3) ∀x, y, z ∈ X ρ

(
x, y

)
+ ρ

(
y, z

) ≥ ρ
(
x, z

)
.

If X is n-dimensional Euclidean space En the distance ρ
(
x, y

)
between any of its

vectors (elements) !x and !y is defined by a formula

ρ
(
!x, !y

)
=

[
n∑

j=1

(
xj − yj

)2]1/2

where !x =
(
x1, . . . , xn

)
, !y =

(
y1, . . . , yn

)
. Not only is En a metric space but so

are sets C(Ω), L2(Ω), C[−1, 1], L2(−1, 1). If, for example, f1(!Ω) and f2(!Ω) are any
functions of the class C(Ω) a value ρ

(
f1, f2

)
= max−→

Ω∈Ω

∣∣f1(!Ω)− f2(!Ω)
∣∣ should be used

as a metric. If f1(!Ω), f2(!Ω) ∈ L2(Ω) a value ρ
(
f1, f2

)
=
[∫

Ω

∣∣f1(!Ω)− f2(!Ω)
∣∣2dΩ]1/2

should be used as a metric.
Let X is a metric space. A set of all elements (points) x ∈ X satisfying a

condition ρ
(
x, x0

)
< r (r = const ∈ (

0,+∞)
) is called an open sphere of a radius
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r of the center at the point x0 ∈ X. A set of all points of X satisfying a condition
ρ
(
x, x0

) ≤ r is called a closed sphere. A set M ∈ Xis called bounded if it belongs
to some open or closed sphere of a finite radius. Any open sphere of the center x0 is
called a neighborhood Or

(
x0

)
of the point x0 ∈ X. A point x0 is an internal point

of the set M if there exists a neighborhood Or

(
x0

)
of this point which entirely

belongs to M . A set is called an open set or region if all its points are internal. An
infinite sequence

{
xn

}
=
{
x1, x2, . . .

}
of elements of the metric space X is said to

converge to an element (point) x0 ∈ X if lim
n→+∞ ρ

(
xn, x0

)
= 0 and in this case a

notation lim
n→+∞ xn = x0 will be used. A point x0 ∈ X is called a limit point of a

set M ∈ X if any neighborhood of this point contains even if one point of the set
M different from x0. Let us denote a subset of the metric space X that contains
all points of the subset M and all its limit points by M . If the subset M contains
all its limit points it is called closed. In this case M =M . Let A and B are subsets
of the metric space X. The subset A is called dense in B if B ⊆ A.

A sequence
{
x1, x2, . . .

}
is called a fundamental sequence if ∀p ∈ N an equality

lim
n→+∞ ρ

(
xn+p, xn

)
= 0 holds. If in the metric space X any fundamental sequence

whose all terms belong to X, converges to an element of X, then X is a com-
plete space. For example, the spaces C[−1, 1] and L2(−1, 1) are complete spaces.
Examples of complete spaces are the spaces l2(r) ∀r ∈ N0.

A subsetM of the metric space X is called compact if convergence subsequences
can be extracted of any sequence

{
xn

}
of elements of this subset. But the limits

of these sequences do not necessary belong to M .

Appendix C: Linear, normalized and Banach spaces

A linear space X is called a set in which a sum x+y and a product αx ∀x, y ∈ X
and ∀α ∈ C (or R) are defined unambiguously. In addition, (x+ y) ∈ X and αx ∈
X. These operations of addition and multiplication should possess the algebraic
properties identical to the properties in the space Rn. If elements (vectors) of X
can be multiplied only by real numbers, then X is a real linear space. Otherwise
X is a complex linear space.

Let X be a real linear space. By a scalar product of vectors of X is meant a real
function

(
!x, !y

)
defined for any pairs of vectors !x, !y ∈ X and possessing the following

properties: (1) ∀!x, !y ∈ X
(
!x, !y

)
=

(
!y, !x

)
; (2) ∀!x, !y1, !y2 ∈ X

(
!x, !y1 + !y2

)
=(

!x, !y1
)
+
(
!x, !y2

)
; (3) ∀α ∈ R and ∀x, y ∈ X

(
α!x, !y

)
= α

(
!x, !y

)
: (4)

(
!x, !x

) ≥ 0 and(
!x, !x

)
= 0 iff !x = !0(!0 is the zero vector). A linear real space X is called Euclidean if

a scalar product is defined in this space. In the Euclidean space a notion of vector
length is defined by a formula

∣∣!x∣∣ = (
!x, !x

)1/2.
The properties of vector lengths of the Euclidean space can be taken as a basis

to define a normalized space. By a normalized space X is meant a linear space in
which ∀!x ∈ X the unique number

∥∥!x∥∥ ∈ [0,+∞)
corresponds to !x. In addition,

the following conditions should hold: (1)
∥∥!x∥∥ = 0 iff !x = !0; (2) for any number

α and ∀!x ∈ X
∥∥α!x∥∥ =

∣∣α∣∣ ∥∥!x∥∥; (3) ∀!x1, !x2 ∈ X
∥∥!x1 + !x2

∥∥ ≤ ∥∥!x1

∥∥ + ∥∥!x2

∥∥.
The number

∥∥!x∥∥ is called a norm of the vector !x ∈ X. A normalized space X is a
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metric space with respect to a metric ρ
(
!x, !y

)
=
∥∥!x− !y

∥∥. By a convergence in norm
is meant a convergence in this metric. Spaces C[−1, 1], L2(Ω), l2(r) (∀r ∈ N0) are
examples of normalized spaces. A convergence in norm

∥∥f∥∥ = [∫
X

∣∣f(!x)∣∣2dX]1/2is

called a mean convergence.
A normalized space X is called Banach if X is complete with respect to the

convergence in norm. Spaces L2(Ω), C[-1, 1], L2(-1, 1), L1(-1, 1) are examples of
Banach spaces.

Appendix D: Elementary notions of spectral theory of
operators and linear operator equation theory

It is impossible to construct CVCE and RCE theory in practice without using basic
notions and constructions of operator spectral theory and linear operator equation
theory [104, 113, 144, 157]. Therefore further notions and constructions of the
theories mentioned above will be given briefly and their connection with classical
variants of characteristic integral equations RTT will be pointed out since CVCE
and RCE are such. Further notations and definitions presented in Appendices A,
B, C are used.

Let F̂ : X→ Y be a single-valued operator (mapping) whose domain is D
(
F̂
) ⊂

X and range Im
(
F̂
) ⊂ Y (X and Y are normalized spaces). Sometimes to simplify

notation this operator will be denoted by symbol F̂ . An operator is called a bounded
operator if it maps any set of D

(
F̂
)
bounded in space X into a set bounded in

space Y. Otherwise the operator mentioned above is called unbounded. An operator
F̂ : X → Y is called continuous at the point x0 ∈ D

(
F̂
) ⊂ X, if an equality

lim
||x−x0||→0

∣∣∣∣F̂ (x)− F̂
(
x0

)∣∣∣∣ = 0 holds where x ∈ D
(
F̂
)
. Here by

∣∣∣∣x− x0

∣∣∣∣ and∣∣∣∣F̂ (x)− F̂
(
x0

)∣∣∣∣ mean the norms of the elements (x − x0) and
(
F̂
(
x
)− F̂

(
x0

))
respectively in the spaces X and Y. The operator F̂ : X → Y is called continuous
if it is continuous at any point x ∈ D

(
F̂
)
, i.e. ∀x ∈ D

(
F̂
)
.

A single-valued operator F̂ : X → Y, where X,Y are Banach spaces is called
linear if D

(
F̂
)
is a linear subspace of the space X and ∀x1, x2 ∈ D

(
F̂
)
an equality

F̂
(
αx1 + βx2

)
= αF̂

(
x1

)
+ βF̂

(
x2

)
holds. Here α, β are any numbers of R (or

C) where R is the set of the real numbers and C is the set of the complex numbers.
A linear operator F̂ defined on X is called completely continuous if it maps any
bounded subset of Banach space X into a compact subset of Banach space Y.

An important value for applications has notions of a spectrum and a resolvent
set of the linear single-valued operator F̂ : X → X when D

(
F̂
)
= X and X is a

Banach space. This notion is directly connected with the existence and properties
of the inversion operator

(
F̂ − η Ê

)−1 : X → X, where Ê is the identity operator
(∀x ∈ X Ê

(
x
)
= x) and η ∈ C. The spectrum of the operator F̂ consists of a point

(discrete), essential and residual spectra.
The point (discrete) spectrum of the operator F̂ is referred to as the set

Pσ
(
F̂
)
=

{
η | η ∈ C and F̂

(
x
)
= ηx for some nonzero element x ∈ X

}
. In this

case the operator
(
F̂ − η Ê

)
: X→ X has no inversion operator.
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The essential spectrum of the operator F̂ is referred to as the set Cσ
(
F̂
)
={

η | η ∈ C and the operator
(
F̂ − η Ê

)
: X → X has the unbounded inversion

operator whose domain is dense in X}. A number η belongs to Cσ
(
F̂
)
if there

does not exist such a nonzero element x ∈ X that
(
F̂ − η Ê

)
x = 0 but ∀ε >

0 there exists an approximate eigenvector x = x
(
ε
)
whose norm

∣∣∣∣x∣∣∣∣ = 1 and∣∣∣∣F̂ (x)− η Ê
(
x
)∣∣∣∣ < ε.

The residual spectrum of the operator F̂ is referred to as the set Rσ
(
F̂
)
={

η | η ∈ C and there exists a bounded or unbounded operator
(
F̂ − η Ê

)−1 : X→ X
which has no domain dense in X}. For most operators used in applications the resid-
ual spectrum is an empty set. An important exclusion is the generation operator
used in the quantum theory [144].

The resolvent set of the operator F̂ is referred to as the set ρ(F̂ ) = {η|η ∈ C
and the operator

(
F̂ − ηÊ

)
: X→ X possesses the bounded inversion operator with

a domain dense in X}.
Let F̂ : X→ X be a linear operator. Consider a linear operator equation

F̂
(
x
)
= y (112)

where y is a given element of Banach space Y, x is a required element of D
(
F̂
) ⊂ X,

where X is a Banach space (X and Y do not necessarily coincide with each other).
In the integral equation theory [31, 133, 144] the equation (112) is usually referred
to as the integral equation of the first kind. The set of all y ∈ Im

(
F̂
)
for which

the equation (112) is solvable is a linear subspace of the space Y. The set of all
solutions of the homogeneous equation F̂

(
x
)
= 0 corresponding to equation (112)

(0 is the zero element of the space Y) is a linear subspace of Banach space X and
is referred to as the Kern F̂ of the operator F̂ : X → X. The equation (112) is
referred to as uniquely solvable on Im

(
F̂
)
if the homogeneous equation F̂

(
x
)
= 0

has the unique solution, i.e. if Kern F̂ =
{
0
} ∈ D

(
F̂
)
. In this case ∀y ∈ Im

(
F̂
)

there exists the unique solution of equation (112). Then the operator F̂ possesses
the inversion operator F̂−1 : Im

(
F̂
) → D

(
F̂
)
on Im

(
F̂
)
and the solution of the

equation (112) is given by the formula x = F̂−1
(
y
)
where y ∈ Im

(
F̂
)
.

Now consider a linear operator equation

x = η1F̂
(
x
)
+ g1, (113)

where x is a required element of Banach space X,η1 ∈ C,F̂ : X → X is a linear
operator and g1 is a given element of the space X. In the integral equation theory
[31, 144, 157] the equations of the type (113) are usually referred to as the integral
equation of the second kind. Transform equation (113) to a form(

F̂ − ηÊ
) (
x
)
= g, (114)

where η =
(
η1

)−1
, g = −(η1

)−1
g1. If η ∈ ρ

(
F̂
)
(ρ
(
F̂
)
is the resolvent set of the

operator F̂ ) equation (114) possesses the unique solution x =
(
F̂ − ηÊ

)−1(
g
)
(x ∈

D
(
F̂ − ηÊ

)
) ∀g ∈ Im

(
F̂ − ηÊ

)
. This solution will be also the unique solution of

equation (113) if η1 = η−1 and g1 = −η1g.
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The classical variant of the characteristic equation and the reduced characteris-
tic equations (CVCE and RCE) are particular cases of the following linear operator
equation (

Ê − η1M̂
)(
x
)
= F̂1

(
x
)
+ g0. (115)

Here η1 ∈ C, x and g0 are respectively required and given elements of Banach
space X; M̂ and F̂1 are linear operators mapping elements of the space X into
the same space. Here it is supposed that D

(
M̂
)
= X and there exists the in-

version operator
(
Ê − F̂1

)−1 : X → X whose domain satisfies the condition
Im

(
M̂
) ⊂ D

((
Ê − F̂1

)−1). If g0 ∈ D
((
Ê − F̂1

)−1) equation (115) is transformed
into the form of equation (113) in which the operator F̂ should be substituted by(
Ê − F̂1

)−1 M̂ (it is a product of the operators) and the element g1 should be substi-
tuted by

(
Ê − F̂1

)−1 (
g0
)
. In turn this equation is reduced to the standard equation

of the form (114) in which it should be assumed F̂ =
(
Ê − F̂1

)−1 M̂, η1 =
(
η1

)−1

and g = −η(Ê − F̂1

)−1 (
g0
)
. If

(
Ê − F̂1

)−1 (
g0
) ∈ D

((
Ê − F̂1

)−1M̂− ηÊ
)
and η

belongs to the resolving set ρ
((
Ê − F̂1

)−1 M̂
)
of the operator

(
Ê − F̂1

)−1 M̂ the
formal solution of equation (115) can be presented in the form

x = −(η1

)−1 (((
Ê − F̂1

)−1 M̂− (
η1

)−1
Ê
)−1(

Ê − F̂1

)−1)(
g0
)
= R̂η

(
g0
)

(116)

The linear operator equations (113), (114), (115) are called homogeneous equa-
tions if for them the elements g1, g, g0 are equal to the zero elements of the space
X. Otherwise these equations are called inhomogeneous.

In this chapter the mathematically substantiated and effective method for ob-
taining the resolvent R̂η and the discrete spectra of the operators of the type
F̂ =

(
Ê − F̂1

)−1 M̂ that correspond to the integral equations CVCE and RCE is
given.

Appendix E: Shturm’s method and the simplest properties
of Jacobi’s matrices

Let hn

(
x
)
be a polynomial of the nth order (n ∈ N\{1} = {2, 3, 4, . . .}) in a real

variable x. We assume that the polynomial coefficients are real and the algebraic
equation hn(x) = 0 only possess roots of multiplicity one. The problem of finding
the number of the roots of such an equation in the interval (α, β) ∈ (−1, 1) is very
important in the theory of CVCE and RCE. Shturm’s method [146, 147] is one of
the classical methods to solve this problem. The substance of this method is the
following.

Let an ordered finite system of real numbers q1, q2, . . . qn
(
n ≥ 2

)
be given. The

pair of elements placed alongside each other is said to possess a sign change if an
inequality qs qs+1 < 0 holds. If an inequality qs qs+1 > 0 holds the pair qs, qs+1 is
said to have no sign change. The total number of sign changes in all pairs of the
adjacent elements qs, qs+1

(
s = 1, 2, . . . , n− 1

)
of the system q1, q2, . . . qn is called

the number of sign changes of the given system. A finite ordered system of real
functions f0

(
x
)
, f1

(
x
)
, f2

(
x
)
, . . . , fs

(
x
)
where f0

(
x
)
= hn

(
x
)
and s ≥ 2 is called
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Shturm’s system of the algebraic equation in the interval
(
α, β

)
if the following

conditions hold: (1) The function fs

(
x
)
has no real roots (i.e. it is unchangeable

in sign in segment
(
α, β

)
); (2) For no value x two adjacent functions together

are not equal to zero; (3) f�−1

(
γ
)
and f�+1

(
γ
)
possess the difference signs if γ

is a real root of one of intermediate functions f�

(
x
) (
1 ≤ � ≤ s− 1

)
of the system

f0
(
x
)
, f1

(
x
)
, f2

(
x
)
, . . . , fs

(
x
)
. (4) If γ is a real root of the polynomial hn

(
x
)
the

product f0
(
x
)
f1
(
x
)
changes the sign from minus to plus when x increasing passes

through the point x = γ.
LetW

(
x
)
be the total number of sign changes in Shturm’s system. The calcula-

tion of the number of real roots of the polynomial can be carried out using Sturm’s
theorem [146, 147].

Theorem 1 (Appendix E). An inequality W
(
α
) ≥ W

(
β
)
holds and the

difference
(
W
(
α
)−W

(
β
))

is equal to the number of real roots of the polynomial
hn

(
x
)
contained in the interval

(
α, β

)
if the real numbers α and β (α < β) are not

roots of the polynomial possessing only roots of multiplicity one.
A matrix A =

(
a�j

)
where �, j ∈ {

1, 2, . . . , n
}
(i.e. �, j = 1, n) and n ∈ N is

called Jacobi’s matrix if a�j = 0 for
∣∣�− j

∣∣ > 1. If the notations a� = a��

(
� = 1, n

)
and b� = −a��+1, c� = −a�+1�

(
� = 1, n− 1; n ≥ 2

)
are introduced the matrix

can be written in the form⎡⎢⎢⎢⎢⎢⎢⎣
a1 −b1 0 0 0 . . . . . . . 0 0 0
−c1 a2 −b2 0 0 . . . . . . . 0 0 0
0 −c2 a3 −b3 0 . . . . . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 0 . . . . . . . −cn−2 an−1 −bn−1

0 0 0 0 0 . . . . . . . 0 −cn−1 an

⎤⎥⎥⎥⎥⎥⎥⎦ . (117)

Let dn

(
η
)
=

∣∣a� j − ηδ� j

∣∣ be the determinant of the matrix (
A− ηE

)
where E

=
(
δ� j

)
is the identity matrix, δ�j is the Kronecker symbol, η ∈ C. The determinant

dn

(
η
)
is the characteristic polynomial of the matrix A. Jacobi’s matrix (117) is

called normal if ∀� = 1, n− 1 where n ∈ N\{1} the inequalities bl > 0, c� > 0
hold. The following theorem takes place [158]:

Theorem 2 (Appendix E). The characteristic polynomial dn

(
η
)
of the nor-

mal Jacobi’s matrix (117) possesses n real simple roots.
In presenting the methods of solving the integral equations CVCE and RCE

we shall consider also the properties of infinite Jacobi’s matrices and some of their
properties will be made manifest using Theorem 2 (Appendix E).

Appendix F: The basic notions of the difference equation
theory. Perron’s theorem

The finite-difference techniques are one of the most effective methods of solving
various problems of the mathematical physics. In using this technique the contin-
uous range of arguments of the required functions is substituted by a discrete set
of points J . The approximate calculation of the required functions is reduced to
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solving linear or nonlinear algebraic equations that are referred to as the grid equa-
tions. The solutions of this equations are grid functions, given on the set J . The
difference equations are a particular case of the grid equations. A number of general
properties of these equations will be used to construct the effective algorithm of
solving CVCE and RCE.

Let y� = y
(
�
)
be a grid function of the discrete argument ∀� ∈ N0= N ∪{0}. Its

domain is the set N , and the range is a sequence {y0, y1, y2, . . . } where ∀� ∈ N0

yl ∈ C. We assume that on the grid functions a0

(
�
)
, a1

(
�
)
, . . . , am

(
�
)
(m ∈ N) and

g� = g
(
�
)
are defined. We assume also that ∀� ∈ N0 all these functions have finite

values and the inequalities a0

(
�
) �= 0 am

(
�
) �= 0 hold.

Consider an equation

a0

(
�
)
y� + a1

(
�
)
y�+1 + · · ·+ am

(
�
)
y�+m = g�, � ∈ N0 (118)

wherem is a fixed positive integer. Equation (118) is called a linear difference equa-
tion of the m-th order with respect to the grid function y� = y

(
�
)
. The difference

equation (118) is called homogeneous if ∀� ∈ N0 g� = 0. Otherwise the equation
(118) is called inhomogeneous. By a solution of equation (118) is meant any grid
function y� = y

(
�
)
that is such that the substitution of values of this function in

(118) transforms it into the identity ∀� ∈ N0.
Proceed to considering the linear homogeneous difference equation correspond-

ing to (118). Write down it in the form

m∑
s=0

as

(
�
)
y�+s = 0, � ∈ N0, m ∈ N. (119)

Let v1
(
�
)
, v2

(
�
)
, . . . , vp

(
�
)
be the solutions of homogeneous equation (119). Then

the grid function

y� = y
(
�
)
= C1v1

(
�
)
+ C2v2

(
�
)
+ · · ·+ Cpvp

(
�
)

(120)

is a solution of the equation (119) (C1, C2, . . . , Cp are arbitrary constants). By
definition the system of the grid functions v1(l), v2(l), . . . , vm(l) are called the
linearly independent system solutions of equations (119) if these functions assume
only finite values and the right-hand side of expression (120) for p = m does not
vanish although for one value l ∈ N0 and for any constants C1, C2, . . . , Cm which
are not equal to zero simultaneously. The general solution of equation (119) can be
presented in the form of the expression (120) for p = m in which by the system of
the grid functions should be meant a linear independent system of grid functions,
each of these functions being a solution of equation (119). Let y×� = y×

(
�
)
be

a particular solution of the linear inhomogeneous difference equation (118). Then
the general solution corresponding to this particular solution can be written in the
form

y� = y×� + C1v1
(
�
)
+ C2v2

(
�
)
+ · · ·+ Cmvm

(
�
)
, � ∈ N0, m ∈ N (121)
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The algorithms for constructing the linear independent system of the grid func-
tion v1

(
�
)
, v2

(
�
)
, . . . , vm

(
�
)
and the particular solution y×� involved in (121) are

(for example) presented in [105]. In the theory of linear difference equations (118)
that is directly connected with the theory of infinite system of linear algebraic
equation involving infinite Jacobi’s matrices, Perron’s theorem is very important
[150–152].

Theorem 1 (Appendix F). Perron’s theorem. Let the following conditions
hold: (1) ∀� ∈ N0 am

(
�
)
= 1. (2) ∀s ∈ {

0, 1, . . . ,m− 1
}
there exist the finite

limit lim
�→+∞

as

(
�
)
= a×s . (3) all roots Λ1,Λ2, . . . ,Λmof the characteristic equation

a×0 +a
×
1 Λ+a

×
2 Λ

2+ · · ·+a×m−1Λ
m−1+Λm = 0 are different in module; (4) ∀� ∈ N0

a0

(
�
) �= 0. Then any solution of homogeneous difference equation (119) can be

presented in the form y� = C1v1
(
�
)
+ · · · + Cmvm

(
�
)
where C1, . . . , Cm ∈ C and

v1
(
�
)
, . . . , vm

(
�
)
is a linear independent solution system of equation (119) and the

functions of this system ∀s ∈ {
1, 2, . . . ,m− 1

}
satisfy the relation

lim
�→+∞

vs

(
�+ 1

)
vs

(
�
) = Λs (122)

Perron’s theorem is a generalization of Poincaré’s theorem [106, 150–152].

Appendix G: Continuous fractions. Van Vleck’s and
Pincherle’s theorems

To investigate the properties of the integral equations CVCE and RCE and to
construct their solutions in an analytical form a number of basic notions and con-
structions of the continuous fraction theory [108–111, 115] are used. It should be
noted that along with the serious and infinite product notions constructions involv-
ing the continuous fractions as the constituents allow one to obtain analytically and
numerically solutions of various equations effectively.

By a finite continued fraction is meant the following expression:

a0 +
b1

a1 + b2

a2 + b3

a3 +
.. . + bn

an

=
[
a0;

b1
a1
,
b2
a2
, . . . ,

bn
an

]
(123)

where values a0, a1, . . . , an and b1, . . . , bn can be numbers or functions. In (123)
the elements bs and as are called the sth partial numerators and denominators. To
denote a finite continued fraction the following notations are widely used:[

a0;
b1
a1
,
b2
a2
, . . . ,

bn
an

]
=
[
a0;

bs
as

]n

1

= a0 +
n

K
s=1

(
bs
as

)
= a0 +

b1
a1 +

b2
a2 +

. . .
+
bn
an
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By an infinite continued fraction is meant the following construction[
a0;

bs
as

]∞
1

= a0 +
+∞
K

s=1

(
bs
as

)
= a0 +

b1

a1 +
b2

a2 +
b3

a3 + . . .

(124)

By
{
a0, a1, a2, . . .

}
and

{
b1, b2, . . .

}
in (124) are meant sequences of numbers or

functions. If for some s0 ∈ N bs0 = 0 infinite continued fraction (124) is trans-
formed into the finite continued fraction. By definition values

W0 =
a0

1
Wn =

[
a0;

b1
a1
,
b2
a2
, . . . ,

bn
an

]
=
An

Bn
(n ∈ N)

are called the zeroth and nth approximants of infinite continued fraction (124).
Here it is supposed that the fraction An/Bn is directly calculated of[

a0;
b1
a1
,
b2
a2
, . . . ,

bn
an

]
without using any cancellations. According to Euler [159, 160] it is usually assumed
that A0 = a0, B0 = 1 and A−1 = 1, B−1 = 0. The following theorem holds [111,
159–161].

Theorem 1 (Appendix G). Values As and Bs where s = −1, 0, 1, 2, . . .
defined by the recurrence formulas

As = asAs−1 + bsAs−2 Bs = asBs−1 + bsBs−2, (125)

where A−1 = 1, B−1 = 0, A0 = a0, B0 = 1 are numerators and denominators of the
approximants of infinite continued fraction (124). (They are often called canonical
numerators and denominators of the approximants.)

In the continued fraction theory a continued fraction (124) is said to con-
verge if the finite limit of the approximant sequence

{
W0, W1, W2, . . .

}
exists.

If lim
s→+∞Ws = ∞ an infinite continued fraction is said to possess inessential di-

vergence. A continued fraction is assumed to be divergent if this limit does not
exist. In the continued fraction theory a number of convergent criterions for infi-
nite continued fraction are stated [108–111]. Of special interest are the convergent
criteria in which all the elements of the sequences

{
a0, a1, a2, . . .

} {
b1, b2, b3, . . .

}
are constants or analytic functions in variable z ∈ C since such criteria allow one
to construct solutions of CVCE and RCE in an analytical form. One of such a
convergent criterion is stated by the theorem proved by Van Vleck in 1904 [110].

Theorem 2 (Appendix G). (Van Vleck). Let the following condition hold:

(1)
∞
K

s=1

(
asz/1

)
is an infinite continued fraction for which there exists the limit

as
lim

s→+∞ = a, a �= 0 and a ∈ C; 2)Ma =
{
z
∣∣ ∣∣ arg (az + (1/4)

)∣∣ < π
}
. Then the

following assertions hold: (1) if G is a compact subset of a set Ma there exist such
a region DG that G ⊂ DG ⊂ Ma and there exists such a positive integer number
nG that an infinite continued fraction

anGz

1 +
anG+1z

1 +
anG+2z

1 +
. . .
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converges uniformly on each compact subset in the region DG to a holomorphic
function in DG; (2) the infinite continued fraction

∞
K

s=1

(
asz/1

)
converges to a func-

tion f
(
z
)
that is either meromorphic on Ma or equal infinite identically.

A lot of special function sequences can be calculated by means of three-term
recurrent relations governing these functions. On the other hand these relations
can be considered as particular cases of infinite systems of linear algebraic equa-
tions involved Jacobi matrices. In turn solving this system is in fact solving linear
difference equations of the second order which are subject to certain boundary
conditions. For some sequences (called minimal solutions) it is impossible to ob-
tain results with fair accuracy if three-term recurrence relations are used directly
to calculate special functions involving large values of indexes through the func-
tions of the same kind involving lesser indexes. The reason for this is the numerical
instability of algorithms in using forward recursion. In 1967 it was Gautchi [107,
111] who was the first to attract attention to this problem and point out ways of
overcoming this difficult. The techniques developed by Gautchi are based on using
backward recursion and the theorem proved by Pincherle in 1894 [111]. Some def-
initions and explanations will be given before Pincherle’s theorem is formulated.
Consider a system of three-term recurrence relations

yn+1 = bnyn + anyn−1, n ∈ N; ∀n ∈ N an �= 0, an, bn ∈ C. (126)

The set of all the solutions
{
yn

}
of (126) forms a linear space L2, having di-

mensionality 2. A sequence
{
hn

}
is called a minimal solution of (126) if

{
hn

}
is

nontrivial (i.e. hn �= 0 for some n ∈ N) and there exist another solution of (126){
pn

}
satisfying the condition lim

n→+∞(hn/pn) = 0. For any solution
{
yn

}
of (126)

not proportional to
{
hn

}
it is easily shown that lim

n→+∞(hn/pn) = 0. If the set of

all solutions of
{
hn

}
of the type of (126) is not empty, then it is a one-dimensional

subspace of L2. A solution of (126) which is not minimal is called dominant. In
general a system of recurrence relations (126) may or may not have a minimal
solution.

Theorem 3 (Appendix G). (Pincherle). Let ∀n ∈ N be elements an, bn ∈
C and an �= 0. Then the following assertions hold: (1) the system of three-term
recurrence relations (126) has a minimal solution

{
hn

}
, if the continued fraction

+∞
K

n=1

(
an/bn

)
converges (to a finite value or to infinity); (2) suppose that (126) has

a minimal solution
{
hn

}
. Then ∀m ∈ N

hm

hm−1
= −am

bm +
am+1

bm+1 +
am+2

bm+2 +
· · · = − +∞

K
n=m

(
an

bn

)
. (127)

By (127) we mean the following: If hm−1 = 0, then hm �= 0 and the continued
fraction (127) converges to (hm/hm−1) = ∞. If hm−1 �= 0 then (127) converges to
the finite value (hm/hm−1) ∈ C.
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Appendix H: The correct algorithm for calculating minimal
solutions of three-term recurrence relations

Consider the problem of correct calculation of minimal solutions of relations (126)
which are linear homogeneous difference equations of the second order. We shall
assume that finite nonzero limits lim

n→+∞ an = a, lim
n→+∞ bn = b exist and an in-

equality b2 �= −4a holds. Under conditions pointed out above the characteristic
equation Λ2 − bΛ− a = 0 of the linear homogeneous difference equation (126) have
roots Λ1 and Λ2 not equal in modules (0 <

∣∣Λ1

∣∣ < ∣∣Λ2

∣∣).
On the base of Pincherle’s theorem (see Appendix G) it follows that system

(126) has a minimal solution
{
hn

}
if the continued fraction

∞
K

n=1

(
cn/1

)
converges

(to a finite value or to infinity) where ∀n ∈ N an element cn =
(
(an /bn−1bn)−1

)
and b0 = 1. This continued fraction satisfies the conditions of Van Vleck’s theorem
for z = 1 (see Appendix G). Hence it converges in the sense pointed out. Therefore
system (126) has a minimal solution

{
hn

}
. As was pointed out in Appendix G, the

space of the solutions of system (126) is two-dimensional and the subspace of its
minimal solutions is one-dimensional. Further

{
un

}
will denote a dominant solution

of system (126) which by definition satisfies the condition lim
n→+∞

(
hn/un

)
= 0.

By Pincherle’s theorem it follows that the roots Λ1 and Λ2 of the characteristic
equation correspond to the minimal and dominant solutions respectively.

The general solution of system (126) is of the form

yn = αhn + βun, n ∈ N0, (128)

where α and β are arbitrary numbers. By Perron’s theorem ∀ε1 > 0 there
exist such a number n1 ∈ N that ∀n ≥ n1 + 1 will be held an inequality∣∣(hn

(
hn−1

)−1)− Λ1

∣∣ < ε1. Similarly ∀ε2 > 0 there exists such a number n2 ∈ N

that ∀n ≥ n2 + 1 will be held an in inequality
∣∣(un

(
un−1

)−1)− Λ2

∣∣ < ε2. Se-
lect ε1 and ε2 in such a way as to hold inequalities ε1 < (1/2)

(∣∣Λ2

∣∣− ∣∣Λ1

∣∣),
ε2 < (1/2)

(∣∣Λ2

∣∣− ∣∣Λ1

∣∣). Then ∀n ≥ max
{
n1 + 1, n2 + 1

}
= n0 an inequality∣∣(un

(
un−1

)−1)− Λ1

∣∣ > 0 will hold. Now let n ≥ n0. To obtain a minimal so-
lution it is necessary to take such a solution of system (126) which will satisfy
an additional condition

(
yn0

(
yn0−1

)−1) = Λ1. On the base of this condition and
(128) one obtains a relation β = α

(
Λ1hn0−1 − hn0

)(
un0 − Λ1un0−1

)−1 in which
un0 − Λ1un0−1 �= 0. Substituting this relation in (128) the particular solution of
system (126)

yn = α
[
hn − (hn0−1/un0−1)

(
(hn0/hn0−1)− Λ1

)(
(un0/un0−1)− Λ1

)−1
un

]
, n ∈ N0

(129)
is obtained. From formula (129) and the definitions of minimal and dominant solu-
tions it follows that one should proceed in such a way to obtain the set of minimal
solutions: (1) it is necessary to select a fair large natural number n0, for which the
elements an and bn will be fair close to their limits a and b; (2) it is necessary
to take some nonzero yn0 and impose a condition

(
yn0

(
yn0−1

)−1) = Λ1 where Λ1

is the minimal in modulus root of the characteristic equation Λ2 − bΛ − a = 0 (a
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particular value yn0 defines normalization of the minimal solution); (3) on the basis
of the given yn0 and yn0−1 =

(
Λ1

)−1
yn0 by means of backward recursion yn−2 =(

an−1

)−1(
yn − bn−1yn−1

)
one can obtain elements yn0−2, yn0−3, . . . , y2, y1, y0; (4)

in carrying out concrete calculations it is necessary to take into account that the
elements yn0 will be fair close to the elements of the minimal solution

{
αhn

}
of sys-

tem (126) for a fixed n if a condition n� n0 only holds. The algorithm presented
above can be used in calculating discrete spectra and eigenfunctions of CVRCE
corresponding to these spectra.
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Part III

Dynamic and Static Light Scattering: Selected
Applications



8 Advances in dynamic light scattering techniques

P. Zakharov, F. Scheffold

8.1 Introduction

Recent developments in processing techniques and detection hardware have opened
new horizons for the application of light scattering methods based on the dynamic
analysis of coherent scattered light. The increased computational power of modern
microprocessors allows real-time data evaluation on standard desktop computers.
The continuous improvement of detector arrays, such as cameras based on CCD
or CMOS technologies, facilitate space-resolved detection of scattering intensities,
which can be used to boost the statistical weight accumulated in a single experi-
ment. New methods and improved accuracy on the other hand also provide answers
to questions concerning the quantitative data interpretation which were only par-
tially addressed in some of the earlier work.

Since the early days dynamic light scattering (DLS) methods have been applied
to a wide variety of systems and therefore the further development continued under
different names such as DLS, laser Doppler, photon correlation spectroscopy, quasi-
elastic light scattering and the family of laser speckle methods. All these techniques
rely on the same phenomena, but look at it from different perspectives. Although
the importance of exchanging ideas and concepts was realized relatively early [1,2],
researchers still prefer to play on their home fields. Here we make an attempt to
adopt a slightly more general point of view.

Monochromatic light scattered by a set of particles of mesoscopic size produces
a random interference pattern on a screen. This pattern in a general case has the
form of irregularly spaced and sized bright spots called speckles. The scattered light
intensity pattern remains unchanged as long as the particles do not change their
position. Particle motion naturally leads to a temporal evolution of the scattered
speckle field since one interference pattern is continuously replaced by another. In
a single speckle spot this evolution is observed as strong temporal fluctuations of
the intensity, with a certain well defined temporal correlation. The time frame of
correlated intensity observed in the single spot is called temporal speckle. The in-
tensity fluctuations are inherently linked to the scatterers’ dynamics and therefore
the temporal correlation function depends on the particles displacement. Thus the
measurable correlation properties of light can be linked to the dynamical proper-
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Fig. 8.1. Illustration of the intensity fluctuations of scattered light and the corresponding
autocorrelation function.

ties of particles, which in turn can provide information about flow velocity and
direction, particles size, density of moving scatterers, etc.

In the scope of DLS temporal fluctuations are usually analyzed by means of
the intensity or photon autocorrelation function (ACF; see Fig. 8.1). In the time
domain analysis the correlation function usually decays starting from zero delay
time (also called the lag time), faster dynamics leads to faster decorrelation of
scattered intensity trace. It can be shown that for a random process the intensity
ACF is the Fourier transform of the power spectrum [3] and therefore the DLS
measurements can be equally well performed in the spectral domain. In fact the
DLS experiment was initially discussed in terms of broadening of the spectrum
peak of monochromatic light due to Doppler shifts experienced by the propagating
light waves scattered by moving particles [4]. Faster particle dynamics leads to
a broader spectrum, thus, by measuring the width, dynamical properties can be
explored.

The effect of light scattering by moving particles is technically easier to analyze
in the temporal domain when the scattering events are assumed to produce phase
shifts rather than frequency shifts. The intensity trace can be statistically analyzed
and its correlation properties can be used to study particles dynamics.1

The data interpretation is usually different for the intensity fluctuations of light
scattered only once (single scattering limit) and for the case of multiple light scat-
tering (diffusing wave spectroscopy or DWS). The intermediate limit represents the
most difficult case since no rigorous theory can be applied.

After a brief introduction to the theory of single and multiple dynamic light
scattering we discuss the experimental techniques that have been developed recently
to extract the single-scattering signal from the detected light in the intermediate
regime. Next, we address the recent advances of DLS experimental methods with
respect to temporal and spatial resolution opening a wealth of new possibilities

1For the case of random motion Doppler broadening and loss of correlation can be
used interchangeably. For a stationary random process the power spectral density is the
Fourier transform of the corresponding autocorrelation function, a relation known as the
Wiener–Khinchin theorem
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for studies in physics, colloid science, material and process characterization and
medicine.

8.2 Scattering regimes

8.2.1 Single scattering limit

In the DLS experiment laser light with a wave vector k0 (|k0| = 2πn/λ where λ
is the wavelength in vacuum and n is the solvent refractive index) is scattered by
the weakly scattering medium and detected at the scattering angle θ. The light is
considered to be (quasi-)elastically scattered, which implies that the magnitude of
the wave vector after scattering |ks| is essentially equal to the initial: |ks| = |k0|.
The wave vectors define the scattering vector q = ks − k0 (see Fig. 8.2), with
|q| = 2|k| sin (θ/2). All the scattering sites with centers of mass located at the
positions rj relative to a common reference point are illuminated by light with the
same field amplitude E0 and frequency w0:

E(rj) = E0 exp i [k0rj − w0t], (8.1)

which produces a spherical wave of the same frequency emitted by the induced
dipole, which is detected at the position r

Es ∝ exp (ik0rj)
exp (i|k0||r− rj |)

|r− rj | (8.2)

For a far-field detection (|r| � |rj |) one can write:

|r− rj | ∼= r − rj
ks

|ks| + · · · . (8.3)

As a result the electric field amplitude detected from N independent scattering
particles at the position r is:

Es (q, t) ∝ exp ik0r
r

N∑
j=1

exp [i (k0 − ks) rj (t)] =
exp ik0r

r

N∑
j=1

exp [iqrj (τ)] (8.4)

θ

Fig. 8.2. Typical single scattering experiment: incident light E0 is scattered by particles.
The scattered electric field amplitude Es is detected at angle θ and used for the analysis.
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Particle movement produces a continuous change of qrj and thus the frequency
of the scattered light is shifted from the reference frequency w0. Combination of
frequency shifts from all the scatters results in the frequency distribution which
can be detected with the correlator or spectrum analyzer. When a non-scattered
light is blocked or detection is performed at sufficiently large angles (outside of the
primary beam) a self-beating of scattered light is observed (homodyne detection
scheme) whereas inside the primary beam the signal interferes with the unscattered
beam (heterodyne detection). Here we will restrict our analysis to the homodyne
case.

For random uncorrelated movement of the scattering particles with Gaussian
statistics of displacements and a mean

〈
Δr2 (τ)

〉
the normalized Elementary Linear

Correlator (FCF) g1 (q, τ) can be expressed in the following way using Eq. (8.4):

g1(q, τ) =
〈E(q, 0)E∗(q, τ)〉

〈|E(q, 0)|2〉 =
∑
i,j

〈exp iq [ri (0)− rj (τ)]〉 = exp
[−q2 〈Δr2 (τ)〉 /6]

(8.5)
For the Brownian motion of colloidal particles the mean square displacement is〈
Δr2 (τ)

〉
= 6D0τ , where D0 is the particle diffusion coefficient defined by the

Stokes–Einstein relation:
D0 =

kT0

6πηR
, (8.6)

with η being the solvent viscosity, T0 the sample temperature, and R the particle
radius. In this case the normalized Elementary Linear Correlator can be written as
[5]:

g1(q, τ) = exp
(−D0q

2τ
)
= exp [−τ/τc (q)] , (8.7)

where τc (q) = 1/D0q
2 is the relaxation time. Eq. (8.7) is widely used in dynamic

light scattering for the sizing of small particles [5].
If the particles are in random ballistic motion with isotropic Gaussian veloc-

ity distribution with mean
〈
ΔV 2

〉
, displacement equals

〈
Δr2 (τ)

〉
=

〈
ΔV 2

〉
τ2.

Substitution to Eq. (8.5) leads to

g1(q, τ) = exp
(− 〈

ΔV 2
〉
q2τ2

)
. (8.8)

Thus for the case of Brownian motion correlation function decays as a simple
negative exponent of time; meanwhile for the random ballistic motion it decays
as a negative exponent of the square of time. Thermal motion in complex fluids
can display more complicated patterns. The analysis of

〈
Δr2 (τ)

〉
can thus provide

valuable information about the microscopic dynamic properties.
In a typical DLS experiment the intensity fluctuations are monitored and ana-

lyzed by means of the normalized ACF:

g2(q, τ) =
〈I(q, 0)I(q, τ)〉t

〈I(q, t)〉2t
, (8.9)

where 〈· · · 〉t denotes time averaging. The measurable quantity g2(q, τ) can be linked
to the normalized field autocorrelation function g1(q, τ) via the Siegert relation [5]:

g2 (q, τ) = 1 + β |g1(q, τ)|2 , (8.10)
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where the coefficient β is usually referred to as coherence factor and depends on
the detection optics. In the ideal case, when only a single speckle mode is detected,
β is approaching a value of 1.

8.2.2 Multiple scattering limit

The single-scattering approach of DLS is only applicable to systems where the prob-
ability of double, triple or multiple scattering is negligible which strictly speaking
implies the transmission in line of sight to be more than 95%. Nevertheless for sys-
tems with high turbidity when the light reaching the detector has been scattered
a significant number of times, the fluctuations of scattered light intensity can also
yield valuable information about the sample dynamics. In this case the light prop-
agation can be considered as a diffusion process which in turn can be described by
the diffusion equation. This is the basis of an approach known as diffusing wave
spectroscopy (DWS) [6, 7]. Since its development DWS has become established as
a key method for characterization of many different kinds of turbid systems [8–16].

The physical picture of the single scattering is the same as considered in DLS
and the only difference is the large number of consecutive scattering events. In this
process the angular-dependent scattering information is lost and q is replaced with
the mean square of the scattering vector 〈q2〉. The scattered photons (or partial
waves) accumulate phase shifts along scattering paths. The magnitude of these
phase shifts can easily be estimated in the frame of a generalized DLS theory:

gN
1 (τ) =

N∏
i=0

exp
[
−1
6
q2i 〈Δr2(τ)〉

]
= exp

[
−1
6

N∑
i=0

q2i 〈Δr2(τ)〉
]

= exp
[
−1
6
N〈q2〉〈Δr2(τ)〉

]
, (8.11)

where gN
1 (τ) is the FCF of the single photon after N scattering events with the

sequence of momentum transfers qi, where i = 1, . . . , N . The last equality in
Eq. (8.11) holds for the case of a large number of N . Assuming the statistical
independence of photon paths the total FCF can be analyzed as the mean of all
possible photon paths, weighted by the normalized distribution of number of scat-
terings ρ(N):

g1(τ) =
∑
N

ρ (N) gN
1 (τ) (8.12)

Using the mean distance between the scattering events l, the sum in Eq. (8.12) can
be replaced by an integration over pathlengths s, since N = s/l:

g1(τ) =
∫ ∞

0

ρ(s)gs
1(τ) =

∫ ∞

0

ρ(s) exp
[
−1
6
〈q2〉〈Δr2(τ)〉s

l

]
, (8.13)

where gs
1(τ) is the FCF corresponding to a path of length s.

The square mean of the momentum transfer can be written as 〈q2〉 =
〈4k2

0 sin
2 (θ/2)〉 = 2k2

0 (1− 〈cos θ〉). Here 〈cos θ〉 is the mean cosine of the scat-
tering angle, which is often denoted as the scattering anisotropy parameter g. Let
us introduce the transport mean free path l∗ = l/(1 − g), which has a physical
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Fig. 8.3. In the multiple scattering limit every scattering event effectively changes the
direction of propagation. A statistical measure for this change is the the average cosine of
the scattering angle 〈cos θ〉 = g. The transport mean free path l∗ = l/(1−g) is the distance
that photon has to travel before it completely loses memory of the original direction.

meaning of the mean distance a photon travels inside the scattering medium be-
fore its direction is completely randomized [17] (see Fig. 8.3 for illustration). When
substituting it to Eq. (8.13) we obtain

g1(τ) =
∫ ∞

0

exp
[
−1
3
k2
0

〈
Δr2 (τ)

〉 s
l∗

]
ρ (s) ds (8.14)

The diffusion equation can be solved for various geometries and source–detector
locations and in some of the most important cases analytical solutions can be found
which allow for a quantitative interpretation of experimental data [17]. Due to the
strong multiple scattering DWS offers more flexibility in the experimental design
and higher sensitivity since the contribution of small displacements is enhanced by
the long scattering paths.

For the backscattering geometry with plane-wave illumination one obtains the
following result for the intensity ACF [6]:

g1(τ) = exp
[
−γk0

√
〈Δr2 (τ)〉

]
, (8.15)

where γ is a constant of order γ ≈ 2. For the case of simple Brownian motion we
find:

gbrn
1 (τ) = exp

[
−γk0

√
6D0τ

]
= exp

[
−γ

√
6τ/τ0

]
, (8.16)

where τ0 = 1/D0k
2
0 is the DWS relaxation time.

For random ballistic motion the FCF can be found as

grnd
1 (τ) = exp

[
−γk0τ

√
〈ΔV 2〉

]
. (8.17)

At the same time, however, the DWS experiment cannot provide q-resolved
information since it is lost in the multiple-scattering process and thus directional
characteristics of particle movement cannot be studied. Another complication orig-
inates from the limitations of diffusion approximation. It is only applicable in the
strong multiple scattering limit, when the optical pathlength is large compared to
the transport mean free path l∗. This assumption does not hold under some mea-
surement conditions even for turbid samples, notably in back-reflection [18,19].
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8.2.3 Intermediate scattering regime

In the crossover regime the interpretation of the intensity correlation function is
significantly complicated. Incident light experiences single, double, triple scattering
and so on. The effective momentum gradually transfers from q to 〈q〉. Theoreti-
cal modeling for this complicated situation is very difficult and sample-dependent.
Therefore many experimental techniques focus instead on the suppression of non-
singly scattered light instead. Several experimental approaches can be used to re-
duce the influence of multiple scattering. One can dilute the sample, reduce scat-
tering efficiency by refractive-index matching [20] or decrease the cell size. The first
two approaches require a change of the sample properties, which is very often im-
possible or undesirable. Reducing the size of the container has its own limitations
which are set by the optical quality of the sample cell and by boundary effects.
For cylindrical cells minimal diameters of typically 1–3 mm are used whereas in
flat or rectangular containers even smaller photon path lengths can be achieved
[21, 22]. To maximally reduce the photon path lengths one can use fiber optical
probes [23] directly immersed in the liquid sample. This approach known as Fiber
Optical Quasi Elastic Light Scattering (FOQELS) has been applied in a number
of recent studies (see, for example, Refs [24–26]). The application of FOQELS is,
however, limited to backscattering angles around 180◦ and the interpretation of the
data is often complicated due to the incomplete suppression of multiple scattering.

Along with efforts to eliminate the contribution of multiple scattering one can
try to use different schemes of signal processing in order to extract the signal of
interest. One of the most efficient approaches is to study spatial correlations of the
detected field attributed to the volume of single scattering. One can carry out two
simultaneous light scattering experiments with exactly the same scattering vectors
in the same scattering volume and analyze the time cross-correlation function of
intensities. It has been clearly shown that under suitable conditions (see Refs [27–
29]) the cross-correlation function equals the autocorrelation function for single
scattering within the experimentally accessible range (the experimental intercept
β of the cross-correlation system can be significantly smaller than one).

In the 3D cross-correlation scheme multiple scattering suppression can be
achieved by performing two scattering experiments simultaneously on the same
scattering volume (with two laser beams, initial wave vectors ki1 and ki2, and two
detectors positioned at final wave vectors kf1 and kf2). The signal seen by the
two detectors is correlated only for the case of single light scattering where both
detectors are set to have the same scattering vector q. Therefore for the case of
single scattering, each detector sees the same spatial Fourier component of the
sample [21, 30]. This approach has been implemented as a commercially available
system [31]. Instead of a tilting two laser beams out of the scattering plane it is
also possible to employ two lasers of different wavelengths [29,30]

Another cross-correlation approach can be implemented using a single-beam
two-detector configuration [33, 34]. This approach is based on the so-called van
Cittert–Zernike theorem [35], which states that intensity correlations in an observa-
tion region are closely related to the Fourier transform of the intensity distribution
across the source. This means that a small region dominated by single scattering
(for example, the volume of a focused beam) will produce large correlated areas
(speckles), whereas a comparably large halo of multiple scattered photons will give
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(a) (b)

Fig. 8.4. (a) Illustration of the van Cittert–Zernike theorem: small coherently illumi-
nated areas (such as a focused laser beam) produce large areas of correlated intensity
(speckles) and vice versa: large coherence areas (halo from multiple scattering) produce
small speckles. (b) Suggested suppression scheme using cross-correlation processing: (I) in-
tensity values measured within the same speckle are correlated; (II) two different speckles
are uncorrelated; (III) for a superposition of small and large speckles intensities detected
at a certain distance will be correlated only due to the larger speckles (reproduced from
[32] with permission of OSA).

rise to small speckles (see Fig. 8.4(a)). This is reflected in the expression for the
speckle size S in the far-field geometry: S = λz/D, where z is the distance from the
light emitting object to the detector and D is the lateral extension of the object
along one chosen direction [35]. In other words, spatially resolved detection of the
scattered intensity carries selective information about the spatial distribution of
light in the scattering volume.

The single-scattering volume D1 is defined by the beam cross-section and the
size of the halo D2 is determined by the scattering mean free path l. Let us consider
the two points geometrically separated by distance Δx chosen between the speckle
sizes produced by beam and halo:

λ · z
D2

� Δx ≤ λ · z
D1

, (8.18)

In these points the intensity fluctuations are correlated mostly due to the single
scattering as shown in Fig. 8.4(a). The normalized intensity cross correlation func-
tion (CCF) of the intensity signals measured at positions separated by Δx:

gΔx
2 (q, τ) =

〈I(q, t, 0)I(q, t+ τ,Δx)〉t
〈I(q, t, 0)〉t〈I(q, t,Δx)〉t (8.19)

provides the proper estimate of autocorrelation function of single-scattered inten-
sity. Such an approach has already been successfully demonstrated by Meyer et al.
[33] with a scheme based on cross-correlation of scattered intensities detected by
two spatially separated optical fibers.

While the underlying principle is highly plausible, it is more complicated to put
forward a detailed theoretical description since it requires modeling of the low-order
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scattering processes. Such a treatment has been derived by Lock [36] for the case of
double scattering. He finds the multiple scattering suppression efficiency to be ap-
proximately proportional to the speckle size ratio S1/S2 = D2/D1 if the detectors
are placed at the distance Δx ≈ S1 = λ ·z/D1. The suppression ratio can be raised
by choosing a larger separation Δx < S1 albeit at the cost of a decreased signal.
Choosing a large distance on the other hand might prove unnecessary for small
amounts of multiple scattering. It is due to these practical difficulties, that the
technically simpler single-beam cross-correlation geometry is often considered infe-
rior to the two-beam realization, where a sample independent accurate theoretical
description is available.

The recently proposed single-beam cross-correlation camera-based method al-
lows one to overcome this shortcoming [32]. Using a digital camera as a detector
one can analyze speckle correlations and adapt Δx accordingly, assuring single-
scattering detection with high accuracy. This allows for more flexibility and in
combination with the inherently high statistical accuracy of multi-speckle detec-
tion leads to an improved performance of the single-beam two-detector configura-
tion while preserving its technical simplicity.

Several novel processing techniques are essential for the camera-based suppres-
sion of non-singly scattered light: multi-speckle and multi-tau averaging and speckle
binning. Multi-speckle indicates an improved measurement statistics by additional
averaging over set of speckles in space. This approach is discussed in detail in the
following section on averaging of non-ergodic signals. Conceptually related, multi-
tau and binning algorithms perform low-pass filtering of the speckle field in the
time and space domain, correspondingly, in order to improve the signal-to-noise
ratio and decrease the computational load at the same time.

8.3 General DLS techniques

8.3.1 Multi-tau correlation scheme

The multi-tau correlation scheme was originally proposed by Schätzel [37, 38] to
increase the accuracy of existing correlators for large lag times and is now imple-
mented in the majority of modern correlator hardware [39]. Recently it has been
also adopted for the software-based correlators [32,40,41]. The multi-tau algorithm
assumes, that in most cases the linear spacing of lag times is not required for the
analysis of intensity correlation functions (ICFs) produced from light scattering in
colloidal systems. The spacing can be increased for large lag times, thus saving
valuable correlator memory and processing time. Similarly, the minimal sampling
time is not required for the calculation of the high-order lag times. Instead the
sampling time can be increased proportionally to the explored lag time.

The correlation function measured with multi-tau scheme is smoothed with a
triangular kernel due to the nonzero integration time T > 0 of intensity trace[37,40].
The intensity IT (t) produced by integration with sampling time T from an original
intensity trace I(t) can be written in the following way:

IT (t) =
1
T

∫ t+T/2

t−T/2

I(ξ) dξ = I(t) ∗ rect(t/T )
T

, (8.20)
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where rect(x) is equal to 1 for x ≤ 0.5 and zero elsewhere. The autocorrelation
function as calculated from the sampled intensity trace is modified in the following
way [37,40]:

gT
2 (τ) =

1
T 2

∫ t+T

t−T

g2(ξ) [T − |ξ − τ |] dξ = g2(τ) ∗ Λ(τ/T )
T

. (8.21)

The kernel Λ(x) denotes triangular averaging defined as Λ(x) = 1− |x| for |x| ≤ 1
and zero elsewhere. It can be shown that for a single exponential decay the absolute
accuracy error of the ICF can be as low as 10−3 for lag times τ ≥ 8T [37, 40]. In
other words, high accuracy can be achieved with a multi-tau scheme if the lag
time is at least eight times larger than the sampling time of the intensity. This
naturally leads to a processing scheme where the sampling time T is adjusted for
the calculation of the correlation value at the lag time τ by resampling of the
original intensity trace, involving integration of two or more sequential intensity
values, which furthermore improves statistical accuracy.

In the study [32] the multi-tau scheme has been applied for the processing of
the multi-detector data from a CCD camera. The data was provided with an initial
exposure time T with 1/T Hz frame rate (the images were acquired without delays).
The doubling of the exposure time to 2T is realized by integrating two sequential
intensity values with exposure time T . In a similar way the effective exposure time
increased to 4T and so on as is shown in Fig. 8.5(a). From the obtained time series
of intensity fluctuations with different exposure times the correlation coefficients
can be calculated with a simple linear scale processing.

In software terms this scheme can be elegantly implemented via an object-
oriented approach. The Elementary Linear Correlator (ELC) shown in Fig. 8.5(b)
at every cycle i receives the intensity data point I(i), multiplies this value with
previously accumulated data points I(i − k) for different linearly spaced integer
delays k = 0, 1, 2, . . . and updates the mean values of the corresponding products
〈I(i)I(i−k)〉. Every second cycle the correlator estimates the mean integrated value
of intensity for two sequential time steps [I(2n)+I(2n+1)]/2 (where n = 0, 1, 2, . . . )
and delivers it to the input of the next ELC, operating in the similar manner and
providing the integrated value to the next ELC and so on. This creates a cascading

〈Ι〉

(a) (b)

Fig. 8.5. (a) Principles of the multi-tau correlation scheme. Sequential intensity values
I(t) are integrated for the computation of larger lag times. (b) Simplified object scheme
to illustrate the cascading of linear correlators used for the realization of the multi-tau
correlation scheme. (Modified figures from [32] reproduced with permission of OSA.)
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line of ELC. Since the data output rate of ECL is half of the input data rate, the
evaluation period doubles at every correlator. With this method extra precautions
have to be taken to optimize the cycles with respect to limitations in computational
power.

The ELC used in the study [32] performed calculations of the cross-correlation
coefficients as well as autocorrelation coefficients. ACF coefficients were calculated
on every pixel individually to obtain local values of 〈I(x, t)I(x, t+τ)〉t and 〈I(x, t)〉t.
For the CCF with separationΔx the following averages were obtained: 〈I(x, t)I(x+
Δx, t+τ)〉t, 〈I(x, t)〉t and 〈I(x+Δx, t)〉t. The values of products were accumulated
by ECL for further spatial averaging.

This scheme described here makes it possible to evaluate the data in real time
on a standard desktop computer and therefore does not limit the duration of mea-
surement, since no raw speckle data is recorded.

8.3.2 Binning technique

The cross-correlation technique for multiple scattering suppression usually in-
volves extraction of small single-scattering signals from the dominating background
[29, 33]. This requires light detectors with a high dynamic range, like modern
photodiodes or photomultipliers. Unfortunately, currently available and reason-
ably priced CCD or CMOS cameras are limited in either sensitivity or frame
rate and thus their application to this task is challenging. Nevertheless, their ef-
fective dynamic range can be partially extended with a pixel binning technique.
When the size of a single scattering speckle exceeds the area of several pixels,
its intensity can be represented by the mean intensity of these pixels. Let us
call the bin or meta-pixel the area of Sx × Sy pixels size represented by a sin-
gle intensity value obtained by integration (or floating-point averaging) of pixel
intensities within this area. Due to multiple sampling the noise of a single speckle
measurements can be reduced by factor

√
SxSy and thus the dynamic range de-

fined as DR = 20 log10 SNR dB, where SNR is a signal-to-noise ratio, will in-
crease on 10 log10 SxSy dB. The loss of spatial resolution reduces the statisti-
cal accuracy and intercept β only if the binning area

√
Sx × Sy is comparable

or larger than the coherence area
√
S1 × S2. Binning also results in partial sup-

pression of multiple scattering due to filtering out speckles smaller than the bin.
Binning introduces a two-dimensional filtering with a box kernel function which re-
duces more efficiently the high-frequency spatial fluctuations (smaller speckles from
multiple scattering volume) than the lower-frequency fluctuations (larger speckles
from single-scattering beam volume). Binning also helps to dramatically reduce
computational and memory load, thereby preserving statistically significant infor-
mation of the original signal in a way similar to the multi-tau scheme. Experi-
mental results demonstrate that binning alone can yield a considerable reduction
of the multiple-scattering part in the signal (Fig. 8.6) [32]; however, the cross-
correlation processing is still required in order to achieve the maximal suppression
efficiency.
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Fig. 8.6. Autocorrelation functions obtained with different binning areas are shown to-
gether with the cross-correlation function. As the vertical size of the binning area increases,
the ACF approaches the CCF, indicating partial but not sufficient suppression of multiple
scattering. The inset shows the estimated particle size (◦) as a function of binning size.
The actual size is indicated by a dashed line (reproduced from [32] with permission of
OSA).

8.3.3 Spectral analysis in DLS

The power spectrum S (w) can be equally well employed for the analysis of the
intensity autocorrelation function g2(τ) since both are related via a Fourier trans-
formation [42,43]:

S (w) =
1
π

∫ ∞

0

coswt [g2 (τ)− 1] dt . (8.22)

It was demonstrated [44,45] that the moment of the zero order of the power spec-
trum is proportional to the number of dynamic scatterers Cdyn (e.g. red blood cells
in the case of biomedical signal) while the first moment is related to the mean
velocity of particles 〈V 〉 multiplied by Cdyn. Thus the ratio of both integrals, rep-
resenting the mean frequency w∗ provides the velocity-dependent signal, inversely
proportional to the correlation time [42]:

〈V 〉 ∝ 1/τc ∝ w∗ =

∫∞
0
wS(w) dw∫∞

0
S(w) dw

. (8.23)

8.4 Problem of non-ergodicity

In the case of solid-like or highly viscous media, full statistical averaging is not
possible in a single coherence area (speckle spot) or it requires extremely long
data-collection times. In the past researchers have reported on experiments with
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a measurement time of hours and days (for example, [46, 47]). For such materials
the statistics of the spatial variation of intensity is different from the statistics
accumulated in time. This situation is often referred to as the non-ergodicity prob-
lem (NEP), since ergodicity implies interchangeability of temporal and ensemble
(spatial) statistics. The NEP may arise when the motion of scattering particles is
restricted, like in gels or colloidal glasses, or when the system dynamics is macro-
scopically heterogeneous (e.g. in areas of frozen motion or completely static regions,
like bone in a biological measurements). System with ergodic dynamics in the gen-
eral sense can demonstrate apparent non-ergodic properties on the finite time scales
of an experiment. In this quasi-ergodic case proper time averaging is theoretically
possible, but requires measurement times not accessible or limited by the sample
stability (for example, aging, sedimentation). Thus for in vivo biomedical measure-
ments minimization of data collection time is one of the most important require-
ments for reliable measurement due to the natural time evolution of the biological
system. Scattering media undergoing continuous slow changes, such as colloidal
systems out of equilibrium (gelation, foam coarsening, sedimentation, film drying
and so on), can be also considered as the NEP systems.

Let us consider the simple case of non-ergodicity, when the fluctuating dynamic
signal is mixed with a constant scattered field. The electric field amplitude of
detected light E(t) is composed of dynamic Ed(t) and static Es(t) contributions:

E(t) = Ed(t) + Es(t), (8.24)

The Elementary Linear Correlator for this case can be written in a following way:

g1(τ) =
〈E(0)E∗(τ)〉
〈|E(0)|2〉 = (1− ρ) |g1 d (τ)|+ ρ . (8.25)

where ρ = Is/(Id + Is) is the static part in the detected intensity (Is = EsE
∗
s

and Id = EdE
∗
d are the intensities of static and dynamic parts, correspondingly)

and g1 d (τ) = 〈Ed(0)E∗d(τ)〉/〈|Ed(0)|2〉 is the Elementary Linear Correlator of the
dynamic part. For lag times τ significantly larger than the characteristic relaxation
time of g1 d (τ) the total FCF can be written simply as g1(τ → ∞) = ρ.

When the measurement of such signal is performed with the infinite time aver-
aging in a single speckle spot the ICF [43] assumes the following form:

g2(τ)− 1 = β(1− ρ)2 |g1 d (τ)|2 + 2
√
βρ (1− ρ) |g1 d (τ)| . (8.26)

When the ensemble averaging is performed using spatial as well as temporal aver-
aging the ICF has the following ergodic form:

g2(τ)− 1 = β(1− ρ)2 |g1 d (τ)|2 + 2βρ (1− ρ) |g1 d (τ)|+ βρ2 . (8.27)

Equations (8.26) and (8.27) describe the measured correlation functions when
the time-averaged intensity 〈I〉t equals the intensity obtained with ergodic av-
eraging 〈I〉erg. This, however, might not be the case if the averaging time is
insufficient and FCF does not decay to ρ at the maximal accessible lag time
τmax: g1(τmax) �= g1(∞) = ρ. If we introduce the ratio of time-averaged and er-
godic intensities Y = 〈I〉t/〈I〉erg this difference can be quantified as following:
g1(τmax)− ρ = 1− Y [48].
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The dynamic part of correlation function is defined in the following way:
g1 d (τ) = [g1(τ)− g1(τmax)] / [1− g1(τmax)], thus Eq. (8.26) can be rewritten for
the full-coherence case β = 1 in the following form:

g2 t(τ)− 1 =
( 〈I〉t − Is

〈I〉T

)2 [
g1(τ)− g1(τmax)
1− g1(τmax)

]2

+ 2
Is

〈I〉T
〈I〉t − Is

〈I〉t

[
g1(τ)− g1(τmax)
1− g1(τmax)

]
. (8.28)

When Is is substituted, Eq. (8.28) turns to:

g2 t(τ)− 1 = Y 2
[
g2
1(τ)− g2

1(τmax)
]
+ 2Y (1− Y ) [g1(τ)− g1(τmax)] . (8.29)

There are two main effects due to time-averaging reflected in Eq. (8.29). First
of all the experimental correlation function is distorted by the difference of time-
averaged mean intensity from the ensemble-averaged one (expressed in Y ). This
affects the intercept of the correlation function as well as the shape, due to the
introduction of a linear term in g1(τ). Next, the term g1(∞) which is the correlation
value for the longest accessible lag time τmax is subtracted from the experimental
ICF, which leads to the shift of the ICF, in such a way that ICF g2 t(τ)−1 decays to
zero at the maximal lag time, even for a properly estimated mean intensity value.

The correct averaging of the ICF and the extraction of the FCF is nevertheless
possible for non-ergodic samples with methods described below.

8.4.1 Pusey and van Megen method

Existing hardware correlators are usually used in combination with a single-point
detectors and they are therefore unable to perform spatial averaging. The time-
averaged ICF g2 t(τ) always decreases to 1 for the maximal lag time τmax, even if
the underlying FCF g1(τ) does not decay to zero. Thus the normalized temporally-
averaged ICF g2 t(τ) should be post-processed in order to correct the artifacts
of non-ergodic averaging. This was successfully performed by several groups (e.g.
[48, 49] for single-scattering DLS and [50] for DWS). If the ergodic intensity Ierg

is measured in the separate experiment and the β factor of the setup is known,
the FCF g1(τ) can be extracted from the experimentally measured g2 t(τ) using
Eq. (8.29). In order to estimate the ergodic intensity the sample has to be translated
or rotated to access a large number of independent speckles [15,48,49,51].

8.4.2 Multi-speckle technique

One can also use the multi-speckle detection schemes in order to perform averaging
over a large number of speckles. DLS with a digital (CCD or CMOS) camera
as a detector offers the possibility of performing simultaneously a large number
of independent light scattering experiments, thus achieving ensemble averages in
real time [32, 41, 52–54]. In a typical camera-based DLS experiment the speckle
field is detected with spatial resolution, which allows one to monitor the intensity
fluctuations of multiple speckles simultaneously. Using a large number of these
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speckles the NEP can be solved. In this case the averaging of the intensity products
and the mean intensity is based on the speckle ensemble statistics and intensity
history:

gms
2 (τ) =

〈I(t)I(t+ τ)〉ms,t

〈I(t)〉2ms,t

(8.30)

where 〈. . .〉ms,t
.= 〈〈. . .〉ms〉t denotes the averaging along the entire two-dimensional

camera matrixms and time t. Schätzel suggested the use of the so-called symmetric
normalization of the correlation function [37, 38] by normalizing with the product
of mean intensities 〈I(t)〉ms,t ·〈I(t+τ)〉ms,t instead of the square of the mean inten-
sity. This reduces the noise in the estimates of the normalized correlation function
by diminishing the influence of drifts. It is of special importance for multi-speckle
processing, since fluctuations of unaccounted background light, camera matrix sen-
sitivity or the sample properties usually affect all pixels on the matrix in a similar
way and thus cannot be reduced with multi-speckle processing. The multi-speckle
averaged ICF with symmetric normalization is defined as:

gms
2 (τ) =

〈I(t)I(t+ τ)〉ms,t

〈I(t)〉ms,t · 〈I(t+ τ)〉ms,t
(8.31)

For the camera system the speckle size should be adjusted to fit the pixel size in
order to optimize the signal-to-noise ratio by maximizing the number of monitored
speckles and keep a reasonable coherence factor β.

Due to sampling times of typically 1–10 ms, digital-camera-based detection is
restricted to rather long correlation times. Thus, in many cases, photon correlation
spectroscopy has to be performed in a separate experiment to access the full range
of correlation times. Another solution might be fiber-based multispeckle detection
using avalanche photodiodes. As it was recently demonstrated by Dietsche et al.
[55] such a system can measure FCF with a decay time of tenths of microseconds
with a time resolution of 26 milliseconds. However, with the rapid improvement
of semiconductor technologies, the implementation of DLS systems with cameras
on the detection side is probably more promising. Recent implementations of the
smart-pixels technologies with on-site processing of the detected intensity already
realized for some tasks [56] might lead in the future to fast camera-based DLS
systems.

8.4.3 Double-cell technique

An alternative approach might be the active alteration of scattered field in order
to achieve the necessary statistical averaging. This can be performed in a DWS
experiment by introducing a second cell in the optical path [14, 57] with slow er-
godic dynamics and moderate turbidity. Light transmitted through the first cell of
thickness L1 has to pass through the second cell of thickness L2. The second cell
contains a slowly evolving sample with known correlation function g2 (τ, L2). In
this configuration the resulting intensity correlation function g2 (L1, L2, τ) of the
light transmitted through both cells can be found according to multiplication rule
[14]:

g2 (L1, L2, τ)− 1 = [g2 (τ, L1)− 1] · [g2 (τ, L2)− 1] (8.32)
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Fig. 8.7. Two-cell DWS setup. Light transmitted diffusively from the sample cell is
imaged via a lens onto a second cell (containing a highly viscous colloidal suspension of
moderate optical density). Subsequently the light is detected with a single-mode fiber and
analyzed digitally (correlator and PC). Element from the system setup in [14].

In the original implementation of the double-cell system the sandwich-like arrange-
ment of the glass cells with equal thicknesses separated by a thin wall has been
employed [14,57]. In order to apply the multiplication rule formalism the amount of
light making loops between the two cells should be negligible. This can be achieved
by introducing an absorbing layer between cells. Nowadays spatially separated cells
like the one presented in Fig. 8.7 have been used in most experimental realizations
[54].

The stability of the second-cell can be improved by replacing it with a ground
glass fixed on a stepper motor. When rotated slowly this system provides the same
performance as the liquid second cell but benefits from higher stability and better
control. In the latter case the system is not temperature-dependent and the corre-
lation function can be easily tuned by simply changing the motor rotation speed.
The importance of this approach has been recognized by the scientific communities
and commercial light scattering setups are available [31].

Although the two-cell technique can provide the proper statistical averaging
for the non-ergodic sample, it does not solve the problem imposed by the time-
averaging problem and the associated long measurement times.

8.4.4 Echo-technique with sample rotation

An alternative approach is the so-called correlation echo scheme. The original
method, as proposed by Pham et al. [58] for DLS, uses precise sample rotation
in order to explore different scattering configurations. For a solid sample the same
speckle pattern reappears after a full sample revolution. If the sample is slowly
evolving the speckle pattern changes due to the internal dynamics. A contribution
for each sample position is effectively recorded which allows one to reconstruct an
ensemble-averaged signal.

In practice the sample rotation causes rapid changes of the measured intensity
signal. The correlation function in this case displays narrow echo peaks separated
by time intervals equal to the rotation period. The shape of the peak is defined by
the sample rotation speed, but the height follows the correlation function of sample
internal dynamics. A limitation of this technique is the loss of information about
the sample correlation function between the echo peaks and the limited rotation
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speed. Increasing the rotation speed to more than 0.1–1 Hz in such an arrangement
is difficult due to possible perturbations of the sample.

8.4.5 Echo-technique without sample rotation

For DWS measurements the echo method can be implemented using a rotating
ground glass, in a way similar to the double-cell method. With this configuration
the sample is kept at rest and illuminated with a light field scrambled by the
rotating ground glass (Fig. 8.8). Rotation continuously modifies the illumination
geometry as well as the scattered speckle field detected in the far field. After a
full revolution of the glass the speckle pattern reappears and generates the echo
peak in the measured ICF. Since there is no direct influence of the sample cell, the
motor rotation speed is limited by the mechanical stability of the system itself and
detection time of the measuring system. Therefore the gap between echoes can be
significantly narrowed. In the first implementation of this system [61] the motor
was operated at about 40 Hz which generated the first echo at around 25 ms. With
the most recent version of the echo setup at the University of Fribourg, motor
frequencies as high as 100–200 Hz can be achieved.

Fig. 8.8. Setup for echo-based multispeckle DWS measurements. Light from a laser is
dispersed by ground glass rotated by the motor and, collected by the lens, illuminates
the sample. Scattered light is detected both in transmission and reflection for further
processing. (Reproduced from [59] with permission of OSA.)

8.4.5.1 Processing of echo speckle data

In order to resolve the narrow correlation echoes special emphasis has to be given
to the data analysis of the echo speckle signal. Since the echo width can be as
much as three orders of magnitude smaller than the echo period, very precise
measurements are required. In a traditional linear correlator the ICF is obtained by
averaging products of photon counts in a certain sampling time interval T separated
by lag time τ (channel) [5]. Over several decades of lag times the linear channel
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layout becomes impractical and the computation time increases rapidly. The multi-
tau scheme discussed above computes the ICF with the highest resolution for the
shortest lag times. Resolution is reduced proportionally for longer lag times. Such
loss of resolution is not acceptable for the echo signal since all echoes are expected
to have the same width, even at large lag times. On the other hand only a small
number of correlation channels is needed to resolve the ICF in the vicinity of the
correlation echoes, meanwhile the ICF in the inter-echo intervals usually equals 1
and does not contribute. Furthermore not all echoes need to be resolved to cover a
given range of lag times. Pham et al. proposed the modified multi-tau scheme [58]
optimized for the echo signal which integrated intensity values separated by the
echo period.

Fast computation of the correlation function can be also performed with the fast
Fourier transform (FFT). According to the Wiener–Khinchin theorem the autocor-
relation function of the signal can be determined as an inverse Fourier transform
of its power spectrum which is the square of the Fourier amplitudes [60, 62]. For
a given sampling time T FFT provides the correlation function for all available
channels much faster than any other intensity correlation technique. However, in
order to resolve the echo shape the sampling time has to be minimized, which re-
quires large data arrays and long processing time. Another disadvantage is that
FFT requires the complete intensity history and is therefore not suitable for the
online processing.

A fundamentally different approach to calculate the ICF has been introduced
by Chopra and Mandel [63] as the photon correlation function or photon time-of-
arrival correlator. It estimates the distribution of time intervals between photons
arrivals which is proportional to the ICF. This method does not require data re-
sampling and therefore does not depend on the sampling time T . This approach
is significantly faster if high resolution is required for the ICF and if the data is
provided in the corresponding format. The latter is the case for one of the main
commercial producers of hardware correlators (www.correlator.com). The method
has been used for the calculation of ICFs in Fig. 8.9(a) at the highest available
resolution of 12.5 ns.

The performance of different data analysis algorithms has been compared in Ref.
[60]. The data of a 12-second measurement at an average count rate of 210 kHz has
been analyzed under identical conditions with the linear correlator, FFT and the
time-of-arrival correlator. Correlation echoes were explored up to echo number 240,
corresponding to the lag time τ = 6 seconds with the time delay between echoes
doubling after each linear block of 16, resulting in a total number of 60 echoes. The
time resolution of time-of-arrival correlator is determined by a 12.5-ns hardware
time step of 80 MHz. For a computer with a 1.7 GHz Intel Xeon processor with
an echo integration window of 6 μs the computation time is about 14 seconds for
the time-of-arrival correlator at 12.5-ns resolution. The FFT correlation function
contains all available lag times and computation time is inversely proportional to
the sampling time T . For the same data it takes 1.7 seconds with 12 μs sampling
time and less than one second for 24 μs. The whole analysis with the linear corre-
lator takes approximately 1.5 seconds if a single channel for each calculated echo
with a sampling time of 12 μs is chosen. Most of this time is needed to convert the
photons arrival history to the intensity trace, which could be easily done on-the-fly
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Fig. 8.9. (a) Intensity correlation function detected in backscattering from TiO2 particles
in glycerol as detected with the echo method. Inset shows the shape of the first echo. (b)
Sample correlation function reconstructed from echo data using photon time-of-arrival
correlator with 12 ns resolution (�) and linear intensity correlation calculation with 8 μs
sampling time (�), as compared to the traditional single-point-averaged ICF over 20
minutes (solid line). Echo statistics have been accumulated for 12 seconds. (Reproduced
from [32] and [60] with permission of OSA.)

during data recording. Thus time required for the data processing with optimized
algorithms is smaller than the measurement time and does not significantly increase
the total duration of the experiment.

8.4.6 Combination of methods

The double-cell and echo methods using the rotating ground glass can be imple-
mented with the same experimental arrangement utilizing one motor, and thus it
is possible to switch between these schemes even during a single experiment by
simply changing the motor rotation speed and processing algorithms [61]. In the
double-cell mode the ground glass is rotated slowly in order to record the sample
correlation function for short times. The sample correlation function can be re-
covered from the multi-run average by the Pusey–van Megen method Eq. (8.29).
When the experiment is switched to the echo-mode it measures the correlation val-
ues at lag times separated by the rotation period. By merging the acquired short
time and long time parts of the recorded sample ICF, an extremely wide range of
correlation times can be explored with a single experimental setup consisting of the
detector, the photon counter and the computer-controlled stepper motor with the
ground glass [61]. Fig. 8.10 shows the results obtained with such technique from a
slow-evolving solution of polystyrene particles in gelatine. The dynamics gradually
slows down as the system gels. At some point the particle motion becomes spatially
restricted and the system becomes non-ergodic. From this point on the measured
correlation function does not decay to zero at the maximal lag time of 10 seconds.
Echo DWS also makes it possible to follow in time the evolution of the correlation
coefficient in the arrested state and thus enables us to characterize changes in a
sample dynamics (see inset in Fig. 8.10).
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Fig. 8.10. Time evolution of the ICF for a gelling mixture of 4 wt.% gelatine and 1 wt.%
polystyrene tracer spheres (diameter 720 nm) in water kept at 22 ◦C. Data taken at 1,
41, 57, 68 and 138 minutes. (◦), Two-cell DWS based on a hardware multi-tau analysis,
and (•), echo analysis of 15 seconds long measurements. Dotted line, ICF determined
according to [48] with motor at rest. Inset: time evolution of the echo correlation function
at τ = 0.1 s. (Reproduced from [61] with permission of APS.)

8.5 Time-resolved methods

The multi-speckle methods described above significantly reduce the measurement
time by substituting temporal speckle averaging with spatial averaging. It has been
pointed out that this can be of extraordinary importance for the characterization
of systems undergoing continuous or intermittent changes such as colloidal systems
out of equilibrium, biological systems or any other systems in evolution. Thus, the
techniques solving the NEP lead to a reduced measurement time which in turn
enables time-resolved measurements.

8.5.1 Time-resolved spectral analysis

A straightforward step towards time-resolved analysis with a spectral approach is
by dividing the intensity time trace in equal intervals and processing them sep-
arately using multi-speckle averaging [64, 65]. With the camera operating in the
line-scan mode the speckle data can be collected with a single pixel row and accu-
mulated line-by-line into a single image, where the columns of the sensor matrix
represent time traces of the intensity fluctuations at the single pixel. In this way
processing of the single image can provide the time-resolved multi-speckle average
of the intensity correlation function. The spectral processing can be performed,
for example, with a windowed Fourier transform (WFT) method or a continuous
wavelet transform (CWT). These methods were recently applied for a study of
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the time evolution of a rough front during the evaporation of fluid phase from
the porous media and non-stationary dynamics has been clearly observed in the
time-resolved measurements [66]. The time-resolved spectral information can be
obtained separately from the intensity trace of every pixel when the results are
averaged over the whole pixel ensemble. The CWT and WFT estimation of spec-
tral statistics from non-stationary time traces are well known methods, which are
extensively covered in the literature on data processing [62, 67] and thus will not
be discussed here.

Another method, making use of characteristic multi-speckle data, can be re-
alized through the conversion of the instantaneous intensity to the instantaneous
frequency and the estimation using available spatial speckle statistics [68]. Such
a conversion can be performed through the complex analytical signal Ī(t) =
I(r)(t) + jI(r)(t) calculated from the intensity trace using a Hilbert transform:

Ī(t) = I(r)(t) +
j

π

∫ +∞

−∞

I(r)

ξ − t
dξ. (8.33)

It can also be obtained through inverse Fourier transform

ū(t) � 2F−1 [(1 + sgnw)F {I}] , (8.34)

where F and F−1 are operators of forward and inverse Fourier transforms, corre-
spondingly. In the next step, the phase φ(t) = arctg

[
I(i)(t)/I(r)(t)

]
and instan-

taneous frequency wh(t) = dφ(t)/dt can be easily calculated from the analytical
signal.

Since in the multi-speckle scheme a large set of intensity traces is available
at each time, many instantaneous frequencies can be found. The distribution of
these frequencies is related to the power spectrum and the mean of instantaneous
frequencies 〈wh(t)〉. For a Gaussian process the latter corresponds to the width
of the instantaneous spectrum w∗(t) which in turn provides an estimate of the
intensity fluctuations.

The spectrum width can also be estimated through fractional differentiation of
intensity fluctuations. The expression (8.23) linking the spectral moments of inten-
sity fluctuation to the underlying dynamics can be evaluated in the time domain by
a separate calculation of denominator and numerator. Actually, the denominator
is the energy of the signal and can be easily calculated in the time domain:∫ ∞

0

S(w) dw =
1
2

∫ ∞

−∞
S(w) dw = π

∫ Δt

0

I2(t) dt . (8.35)

The numerator, on the other hand, can be calculated in the time domain only by
means of a half-integer differentiation:∫ ∞

0

wS(w) dw =
1
2

∫ ∞

−∞

⏐⏐⏐F {I}
√
jw

⏐⏐⏐2

dw = π

∫ Δt

0

[
D1/2 {I(t)}

]2
, (8.36)

where D1/2{·} is an operator of half-integer differentiation. For a non-stationary
signal of intensity fluctuations the spectrum width w∗ can be calculated for a
moment of time t inside the averaging window Δt:
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w∗fd =

∫ t+Δt/2

t−Δt/2

[
D1/2 {I(ξ)}]2 dξ∫ t+Δt/2

t−Δt/2
I2(ξ) dξ

. (8.37)

The statistics of intensity fluctuations can be estimated with fractional deriva-
tion using digital filtering techniques [66, 68] which allows for spectral width esti-
mation in the real-time and provides an extremely simple, flexible and fast way to
compute the spectrum width in the time domain.

8.5.2 Time-resolved correlation analysis

The multi-speckle calculation of the correlation function can be performed with no
temporal averaging other than the finite exposure time of the digital camera. The
latter is typically has the order of milliseconds. The Time-Resolved Correlation
(TRC) technique proposed by Cipelletti et al. [69] uses spatial statistics of the far-
field speckles to study time-dependent processes. In the original implementation
two sequential camera frames are cross-correlated and the products are averaged
and normalized with the mean intensities using the symmetric normalization:

gTRC
2 (t, τ)− 1 =

〈[I (t) I (t+ τ)]〉ms

〈I (t)〉ms〈I (t+ τ)〉ms
, (8.38)

where multi-speckle averaging 〈. . . 〉ms is carried over all the pixels of the matrix or
its part. The lag times τ can be adjusted by the step of camera inter-frame time Δt:
τ = nΔt. In this way evaluation of the correlation coefficients can be studied in time
domain which allows measurements of non-stationary and intermittent processes
with high temporal resolution [69–72].

One can also use echo-based multi-speckle methods to obtain time-resolved
information. With this method statistics of the spatial speckles is supplemented
with the speckles obtained on different echo phases. An individual echo frame has
an effective ‘exposure time’ given by the short time average which defines the lower
limit of the time resolution. This time will typically be two or three orders larger
compared to the exposure time of an individual picture since the ground glass
motion has to be resolved for a significant set of statistically uncorrelated images.
This additional averaging step, on the other hand, makes it possible to further
decrease the noise level. If TRC is extended by the averaging over different time
phases φ of the motor revolution, assuming that the motor period T = τ and thus
0 < φ < τ :

gTRCecho
2 (t, τ) =

〈[I (t+ Tφ/2π, r) · I (t+ Tφ/2π + τ, r)]〉φ
〈I (t)〉φ 〈I (t+ τ)〉φ

, (8.39)

where the averaging 〈. . . 〉φ is performed over the ground glass phases φ and corre-
sponding times Tφ/2π, where T in this case is the motor rotation period. The lag
time τ can take on the values of nT , where n is the echo order. The echo-based
time-resolved measurements can be performed with the commonly used single-point
detectors and do not require cameras for the multi-pixel averaging. However, the
quality of the data is limited by the number of independent speckles produced by
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the ground glass which is usually smaller than the number of independent spatial
speckles that can be detected simultaneously with the camera (usually defined by
the number of pixels, if the speckle size is minimized to the pixel size). Thus the
camera multi-speckle technique easily outperforms the echo technique for time-
resolved measurements in the far field.

8.5.3 Time-resolved structure function analysis

Along with the frequently used intensity correlation function less well known sta-
tistical measures of the temporal decorrelation can be used for the processing of
intensity fluctuations. One example is the structure function of the intensity fluc-
tuations [73–75]. The normalized intensity structure function (ISF) is defined in
the following way:

d2 (τ) =
〈[I (t)− I (t+ τ)]2〉

〈I〉2 . (8.40)

The ISF can be directly related to the ICF g2 (τ) [73] for the stationary ergodic
case via the following relation:

d2 (τ) = 2 [g2 (0)− g2 (τ)] . (8.41)

It was shown theoretically [73] and experimentally [74] that the structure
function is much less sensitive to low-frequency noise or drifts in the intensity
and outperforms the ICF in all cases when the photon count rate is high. In
addition, the structure function estimator significantly suppresses the impact of
the static scattered light on the measured statistics of fluctuations. We can esti-
mate time-resolved structure function (TRS) similar to time-resolved ICF defined
in [69]:

dTRS
2 (t, τ) =

〈[I (t)− I (t+ τ)]2〉ms

〈I (t)〉ms〈I (t+ τ)〉ms
, (8.42)

where multi-speckle averaging is performed over all the pixels of the matrix or its
part. The dTRS

2 (t, τ) quantity characterizes the magnitude of speckle field changes
inside the multi-speckle averaging region in the period from t to t + τ measured
as the normalized mean square difference in the detected intensity values. This
type of statistical measure can also be called speckle deviation. As follows from
Eq. (8.41) the meaning of d2 (τ) and g2 (τ) are inverted and thus faster dynamics
corresponds to larger values of structure function while the opposite is true for
g2 (τ).

Fig. 8.11 shows a comparison of the time-resolved correlation function estimate
g2(τ) − 1 to the ISF d2(τ)/2 during the intermittent process of drying paint with
camera-based multi-speckle processing. The structure function clearly indicates
the rearrangement events which are difficult to distinguish in the history of the
correlation coefficient with the same lag time. When compared to the time trace
of ACF intercept g2(0) − 1 presented in the same Fig. 8.11 one can see that the
noise in g2(τ) − 1 is dominated by the fluctuations of the intercept estimate. The
calculation of structure function does not require that many independent speckle
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0
τ

τ

τ

Fig. 8.11. Comparison of TRC and TRS analysis of the drying colloidal film [75]. The
rearrangement of water droplets inside the film is seen as intermittent alterations of the
speckle field which can be detected by the peaks of the TRS signal (d2(τ)/2). They can
be also observed on the TRC plot (g2(τ) − 1) as the deviations from the time-resolved
estimate of intercept (g2(0) − 1). However, the TRC signal is dominated by the noise of
the intercept.

realizations as the estimation of ICF intercept and thus time-resolved ISF is more
suitable for the monitoring of the intermittent processes [75].

8.6 Space-resolved methods

8.6.1 Space-resolved correlation and structure analysis

The DWS experiment can be equally well realized in the imaging geometry [75,
76], where each point in the image plane corresponds to a spatial position on the
sample surface. Spatially resolved local dynamics can be studied with the suitable
processing techniques.

The straightforward approach would be to use the camera-based imaging scheme
and estimate the speckle statistics (ACF) pixelwise with minimal spatial averag-
ing. Thus the characteristics of intensity dynamics can be mapped on the sample
geometry and the sample dynamics can be studied with full spatial resolution. The
quantification of characteristic relaxation time can be performed with a cumulant
analysis [5, 77]. The dynamics evaluated with cumulants can be used to create a
two-dimensional image representing the sample dynamics. This approach has been
used to study temporal and spatial dynamics of the imbibition front propagation in
a vertically mounted paper sheet [66,76]. This technique makes it possible to qual-
itatively distinguish the dynamic areas of the moving interphase boundary from
a static background and track the front propagation. To some extent data can
be quantitatively analyzed, but it is still sensitive to the noise introduced by the
limited averaging time. Moreover, for the partially wet areas, when the dynamic
part in the overall detected intensity is low, the measurements are suffering from
a non-ergodicity problem which manifests itself as increased noise on the dynamic
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maps. This problem can be reduced only by increasing the temporal or spatial av-
eraging windows, which would lead to unavoidable loss of resolution. A possibility
of overcoming these limitations is to combine the digital-camera-based approach
and the echo technique in the image plane. An implementation of such an approach
is currently in progress at the University of Fribourg (Switzerland) [75,78].

8.6.2 Space-resolved spectral analysis

In recent years Doppler-based methods for measuring perfusion blood flow have
made a significant progress both in hardware and processing algorithms. The tech-
nique of Laser Perfusion Imaging [44,45] has been introduced, which involves beam
scanning or full-field acquisition [56,79], when speckle data is collected with a cam-
era and a mapping of the dynamics is performed with pixelwise spectral processing.
Such a processing scheme advances Doppler-based methods to the level of time-
and space-resolved DLS techniques for biomedical imaging which in the past has
been limited to laser speckle imaging (LSI) approaches.

Doppler-based methods offer some fundamental advantages compared to LSI,
since they allow to distinguish different time-rates of dynamics as well as different
types.

Nevertheless, they suffer from the non-ergodicity problem if the multi-speckle
averaging is not implemented in the processing algorithm. This leads to the known
difficulty of quantitative data interpretation and the appearance of the speckle
noise [80] in the image, as soon as contributions with sufficiently slow relaxation
rates are present in the detected signal. In general, the formalism developed for
the temporally averaged correlation function in subsection 8.4.1 can be equally
well applied to the Doppler signal. Obviously, the imaging performance of Doppler
methods can benefit from the application of multi-pixel detection in terms of noise
reduction.

8.6.3 Laser speckle imaging

In both TRC and TRS methods the difference in the acquired image frames is
analyzed and the detector exposure time is minimized in order to limit smearing
induced by the time averaging during the exposure. However, the overall limited
number of detected photons does not allow one to decrease the exposure time T
below a certain threshold, typically of the order of milliseconds for most standard
applications. The minimum time resolution is then given by the maximum frame
rate of the order of 1000 fps or less. In this way, the time resolution of TRC, TRS
methods is typically limited to 1 ms or more. On the other hand, if the exposure
time T is of the order of decorrelation time the speckle pattern evolves while the
camera is acquiring a single frame. This leads to the blurring of the speckle and
decreases the contrast of speckle image as detected by the camera. Contrast as a
function of exposure time T is usually defined as the standard deviation of the
intensity estimated along pixels of detector normalized with mean intensity:

K(T ) = σT (I)/〈I〉ms =
√

〈I2
T 〉ms/〈I〉2ms − 1. (8.43)
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The idea of Fercher and Briers [81, 82] was to use the amount of blurring in order
to estimate the correlation time of intensity fluctuations. The approach has been
coined Laser Speckle Contrast Analysis (LASCA) by the inventors. The contrast K
of the time-integrated speckle fluctuations can be related to the correlation function
in the following way [37, 83] (in order to keep the notation simple we will discuss
the properties of square of contrast K2(T ) in the following part):

K2(T ) =
2
T

∫ T

0

g2(τ) (1− τ/T ) dτ =
2β
T

∫ T

0

|g1(τ)|2 (1− τ/T ) dτ, (8.44)

It is important to note that this equation is different from that originally introduced
by Fercher and Briers [84]. As reaffirmed by Bandyopadhyay and coworkers[83],
the correct expression, Eq. (8.44), has to take into account the effect of triangular
averaging of the correlation function according to Eq. (8.21) [37]. Essentially, the
contrast K2(T ) is an intercept of the time-integrated intensity correlation function:

K2(T ) = gT
2 (0)− 1, (8.45)

where gT
2 (τ) is defined by Eq. (8.21).

The correlation function of the particular form can be substituted in Eq. (8.44)
in order to find contrast dependence on the correlation time. The results for some
important cases can be found in [83]. For the DWS case, when the FCF is defined
by Eq. (8.16):

K2 = β
[(
3 + 6

√
x+ 4x

)
exp

(−2√x)− 3 + 2x
]
/
(
2x2

)
, (8.46)

where x = 6γ2T/τ0. For single-scattering case, when the FCF is defined by
Eq. (8.7):

K2 = β
τ2
c

2T 2

[
exp

(
−2 T

τc

)
− 1 + 2

T

τc

]
, (8.47)

LASCA was originally developed for biomedical imaging, where the image of the
speckle surface of the object has been formed in the detector plane with the objec-
tive lens [84, 85]. It can be equally well employed in the far-field geometry [83, 86]
to study non-stationary processes in complex media, where the spatial information
is not of the major interest.

The contrast analysis based on the spatial speckle statistics ensures ergodic
averaging, since the speckle size on the detector is adjusted to the speckle size and
calculation within LASCA window N ×N performs averaging over approximately
N2 statistically independent speckles.

The technical arrangement for the speckle contrast experiment is relatively sim-
ple, as no online processing of the images is required. A quantitative interpretation
of the contrast values requires some assumptions concerning the particular shape
of the correlation function and the impact of a static component in the detected
light [87]. In addition, the contrast has the maximal sensitivity (with respect to
the underlying relaxation processes) if the correlation time is of the order of the
exposure time [88], and it is significantly reduced if the exposure time is much
smaller or much larger than the correlation time. In this limit a conversion of the
contrast to the correlation values can be performed only with significant error.
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Since in biomedical imaging absolute values are not always needed for data
interpretation (like functional imaging), LASCA received significant attention [85,
89] and commercial devices are already available on the market [90].

8.6.4 LSI with active noise reduction

The improvement of LASCA technique has been recently proposed by Völker et
al. [91] as an active noise-reduction scheme which is closely related to a double-cell
approach described in subsection 8.4.3. The sample is illuminated with the laser
beam expanded by slowly rotating ground glass. The decay time of the intensity
correlation function due to the ground glass rotation is larger than the decay time
of the sample dynamics, and thus the full speckle statistics can be explored in
time (provided the speckle size is smaller than the scattering length l∗). In order
to minimize the necessary data transfer, sequential frames have to be captured
with the period larger than the correlation time due to the rotation. In such a way
obtained speckle images are statistically independent.

To study the efficiency of noise reduction Völker et al. [91] used a biomedical
phantom consisting of the Teflon block with a cylindrical liquid inclusion containing
latex particles. The optical properties of the solution were equal to the Teflon and
no static scattering differences could be observed. The camera has been imaging
the bottom of the Teflon block (Fig. 8.12(a)). In this way the liquid inclusion
has been separated by the static Teflon volume (Fig. 8.12(b)). The sample was
illuminated through the rotating ground glass. The rotation speed and the camera
frame rate were set in such a way that the sequential speckle images were completely

(a) (b)

Fig. 8.12. (a) Imaging setup. A laser beam (785 nm) is incident on a ground glass
mounted on a motor with 1 Hz rotation speed. Light passing the ground glass is moder-
ately divergent and illuminates the sample surface as an expanded light spot. The illumi-
nated surface is imaged via a beam-splitter by the camera objective onto the CCD chip
of the digital camera. (b) Heterogeneous sample obtained by milling a cylindrical void
(diameter D0 = 3 mm) into a solid block of Teflon. The inclusion is filled with an aqueous
suspension of 710 nm polystyrene latex spheres that matches the optical properties and
creates dynamic contrast. A layer of thickness d = 0.45 mm separates the inclusion from
the imaging surface. (Reproduced from [91] with permission of OSA.)
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uncorrelated. The authors could demonstrate that temporal and spatial speckles
have the same statistical properties and that the contrast can be calculated by a
time-space average [91]. In addition, spatial resolution can be easily increased at
the expense of temporal resolution and vice versa, which allows one to adapt the
data processing to the specific application.

8.6.5 Dynamic contrast analysis

There exist a number of practically important experimental situations when the
scattering fields of interest are mixed with the non-fluctuating electric fields scat-
tered from static regions. A prominent example is a measurement with a strong
static background or dynamical imaging of a volume covered by a static scattering
surface. This is the case, for example, for a layered medium with dynamics localized
in a buried layer (neuroimaging through the skull). These cases present a problem
for the LASCA method [87, 91], but slight modification of the LASCA technique
allows one to correct the contrast signal for the static background.

The original LASCA algorithm performs the spatial averaging over a number
of speckle and ensures the multi-speckles averaging of the signal. If the static (non-
fluctuating) component ρ is present in the detected signal, the measured ACF is
defined by Eq. (8.27). The resulting measured contrast value Km can be found by
substituting Eq. (8.27) into Eq. (8.44):

K2
m =

2β
T

∫ T

0

[(1− ρ) g1d (τ) + ρ]2 (1− τ/T ) dτ

= β (1− ρ)2K2
2 d + 2βρ (1− ρ)K2

1 d + βρ2, (8.48)

where we introduce the following quantities:

K2
2 d =

2
T

∫ T

0

g2
1 d (τ) (1− τ/T ) dτ

K2
1 d =

2
T

∫ T

0

g1 d (τ) (1− τ/T ) dτ. (8.49)

K2 d is the contrast of the dynamic part of the scattered intensity and K1 d is
the contrast of dynamic part of the scattered field. The two terms define a mixed
dynamic contrast:

K2
12 d = β (1− ρ)2K2

2 d + 2βρ (1− ρ)K2
1 d, (8.50)

thus the measured contrast Km is composed of K2
12 d and the static part:

K2
m = K2

12 d + βρ2. (8.51)

Contributions of the static and dynamic components to the contrast cannot
be distinguished in a traditional LASCA experiment[82, 84, 92]. Nevertheless, the
quantity ρ can be obtained with an additional processing step which does not
involve any modifications in setup and data collection procedure. Usually in an LSI
experiment the exposure time T is large compared to the relaxation time related to
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blood flow τ0, and sequential frames are acquired with a period Δt which is larger
than T , hence τ0 < T < Δt. Two frames separated by maximal accessible lag time
tmax � Δt can be considered uncorrelated with respect to the dynamic component
of interest, as the ratio of static intensity ρ is expected to remain the same. From
Eq. 8.25 we find g1 (tmax) = ρ and the ICF as defined in Eq. (8.27) reduces to
g2(tmax)− 1 = βρ2. The ρ can be determined from two separated frames using the
multi-speckle averaged correlation function:

ρ2 =
1
β
[gms

2 (tmax)− 1] =
1
β

[ 〈I (0) I (tmax)〉ms

〈I〉2ms

− 1
]
. (8.52)

Finally, with the knowledge of ρ and a model for the short time relaxation a quan-
titative interpretation of the measured contrast values is possible.

8.6.6 Simplified speckle contrast calculations

8.6.6.1 Modified laser speckle imaging

This approach is essentially a temporal analog of the original LASCA method,
motivated by the desire to improve spatial resolution of the speckle images (see
Fig. 8.13). The implementation is quite obvious: instead of calculating contrast in
space one can perform the same type of processing with a stack of sequentially
obtained images without utilization of spatial statistics[93–96]:

K2
t =

〈I2
T 〉t

〈I〉2t
− 1 . (8.53)

This method provides the images with improved spatial resolution and also qual-
itatively suppresses the impact of static component, produced by the skull, for
example[96]. The suppression is facilitated by the fact that the temporal averaging

(a) (b)

Fig. 8.13. Pseudo-color-coded images of internal dynamics in the open rat brain. Spatial
resolution of two laser speckle imaging methods is compared: (a) spatial contrast (b)
temporal contrast. (Images are from Bruno Weber, Zurich University Hospital.)
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of correlation function leads to the loss of static part ρ2 in the measured contrast
K2

m. In this case the dynamic range of the contrast variations is covered by the
dynamic contrast components:

K2
t = β

(
1− ρ2

)
K2

2 d + 2
√
βρ (1− ρ)K2

1 d. (8.54)

The K2
t is similar to K2

12 d defined by Eq. (8.50), except for the multiplication of
the second term by

√
β instead of β. Along with obvious similarity with dynamic

contrast the temporal contrast is not multi-speckle averaged in modified LSI and
cannot guarantee proper averaging of the non-ergodic signal. Temporal contrast
should be used for qualitative imaging when the maximal spatial resolution is
crucial, meanwhile for the quantitative mapping the spatial statistics should be
included in the processing to ensure the multi-speckle averaging and to suppress
speckle noise.

8.6.6.2 Speckle deviation analysis

The effect of static background can be significantly reduced in the LSI signal with
structure function processing of time-integrated intensity. According to Eq. (8.41)
the structure function is closely related to the correlation function and according to
Eq. (8.45) the intercept of the latter defines the contrast. If the lag time τ used for
the ISF dT

2 (τ) calculation is much larger than the correlation time of the dynamic
signal under study (τ � τc) the ISF can be written in the following way:

dT
2 (τ) = 2

[
gT
2 (0)− gT

2 (τ)
]
= 2

[
K2

m − βρ2
]
= 2K2

12 d. (8.55)

Eq. (8.55) indicates that the difference between two uncorrelated time-integrated
speckle images is twice the square of the mixed dynamic contrast K2

12 d. This pro-
vides an easy way to estimate the dynamic contrast and suppress the static com-
ponent. Since multi-speckle averaging is used in this scheme the dynamic contrast
does not suffer from the multiplicative noise associated with modified laser speckle
analysis, nevertheless it relies on the assumption that the correlation time of the
process under study cannot exceed the lag time τ used for analysis. Without multi-
speckle averaging the contrast values cannot be unambiguously converted to the
correlation times τc for the signal with a static component. In general, the knowl-
edge of ρ is required for the data interpretation and estimation of τc.

8.7 Summary

The current article presents a brief overview of some recent developments in dy-
namic light scattering methods with a particular emphasis on advanced processing
schemes allowing for faster and more reliable signal averaging. It also demonstrates
that improved averaging schemes make possible dynamic light scattering measure-
ments with temporal and spatial resolution. Thanks to the advances in the image
sensors and fast data processing hardware, sophisticated analysis algorithms can
be implemented in real time. Nevertheless, one should always mind the limitations
of the newly introduced algorithms and avoid losing the quantitative information.
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If the signal averaging is performed by the analysis of temporal fluctuations, the
non-ergodicity problem might arise. This can potentially lead to a significant er-
ror in the estimated statistical characteristics. The artifacts of temporal averaging,
however, can be reduced if the multi-speckle averaging is performed with additional
spatial speckle statistics or with active speckle sampling as discussed in the paper.
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11. S. Cohen-Addad and R. Höhler. Bubble dynamics relaxation in aqueous foam probed
by multispeckle diffusing-wave spectroscopy. Physical Review Letters, 86(20):4700–
4703, 2001.

12. J. Li, G. Dietsche, D. Iftime, S.E. Skipetrov, G. Maret, T. Elbert, B. Rockstroh,
and T. Gisler. Noninvasive detection of functional brain activity with near-infrared
diffusing-wave spectroscopy. Journal of Biomedical Optics, 10:044002, 2005.

13. I.V. Meglinski and V.V. Tuchin. Diffusing wave spectroscopy: application for skin
blood monitoring, Handbook of Coherent Domain Optical Methods: Biomedical Diag-
nostics, Environmental and Material Science. Kluwer Academic Publishers, 2004.

14. F. Scheffold, S.E. Skipetrov, S. Romer, and P. Schurtenberger. Diffusing-wave
specroscopy of nonergodic media. Phys. Rev. E, 63:061404–061411, 2001.

15. F. Scheffold and P. Schurtenberger. Light scattering probes of viscoelastic fluids and
solids. Soft Materials, 1(2):139–165, 2003.



464 P. Zakharov, F. Scheffold

16. F. Scheffold and R. Cerbino. New trends in light scattering. Current Opinion in Colloid
& Interface Science, 12(1):50–57, 2007.

17. D.J. Pine, D.A. Weitz, J.X. Zhu, and E. Herbolzheimer. Diffusing-wave spectroscopy:
dynamic light scattering in the multiple scattering limit. J. Physique, 51:2101–2127,
1990.

18. D.J. Durian. Accuracy of diffusing-wave spectroscopy theories. Phys. Rev. E, 51:3350–
3358, 1995.

19. P.D. Kaplan, M.H. Kao, A.G. Yodh, and D.J. Pine. Geometric constraints for the
design of diffusing-wave spectroscopy experiments. Appl. Opt., 32:3828–3836, 1993.

20. W. van Megen and P.N. Pusey. Dynamic light scattering study of the glass transition
in colloidal suspension. Phys. Rev. A, 43:5429–5441, 1991.

21. C. Urban and P. Schurtenberger. Characterization of turbid colloidal suspensions us-
ing light scattering techniques combined with cross-correlation methods. J. Colloid
Interface Sci., 207:150–158, 1998.

22. D. Lehner, G. Kellner, H. Schnablegger, and O. Glatter. Static light scattering on
dense colloidal systems: New instrumentation and experimantal results. J. Colloid
Interface Sci., 201:34–47, 1998.

23. J.C. Thomas and S.C. Tjin. Fiber optic dynamic light scattering (fodls) from moder-
ately concentrated suspensions. J. Colloid Interface Sci., 129:15–31, 1989.

24. D. Lilge and D. Horn. Diffusion in concentrated dispersions: a study with fiber-optic
quasi-elastic light scattering (foqels). Colloid & Polymer Science, 269:704–712, 1991.

25. H. Wiese and D. Horn. Single-mode fibers in fiber-optic quasielastic light scattering: a
study of the dynamics of concentrated latex dispersions. Journal of Chemical Physics,
84:6429, 1991.

26. F.M. Horn, W. Richtering, J. Bergenholtz, N. Willenbacher, and N.J. Wagner. Hydro-
dynamic and colloidal interactions in concentrated charge-stabilized polymer disper-
sions. J. Colloid Interface Sci., 225:166, 2000.

27. G.D.J. Phillies. Suppression of multiple-scattering effects in quasielastic-light-
scattering spectroscopy by homodyne cross-correlation techniques. J. Chem. Phys.,
74:260–262, 1981.

28. G.D.J. Phillies. Experimental demonstration of multiple-scattering suppression in
quasielastic-light-scattering spectroscopy by homodyne coincidence techniques. Phys.
Rev. A, 24:1939–1943, 1981.

29. K. Schätzel. Suppression of multiple scattering by photon cross-correlation techniques.
J. Mod. Opt., 38:1849–1865, 1991.

30. P.N. Pusey. Suppression of multiple scattering by photon cross-correlation techniques.
Curr. Opin. Colloid Interface Sci., 4:177–185, 1999.

31. LS Instruments. http://www.lsinstruments.ch.
32. P. Zakharov, S. Bhat, P. Schurtenberger, and F. Scheffold. Multiple-scattering sup-
pression in dynamic light scattering based on a digital camera detection scheme. Appl.
Opt., 45:1756–1764, 2006.

33. W. Meyer, D. Cannell, A. Smart, T. Taylor, and P. Tin. Multiple-scattering suppres-
sion by cross correlation. Appl. Opt., 36(40):7551–7558, 1997.
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9 Static and dynamic light scattering by aerosols
in a controlled environment

R.P. Singh

9.1 Introduction

Aerosols are defined as particles suspended in air or any other gaseous medium.
These particles may be solid (dust, smoke, fume etc.) or liquid (mist, fog etc.).
They range in size from 0.01 micrometers to several tens of micrometers, for exam-
ple cigarette smoke particles are in the middle of this size range and typical cloud
drops are 10 or more micrometers in diameter. Because of their particle nature they
are also called ‘particulate matter’ and in literature one often encounters terms like
PM2.5 and PM10, which are used for particles smaller than 2.5 micrometers and 10
micrometers respectively. These particles can be classified under two headings: (i)
dispersion aerosols, formed by atomization of solids and liquids, and (ii) condensa-
tion aerosols, formed by condensation of supersaturated vapor or due to chemical
reaction in the gas phase. The particles, which serve as nuclei for condensation are
termed as condensation nuclei or cloud condensation nuclei. All aerosol particles are
formed either by mechanical processes or by condensation of gases and vapors. Me-
chanical processes producing aerosols may be natural, like windblown dust, sea salt
spray, and volcanoes, or man-made, such as industrial activities, burning of fossil
fuels, and the alteration of natural surface cover. The particles produced by me-
chanical processes in general are coarse with a size of a few micrometers while fine
submicrometer particles are formed by condensation. Aerosol particles larger than
about 1 micrometer in size are produced by windblown dust and sea salt from sea
spray and bursting bubbles. Aerosols smaller than 1 micrometer are mostly formed
by condensation of sulfur dioxide (SO2) gas to sulfate particles and by formation of
soot and smoke during burning processes. The books by Friedlander (1977), Dennis
(1975), Reist (1986, 1993) and Seinfeld (1986) are highly recommended for details.

Even after decades of research into the field still there is much to learn about
the way aerosols affect regional and global climate. When it comes to quantifying
the relative impacts of natural aerosols and those that are man-made on the cli-
mate or on human health, we cannot yet be very accurate. Also, we do not know
the regions of the planet where amount of atmospheric aerosols is increasing, de-
creasing or remaining approximately constant. Several types of aerosols have been
identified and models have been developed about the amount of aerosols to be
found in different seasons and locations (Forster et al., 2007, Third Assessment
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Report, IPCC). However, key details about the amount and properties of aerosols
to calculate their effect on surface temperatures are still far from complete.

9.1.1 Atmospheric particles and their dispersion

Size and shape of the dispersed particles determine the properties and behavior
of aerosols. In general, aerosols are polydisperse, i.e., the particles have different
sizes. Particles having the same size are termed monodisperse aerosols. Particles
constituting the aerosols may be in the size range of 0.1–100 micrometers. Par-
ticles with sizes greater than 100 micrometers settle down fast and therefore are
not of much interest. Particles of sizes >10 micrometers affect the visibility and
consequently the biological energy conversion (e.g. photosynthesis). Particles <5–
10 micrometers size can affect health and are of physiological interest (Cohen et
al., 1979; Ferron, 1994). These particles, once formed, are mixed and transported
by atmospheric motions and are primarily removed by cloud and precipitation
processes. Since particle size is the single most important physical parameter that
determines the dispersion of aerosols and hence their effect on health, visibility and
climate, a great deal of attention has been paid to studies pertaining to particle size
measurements (Hinds, 1982; Barth and co-workers, 1985, 1987, 1989, 1991, 1993,
1995; Etzler and co-workers, 1995, 1997, 2004; Jillavenkatesa et al., 2001; Spurny,
1986). Several studies have shown that there is a strong association between the
airflow pattern in the buildings governing the dispersion of airborne bacteria and
the spread of infectious diseases (Li et al., 2007). Besides bio-aerosols, smoke par-
ticles can increase respiratory irritation and aggravation of existing respiratory or
cardiovascular disease. For example, prolonged exposure to asbestos fiber increases
the risk of lung cancer and mining aerosols can be carcinogenic or mutagenic. In
the present global scenario one cannot deny the possibility of terrorist attacks via
airborne release of chemical or biological aerosols and the extent of damage can
be found out only by studying their dispersion. Looking at various possibilities a
number of dispersion models have been developed taking into account size factor,
dynamics, chemical composition for aerosols and also the topography of the im-
mediate environment which can be the human respiratory system, buildings, the
urban environment, forest or open terrain (Chen et al., 2006; Nardell et al., 1986;
Mangili and Gendreau, 2005; Wallace, 1996, Mistra, 1980; Egan, 1984; Pielke, 1984;
Yamada, 1985; Enger, 1986, 1990a,b,c).

9.1.2 Particle size

Before we go for particle sizing using light scattering or other methods it would
be worthwhile to understand the meaning of particle size. Suppose one wants to
tell if the particle size has increased or decreased with increase in temperature or
decrease in humidity, one needs to give a single number, which is possible only
for a spherical particle that can be defined by a single number – the diameter of
the sphere. But particles would not be spherical in general and in such cases one
resorts to the concept of an equivalent sphere. One measures some property of the
particle and assumes this refers to a sphere made up of the same material. For
example, the weight of the particle, which is a unique number, assigned to a sphere
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of same material density could be used to get the size of the particle. However, one
should have no doubt that this is the size of a sphere with the same weight as the
particle, and if someone else considers a sphere with the same surface area as the
particle, the size may not come out to be same. Similarly, one can have a sphere
of the same minimum length, a sphere of the same maximum length, a sphere
of the same sedimentation rate and sphere passing through the same sieve. The
determination of particle size on the same sample by all these methods and others
which are not mentioned will yield different results for mean size, modal size, and
size distribution in most cases. Thus several different sizes could be obtained for
a single, nonspherical particle due to various methods of measurement. In fact, in
most of the cases particle size is obtained by measurement of characteristics other
than the complete geometry. These characteristics are associated with a physical
phenomenon in which the particle is involved, for example, sedimentation velocity
of the particle in a fluid or pattern of light scattered by the particle. The observed
sedimentation velocity and the scattered light can be used to find out the geometry
or the size of the particle using an appropriate theory or model. However, if the
particles under test are of irregular shape, then most likely the results on size will be
different because two particles which settle with the same velocity can scatter light
differently. The mathematical complexities introduced by nonspherical geometry
make it difficult to develop models for such particles and also prevent assessment
of the extent of error. The effect may be negligible or may be severe, depending on
the sizing technique and the shape of the particles, and often cannot be predicted
reliably.

9.1.3 Different methods for particle sizing

The interest in particle size emanates from different areas of research and com-
mercial applications – color appeal of a paint or an emulsion, particle size of the
powdered drug or the size of inhaled aerosols in pharmaceutical preparations, dis-
persion of radioactive particles for the nuclear power industry, health hazard of
atmospheric aerosols, atmospheric chemistry, cloud formation, and of course the
radiation budget and climate change – it could be any of these. There are various
particle sizing techniques, which could be employed depending on the application.
There is no single technique that can claim to be superior to other techniques in
all the applications (Allen, 1997; McMurry, 2000). Some of the popular techniques
are sieves, sedimentation, electrozone sensing, microscopy and imaging, and light
scattering. Sieves are cheap and readily available. They are suited for large parti-
cles which can be separated into some size bands, usually four to five, and are thus
a low-resolution technique. Sedimentation uses Stoke’s law for the settling velocity
of a spherical particle in a fluid medium. This is a traditional method and employs
equipment as simple as the Andreason pipette or as complex as centrifuges. The
technique has a limited range: one faces problems below 2μm and above 50μm.
Electrozone sensing measures the change in resistivity of the electrolyte displaced
by the particle passing through an aperture. This change in resistivity is used to find
out the size of the particle. Porous particles and dense materials create problems
in the use of this technique. Microscopy and imaging is an excellent technique and
allows direct examination of the particles in question. However, since relatively
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few particles are examined, there is a real danger of unrepresentative sampling.
Techniques based on light scattering measurements, which are often nondestructive
and nonperturbative to the medium investigated, have become most popular for
particle size instrumentation and will be discussed in detail in the next section.

9.2 Optical Methods

The use of light scattering by particles to infer their properties is a well estab-
lished and important technique. As a diagnostic technique it has become common
in research and industry. Combustion of fuel sprays, production and characteriza-
tion of pharmaceuticals, biological cell analysis, smoke formation and cloud physics
represent a few areas in which optical particle sizing methods have become indis-
pensable diagnostic tools. Prompted by many important applications, researchers
have directed considerable attention towards optical particle sizing (van de Hulst,
1957, 1981; Penndorf, 1958; Chu et al., 1987; Gulari et al., 1979, 1985; Chowdhury
et al., 1984; King et al., 1983; Gouesbet and Grehan, 1988). An early histori-
cal perspective on light scattering can be obtained in the book by Kerker (1969)
while Bohren and Huffman (1983) point out important books and articles on light
scattering under ‘notes and comments’ in the first chapter of their book. Most of
these deal with classical light scattering (CLS) that is time-averaged or static light
scattering. Laser diffraction and Mie scattering come into this class of scattering.
However, there is another class of scattering which measures the time correlation
of scattered light, the change in scattering with time, and rightly called dynamic
light scattering (DLS) or photon correlation spectroscopy (PCS). Over the years
PCS has become a widely used particle sizing tool in the submicrometer range. We
will discuss each of them one by one.

9.2.1 Static light scattering

The scientific study of light scattering may be said to have commenced with the
work of Tyndall (1869a,b) on aerosols. It was in 1871 that Lord Rayleigh first
explained the observed color and polarization of the sunlight scattered in the at-
mosphere even though he considered light as mechanical vibrations and based his
treatment on the old elastic theory of light. In deriving his expressions he used
density fluctuations. Rayleigh’s most inventive paper on light scattering was pub-
lished in 1881. Here, he used Maxwell’s equations in deriving the volume integral
for the scattered field as observed from Green’s theorem. This integral can be rep-
resented as an expansion in Δε, the difference between the dielectric constant of
the particle and the medium. The solution is perfectly general with no need to
maintain any restriction either on the particle size or shape or on Δε provided that
the indicated integrations which are far from trivial can be performed. The restric-
tions on size and shape could be relaxed when Δε is not too large. Later in 1899
Rayleigh deduced that for non-interacting, non-absorbing and optically isotropic
particles having sizes very small compared with the wavelength of the incident light
amount of the scattering should be proportional to the reciprocal fourth power of
the wavelength λ, now known as Rayleigh’s law. Rayleigh’s approach has since
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been elaborated to cover absorbing and anisotropic particles having sizes compara-
ble to the wavelength of the incident radiation. Up to this point Rayleigh has used
the Green’s theorem method to express the scattered field as the volume integral
over the field within the particle. This is a completely general formulation, but
its solution by expansion into a power series in Δε involves great computational
difficulty except for the leading term which gives the Rayleigh–Gans–Debye–Born
approximation. In the last part of the 1881 paper Rayleigh returns to scattering
by a cylinder which he formulates as a boundary-value problem. There are no
limitations on particle size, dielectric constant or magnetic permeability.

The first application of this boundary-value method to spheres was by L. Lorenz
in 1890, and is now generically termed Mie scattering following the detailed discus-
sions of its applicability to the colors of gold sols by G. Mie (1908). A large number
of more or less independent boundary-value treatments of the sphere of arbitrary
size were made by Lorenz (1890), Thomson (1893a,b), Love (1899), Walker (1900),
Bateman (1915) and Bromwich (1919, 1920). Later Oster (1948) reviewed the scat-
tering of light for application to chemistry and van de Hulst (1957) gave a good
treatment for light scattering by small particles. After this a number of calcula-
tions have been performed adding the refractive indices and absorption coefficients
appropriate to different aerosols. For the latest developments one can go through
the book by Mishchenko et al. (2002).

The scattered intensity distribution for a spherical particle of radius ‘r’ de-
pends on size parameter α (= 2πr/λ, λ being the wavelength of incident light).
For spherical particles relevant to atmospheric scattering like dust, Penndorf (1960),
Deirmendjian et al. (1961) made the scattering calculations. Penndorf (1957–1962)
did extensive work on Mie scattering and described an approximate method of
calculating the total scattering coefficient for transparent spheres, which is valid
for all particle sizes when refractive index n ≤ 2. Ellison and Peetz (1959) calcu-
lated the intensity of scattered light in the forward direction using an approximate
method applicable to large particles, good enough to be treated by geometrical op-
tics. Measurements of 90◦ scattering by plastic latex spheres using polarized light
were made by Heller and Tabibian (1962). They evaluated the depolarization ratio.
The results obtained using Mie theory agreed well with direct size measurements
by electron microscopy. Hodkinson (1966) has given a good account of particle
sizing by means of a forward scattering lobe and listed all the principal published
Mie theory computations of the angular distributions of the scattered intensity for
medium and large transparent and moderately absorbing spheres. The list includes
refractive index from 1.05 to 2.105 and the size parameter α from 0.1 to 159 with
varying increments.

Experiments on suspended particles (polystyrene latex in water) were performed
by Bateman et al. (1959). They measured specific extinction using a spectropho-
tometer and calculated the particle size from its variation with the wavelength of
light. Angular distribution function based on Mie coefficients were defined by Chu
and Churchill (1955b) and Clarke et al. (1957), which were easier to handle than
the usual form involving Mie functions. Angular distribution up to α = 30 can
be calculated with these functions. Intensity of light scattered by aerosol droplet
of diameters between 1.4–3μm suspended freely between two charged condenser
plates have also been measured by Gucker and his associates (1960, 1961). For an-
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gles between 40◦ and 140◦ from the forward direction, there was good agreement
with theoretical intensities calculated from Mie theory.

If the light scattered by one particle is intercepted by other particles, it is
called multiple scattering (Chandrasekhar, 1960; Woodward, 1964). A theory for
this type of scattering was developed by Churchill and his associates (Chu and
Churchill 1955a,b; Churchill et al., 1960). With dense suspension of monodisperse
latex particles (0.8–1.7μm) satisfactory results were obtained experimentally. How-
ever, multiple light scattering involves a lot of complexities which can lead to er-
roneous results in many cases (Czerwinski et al., 2001). Kokhanovsky has done a
good amount of work on the subject (2001, 2002). For a detailed treatment one
can consult the book by Mishchenko et al. (2006).

In the above mentioned studies the particles were assumed to be spherical and
of uniform size. However, many naturally occurring aerosols are of irregular shape
and variable size. Light scattering by such irregular-shaped particles has been dealt
in a monograph by Mishchenko et al. (2000). Stevenson et al. (1961) considered
the effect of the particles being unequal in size. It was found that a unimodal and
positively skewed size distribution can be defined from measurements of the depo-
larization ratio. It would not be out of place to mention that Ghosh et al. (2003a,b,
2004, 2006) have extensively used the depolarization ratio to study turbid media.
Methods for finding the size distribution from turbidity measurements at different
wavelengths were developed by Wallach et al. (1961) and Curcio (1961). Chin et
al. (1955, 1955a,b) gave a method of finding size distribution based on the an-
gular variation of the scattered light at very small angles. Experimental data on
scattering of fogs has been summarized by Spencer (1960). He developed a scat-
tering function which is valid over a wide range of conditions from thin to dense
fogs. At about the same time Went (1960) showed that it is scattering by aerosols
of sizes 0.1μm or less consisting of aggregates of condensed molecules which is
responsible for blue atmospheric haze. Experiments were carried out with quartz
dust suspended in liquid. Ellison (1957) found that the forward scattered light for
the quartz dust was approximately the same as scattering calculated for spheres of
the same refractive index and size distribution. Due to the assumption of spheric-
ity and transparency of quartz, his results could not be applied immediately to
opaque and nonspherical airborne dust. Later Berry (1962) studied the scattering
by non-spherical particles, like silver bromide crystals (0.1–1μm). A number of
studies followed to determine the sizes of nonspherical particles based on Mie the-
ory: Holland and Gagne (1970), Pinnick et al. (1976), Chýlek (1977a), Zerull et al.
(1977), Perry et al. (1978), and Janzen (1980). Jaggard et al. (1981) compared the
experimental data for latex spheres of regular shape and ammonium sulfate and
soil dust particles of irregular shape with theoretical Mie calculations. Mie theory
was in complete agreement for latex spheres, also applicable to small and resonant
sized ammonium sulfate particles – not spherical but regular in shape. They con-
cluded that as the particles become larger or more irregular, the difference between
Mie theory calculations and experimental data could go on increasing. It must be
noted that with the increase in particle size, Rayleigh’s λ−4 law ceases to be valid,
dispersion becomes less selective of λ, and Mie scattering theory, which is more
general and contains Rayleigh scattering and geometrical optics as limiting cases,
should be used (van de Hulst, 1957). However, Mie scattering works basically for
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spherical particles and for sufficiently large particles the dispersion of radiation ap-
proaches a 1/λ dependence leading to diffuse reflection. Scattering functions, i.e.,
the scattered intensity as a function of angle, have been obtained to include the
effect of nonspherical shape of the particles (Koepke and Hess, 1988). It is observed
that with increase in wavelength the influence of nonspherical particles decreases.
The methods for simulating the scattering of light by various nonspherical shapes
have rapidly evolved over the last two decades. However, the majority of aerosol
remote-sensing retrievals still rely on the Mie theory because retrievals account-
ing for particle nonsphericity are not as well defined methodologically. Dubovik
et al. (2002) have proposed a method for the retrieval of the optical properties
of nonspherical aerosols based on the model of a shape mixture of randomly ori-
ented polydisperse spheroids that shows a significant improvement in dust-particle
phase functions, size distributions, and refractive indices as compared to Mie-based
retrievals. It has been observed that the amount of large particles can be underes-
timated when nonspherical particles are substituted with Mie spheres (Kocifaj and
Horvath, 2005).

9.2.2 Laser diffraction

Laser diffraction, also called Low Angle Laser Light Scattering (LALLS), has be-
come one of the most widely used techniques in many industries for particle size
analysis (Kippax, 2005). It relies on the fact that particles passing through a laser
beam will scatter light at an angle that is inversely proportional to their size, the
scattered intensity being proportional to the particle volume. This means larger
particles will scatter at low angles with high intensity while smaller ones will scat-
ter with low intensity but at high angles. The instruments based on laser diffraction
use this fact to determine the size of particles. The dynamic range of the instrument
is directly related to the angular range of the scattering measurement that varies
from 0.02 degrees to 140 degrees and beyond – no more Low Angle Laser Light
Scattering! The wavelength of light used for the measurement is also important:
smaller wavelengths like blue laser light provide improved sensitivity to submicrom-
eter particles. For calculating particle size distribution using laser diffraction, the
sample’s scattering pattern is compared with a suitable theoretical model.

Older instruments and some existing instruments rely on Fraunhofer approxi-
mation (Kouzelis et al., 1987; Ma et al., 2000), which assumes: particles are much
larger than the wavelength of light used; the particles being measured are opaque
and scatter light at small angles; all sizes of particle scatter with equal efficiency.
Consequently, it is more suited to large particles and will give an incorrect result
when applied to fine particles. However, the latest instruments use full Mie theory
(Veihelmann et al., 2006) that completely solves the equations for interaction of
light with the particle and provides a more rigorous solution for the calculation of
particle size distributions from light scattering data. It calculates scattering inten-
sities for all particles, small or large, transparent or opaque. This allows correct
assessment over a large size range (0.02–2000μm). Mie theory assumes the vol-
ume of the particle, as opposed to Fraunhofer that gives the projected area. The
penalty for the accuracy over a wide range of sizes is that the refractive indices
for the material and the medium must be known since Mie theory allows for pri-
mary scattering from the surface of the particle, with the intensity predicted by
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the difference of refractive indices between the particle and the dispersion medium.
However, in most cases this does not pose a problem as the values of refractive
indices are either known or can be measured, which is not required for Fraunhofer
approximation.

9.2.3 Dynamic light scattering

Dynamic light scattering (DLS), also known as quasi-elastic light scattering (QELS)
or photon correlation spectroscopy (PCS), is a convenient and frequently used tech-
nique to determine the size and size distribution of particles suspended in a fluid.
Since the particles perform Brownian motion, the total scattered field at any point
in space resulting from superposition of all wavelets scattered from individual par-
ticles fluctuate with time. The analysis of these fluctuations yields the lateral dif-
fusion coefficient of the particles and by means of the Stokes–Einstein relation, the
hydrodynamic radius for the case of the spherical particles. The term quasi-elastic
in QELS refers to the fact that the frequency of the scattered light is slightly shifted
due to particle motion. The small frequency broadening in the light scattered from
dilute solutions of macromolecules or particles is used to derive information about
diffusion and also to study critical phenomena (Pike and Stanely, 1981; Kramer and
Frederick, 1971, 1972). The experimental realization of these ideas depends not only
on directly measuring the small frequency changes involved by use of monochro-
mators but the use of ‘optical beating’ technique (Bertolotti et al., 1967; DiPorto
et al., 1969; Jakeman and Pike, 1968a). It is convenient to think of scattered light
fields from each beam as suffering a constant frequency shift due to a constant rate
of phase change of the scattered light seen by the detector while the particle moves
through the scattering volume. Since the scattering volume is finite, the number
of Doppler beat cycles measured is limited which gives rise to a broadening of the
spectrum that is usually referred to as the Doppler ambiguity. Alternatively, the
particles give rise to a small fraction of a Doppler cycle before they change direction
by collision and therefore the concept of a frequency shift is not directly applica-
ble in such cases. In this case, as in the case of Rayleigh scattering, it is perhaps
useful to think of the scattered light as a random diffraction pattern varying on a
time scale governed by the internal changes occurring in the scattering volume. In
all cases, therefore, the detector measures the changes in the light intensity, either
as regular Doppler beats or as randomly varying diffraction lobes. One can relate
these fluctuations either implicitly or explicitly to the spectrum of the scattered
light arising from the temporal behavior of the sample. That is why the technique
is known as light beating or intensity fluctuation spectroscopy or, when the scat-
tered light flux is measured by processing individual photons, photon correlation
spectroscopy (PCS). PCS is characterized by a ‘digital’ technique for measuring
intensity fluctuations in which the number of photons arriving at the detector at
the set time interval is repeatedly counted and its time autocorrelation function
(ACF) computed. Digital correlation techniques greatly improve the signal-to-noise
ratio. There are a number of books and review articles that deal with PCS and
its applications (Jacobs et al., 1975; Berne and Pecora, 1976; Cummins and Pike,
1974, 1977; Chu, 1970, 1974; Pecora, 1985; Schmitz, 1990; Brown, 1993).

In condensed media or whenever the scatterers are close to one another, a
detailed computation of the induced electromagnetic field surrounding a parti-
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cle becomes very complex because inter-particle interactions have to be taken
into account. Einstein (1910) was able to bypass the above difficulties inherent
in Rayleigh’s analysis as applied to a collection of interacting particles. He as-
sumed that local density fluctuations in the neighboring volume elements could be
independent of one another and carried out a quantitative calculation of the mean
square amplitude of those fluctuations from a statistical mechanics approach. Al-
though Einstein’s theory was able to explain the scattering from pure liquids and
to predict the enormous increase in the scattering as the liquid gas critical point
was approached, the so-called critical opalescence, it failed to account for angular
dissymmetry of the strong scattered intensity in critically opalescent systems. This
idea of local density fluctuations and its connection with diffusion became the key
element in extracting information about the system using the PCS. Later Brillouin
showed that fluctuations that propagated with a velocity give rise to ‘doublets’
that were frequency shifted by an amount proportional to ±v from the frequency
of the incident light (1914, 1922). Gross (1930, 1932) experimentally observed this
doublet and, in addition, a central peak of unshifted frequency. Even though there
was a wealth of information to be obtained from the spectral profiles of scattered
light, the intrinsic linewidth of the radiation was too broad to allow meaningful
information contained in the relatively small frequency shifts to be gained except
under most unusual circumstances. This situation was changed in the 1960s with
the invention of laser. Pecora (1964) showed that the frequency profile of a scattered
electric field had broadened by the diffusion processes of macromolecules. The first
experimental report using lasers as the source of incident radiation for the study of
macromolecular solutions (polystyrene) was by Cummins et al. (1964) while that
for pure fluids near the critical point was by Ford and Benedek (1965). In 1964,
the first observation of the Brillouin–Mandelstham lines were reported using lasers
coupled with ultra-high-resolution Fabry-Perot etalons (Chiao et al., 1964, Chiao
and Stoicheff, 1964) and grating spectrometers (Benedek et al., 1964). However,
even the highest resolving power Fabry-Perot etalons fall short of providing suf-
ficient resolution to measure the narrowing of the central component in critically
opalescent systems.

Usually the frequency shift produced by scatterers is very small in compari-
son to the frequency of light. The resulting spectral linewidth can be as narrow
as few kilohertz and the resolution required to decipher it is 1012, which calls for
high-resolution technique while a conventional optical spectroscopy fails above a
resolution of 107. The optical mixing spectrometers were devised to measure very
narrow line widths (Ford and Benedek, 1965; Cummins et al., 1964, DuBois and
Berge, 1971). The nonlinear detector or mixer in an optical mixing spectrometer
is a photoelectric device such as a photomultiplier tube or photodiode, which pro-
duces a photocurrent proportional to the square of the total electric field falling
on the photosensitive surface of the device. Optical mixing spectroscopy utilized a
wave (spectrum) analyzer in which a scanning electrical filter was used to analyze
the spectrum of photocurrent fluctuations from a square law detector, such as a
photomultiplier tube. The equivalent information, namely the photocurrent corre-
lation function which is a Fourier transform of the power spectrum, was measured
using a signal correlator. Unfortunately, until the end of 1960s, most commercial
signal correlators took only analog signals even though the internal processes of
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these correlators were often ‘digital’ (Hanbury Brown and Twiss, 1956). The most
promising technique which recognized and took advantages of the digital nature
of photon statistics of scattered laser light was that of photocount autocorrelation
(Arecchi et al., 1966; Cantrell, 1970). Pike and co-workers did pioneering work in
this field (Jakeman and Pike, 1968a,b, 1969; Jakeman et al., 1968a,b, 1970a,b; Ford
et al., 1971) that was followed by Chopra and Mandel (1972). Asch and Ford (1973)
constructed a correlator approaching ideality by increasing the bit-multiplication
capacity of each channel. When combined with lasers, photoelectric mixing is par-
ticularly suitable for quasi-elastic light scattering (QELS) resulting from various
time-dependent non-propagating local thermodynamic fluctuations. Several closely
related experimental approaches have been developed around two schemes of de-
tection: heterodyne detection and homodyne detection.

Early applications of DLS methods focused on the successful determination of
molecular weight and shapes. The credibility of this technique was accepted by the
scientific community as a whole in the mid-1970s. As a large group of researchers
began to use these methods, new information about specific systems began to
emerge. Technological advances in the instrumentation led to more precise and
accurate data. Minor discrepancies between theory and experiments soon became
apparent. These discrepancies led to more sophisticated theories and methods of
analysis, and to the development of new techniques for preparation and handling of
samples. Following the introduction of light-beating spectroscopy by Benedek and
clipped photocount autocorrelation by Jakeman and Pike several extensive stud-
ies on the statistical accuracy of spectral linewidth in optical mixing spectroscopy
were reported (Jakeman, Pike and co-workers, 1970c, 1971a,c; Bertolotti et al.,
1967; Cummins and Swinney, 1970; Chen et al., 1972, 1973; Hughes et al., 1973).
Benedek (1968) discussed the experimental problem of using a detector area much
larger than the coherence area of light. Haus (1969), Cummins and Swinney (1970),
Degiorgio and Lastovka (1971) presented the statistical errors inherent in intensity
correlation spectroscopy owing to the stochastic nature of both, the scattering and
the photoemission processes. They determined the statistical errors on the optical-
intensity correlation function as measured by two photocounting digital correlator
models and on the intensity spectrum as measured by a ‘self-beat’ optical mixing
spectrometer. From these errors and a generalized least-mean-squares fitting proce-
dure they calculated the uncertainty on the measured correlation time (linewidth)
for the case of a Gaussian optical field with an exponential intensity correlation
function (a Lorentzian spectrum). Independently Jakeman et al. (1971b) investi-
gated the statistical errors (caused by finite duration of electronic resolving time
and finite receiving apertures) in the intensity autocorrelation function and in the
spectral linewidth of Gaussian–Lorentzian light (Lorentzian broadened light with
Gaussian statistics). Analysis of Gaussian light by clipped photocount autocorrela-
tion has also been extended to include the effect of finite duration sampling intervals
and incomplete spatial coherence by Koppel (1971). The details of these lengthy
developments can best be obtained by reading the original papers, especially the
work of Degiorgio and Lastovka (1971) on intensity correlation spectroscopy and of
Jakeman et al. (1971b) on statistical accuracy in digital autocorrelation of photon-
counting fluctuations. While the analysis of data using three variables generally
leads to larger errors, the two-parameter approach of Pike and his co-workers (1981)
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for single exponential decays represents a more realistic treatment of this complex
problem.

The first major variation in light scattering technique occurred in 1971 when
Ware and Flygare (1971, 1972) reported dynamic laser light scattering (DLS) on
Bovine Serum Albumin (BSA) in the presence of static electric field E0. The effect
of E0 is to superimpose a constant drift velocity, proportional to the electrophoretic
mobility of the species, on the random Brownian motion of the charged particles.
The resulting spectral density is thus composed of peaks that are Doppler-shifted
from central position. This technique is referred to as Doppler-shifted spectroscopy
(DSS) or electrophoretic light scattering (ELS).

Experiments such as laser light near threshold (Jakeman et al., 1970b), motions
of particles in turbulent fluids (Diporto et al., 1969; Bourke et al., 1970), and light
scattering from small number of particles undergoing Brownian motions (Schae-
fer and Berne, 1972; Schaefer and Pusey, 1972; Adrian, 1972) follow non-Gaussian
statistics. Schaefer and Berne (1972) showed that non-Gaussian concentration fluc-
tuations arise at low concentrations because the particles in the scattering volume
have a Poisson distribution. In this case, the homodyne intensity autocorrelation
function decays on two widely different time scales. The fast process is the usual
Brownian motion of the individual particles, while the slow process is related to
the time-dependence of the fluctuations in the total number of particles in the
scattering volume. The slow process does not appear in the heterodyne correla-
tion function. Thus, the homodyne technique can be used to probe fundamental
properties of colloid statistics.

In many cases the standard procedure of particle size determination by eliminat-
ing inter-particle interactions with dilution is undesirable due to change of particle
conformation upon dilution or a need to identify the nature of interaction and par-
ticle motions under the influence of neighboring particles. A way of extracting size
information from interacting particles is of practical importance. Pusey and Tough
(1982) briefly reviewed the application of PCS to study of interacting Brownian
particle dynamics. The importance of structure relaxation time scale, as well as
the range of wave vector, to interpretation of results was emphasized. Tsang and
Tang (1982) treated the problem as radial diffusion in an effective potential of the
mean force. Medine-Moyola (1982) presented a theory based on description of the
coupled diffusion of macromolecules. The short-time and the long-time features
of correlation function could be predicted. The wave vector dependence of the ef-
fective diffusion coefficient from the first cumulant was examined theoretically by
Wills (1981) and Boon and Yip (1982). Lakkerkerker and Dhont (1984) discussed
and compared two different ways of calculating the self-diffusion coefficient of the
interacting Brownian particles as a function of concentration. By means of an inter-
acting hard sphere model without hydrodynamic interaction, the two approaches
– the so-called memory effect and relaxation effect – yielded identical results. The
difficult problem of DLS by concentrated suspensions of polydisperse hard spheres
was explored theoretically by Pusey et al. (1982). The authors concluded that even
for narrow distributions the correlation function should be composed of two inde-
pendent modes with well separated decay times when the volume fractions were
above 0.15. The fast and the slow modes were related to the collective diffusion and
the self-diffusion of the hard spheres. The applications and testing of these theo-
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retical endeavors were carried out in micro-emulsions, latex dispersions, colloidal
suspensions and protein solutions (Bohidar et al., 1980; Bohidar and Chopra, 1981;
Kaler and Prager, 1982; Cintre, 1986). Konak et al. (1991) have used a nonlinear
regularization method for an inverse Laplace transformation called REPES devel-
oped by group member Jakes for analyzing the autocorrelation curve obtained as a
result of multiple scattering by monodisperse polystyrene latex particles. Itoh and
Takahasi (1991) have considered the effects of non-Gaussian concentration fluc-
tuation in real-time PCS for measurement of aerosol particles by dynamic light
scattering.

All synthetic macromolecules are more or less polydisperse. The effect of poly-
dispersity on the spectrum of light scattered by macromolecules in solution has been
examined by Dubin et al. (1967). They considered a mixture of equal numbers of
molecules of the same molecular weight but of different diffusion coefficients. His re-
sults showed that only for large macromolecules with quite broad molecular weight
distributions, can we consider light scattering as a tool to learn something about
polydispersity. For narrower molecular weight distributions, we simply obtain an
averaged diffusion coefficient. As a rule very precise measurements are required to
examine the effects of polydispersity. Thompson (1971a,b) has studied the bimodal
distribution with sharp peaks using suspensions of polystyrene latex spheres in wa-
ter as his test system. He observed that the self-beat method is quite sensitive to
small amounts of large particles in the presence of large number of small particles.
Analysis of intensity correlation spectra of a bimodal distribution of polystyrene
latex suspensions has been presented by Bargeron (1973, 1974) and Chen et al.
(1974) using a straightforward least-squares method and by Lee and Chu (1974)
using an integration least-squares method. Pecora and Tagami (1969) have used the
two-parameter unimodal Schulz molecular weight distribution to compute the light
scattering spectra from a solution of rigid rods and flexible coils. Their calculations
showed that polydispersity effects could produce small deviations from a single
Lorentzian fit. Intramolecular interference effects on the Rayleigh line spectrum of
macromolecules in solution also become observable when the scattering species are
comparable in size with the incident wavelength. For randomcoil polymers such
large sizes can only be achieved at high molecular weights where the polydispersity
also increases. The polydispersity effects in random-coils were investigated by Fred-
erick et al. (1971) and Kramer and Frederick (1971, 1972) also. Thompson (1971b)
considered the spectrum of light scattered from polydisperse polymer solutions and
developed a graphical technique to characterize particle average size and standard
deviation of particles obeying the lognormal distribution. Major difficulties in data
analysis arise from multiexponential (or multi-Lorentzian) signals. Extreme care
must be exercised in fitting the experimental data with a sum of exponentials
consisting of arbitrary decay times and amplitudes although computer programs
exist. On the other hand it is advantageous to be able to detect deviations from
a single decay time. Koppel (1972) developed a technique based on the method of
cumulants which is still widely used for multiexponentials.

The application of PCS for the analysis of particle size distribution continues
to be an area of active research. The mathematical treatment of the data in gen-
eral could be classified into two approaches. One method directly deals with the
so-called ill-conditioned Laplace transform involved in the extraction of size dis-
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tribution from the correlation function. The other one is based on empirical data
reduction such as moment expansion, various parameterized distributions, and the
histogram and higher order spline-function decomposition techniques. Pike and co-
workers (1981, 1983) used the direct inversion approach and argued in favor of a
linear eigenfunction analysis. Provencher (1982a,b) and others made use of regu-
larization constraints to ensure a smooth solution of the Laplace transform. The
histogram analysis, a zeroth-order spline method, was persued by Chu and DiNapoli
(1983, 1984). Goll and Stock (1983) employed the first-order spline functions for
the determination of particle size distribution. Lavery and Earnshaw (1984) chose
to work with the cubic B-spline function due to its numerical stability and linear
relation to field autocorrelation function. The histogram method with exponential
sampling was described by Fletcher and Ramsay (1983) for continuous and broad
distribution of particles. Nash and King (1983) discussed the analysis of decay
curves by the fitting of sums of positive exponentials by the S-exponential sum
method of Cantor and Evans. It was shown that this method had advantages over
previous methods for analyzing multiexponential decay functions. An interesting
article was presented by Pusey and Van Megan (1984) for detecting small degrees
of polydispersity with PCS. The effective diffusion coefficient obtained from the
first cumulant of the correlation function was examined theoretically as a function
of scattering angle. When the Rayleigh–Gans–Debye approximation was satisfied,
the effective diffusion coefficient exhibited a characteristic variation with the wave
vector which was very sensitive to the polydispersity, provided that the mean par-
ticle radius was greater than 170 nm. In principle, the polydispersity defined as
the standard deviation divided by the mean size could be detected at levels as low
as 0.01. Weinear and Tscharnuter (1987) have demonstrated various advantages
and disadvantages of PCS taking different samples: NBS SRM 1691, a crosslinked
polystyrene divinylbenzene, a fractionated sample of polyvinyl chloride, ‘dusty’
samples of reference latex, a bimodal mixture of rubber particles, and a 2:1 aggre-
gate for particle sizing. Vaidya et al. (1987) compared various methods available for
determining macromolecular polydispersity from DLS data with their own GEX
function fit method. Bott (1987) has shown that weight distributions from single-
angle PCS measurements can have huge errors and suggested that complementary
information obtained by measurement at an additional angle allow a good measure
of the weight-averaged size distribution. Bertero and Pike (1983) and Bertero et al.
(1989) have also successfully used PCS data to extract polydispersity information.

Since the design of a correlator by Asch and Ford (1973) a number of instru-
ments have been developed for DLS. Ford (1983), and Elings and Nicoli (1984)
reviewed the current state of the art of instrumentation and techniques. Oliver
(1981) critically examined the parameters involved in spectrum analysis and pho-
todetection experiments. Variations of typical light scattering experiments were ex-
plored by Phillies (1983) who discussed the potential advantages of multi-detector
and multi-beam experimental approaches. Two-beam, two-detector homodyne co-
incidence spectroscopy was applied to subtract the effect of multiple scattering on
the diffusion measurement of the turbid sample. In contrast, the multiple scatter-
ing problem was otherwise dealt with, either theoretically (Dhont and de Kruif,
1983) or experimentally using novel short path length scattering cells (Cummins
and Staples, 1981). Kam and Rigler (1982) used cross-correlation of scattered in-
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tensity at different angles between two detectors to eliminate contributions from
concentration fluctuations. As a result, scattering from individual particles was
enhanced. They applied this approach to study the rotation dynamics of tobacco
mosaic virus, DNA and tysozome. Hutchins and Mazumdar (1983) demonstrated
the feasibility of the use of a dual-beam, frequency-biased laser-Doppler velocime-
try for measuring diffusion diameter distributions on a single-particle basis. This
technique was particularly attractive for measuring aerosol particles in the size
range of 0.05–0.5μm.

In recent years an entirely new technology base for PCS has been considered
– laser diodes in place of gas lasers (Brown and Grant, 1987), optical fibers and
micro-lenses in place of bulkier optical systems (Brown et al., 1986; Brown, 1987),
and software and/or custom-made electronic cards and chips in place of hard-wired
boxes of correlation electronics. These developments have led to miniaturization of
the PCS system for particle size analysis (Brown et al., 1990; Brown, 2001). Van der
Meeren et al. (1993) reviewed fiber-optic quasi-elastic light scattering (FOQELS) as
a fast and reproducible characterization method. They discussed proper operating
conditions and limitations of the technique. PCS was used with a variety of other
techniques to determine the nature of materials in solution. By using a combination
of static and dynamic laser light scattering and transient electric birefringence Xu
et al. (1987) were able to determine structural characteristics and size distributions
of polydisperse disk-shaped particles (bentonite) in suspensions. Gulari et al. (1987)
have compared PCS with turbidity spectra and Fraunhofer diffraction pattern anal-
ysis in the overlap region of 0.5μm to 4μm for bimodal and trimodal distributions
of latex spheres. PCS was found to be a better method for mean size determination
but not so good for distribution measurements. Chowdhury et al. (1984) studied
the application of PCS to a system of randomly diffusing particles suspended in
a fluid undergoing uniform translational motion relative to the optical scattering
volume. For this they derived theoretical expressions for both the homodyne and
the heterodyne correlation functions in dilute as well as non-dilute particle limits
and tested these results with experiments on a flowing system and found good
agreement. In an interesting experiment Bronk et al. (1993) used the technique to
measure submicrometer particles held in micrometers-sized droplets of saturated
sodium chloride solution, which were captured in an electrodynamic levitator and
maintained at constant diameter for several days at a time. A flowing aerosol was
analyzed for concentration, aperture, velocity, and particle-size effects by Weber
and co-workers (1993). Weber also discussed experiences in the determination of
particle size in the nanometer range using PCS. Ross and Dimas (1993) considered
noise and distortion in correlation data. Ruf (1993) discussed data accuracy and
resolution in particle sizing by PCS. The application of diffusing-wave spectroscopy
to particle sizing in concentrated dispersions was described by Horne and Davidson
(1993). Problems in working with high-concentration submicrometers particle size
distributions using correlation techniques were discussed by Trainer et al. (1992).
Colloidal suspension of iron oxide particles was studied experimentally by Chu et
al. (1987) who combined laser light scattering – angular distribution as well as au-
tocorrelation function – with transient electric birefringence (TEB). Their results
were consistent with electron microscope measurements. This technique requires
very small amounts of the often-precious samples. It is an advantage as well as a
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limitation of the technique since the necessity for very low particle concentrations
to prevent multiple scattering leads to extreme dilution of the sample. However,
a very dilute sample also cannot be measured. The detected intensity fluctuations
then arise not only from the Brownian motion, but also from the changing number
of particles in the scattering volume. This results in an apparent decrease in the
diffusion coefficient and thus an apparent increase in the particle diameter (Weber
et al., 1993). However, if one assumes that the particle fluctuations and the num-
ber fluctuations each have their own frequency domain which can be separated,
the problem can be solved by introducing an electronic filter in the standard PCS
setup (Willemse et al., 97). The experiments were carried out with an experimental
standard pinhole setup on laminar flowing aerosols of the submicrometers particle
size range. It is shown that beside local mean particle size and local aerosol veloc-
ity, the local particle number concentration may be obtained simultaneously from
a single measured autocorrelation function. The proposed procedure does not re-
quire calibration. It is pointed out that measurement conditions can be adapted to
the properties of the aerosol to be characterized, thus allowing characterization of
aerosols over a wide parameter range – it is not restricted to the case of low particle
concentration. The experimental results are compared to data from the literature,
data from reference measurements and data from a theoretical model, respectively.
The method can also be useful for characterization of other fluid–particle systems
as hydrosols (Weber and Schweiger, 1999). Finally there is a note of caution for
practitioners of Photon Correlation Spectroscopy. It is very important that before
taking the observations one takes care of certain practical considerations associated
with the PCS setup (Brown and Smart, 1997; Pusey et al., 1983).

9.3 Aerosol size and distribution

Generally one derives information regarding particle size distribution from angular
scattering measurements (Westwater and Cohen, 1973; Post, 1976; Alger, 1979;
Nelson, 1981; Heintzenberg et al., 1981; Hansen, 1980; Hansen and Evans, 1980;
Walters, 1980), spectral extinction measurements (Yamamoto and Tanaka, 1969;
Kuriyan and Phillips, 1974; Heintzenberg, 1975; King et al., 1978; Michael et al.,
1978; Heintzenberg and Welch, 1982, Sun et al., 2007; Roy and Sharma, 2005) or a
combination of these two procedures (Thomalla and Quenzel, 1982). Retrieving the
size distribution from these measurements is a difficult inverse problem (Dubovik
et al., 1995). It requires the inversion of a Fredholm integral equation of the first
kind (McWhiter and Pike, 1978). This equation gives the measured property as an
integral over the size distribution with a kernel determined by scattering theory.
However, inversion techniques do not provide a unique solution for the particle size
distribution and may cause numerical instabilities (Twomey, 1975; Fymat, 1975;
Box and McKeller, 1976). Therefore, some sort of smoothing constraint is generally
required, a reason for retrieval schemes to be based upon homogeneous sphere Mie
theory solutions. To solve the inverse problem with real data using Mie theory,
three routes have been followed in the literature: (1) assume an a priori trial ex-
pression for the size distribution, depending on a finite number of parameters, and
search in the this parameter space for the best fit with the given data (Dobbins
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and Jizmagian, 1966; Tarantola and Valette, 1982), or (2) try to obtain an ap-
proximation to the size distribution by discretizing the integral equation and then
solve a (constrained) matrix inverse problem (Phillips, 1982; Twomey, 1975), or (3)
use an approximate scattering kernel and invert the integral equation analytically
(Shifrin and Perelman, 1963; Franssens et al., 2000). Although Mie theory assumes
homogeneous spherical particles, aerosols are generally nonspherical. In scattering
measurements attempts are often made to minimize the effect of nonsphericity by
using only forward scattering directions, i.e., at scattering angles ≤20–40◦. How-
ever, it is worthwhile to investigate the effect of nonsphericity on retrieved particle
size distribution (Heintzenberg, 1978; Heintzenberg and Welch, 1982). Studies have
also been carried out to see the effects of variation in the particle index of refraction
and the truncation of angular scattered intensities due to measurement limitations
(Heintzenberg and Welch, 1982; Veihelmann et al., 2006). It should be pointed out
that, along with Mie theory, diffraction as well as T-matrix calculations have also
been used for retrieving the size distribution (Veihelmann et al., 2006).

9.3.1 Effect of temperature

The early study of the effect of temperature on aerosols was made by Husar and
Shu (1975). They studied the physical and chemical properties of Los Angeles
smog aerosols as a function of temperature using two in situ detection techniques –
nephelometry and optical aerosol counting. Their setup is shown in Fig. 9.1. In this
study volatility was studied quantitatively by heating the smog aerosol up to 250◦C
and simultaneously measuring the scattering coefficient using a nephelometer and
the change of size distribution by an optical counter. Thermal analyses revealed
that 50–80% of submicrometer aerosol mass is volatile at 220◦C. The shapes of
curves for the total light scattering coefficient obtained by nephelometer versus
temperature (thermo-nephelograms) were found to be different for photochemically
formed aerosols than those formed on ‘humid’, hazy days. It was suggested that the
thermal analyses may at least in some cases provide the means of online monitoring
the origin of the ambient aerosols. Thermal dependence on the size of aerosols was
found to be different for volatile and nonvolatile aerosols.

In the field, the aerosol scattering coefficient is usually measured with a neph-
elometer by heating the ambient aerosol to a low reference relative humidity (∼40%)
in order to measure a light scattering coefficient that is intrinsic to an aerosol rather
than dependent on atmospheric relative humidity. Bergin et al. (1997) studied the
ammonium nitrate aerosols and observed a decrease in light scattering coefficient
of the aerosol due to evaporation in a heated nephelometer. They measured the
changes in the scattering coefficient of a laboratory-generated ammonium nitrate
aerosol as a function of temperature and the mean residence time within the neph-
elometer sample volume. At the same time, the change in the aerosol size distri-
bution due to ammonium nitrate evaporation was directly measured with a laser
particle counter. The change in the aerosol size distribution and the scattering co-
efficient was modeled as a function of mean residence time and temperature. Model
results for the change in the aerosol scattering coefficient due to evaporation were
found in agreement with measurement.

King et al. (1983) measured the aerosol diffusion constants in the intermediate
Knudsen regime. The form of the diffusion constant of a particle suspended in the
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Fig. 9.1. Schematics of the experimental setup for the aerosol thermal analyses (adapted
from Husar and Shu, 1975).

medium is dependent on the Knudsen number Kn = l/r, where l is the mean free
path of the gas molecules and r is the radius of the aerosol. Their experiment based
on light scattering showed that in the intermediate Knudsen regime, corresponding
to aerosol size comparable to the mean free path of the gas molecules, observed
diffusion constants do not agree with the kinetic-theory calculations. The experi-
ments performed in two very different environments, one with the soot particles in
flame and the other with monodisperse polystyrene latex spheres, lead consistently
to the same conclusion. Formation of aggregates and their fractal nature for soot
in flames was also studied by Sorensen et al. (1992).

Singh et al. (2006) studied the effect of temperature on the size of cigarette
smoke aerosols using dynamic light scattering. They found that the size of smoke
aerosols decreases with increase in temperature. It was very much in agreement
with the early results of Husar and Shu (1975) who observed a decrease in light
scattering with an increase in temperature for cigarette-smoke aerosols.

9.3.2 Effect of humidity

Aerosol hydration has important consequences for the effect of aerosols on the
Earth’s radiation budget. The size increase of aerosol particles resulting from up-
take of water vapor has important implications for the direct scattering of radiation
(the ‘direct effect’) (e.g., Hegg et al., 1996; Hansen et al., 1997). It also has a bear-
ing on the ability of these particles to serve as cloud condensation nuclei (CCN)
and, under the right circumstances, to form cloud droplets (the ‘indirect effect’)
(Twomey, 1974; Eichel et al., 1996; Wulfmeyer and Feingold, 2000; Hansen et al.,
1997; Jiang et al., 2002). Light scattering coefficients as a function of %RH have
been calculated for the sulfate and nitrate aerosols of atmospheric interest (Tang,
1996). It is important to note that the chemical effect on light scattering is out-
weighed by the size effect of the aerosols under consideration.



486 R.P. Singh

The traditional method of measuring hydration and consequent growth uses a
scattering nephelometer that aspirates an air sample, dries it, and then re-exposes
it to varying levels of RH, typically 65%, 75%, and 85% (Charlson et al., 1984;
Hegg et al., 1996; McInnes et al., 1998). The growth in total scattering is referred
to as f(RH) (Charlson et al., 1992). The humidified nephelometers cannot expose
air samples to RH > 85% without risking condensation on their chilled mirrors
and spurious measurements. However, the region of 85% < RH < 100% is of great
interest because it is here that particles experience their most dramatic growth.
Moreover, the extent of this growth hints at their ability to act as cloud condensa-
tion nuclei (CCN). Instead, Feingold and Morley (2003) used backscatter lidar to
collect information on the uptake of water vapor by aerosol in a well-mixed, cloud-
capped, boundary layer. The lidar method for determining hygroscopic growth has
numerous advantages, including the fact that the enhancement in backscatter due
to changes in RH is measured under ambient, unperturbed atmospheric conditions
and the range of measurement can be extended very close to saturation. A vertically
pointing, airborne lidar was used to measure vertical profiles of aerosol backscatter
beneath a stratocumulus cloud deck. In situ aircraft thermodynamic measurements
were used to derive simultaneous profiles of relative humidity (RH) under the as-
sumption that the boundary layer is well mixed. The change in backscatter is
derived as a function of relative humidity over the range ∼85% RH to ∼98.5% RH.
In situ measurements of the aerosol size distribution and composition were used
to calculate the expected enhancement in backscatter due to equilibrium uptake
of water vapor. Calculations of enhancement in total scatter due to water vapor
uptake with enhancement in backscatter suggest that the effects agree to within
∼20% of one another for RH <∼ 95% but they differ significantly for RH > 95%.
It, therefore, suggested that broad application of backscatter lidars in well-mixed,
cloud-capped boundary layers could provide a source of valuable information for
addressing the aerosol direct and indirect effects. It should be pointed out that
Raman lidar, which also has the ability to simultaneously measure backscatter (or
extinction) and water vapor concentration, has also been applied to measurement
of hygroscopic growth (Ferrare et al., 1998). In another related work Wulfmeyer
and Feingold (2000) showed how a differential absorption lidar (DIAL) can be used
to infer the extent of water vapor uptake by aerosols.

Hitzenberger et al. (1997) also studied the humidity-dependent growth of size-
segregated aerosol samples. The collected samples were exposed to elevated rela-
tive humidities in a chamber containing an aqueous solution of CaCl2 of specified
concentration. Calculation of optical parameters (i.e., extinction coefficient and
single-scattering albedo) showed that extinction (therefore also the optical depth)
and single-scattering albedo increased with humidity. From the changes of the
single-scattering albedo it could be deduced that for the dry aerosol heating ef-
fects probably dominated over cooling effects, while for high humidities cooling
predominated.

Hygroscopicity of aerosols and their growth with humidity is very important
from health point of view (Khan et al., 1988). Along with the particle size and
breathing pattern it plays a crucial role in distribution of inhaled aerosols to var-
ious parts of the body as well as determining the impact of aerosolized drugs for
therapeutic purposes. Therefore, much work on the effect of humidity on the size
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of aerosols has been done in the field of medicine. Dautrebande and Walkenhorst
(1961) were first to demonstrate that dry NaCl aerosol particles grow hygroscopi-
cally by as much as six times during respiration. Later experimental and theoretical
studies on hygroscopic aerosol particles revealed that the extent of growth depends
on a number of important parameters that have been reviewed by Morrow (1986)
and Hiller (1991). In a recent work, Hiller et al. (2006) have studied physical prop-
erties of two metered-dose bronchodilator aerosols packaged as solutions and two
aerosols packaged as finely ground powders, measured at low and high relative
humidity. The aerodynamic size distribution and particle concentration were mea-
sured in real time using the single-particle aerodynamic relaxation time analyzer,
which can measure the aerodynamic diameter of single suspended particles in the
respirable size range. The median aerodynamic diameter, the mass median aero-
dynamic diameter, the total particles per dose, and the total aerodynamic mass
per dose were calculated. Significant increases were noted in the median aerody-
namic diameter for three aerosols and in the mass median aerodynamic diameter
for two aerosols. The number of particles in the measured size range increased 3.6-
and 4.1-fold for the droplet aerosols and 1.4-fold for the powder preparations. The
aerodynamic mass per dose in the measured size range increased 5.7- and 11.4-fold
for the droplet aerosols and 3.1- and 1.6-fold for the powder aerosols. These data
indicate that all aerosols tested increased in size at high humidity and that aerosols
dispensed as droplets may be more unstable than those dispensed as powders. It
would be proper to mention at the end of the section that humidity and tempera-
ture are quite closely related parameters. In many cases an increase in temperature
would translate to a decrease in humidity, while a decrease in temperature will lead
to an increase in humidity.

9.3.3 Effect of concentration

It is interesting to note that in most of the cases of light scattering by aerosols/
particles, it is the dilution which is desired, not the concentration. This is required
to avoid the effect of multiple light scattering and particle interactions. However, at-
tempts are being made to study concentrated solutions and instruments have been
designed which give quite good results even with concentrated samples. Thomas
and Dimonie (1990) have described measurements of particle size during the course
of a latex emulsion polymerization reaction using fiber optic dynamic light scat-
tering (FODLS). By collecting the scattered signal at 180◦ and using the proper
focusing optics, one avoids the effect of multiple light scattering. The setup is shown
in Fig. 9.2. These measurements were compared to results from DLS measurements
performed in the usual way on diluted samples. It was observed that the rate of
growth of the particle size was faster in a concentrated solution compared to the
diluted one, reaching to saturation after sometime, Fig. 9.3.

Chung and Dunn-Rankin (1996) while studying sidestream cigarette-smoke
aerosols calibrated their light scattering setup, shown in Fig. 9.4 that measured
the scattered intensity at two angles and two polarization components at com-
plementary angles. Their calibration showed that multiple scattering in ensemble
aerosol systems affect the scattering ratio measurement differently for different par-
ticle sizes. They observed that for 0.197μm hydrosol, multiple scattering has little
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Fig. 9.2. Experimental setup for FODLS measurements (adapted from Thomas and
Dimonie, 1990).

Fig. 9.3. Latex particle size as a function of reaction time (�, determined by standard
(very dilute) DLS measurements; ♦, determined by FODLS measurements directly on an
undiluted sample) (adapted from Thomas and Dimonie, 1990).

effect on the measurement; for 0.300μm hydrosol, higher particle concentration
results in a lower scattering ratio; and for 0.596μm hydrosol, higher concentration
produces higher scattering ratio measurements.

Singh et al. (2006) not only studied the effect of concentration on the size of
smoke aerosols but also did experiments to see the effect of temperature along with
concentration on the size of aerosols. The experimental setup used to study the ef-
fect of temperature as well as concentration is shown in Fig. 9.5. They used cigarette
smoke for the experiment. Change of concentration was made by increasing the
number of cigarettes assuming the same rate of combustion for each cigarette of
the same brand, which was actually confirmed by measuring the weight of the
cigarette initially and after 12 minutes of lighting. The excitation source was a red
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Fig. 9.4. Schematic of the experimental set-up for light scattering ratio measurements
and polarization ratio measurements (adapted from Chung and Dunn-Rankin, 1996).

He-Ne laser (Spectra Physics, 10mW, 633 nm), which was mounted on the fixed
arm of the goniometer. A photomultiplier tube (RCA 31034A) was mounted on
the other arm. The scattered light from the sample was detected by a photomulti-
plier tube at right-angles and the photocurrent was suitably amplified and digitized
by amplifier/discriminator (EG&G, PARC, Model 1182) before it could be fed to
a photon correlator (Malvern 7032 CN). The correlator gave the autocorrelation
function of the scattered light. The data was transferred to a computer for storage
of spectra and its subsequent analysis. The whole spectrometer was installed on a
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Fig. 9.5. Schematic diagram of the experimental set-up. P1 and P2: pump; R1 and
R2: regulator; F1 and F2: flowmeter; T: thermometer; S: smoke chamber; L: lens; PMT:
photomultiplier tube; HV: high voltage power supply; LV: low voltage power supply; A/D:
amplifier/discriminator; DC: digital correlator; C: computer (adapted from Singh et al.,
2006).

vibration isolation table. Proper lenses and pinholes were used for better signal-
to-noise ratio. The lens for collecting the scattered light was an f/3 biconvex lens
made of BK7. The size of pinhole before the PMT was 0.3mm that takes care of a
single coherence area being detected by the PMT. This is very important since we
take the fluctuating scattered electric field as Gaussian and in the Gaussian regime
signal is dominated by interference fluctuations. Diaphragm pumps were used to
regulate the flow of dry filtered air in the smoke chamber. Air flow of 2 l/min
was maintained with the help of regulators and flowmeters to keep the cigarettes
burning. The smoke chamber was made of glass with dimensions 20× 20× 30 cm.
The cigarette smoke produced is taken through a tube (internal diameter 1 cm)
to scattering region (2 × 4 cm) at the height of 15 cm from the top of the smoke
chamber.

The method of cumulants (Koppel, 1972) was used to find out the mean size
of aerosols. Since the interest was in the evolution of size with concentration and
temperature they went for mean size only instead of size distribution, although the
latter would have been preferred for the polydisperse sample like smoke aerosols.
However, it was ensured that the polydispersity remained below a limit to give
correct mean size while using the method of cumulants (Taylor et al., 1985). To
test the dynamic light scattering experimental setup for particle sizing, the first
measurements were made with a standard sample of polystyrene latex beads of
size 0.32μm (Bangs Laboratories). The setup gave the same size as provided by
the supplier.

Observations were made after one minute of lighting the cigarette. The flow
rate was kept to the minimum possible so that the system could be treated as al-
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most Brownian having negligible aerosol flow velocity in comparison to movement
in horizontal plane. This ensured that correlation time used for finding the size was
not modified by the flow (Chowdhury et al., 1984). The beam size in the scatter-
ing region was 2mm. For the He-Ne laser (λ = 633 nm) the illuminated volume
had a sufficiently large number of sub-regions of volume smaller than the wave-
length, permitting particle motions in one sub-region to be independent of those
in another. This justified the assumption of Gaussian distribution of fluctuating
scattered electric field. In calculating the size, the refractive index of the cigarette
smoke aerosols was taken to be same as soot particles since the experimental setup
provided with the cigarette smoke ‘off the tip’ of the cigarette, not the mixture
of mainstream and sidestream smoke from the cigarette. The absorption values of
this part of the cigarette smoke (Terhume and Anderson, 1977) suggested it to be
carbonaceous matter like soot. However, numerous reported values of the refrac-
tive index for soot might lead to uncertainty in particle size (Sorensen et al., 1992).
Since the concern was relative change in size, this uncertainty must not affect the
conclusions. Table 9.1 presents the estimated decay constants and mean size. The
mean size of the smoke aerosols was found to be 0.143μm at 25◦C. Table 9.2 shows
estimated decay constants and sizes at various concentrations for T = 25◦C. It
was observed that the size increases with the concentration. No sudden increase in
the size was observed. The effect of temperature on size at various concentrations
is presented in Table 9.3. It was observed that the size decreases with increase in
temperature.

Table 9.1. Mean size for smoke aerosols at 25◦C

S. no. Decay constant Size Mean size
γ (s−1) × 104 (μm) (μm)

1 5.21 0.145
2 5.35 0.141 0.143
3 5.32 0.142

Table 9.2. Effect of concentration on size of smoke aerosols at 25◦C

S. no. Concentration Decay constant Size
(wt%) Γ (s−1) × 104 (μm)

1 0.01 5.32 0.142
2 0.05 3.59 0.210
3 0.1 1.99 0.378
4 0.5 1.29 0.586
5 1 1.06 0.712

An examination of the nature of size versus concentration curve (Fig. 9.6) re-
veals that, although the size increases with concentration, the increment in the
mean size is not a multiple of itself. This indicates the stochastic nature of the
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Table 9.3. Effect of temperature on size at various concentrations

Size (μm)

Concentration 0.01% 0.05% 0.1% 0.5% 1%
Temperature (◦C)

20 0.154 0.255 0.413 0.622 0.782
25 0.143 0.210 0.378 0.586 0.712
30 0.112 0.198 0.315 0.525 0.681
35 0.089 0.154 0.298 0.516 0.632
40 0.061 0.097 0.212 0.420 0.613

Fig. 9.6. Change in size with concentration at a fixed temperature (T = 25◦C) for data
in Table 9.2.

coagulation (aggregation) process. Moreover, the increase in size may not be due
only to the coagulation. The condensation of gases present in the smoke chamber
may also contribute to the increase in size. Fig. 9.7 shows log of size versus log of
concentration. The size and concentration values were multiplied by a factor of a
hundred before taking the log. It shows a power law behavior indicating the fractal
nature of aggregation (Schaefer et al., 1984; Weitz et al., 1985). Fig. 9.8 shows the
three-dimensional plot of data in Table 9.3. One can see that an increase in tem-
perature reduces the size as the condensation is reduced and that the size increases
with concentration at all temperatures.

A number of factors including the mechanism of particle formation, growth,
diffusion, convection and sedimentation together with coagulation decide the form
of size distribution function of aerosols. Therefore, for a better understanding of
the evolution of the distributions a comparison of the experimentally observed dis-
tributions with those derived from theoretical considerations is needed. One of the
methods to achieve this could be setting up a general dynamic equation (GDE) as
suggested by Friedlander (1977) and solving it for appropriate initial and bound-
ary conditions relevant to the experiment. Otherwise, various models have been
proposed for the mechanism of aggregation phenomenon, which is still an enigma.
Few important ones are the Eden model (Eden, 1961), diffusion limited aggregation
(DLA) (Witten and Sander, 1981), Mole’s labyrinth (Hermann, 1983) and cluster-
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Fig. 9.7. Log of size versus log of concentration for data in Table 9.2.

Fig. 9.8. Plot of data in Table 9.3. Change in size with concentration and temperature.

ing of clusters (Meakin, 1983). Leyvraz (1986) has described a general qualitative
theory for aggregation taking into account the various exponents describing the
cluster size distribution and its time evolution. A few models have been developed
on the basis of stochastic process (Durrett et al., 1999) as well. One can say that
the theory of size evolution is still in flux, which makes the explanation of experi-
mental results a difficult task. More experiments taking good care of experimental
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parameters and precautions are required for better understanding of aerosol size
distributions.

9.4 Aerosols and climate

Kaufman et al. (2002) have described the role of atmospheric aerosols on the climate
in a fine review article. The third assessment report of the Intergovernmental Panel
on Climate Change (IPCC) by Forster et al. (2007) can also be consulted for a
good overview of aerosols and their effect on the climate. It has been established
that atmospheric aerosols are intricately linked to the climate system and to the
hydrologic cycle of our planet. Aerosols interact both directly and indirectly with
the Earth’s radiation budget and therefore the climate. As a direct effect, the
aerosols scatter sunlight directly back into space. As an indirect effect, aerosols
in the lower atmosphere can modify the size of cloud particles, changing how the
clouds reflect and absorb sunlight, thereby affecting the Earth’s energy budget
(Penner et al., 2006). The net effect of aerosols is to cool the climate system by
reflecting sunlight (Schulz et al., 2006). Depending on their composition, aerosols
can also absorb sunlight in the atmosphere, further cooling the surface but warming
the atmosphere in the process (Stier et al., 2007). These effects of aerosols on the
temperature profile, along with the role of aerosols as cloud condensation nuclei,
impact the hydrologic cycle, through changes in cloud cover, cloud properties and
precipitation. Unraveling these feedbacks is particularly difficult because aerosols
take a multitude of shapes and forms, ranging from volcanic emissions to desert
dust and urban pollution, and because aerosol concentrations vary strongly over
time and space (Textor et al., 2006; Ramachandran et al., 2006).

The warming effect of the greenhouse gases is expected to take place every-
where, but the cooling effect of the pollution aerosols will be somewhat regionally
dependent (Jayaraman et al., 2006; Ganguly et al., 2005), near and downwind of
industrial areas. No one knows what the outcome will be of atmospheric warming
in some regions and cooling in others. Climate models are still too primitive to pro-
vide reliable insight into the possible outcome. Current observations of the buildup
are available only for a few locations around the globe and these observations are
fragmentary.

9.5 Conclusion

We have reviewed the application of static and dynamic light scattering to the
study of aerosols. It is observed that the instruments for field studies of aerosols
use mostly static light scattering for retrieving the data while in laboratory studies
dynamic light scattering is used along with Mie scattering. The recent trend shows
that use of both methods at the same time yields a better physical picture of the
system. It is heartening to note that in the year that celebrates 100 years of the
classic paper on light scattering by Mie (1908), it is Mie scattering that comes
out on top. In industrial processes involving aerosols, instruments based on laser
diffraction which combines Mie scattering with Fraunhofer diffraction have gained
in popularity because of their wide dynamic range and ease of operation.
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In recent years, satellites, lidars and lidar networks, and a network of ground-
based sunphotometers have enabled the collection of a huge amount of data related
to aerosols (Forster et al., 2007). A number of models have been developed for re-
trieving the relevant data from these sources, but still there is considerable amount
of uncertainty in the prediction of various parameters affecting the climate (Forster
et al., 2007). It emphasizes the importance of laboratory studies of various types
of aerosols under simulated conditions for validation of the models used in climate
studies. The paper shows that not many laboratory studies have been made with
this intention. The present study aims to initiate this process. A much better un-
derstanding will require multi-wavelength scattering under controlled conditions of
humidity, temperature, concentration, airflow and the presence of buffer gases in
laboratory studies. Environmental and atmospheric scientists can take a lead from
pharmacy and medicine where it is not uncommon to study the effect of humidity
and the airflow under controlled conditions to understand the health hazards of
inhaled aerosols as well as the therapeutic use of aerosolized drugs.
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