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PHYSICAL FOUNDATIONS OF COSMOLOGY

Inflationary cosmology has been developed over the last 20 years to remedy serious
shortcomings in the standard hot big bang model of the universe.Taking an original
approach, this textbook explains the basis of modern cosmology and shows where
the theoretical results come from.

The book is divided into two parts: the first deals with the homogeneous and
isotropic model of the universe, while the second part discusses how initial inhomo-
geneities can explain the observed structure of the universe. Analytical treatments
of traditionally highly numerical topics — such as primordial nucleosynthesis, re-
combination and cosmic microwave background anisotropy — are provided, and
inflation and quantum cosmological perturbation theory are covered in great de-
tail. The reader is brought to the frontiers of current cosmological research by the
discussion of more speculative ideas.

This is an ideal textbook both for advanced students of physics and astrophysics
and for those with a particular interest in theoretical cosmology. Nearly every
formula in the book is derived from basic physical principles covered in undergrad-
uate courses. Each chapter includes all necessary background material and no prior
knowledge of general relativity and quantum field theory is assumed.

VIATCHESLAV MUKHANOV is Professor of Physics and Head of the As-
troparticle Physics and Cosmology Group at the Department of Physics, Ludwig-
Maximilians-Universitidt Miinchen, Germany. Following his Ph.D. at the Moscow
Physical-Technical Institute, he conducted research at the Institute for Nuclear
Research, Moscow, between 1982 and 1991. From 1992, he was a lecturer at
Eidgenossische Technische Hochschule (ETH) in Ziirich, Switzerland, until his ap-
pointment at LMU in 1997. His current research interests include cosmic microwave
background fluctuations, inflationary models, string cosmology, the cosmological
constant problem, dark energy, quantum and classical black holes, and quantum
cosmology. He also serves on the editorial boards of leading research journals in
these areas.

In 1980-81, Professor Mukhanov and G. Chibisov discovered that quantum
fluctuations could be responsible for the large-scale structure of the universe. They
calculated the spectrum of fluctuations in a model with a quasi-exponential stage
of expansion, later known as inflation. The predicted perturbation spectrum is in
very good agreement with measurements of the cosmic microwave background
fluctuations. Subsequently, Professor Mukhanov developed the quantum theory
of cosmological perturbations for calculating perturbations in generic inflationary
models. In 1988, he was awarded the Gold Medal of the Academy of Sciences of
the USSR for his work on this theory.
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Foreword by Professor Andrei Linde

Since the beginning of the 1970s, we have witnessed spectacular progress in the
development of cosmology, which started with a breakthrough in the theoretical
understanding of the physical processes in the early universe and culminated in a se-
ries of observational discoveries. The time is ripe for a textbook which summarizes
the new knowledge in a rigorous and yet accessible form.

The beginning of the new era in theoretical cosmology can be associated with the
development of the gauge theories of weak, electromagnetic and strong interactions.
Until that time, we had no idea of properties of matter at densities much greater than
nuclear density ~10'* g/cm?, and everybody thought that the main thing we need
to know about the early universe is the equation of state of superdense matter. In the
beginning of the 1970s we learned that not only the size and the temperature of our
universe, but also the properties of elementary particles in the early universe were
quite different from what we see now. According to the theory of the cosmological
phase transitions, during the first 10~1° seconds after the big bang there was not
much difference between weak and electromagnetic interactions. The discovery of
the asymptotic freedom for the first time allowed us to investigate the properties of
matter even closer to the big bang, at densities almost 80 orders of magnitude higher
than the nuclear density. Development of grand unified theories demonstrated that
baryon number may not be conserved, which cleared the way towards the theoretical
description of the creation of matter in the universe. This in its turn opened the
doors towards inflationary cosmology, which can describe our universe only if the
observed excess of baryons over antibaryons can appear after inflation.

Inflationary theory allowed us to understand why our universe is so large and flat,
why it is homogeneous and isotropic, why its different parts started their expansion
simultaneously. According to this theory, the universe at the very early stages of
its evolution rapidly expanded (inflated) in a slowly changing vacuum-like state,
which is usually associated with a scalar field with a large energy density. In the
simplest version of this theory, called ‘chaotic inflation,” the whole universe could
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xii Foreword

emerge from a tiny speck of space of a Planckian size 1073* cm, with a total mass
smaller than 1 milligram. All elementary particles surrounding us were produced
as a result of the decay of this vacuum-like state at the end of inflation. Galaxies
emerged due to the growth of density perturbations, which were produced from
quantum fluctuations generated and amplified during inflation. In certain cases,
these quantum fluctuations may accumulate and become so large that they can
be responsible not only for the formation of galaxies, but also for the formation
of new exponentially large parts of the universe with different laws of low-energy
physics operating in each of them. Thus, instead of being spherically symmetric and
uniform, our universe becomes a multiverse, an eternally growing fractal consisting
of different exponentially large parts which look homogeneous only locally.

One of the most powerful tools which can be used for testing the predictions
of various versions of inflationary theory is the investigation of anisotropy of the
cosmic microwave background (CMB) radiation coming to us from all directions.
By studying this radiation, one can use the whole sky as a giant photographic plate
with the amplified image of inflationary quantum fluctuations imprinted on it. The
results of this investigation, in combination with the study of supernova and of the
large-scale structure of the universe, have already confirmed many of the predictions
of the new cosmological theory.

From this quick sketch of the evolution of our picture of the universe during the
last 30 years one can easily see how challenging it may be to write a book serving
as a guide in this vast and rapidly growing area of physics. That is why it gives
me a special pleasure to introduce the book Physical Foundations of Cosmology by
Viatcheslav Mukhanov.

In the first part of the book the author considers a homogeneous universe. One
can find there not only the description of the basic cosmological models, but also
an excellent introduction to the theory of physical processes in the early universe,
such as the theory of nucleosynthesis, the theory of cosmological phase transitions,
baryogenesis and inflationary cosmology. All of the necessary concepts from the
general theory of relativity and particle physics are introduced and explained in
an accurate and intuitively clear way. This part alone could be considered a good
textbook in modern cosmology; it may serve as a basis for a separate course of
lectures on this subject.

But if you are preparing for active research in modern cosmology, you may
particularly appreciate the second part of the book, where the author discusses the
formation and evolution of the large-scale structure of our universe. In order to
understand this process, one must learn the theory of production of metric pertur-
bations during inflation.

In 1981 Mukhanov and Chibisov discovered, in the context of the Starobinsky
model, that the accelerated expansion can amplify the initial quantum perturbations
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of metric up to the values sufficient for explaining the large-scale structure of the
universe. In 1982, a combined effort of many participants of the Nuffield Sym-
posium in Cambridge allowed them to come to a similar conclusion with respect
to the new inflationary universe scenario. A few years later, Mukhanov developed
the general theory of inflationary perturbations of metric, valid for a broad class of
inflationary models, including chaotic inflation. Since that time, his approach has
become the standard method of investigation of inflationary perturbations.

A detailed description of this method is one of the most important features
of this book. The theory of inflationary perturbations is quite complicated not
only because it requires working knowledge of General Relativity and quantum
field theory, but also because one should learn how to represent the results of the
calculations in terms of variables that do not depend on the arbitrary choice of
coordinates. It is very important to have a real master guiding you through this
difficult subject, and Mukhanov does it brilliantly. He begins with a reminder of the
simple Newtonian approach to the theory of density perturbations in an expanding
universe, then extends this investigation to the general theory of relativity, and
finishes with the full quantum theory of production and subsequent evolution of
inflationary perturbations of metric.

The last chapter of the book provides the necessary link between this theory and
the observations of the CMB anisotropy. Everyone who has studied this subject
knows the famous figures of the spectrum of the CMB anisotropy, with several
different peaks predicted by inflationary cosmology. The shape of the spectrum
depends on various cosmological parameters, such as the total density of matter in
the universe, the Hubble constant, etc. By measuring the spectrum one can determine
these parameters experimentally. The standard approach is based on the numerical
analysis using the CMBFAST code. Mukhanov made one further step and derived
an analytic expression for the CMB spectrum, which can help the readers to obtain
a much better understanding of the origin of the peaks, of their position and their
height as a function of the cosmological parameters.

As in a good painting, this book consists of many layers. It can serve as an
introduction to cosmology for the new generation of researchers, but it also contains
alot of information which can be very useful even for the best experts in this subject.

We live at a very unusual time. According to the observational data, the universe
is approximately 14 billion years old. A hundred years ago we did not even know
that it is expanding. A few decades from now we will have a detailed map of the
observable part of the universe, and this map is not going to change much for the
next billion years. We live at the time of the great cosmological discoveries, and |
hope that this book will help us in our quest.



Preface

This textbook is designed both for serious students of physics and astrophysics
and for those with a particular interest in learning about theoretical cosmology.
There are already many books that survey current observations and describe theo-
retical results; my goal is to complement the existing literature and to show where
the theoretical results come from. Cosmology uses methods from nearly all fields
of theoretical physics, among which are General Relativity, thermodynamics and
statistical physics, nuclear physics, atomic physics, kinetic theory, particle physics
and field theory. I wanted to make the book useful for undergraduate students and,
therefore, decided not to assume preliminary knowledge in any specialized field.
With very few exceptions, the derivation of every formula in the book begins with
basic physical principles from undergraduate courses. Every chapter starts with a
general elementary introduction. For example, I have tried to make such a geometri-
cal topic as conformal diagrams understandable even to those who have only a vague
idea about General Relativity. The derivations of the renormalization group equa-
tion, the effective potential, the non-conservation of fermion number, and quantum
cosmological perturbations should also, in principle, require no prior knowledge of
quantum field theory. All elements of the Standard Model of particle physics needed
in cosmological applications are derived from the initial idea of gauge invariance
of the electromagnetic field. Of course, some knowledge of general relativity and
particle physics would be helpful, but this is not a necessary condition for under-
standing the book. It is my hope that a student who has not previously taken the
corresponding courses will be able to follow all the derivations.

This book is meant to be neither encyclopedic nor a sourcebook for the most
recent observational data. In fact, I avoid altogether the presentation of data; after
all the data change very quickly and are easily accessible from numerous available
monographs as well as on the Internet. Furthermore, I have intentionally restricted
the discussion in this book to results that have a solid basis. I believe it is premature
to present detailed mathematical consideration of controversial topics in a book on
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the foundations of cosmology and, therefore, such topics are covered only at a very
elementary level.

Inflationary theory and the generation of primordial cosmological perturbations,
which I count among the solid results, are discussed in great detail. Here, I have
tried to delineate carefully the robust features of inflation which do not depend
on the particular inflationary scenario. Among the other novel features of the book
is the analytical treatment of some topics which are traditionally considered as
highly numerical, for example, primordial nucleosynthesis, recombination and the
cosmic microwave background anisotropy.

Some words must be said about my decision to imbed problems in the main
text rather than gathering them at the end. I have tried to make the derivations
as transparent as possible so that the reader should be able to proceed from one
equation to the next without making calculations on the way. In cases where this
strategy failed, I have included problems, which thus constitute an integral part of
the main text. Therefore, even the casual reader who is not solving the problems is
encouraged to read them.
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Units and conventions

Planckian (natural) units Gravity, quantum theory and thermodynamics play an
important role in cosmology. It is not surprising, therefore, that all fundamental
physical constants, such as the gravitational constant G, Planck’s constant £, the
speed of light ¢ and Boltzmann’s constant kg, enter the main formulae describing
the universe. These formulae look much nicer if one uses (Planckian) natural units
by setting G = i = ¢ = kg = 1. In this case, all constants drop from the formulae
and, after the calculations are completed, they can easily be restored in the final
result if needed. For this reason, nearly all the calculations in this book are made
using natural units, though the gravitational constant and Planck’s constant are
kept in some formulae in order to stress the relevance of gravitational and quantum
physics for describing the corresponding phenomena.

After the formula for some physical quantity is derived in Planckian units, one
can immediately calculate its numerical value in usual units simply by using the
values of the elementary Planckian units:

Gh 1/2
Ip = (—3> =1.616 x 107% cm,
C

I
tp = %’ = 5391 x 107%s,

fe 1/2
Mmp; = (5) =2.177x 107 g,

I’i’lp[C2

Tp = =1.416 x 10> K = 1.221 x 10" GeV.

B
Planckian units with other dimensions can easily be built out of these quantities.
For example, the Planckian density and the Planckian area are ep; = mp;/ l%l =
5.157 x 10°* gcm™ and Sp; = 13, = 2.611 x 107 cm?, respectively.

Two examples below show how to make calculations using Planckian units.

Xvii



Xviii Units and conventions

Example 1 Calculate the number density of photons in the background radiation
today. In usual units, the temperature of the background radiation is 7 ~ 2.73 K.
In dimensionless Planckian units, this temperature is equal to
N 2.73K
~1.416 x 1032 K
The number density of photons in natural units is
3¢(3),,; 3 x1.202
= 7" >~ ————
"y 27?2 272
To determine the number density of photons per cubic centimeter, we must multiply

the dimensionless density obtained by the Planckian quantity with the correspond-
ing dimension cm ™3

~1.93 x 10732,

(1.93 x 107%2)* ~ 1.31 x 10°%.

_3.
,namely [,
ny =~ 1.31 x 107 x (1.616 x 1073 cm) > ~ 310 em™>.

Example 2 Determine the energy density of the universe 1 s after the big bang
and estimate the temperature at this time. The early universe is dominated by ultra-
relativistic matter, and in natural units the energy density ¢ is related to the time ¢
via

3
£ =—.
32mt?
The time 1 s expressed in dimensionless units is

‘ ~ 1s
75391 x 10#% s

hence the energy density at this time is equal to
3
&= 5
327 (1.86 x 10%)

~ 1.86 x 104

~8.63 x107%

Planckian units. To express the energy density in usual units, we have to multiply
this number by the Planckian density, £ p; = 5.157 x 10°> g cm™3. Thus we obtain

£ (8.63 x 107%) ep; >~ 4.45 x 10° gem ™.

To make a rough estimate of the temperature, we note that in natural units & ~ T4,
1/4 . . .
hence T ~ &'/4 ~ (10_88) " 1022 Planckian units. In usual units,

T ~1072Tp; ~ 10" K ~ 1 MeV.

From this follows the useful relation between the temperature in the early Universe,
measured in MeV, and the time, measured in seconds: Tyey = O(1) tszcl/ 2



Units and conventions Xix

Astronomical units In astronomy, distances are usually measured in parsecs and
megaparsecs instead of centimeters. They are related to centimeters via

1 pc = 3.26 light years = 3.086 x 10'® cm, 1 Mpc = 10° pc.

The masses of galaxies and clusters of galaxies are expressed in terms of the mass
of the Sun,

Mg ~ 1.989 x 10* g

Charge units We use the Heaviside—Lorentz system for normalization of the ele-
mentary electric charge e. This system is adopted in most books on particle physics
and in these units the Coulomb force between two electrons separated by a distance
ris

62

4rr?’

The dimensionless fine structure constant is o = e? /4w ~ 1/137.

Signature Throughout the book, we will always use the signature (4, —, —, —) for
the metric, so that the Minkowski metric takes the form ds? = dt*> — dx> — dy®> —
dz?.






Part I

Homogeneous isotropic universe






1

Kinematics and dynamics of an expanding universe

The most important feature of our universe is its large scale homogeneity and
isotropy. This feature ensures that observations made from our single vantage point
are representative of the universe as a whole and can therefore be legitimately used
to test cosmological models.

For most of the twentieth century, the homogeneity and isotropy of the universe
had to be taken as an assumption, known as the “Cosmological Principle.” Physicists
often use the word “principle” to designate what are at the time wild, intuitive
guesses in contrast to “laws,” which refer to experimentally established facts.

The Cosmological Principle remained an intelligent guess until firm empirical
data, confirming large scale homogeneity and isotropy, were finally obtained at the
end of the twentieth century. The nature of the homogeneity is certainly curious.
The observable patch of the universe is of order 3000 Mpc (1 Mpc =~ 3.26 x
10° light years ~ 3.08 x 10** cm). Redshift surveys suggest that the universe is
homogeneous and isotropic only when coarse grained on 100 Mpc scales; on smaller
scales there exist large inhomogeneities, such as galaxies, clusters and superclusters.
Hence, the Cosmological Principle is only valid within a limited range of scales,
spanning a few orders of magnitude.

Moreover, theory suggests that this may not be the end of the story. According
to inflationary theory, the universe continues to be homogeneous and isotropic
over distances larger than 3000 Mpc, but it becomes highly inhomogeneous when
viewed on scales much much larger than the observable patch. This dampens, to
some degree, our hope of comprehending the entire universe. We would like to
answer such questions as: What portion of the entire universe is like the part we
find ourselves in? What fraction has a predominance of matter over antimatter?
Or is spatially flat? Or is accelerating or decelerating? These questions are not
only difficult to answer, but they are also hard to pose in a mathematically precise
way. And, even if a suitable mathematical definition can be found, it is difficult to
imagine how we could verify empirically any theoretical predictions concerning



4 Kinematics and dynamics of an expanding universe

scales greatly exceeding the observable universe. The subject is too seductive to
avoid speculations altogether, but we will, nevertheless, try to focus on the salient,
empirically testable features of the observable universe.

It is firmly established by observations that our universe:

* is homogeneous and isotropic on scales larger than 100 Mpc and has well developed
inhomogeneous structure on smaller scales;
* expands according to the Hubble law.

Concerning the matter composition of the universe, we know that:

* itis pervaded by thermal microwave background radiation with temperature T ~2.73 K;

e there is baryonic matter, roughly one baryon per 10° photons, but no substantial amount
of antimatter;

* the chemical composition of baryonic matter is about 75% hydrogen, 25% helium, plus
trace amounts of heavier elements;

* baryons contribute only a small percentage of the total energy density; the rest is a dark
component, which appears to be composed of cold dark matter with negligible pressure
(~25%) and dark energy with negative pressure (~70%).

Observations of the fluctuations in the cosmic microwave background radiation
suggest that:

e there were only small fluctuations of order 107> in the energy density distribution when
the universe was a thousand times smaller than now.

For a review of the observational evidence the reader is encouraged to refer
to recent papers and reviews. In this book we concentrate mostly on theoretical
understanding of these basic observational facts.

Any cosmological model worthy of consideration must be consistent with estab-
lished facts. While the standard big bang model accommodates most known facts,
a physical theory is also judged by its predictive power. At present, inflationary the-
ory, naturally incorporating the success of the standard big bang, has no competitor
in this regard. Therefore, we will build upon the standard big bang model, which
will be our starting point, until we reach contemporary ideas of inflation.

1.1 Hubble law

In a nutshell, the standard big bang model proposes that the universe emerged about
15 billion years ago with a homogeneous and isotropic distribution of matter at very
high temperature and density, and has been expanding and cooling since then. We
begin our account with the Newtonian theory of gravity, which captures many of
the essential aspects of the universe’s dynamics and gives us an intuitive grasp of
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what happens. After we have reached the limits of validity of Newtonian theory,
we turn to a proper relativistic treatment.

In an expanding, homogeneous and isotropic universe, the relative velocities of
observers obey the Hubble law: the velocity of observer B with respect to A is

V) = H(H)rpa, (1.1)

where the Hubble parameter H(¢) depends only on the time ¢, and rp 4 is the vector
pointing from A to B. Some refer to H as the Hubble “constant” to stress its
independence of the spatial coordinates, but it is important to recognize that H is,
in general, time-varying.

In a homogeneous, isotropic universe there are no privileged vantage points
and the expansion appears the same to all observers wherever they are located. The
Hubble law is in complete agreement with this. Let us consider how two observers A
and B view a third observer C (Figure 1.1). The Hubble law specifies the velocities
of the other two observers relative to A:

Ve = H(rpa, vVewy = H(rca. (1.2)

From these relations, we can find the relative velocity of observer C with respect
to observer B:

VeB) = Ve — Vpy = H(t)(rca —rpa) = Hrep. (1.3)

The result is that observer B sees precisely the same expansion law as observer A.
In fact, the Hubble law is the unique expansion law compatible with homogeneity
and isotropy.

A IBA B VBo)

Fig. 1.1.
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Fig. 1.2.

Problem 1.1 In order for a general expansion law, v = f(r,7), to be the same for
all observers, the function f must satisfy the relation

f(rca —rpa,t) =f(rca,t) —f(rpa, t). (1.4)
Show that the only solution of this equation is given by (1.1).

A useful analogy for envisioning Hubble expansion is the two-dimensional sur-
face of an expanding sphere (Figure 1.2). The angle 645 between any two points A
and B on the surface of the sphere remains unchanged as its radius a(#) increases.
Therefore the distance between the points, measured along the surface, grows as

rap(t) = a(t)0ap, (1.5)
implying a relative velocity
) . a
VAR =TFap = a(t)0ap = B, (1.6)

where dot denotes a derivative with respect to time ¢. Thus, the Hubble law emerges
here with H(t) = a/a.

The distance between any two observers A and B in ahomogeneous and isotropic
universe can be also rewritten in a form similar to (1.5). Integrating the equation

l.'BA :H(I)I'BA, (17)

we obtain

rpa(t) = a(t)xpa, (1.8)

a(t) = exp(/H(t) dt) (1.9)

where
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is called the scale factor and is the analogue of the radius of the 2-sphere. The
integration constant, x4, is the analogue of 654 and can be interpreted as the dis-
tance between points A and B at some particular moment of time. It is called the
Lagrangian or comoving coordinate of B, assuming a coordinate system centered
at A.

In the 2-sphere analogy, a(?) has a precise geometrical interpretation as the radius
of the sphere and, consequently, has a fixed normalization. In Newtonian theory,
however, the value of the scale factor a(¢) itself has no geometrical meaning and
its normalization can be chosen arbitrarily. Once the normalization is fixed, the
scale factor a(t) describes the distance between observers as a function of time. For
example, when the scale factor increases by a factor of 3, the distance between any
two observers increases threefold. Therefore, when we say the size of the universe
was, for instance, 1000 times smaller, this means that the distance between any two
comoving objects was 1000 times smaller — a statement which makes sense even
in an infinitely large universe. The Hubble parameter, which is equal to

H() = f’ (1.10)
a

measures the expansion rate.

In this description, we are assuming a perfectly homogeneous and isotropic
universe in which all observers are comoving in the sense that their coordinates x
remain unchanged. In the real universe, wherever matter is concentrated, the motion
of nearby objects is dominated by the inhomogeneities in the gravitational field,
which lead, for example, to virial orbital motion rather than Hubble expansion.
Similarly, objects held together by other, stronger forces resist Hubble expansion.
The velocity of these objects relative to comoving observers is referred to as the “pe-
culiar” velocity. Hence, the Hubble law is valid only on the scales of homogeneity.

Problem 1.2 Typical peculiar velocities of galaxies are about a few hundred kilo-
meters per second. The mean distance between large galaxies is about 1 Mpc. How
distant must a galaxy be from us for its peculiar velocity to be small compared to
its comoving (Hubble) velocity, if the Hubble parameter is 75 km s~! Mpc~!?

The current value of the Hubble parameter, Hy, can be determined by measuring
the ratio of the recession velocity to the distance for an object whose peculiar
velocity is small compared to its comoving velocity. The recessional velocity can
be accurately measured because it induces a Doppler shift in spectral lines. The
challenge is to find a reliable measure of the distance. Two methods used are based
on the concepts of “standard candles” and “standard rulers.” A class of objects is
called a standard candle if the objects have about the same luminosity. Usually, they
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possess a set of characteristics that can be used to identify them even when they
are far away. For example, Cepheid variable stars pulse at a periodic rate, and Type
IA supernovae are bright, exploding stars with a characteristic spectral pattern. The
distances to nearby objects in the class are measured directly (for example, by
parallax) or by comparing them to another standard candle whose distance has
already been calibrated. Once the distance to a subset of a given standard candle class
has been measured, the distance to further members of that class can be determined:
the inverse square law relates the apparent luminosity of the distant objects to that of
the nearby objects whose distance is already determined. The standard ruler method
is exactly like the standard candle method except that it relies on identifying a class
of objects of the same size rather than the same luminosity. It is clear, however, that
only if the variation in luminosity or size of objects within the same class is small
can they be useful for measuring the Hubble parameter. Cepheid variable stars have
been studied for nearly a century and appear to be good standard candles. Type IA
supernovae are promising candidates which are potentially important because they
can be observed at much greater distances than Cepheids. Because of systematic
uncertainties, the value of the measured Hubble constant is known today with only
modest accuracy and is about 65-80 km s~! Mpc~!.

Knowing the value of the Hubble constant, we can obtain a rough estimate
for the age of the universe. If we neglect gravity and consider the velocity to be
constant in time, then two points separated by |r| today, coincided in the past,
to >~ |r|/|v] = 1/Hy ago. For the measured value of the Hubble constant, #; is
about 15 billion years. We will show later that the exact value for the age of the
universe differs from this rough estimate by a factor of order unity, depending on
the composition and curvature of the universe.

Because the Hubble law has a kinematical origin and its form is dictated by the
requirement of homogeneity and isotropy, it has to be valid in both Newtonian theory
and General Relativity. In fact, rewritten in the form (1.8), it can be immediately
applied in Einstein’s theory. This remark may be disconcerting since, according to
the Hubble law, the relative velocity can exceed the speed of light for two objects
separated by a distance larger than 1/H. How can this be consistent with Special
Relativity? The resolution of the paradox is that, in General Relativity, the relative
velocity has no invariant meaning for objects whose separation exceeds 1/ H, which
represents the curvature scale. We will explore this point further in context of the
Milne universe (Section 1.3.5), following the discussion of Newtonian cosmology.

1.2 Dynamics of dust in Newtonian cosmology

We first consider an infinite, expanding, homogeneous and isotropic universe filled
with “dust,” a euphemism for matter whose pressure p is negligible compared
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to its energy density €. (In cosmology the terms “dust” and “matter” are used
interchangeably to represent nonrelativistic particles.) Let us choose some arbitrary
point as the origin and consider an expanding sphere about that origin with radius
R(t) = a(t) xcom- Provided that gravity is weak and the radius is small enough that
the speed of the particles within the sphere relative to the origin is much less than
the speed of light, the expansion can be described by Newtonian gravity. (Actually,
General Relativity is involved here in an indirect way. We assume the net effect on
a particle within the sphere due to the matter outside the sphere is zero, a premise
that is ultimately justified by Birkhoff’s theorem in General Relativity.)

1.2.1 Continuity equation

The total mass M within the sphere is conserved. Therefore, the energy density due
to the mass of the particles is

he_ M _ (@Y 1.11
0= (4n/3>R3<t>_8°<a(r)) ’ (10

where g is the energy density at the moment when the scale factor is equal ag. It
is convenient to rewrite this conservation law in differential form. Taking the time
derivative of (1.11), we obtain

aop 3 a
()= 3ego| — | — = -3He(®). (1.12)
a(t)) a
This equation is a particular case of the nonrelativistic continuity equation,
% o View) (1.13)
— = —V(ev), .
ot

if we take e(x, t) = ¢(¢) and v =H(¢)r. Beginning with the continuity equation
and assuming homogeneous initial conditions, it is straightforward to show that the
unique velocity distribution which maintains homogeneity evolving in time is the
Hubble law: v =H (¢)r.

1.2.2 Acceleration equation

Matter is gravitationally self-attractive and this causes the expansion of the universe
to decelerate. To derive the equation of motion for the scale factor, consider a probe
particle of mass m on the surface of the sphere, a distance R(¢) from the origin.
Assuming matter outside the sphere does not exert a gravitational force on the
particle, the only force acting is due to the mass M of all particles within the



10 Kinematics and dynamics of an expanding universe

sphere. The equation of motion, therefore, is

. GmM 4r M
MR = ——>—=——Gm—-——7—2R.
R? 3 (4n/3)R?
Using the expression for the energy density in (1.11) and substituting R(t) =
a(t)Xco;n, we obtain

(1.14)

4
0= —?”Gga. (1.15)

The mass of the probe particle and the comoving size of the sphere .., drop out
of the final equation.

Equations (1.12) and (1.15) are the two master equations that determine the
evolution of a(¢) and e(¢). They exactly coincide with the corresponding equations
for dust (p = 0) in General Relativity. This is not as surprising as it may seem
at first. The equations derived do not depend on the size of the auxiliary sphere
and, therefore, are exactly the same for an infinitesimally small sphere where all
the particles move with infinitesimal velocities and create a negligible gravitational
field. In this limit, General Relativity exactly reduces to Newtonian theory and,
hence, relativistic corrections should not arise.

1.2.3 Newtonian solutions

The closed form equation for the scale factor is obtained by substituting the expres-
sion for the energy density (1.11) into the acceleration equation (1.15):

i=——Gg—. (1.16)
a
Multiplying this equation by @ and integrating, we find

1
Eaz + V(@) =E, (1.17)

where E is a constant of integration and

4 Geoag
3a

Equation (1.17) is identical to the energy conservation equation for a rocket
launched from the surface of the Earth with unit mass and speed a. The integration
constant E represents the total energy of the rocket. Escape from the Earth occurs
if the positive kinetic energy overcomes the negative gravitational potential or,
equivalently, if E is positive. If the kinetic energy is too small, the total energy E is
negative and the rocket falls back to Earth. Similarly, the fate of the dust-dominated
universe — whether it expands forever or eventually recollapses — depends on the

Via) = —
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sign of E. As pointed out above, the normalization of a has no invariant meaning
in Newtonian gravity and it can be rescaled by an arbitrary factor. Hence, only the
sign of E is physically relevant. Rewriting (1.17) as

Jre. 2E  8nG
a3

we see that the sign of E is determined by the relation between the Hubble parameter,

which determines the kinetic energy of expansion, and the mass density, which
defines the gravitational potential energy.

In the rocket problem, the mass of the Earth is given and the student is asked to

compute the minimal escape velocity by setting £ = 0 and solving for the veloc-

ity v. In cosmology, the expansion velocity, as set by the Hubble parameter, has been

&, (1.18)

reasonably well measured while the mass density was very poorly determined for
most of the twentieth century. For this historical reason, the boundary between es-
cape and gravitational entrapment is traditionally characterized by a critical density,
rather than critical velocity. Setting £ = 0 in (1.18), we obtain

3H?
- 871G’
The critical density decreases with time since H is decreasing, though the term

“critical density” is often used to refer to its current value. Expressing E in terms
of the energy density &(¢) and the Hubble constant H (), we find

cr

(1.19)

_4nG , ., e\ _ 4nG , .,
E=—"a (1 8—) = s [1 - Q). (1.20)
where
Q) = 88(2) (1.21)

is called the cosmological parameter. Generally, €2(¢) varies with time, but because
the sign of E is fixed, the difference 1 — €2(¢) does not change sign. Therefore, by
measuring the current value of the cosmological parameter, ¢ = Q(#), we can
determine the sign of E.

We shall see that the sign of E determines the spatial geometry of the universe
in General Relativity. In particular, the spatial curvature has the opposite sign to E.
Hence, in a dust-dominated universe, there is a direct link between the ratio of the
energy density to the critical density, the spatial geometry and the future evolution
of the universe. If Qo = go/e5" > 1,then E < 0 and the spatial curvature is positive
(closed universe). In this case the scale factor reaches some maximal value and the
universe recollapses, as shown in Figure 1.3. When Qy < 1, E is positive, the spatial
curvature is negative (open universe), and the universe expands hyperbolically. The
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A
a(t)

Fig. 1.3.

special case of Q = 1, or E = 0, corresponds to parabolic expansion and flat spatial
geometry (flat universe). For both flat and open cases, the universe expands forever
at an ever-decreasing rate (Figure 1.3). In all three cases, extrapolating back to a
“beginning,” we face an “initial singularity,” where the scale factor approaches zero
and the expansion rate and energy density diverge.

The reader should be aware that the connection between 2 and the future
evolution of the universe discussed above is not universal, but depends on the
matter content of the universe. We will see later that it is possible to have a closed
universe that never recollapses.

Problem 1.3 Show that a — oo, H — oo and ¢ — oo whena — 0.

Problem 1.4 Show that, for the expanding sphere of dust, Q(¢) is equal to the
absolute value of the ratio of the gravitational potential energy to the kinetic en-
ergy. Since dust is gravitationally self-attractive, it decelerates the expansion rate.
Therefore, in the past, the kinetic energy was much larger than at present. To satisfy
the energy conservation law, the increase in kinetic energy should be accompa-
nied by an increase in the magnitude of the negative potential energy. Show that,
irrespective of its current value, Q2(t) — 1 asa — 0.

Problem 1.5 Another convenient dimensionless parameter that characterizes the
expansion is the “deceleration parameter”:

3
aH?

qg= (1.22)
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The sign of g determines whether the expansion is slowing down or speeding up.
Find a general expression for ¢ in terms of 2 and verify that ¢ = 1/2 in a flat
dust-dominated universe.

To conclude this section we derive an explicit solution for the scale factor in a
flat matter-dominated universe. Because E = 0, (1.17) can be rewritten as

a-a* = i(dam)z = const, (1.23)
9\ dt
and, hence, its solution is
a o« 1?3, (1.24)
For the Hubble parameter, we obtain
= 3 (1.25)
3t
Thus, the current age of a flat (E = 0) dust-dominated universe is
2
th = 3—Ho’ (1.26)

where Hj is the present value of the Hubble parameter. We see that the result is not
very different from the rough estimate obtained by neglecting gravity. The energy
density of matter as a function of cosmic time can be found by substituting the
Hubble parameter (1.25) into (1.18):

1
67Gt?’

Problem 1.6 Estimate the energy density at t = 107* s, 1 s and 1 year after the
big bang.

e(t) = (1.27)

Problem 1.7 Solve (1.18) in the limit # — oo for an open universe and discuss the
properties of the solution.

1.3 From Newtonian to relativistic cosmology

General Relativity leads to a mathematically consistent theory of the universe,
whereas Newtonian theory does not. For example, we pointed out that the
Newtonian picture of an expanding, dust-filled universe relies on Birkhoff’s theo-
rem, which is proven in General Relativity. In addition, General Relativity intro-
duces key changes to the Newtonian description. First, Einstein’s theory proposes
that geometry is dynamical and is determined by the matter composition of the
universe. Second, General Relativity can describe matter moving with relativistic
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velocities and having arbitrary pressure. We know that radiation, which has a pres-
sure equal to one third of its energy density, dominated the universe for the first
100000 years after the big bang. Additionally, evidence suggests that most of the
energy density today has negative pressure. To understand these important epochs
in cosmic history, we are forced to go beyond Newtonian gravity and turn to a fully
relativistic theory. We begin by considering what kind of three-dimensional spaces
can be used to describe a homogeneous and isotropic universe.

1.3.1 Geometry of an homogeneous, isotropic space

The assumption that our universe is homogeneous and isotropic means that its evolu-
tion can be represented as a time-ordered sequence of three-dimensional space-like
hypersurfaces, each of which is homogeneous and isotropic. These hypersurfaces
are the natural choice for surfaces of constant time.

Homogeneity means that the physical conditions are the same at every point of
any given hypersurface. Isotropy means that the physical conditions are identical
in all directions when viewed from a given point on the hypersurface. Isotropy
at every point automatically enforces homogeneity. However, homogeneity does
not necessarily imply isotropy. One can imagine, for example, a homogeneous yet
anisotropic universe which contracts in one direction and expands in the other two
directions.

Homogeneous and isotropic spaces have the largest possible symmetry group;
in three dimensions there are three independent translations and three rotations.
These symmetries strongly restrict the admissible geometry for such spaces. There
exist only three types of homogeneous and isotropic spaces with simple topology:
(a) flat space, (b) a three-dimensional sphere of constant positive curvature, and
(c) a three-dimensional hyperbolic space of constant negative curvature.

To help visualize these spaces, we consider the analogous two-dimensional ho-
mogeneous, isotropic surfaces. The generalization to three dimensions is straight-
forward. Two well known cases of homogeneous, isotropic surfaces are the plane
and the 2-sphere. They both can be embedded in three-dimensional Euclidean space
with the usual Cartesian coordinates x, y, z. The equation describing the embedding
of a two-dimensional sphere (Figure 1.4) is

x> 4 y2 + 72 =d?, (1.28)

where a is the radius of the sphere. Differentiating this equation, we see that, for
two infinitesimally close points on the sphere,

dz = _xdx + ydy _ 4 xdx + ydy

z a2 —x2— 2
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A
z

Fig. 1.4.

Substituting this expression into the three-dimensional Euclidean metric,
di* = dx* + dy* + dz°, (1.29)
gives

xdx + vdy)?
+( ydy)

dI* = dx* +dy* + =

(1.30)

a? —x2—y2’

In this way, the distance between a pair of points located on the 2-sphere is expressed
entirely in terms of two independent coordinates x and y, which are bounded,
X2+ y2 < a?. These coordinates, however, are degenerate in the sense that to every
given (x, y) there correspond two different points on the sphere located in the
northern and southern hemispheres. It is convenient to introduce instead of x and
y the angular coordinates r’, ¢ defined in the standard way:

x=r'cosg,y=r'sing. (1.31)
Differentiating the relation x> + y? = r'?, we have
xdx + ydy = r'dr’.
Combining this with

dx* +dy?* = dr’?® + r'*d¢?,
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the metric in (1.30) becomes

dr’?

> = ——
1 —(r?/a?)

+r%dg?. (1.32)
The limit a®> — oo corresponds to a (flat) plane. We can also formally take a’
to be negative and then metric (1.32) describes a homogeneous, isotropic two-
dimensional space with constant negative curvature, known as Lobachevski space.
Unlike the flat plane or the two-dimensional sphere, Lobachevski space cannot be
embedded in Euclidean three-dimensional space because the radius of the “sphere”
a is imaginary (this is why this space is called a pseudo-sphere or hyperbolic
space). Of course, this does not mean that this space cannot exist. Any curved
space can be described entirely in terms of its internal geometry without referring
to its embedding.

Problem 1.8 Lobachevski space can be visualized as a hyperboloid in Lorentzian
three-dimensional space (Figure 1.5). Verify that the embedding of the surface
x2 + y* — 22 = —a?, where a4 is positive, in the space with metric di*> = dx? +
dy? — dz? gives a Lobachevski space.

Introducing the rescaled coordinate r = r’/y/|a?|, we can recast metric (1.32)
as

di? = |a2|( B r2d<p2> (1.33)

1 —kr? ’ ’
where k = +1 for the sphere (a> > 0), k = —1 for the pseudo-sphere (a*> < 0) and
k = 0 for the plane (two-dimensional flat space). In curved space, |a?| characterizes
the radius of curvature. In flat space, however, the normalization of |a?| does not
have any physical meaning and this factor can be absorbed by redefinition of the
coordinates. The generalization of the above consideration to three dimensions is
straightforward.
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Problem 1.9 By embedding a three-dimensional sphere (pseudo-sphere) in a
four-dimensional Euclidean (Lorentzian) space, verify that the metric of a three-
dimensional space of constant curvature can be written as
2 o _dr? 20302 | a2 2
dl3d =a W +r (d@ -+ sin Qd(p ) , (134)
— kr

where a2 is positive and k = 0, &=1. Introduce the rescaled radial coordinate 7,
defined by

7
= 1.35
" T T k24 (1.35)
and show that this metric can then be rewritten in explicitly isotropic form:
dx? + dy* + dz?
dl§d=a2( ¥ +dy +d7) (1.36)

(1 + k72 /4)?

where
X =rFsinfcosp, y=rsinfsing, Z=7rcosH.

In many applications, instead of the radial coordinate r, it is convenient to use
coordinate y defined via the relation

dr?
dx* = 1.37
X 1 — kr? (137
It follows that
arcsinhr, k= —1;
x=1r k=0; (1.38)

arcsin r k= +1.

The coordinate x varies between 0 and +o0 in flat and hyperbolic spaces, while
m > x > 0 in spaces with positive curvature (k = +1). In this last case, to every
particular r correspond two different x . Thus, introducing x removes the coordinate
degeneracy mentioned above. In terms of x, metric (1.34) takes the form

sinh? x k=—1;
A2, = d*(dy® + D ()dD) =a® | dy> +| x* |d@® | k=0, (139
sin? x k=+1,
where
dQ? = (d0* + sin® 0d?). (1.40)

Let us now take a closer look at the properties of the constant curvature spaces.
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Three-dimensional sphere (k = +1) It follows from (1.39) that in a three-
dimensional space with positive curvature, the distance element on the surface
of a 2-sphere of radius y is

dI* = a*sin® x (d6* + sin® 0dp?). (1.41)

This expression is the same as for a sphere of radius R = asin x in flat three-
dimensional space, and hence we can immediately find the total surface area:

Sra(x) = 4w R? = 4ma’sin” . (1.42)

As the radius y increases, the surface area first grows, reaches its maximal value
at x = m/2, and then decreases, vanishing at x = 7 (Figure 1.6).

To understand such unusual behavior of a surface area, it is useful to turn to a
low-dimensional analogy. In this analogy, the surface of the globe plays the role of
three-dimensional space with constant curvature and the two-dimensional surfaces
correspond to circles of constant latitude on the globe. Beginning from the north
pole, corresponding to 6 = 0, the circumferences of the circles grow as we move
southward, reach a maximum at the equator, where 8 = 7 /2, then decrease below
the equator and vanish at the south pole, & = m. As 6 runs from 0 to 7, it covers the
whole surface of the globe. Similarly, as y changes from O to 7, it sweeps out the
whole three-dimensional space of constant positive curvature. Because the total
area of the globe is finite, we expect that the total volume of the three-dimensional
space with positive curvature is also finite.

A
Szd(X) |

\4

/2 UbY

Fig. 1.6.
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In fact, since the physical width of an infinitesimal shell is d/ = ad x, the volume
element between two spheres with radii xy and x + dy is

dV = Syuady = 4na’ sin® xdy.

Therefore, the volume within the sphere of radius yg is
Xo
Vixo) = A7a’ / sin® xdy = 271a3()(0 — % sin 2)(0). (1.43)
0

For xy <« 1, the volume,
V(xo) =4m(axo)’/3+-- .

grows in the same way as in Euclidean space. The total volume, obtained by sub-
stituting yo = 7 in (1.43), is finite and equal to

vV =2n%’. (1.44)

The other distinguishing property of a space of constant positive curvature is that
the sum of the angles of a triangle constructed from geodesics (curves of minimal
length) is larger than 180 degrees.

Three-dimensional pseudo-sphere (k = —1) The metric on the surface of a 2-
sphere of radius x in a three-dimensional space of constant negative curvature
is

dI* = a* sinh? x(d6” + sin® 0dp?), (1.45)
and the area of the sphere,
Sra(x) = 4ma’sinh? x, (1.46)

increases exponentially for y >> 1. Since the coordinate x varies from 0 to +oo,
the total volume of the hyperbolic space is infinite. The sum of angles of a triangle
is less than 180 degrees.

Problem 1.10 Calculate the volume of a sphere with radius xo in a space with
constant negative curvature.

1.3.2 The Einstein equations and cosmic evolution

The only way to preserve the homogeneity and isotropy of space and yet incorporate
time evolution is to allow the curvature scale, characterized by a, to be time-
dependent. The scale factor a(¢) thus completely describes the time evolution of
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a homogeneous, isotropic universe. In relativistic theory, there is no absolute time
and spatial distances are not invariant with respect to coordinate transformations.
Instead, the infinitesimal spacetime interval between events is invariant. There exist,
however, preferred coordinate systems in which the symmetries of the universe are
clearly manifest. In one of the most convenient of such coordinate systems, the
interval takes the form

2

d
=+ rdeZ) = gupdx®dx’,  (1.47)
;

ds* = dt* —dl3, = dt* — az(t)<1 B

where g, is the metric of the spacetime and x* =(z, r, 6, ¢) are the coordinates of
events. We will use the Einstein convention for summation over repeated indices:

galgdx“dxﬂ = Z galgdx“dxﬁ.
a.fp
Additionally, we will always choose Greek indices to run from O to 3 with O re-
served for the time-like coordinate. Latin indices run only over spatial coordinates:
i,l,...=1,2,3. The spatial coordinates introduced above are comoving; that is,
every object with zero peculiar velocity has constant coordinates r, 8, ¢. Further-
more, the coordinate ¢ is the proper time measured by a comoving observer. The
distance between two comoving observers at a particular moment of time is

f V _dstzzconst X Cl(l)

and, therefore, increases or decreases in proportion to the scale factor.
In General Relativity, the dynamical variables characterizing the gravitational
field are the components of the metric go4(x") and they obey the Einstein equations:

o I N .
Op =Ry = 30 R =~ Ay = 8n Gy (148)
Here
ard, are
o _ 12 12 s o o b
Rﬂ B V( axd  9xB + FVﬁFSU - Fyﬁrﬁg) (1.49)

is the Ricci tensor expressed in terms of the inverse metric g%V, defined via
8% g, = 8%, and the Christoffel symbols

1 08ys | 08sp  08yp
re, — —go( 28 _ %8B 1.50
2 (axﬂ T T o (1.50)

The symbol 8;’,‘ denotes the unit tensor, equal to 1 when o« = 8 and O otherwise;
R = R is the scalar curvature; and A = const is the cosmological term. Matter
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is incorporated in Einstein’s equations through the energy—momentum tensor, T’
(In General Relativity the term “matter” is used for anything not the gravitational
field.) This tensor is symmetric,

T = P19 = TP, (1.51)
and is (almost unambiguously) determined by the condition that the equations
aT*? JaxP =0 (1.52)

must coincide with the equations of motion for matter in Minkowski spacetime. To
generalize to curved spacetime, the equations of motion are modified:

g 0T

ap a Typ B ray _
T = ™ + T + T, T =0, (1.53)
where the terms proportional to I account for the gravitational field. Note that in
General Relativity these equations do not need to be postulated separately. They fol-
low from the Einstein equations as a consequence of the Bianchi identities satisfied

by the Einstein tensor:
ba = 0. (1.54)

On large scales, matter can be approximated as a perfect fluid characterized by
energy density &, pressure p and 4-velocity u“. Its energy—momentum tensor is

Tlg" =(e+ puug — pBg, (1.55)

where the equation of state p = p(e) depends on the properties of matter and must
be specified. For example, if the universe is composed of ultra-relativistic gas, the
equation of state is p = ¢/3. In many cosmologically interesting cases p = we,
where w is constant.

Problem 1.11 Consider a nonrelativistic, dust-like perfect fluid W~ 1,u <1,
p < ¢) in a flat spacetime. Verify that the equations 7%, 5 = 0 are equivalent to
the mass conservation law plus the Euler equations of motion.

Another important example of matter is a classical scalar field ¢ with potential
V (@). In this case, the energy—momentum tensor is given by the expression

1
Ty =¢%pp — <5<P’V<P,y - V(<ﬂ)) 8%, (1.56)

where

e

_ 7 o ay
=5 ¢ =870

@,
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Problem 1.12 Show that the equations of motion for the scalar field,
e+ —— =0, (1.57)

follow from Tf‘," o= 0.

If 9" ¢, > 0, then the energy—momentum tensor for a scalar field can be rewrit-
ten in the form of a perfect fluid ( 1.55) by defining

e=30"0, +V(), pP=39"0, Vi), u'=¢*Jore,. (158)
In particular, assuming that the field is homogeneous (3¢ /dx’ = 0), we have
e=10"+Vip).p=19’ - Vip). (159)

For a scalar field, the ratio w = p/¢ is, in general, time-dependent. Additionally,
w is bounded from below by —1 for any positive potential V and the weak energy
dominance condition, ¢ + p > 0, is satisfied. However, the strong energy domi-
nance condition, ¢ + 3p > 0, can easily be violated by a scalar field. For example,
if a potential V(¢) has a local minimum at some point ¢y, then ¢(t) = ¢ is a
solution of the scalar field equations, for which

p=—¢=—V(gpo). (1.60)

As far as Einstein’s equations are concerned, the corresponding energy—momentum
tensor,

T§ = V(go)s5, (1.61)
imitates a cosmological term

A = 87 GV (gp). (1.62)

The cosmological term can therefore always be interpreted as the contribution of
vacuum energy to the Einstein equations and from now on we include it in the
energy—momentum tensor of matter and set A = 0 in (1.48).

1.3.3 Friedmann equations

How are the Newtonian equations of cosmological evolution (1.12), (1.15) and
(1.18) modified when matter is relativistic? In principle, to answer this question we
must simply substitute the metric (1.47) and energy—momentum tensor (1.55) into
the Einstein equations (1.48). The resulting equations are the Friedmann equations
and they determine the two unknown functions a(¢) and &(¢) . However, rather than
starting with this formal derivation, it is instructive to explain how the nonrelativistic
equations (1.12) and (1.15) must be modified.
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If the pressure p within an expanding sphere of volume V is significant, then
the total energy, E = ¢V, is no longer conserved because the pressure does work,
—pdV. According to the first law of thermodynamics, this work must be equal to
the change in the total energy:

dE = —pdV. (1.63)

3

Since V o a’, we can rewrite this conservation law as

de = =3(¢e + p)dIna (1.64)
or, equivalently,
& =—-3H(e+ p). (1.65)

This relation is the new version of (1.12) and it turns out to be the energy conser-
vation equation, 7y*,, = 0, in an isotropic, homogeneous universe.

The acceleration equation is also modified for matter with nonnegligible pressure
since, according to General Relativity, the strength of the gravitational field depends
not only on the energy density but also on the pressure. Equation (1.15) becomes
the first Friedmann equation:

. 4
a= —?G(s—i-Sp)a. (1.66)

The real justification for the form of the pressure contribution is that the accelera-
tion equation (1.66) follows from any diagonal spatial component of the Einstein
equations. Multiplying (1.66) by a, using (1.65) to express p in terms of &, ¢ and
H, and integrating, we obtain the second Friedmann equation:

kK 87G
H 4= =" (1.67)
a 3

This looks like the Newtonian equation (1.18) with k = —2FE, though (1.67) applies
for an arbitrary equation of state. However, k is not simply a constant of integra-
tion: the O — O Einstein equation tells us that it is exactly the curvature introduced
before, that is, k = £1 or 0. For k = =£1, the magnitude of the scale factor a has a
geometrical interpretation as the radius of curvature.

Thus, in General Relativity, the value of cosmological parameter, 2 = ¢/¢“,
determines the geometry. If € > 1, the universe is closed and has the geome-
try of a three-dimensional sphere (k = +1); €2 = 1 corresponds to a flat universe
(k = 0); and in the case of Q2 < 1, the universe is open and has hyperbolic geometry
(k=-—1).

The combination of (1.67) and either the conservation law (1.65) or the accel-
eration equation (1.66 ), supplemented by the equation of state p = p(e), forms a
complete system of equations that determines the two unknown functions a(¢) and
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&(t). The solutions, and hence the future of the universe, depend not only on the
geometry but also on the equation of state.

Problem 1.13 From (1.65) and (1.67), derive the following useful relation:
, k
H=—-4nGE+ p)+ —- (1.68)
a

Problem 1.14 Show that, for p > —¢&/3, a closed universe recollapses after reach-
ing a maximal radius while flat and open universes continue to expand forever.
Verify that the spatial curvature term in (1.67), k/a?, can be neglected as a — 0
and give a physical interpretation of this result. Analyze the behavior of the scale
factor for the case —¢/3 > p > —e.

To conclude this section, let us reiterate the most important distinctions be-
tween the Newtonian and relativistic treatments of a homogeneous, isotropic uni-
verse. First, the Newtonian approach is incomplete: it is only valid (with justi-
fication from General Relativity) for nearly pressureless matter on small scales,
where the relative velocities due to expansion are small compared to the speed
of light. In Newtonian cosmology, the spatial geometry is always flat and, conse-
quently, the scale factor has no geometrical interpretation. General Relativity, by
contrast, provides a complete, self-consistent theory which allows us to describe
relativistic matter with any equation of state. This theory is applicable on arbi-
trarily large scales. The matter content determines the geometry of the universe
and, if k = %1, the scale factor has a geometrical interpretation as the radius of
curvature.

1.3.4 Conformal time and relativistic solutions

To find particular solutions of the Friedmann equations it is often convenient to
replace the physical time ¢ with the conformal time 7, defined as

_ [ (1.69)
n= P (t)’ .
so that dt = a(n)dn. Equation (1.67) can then be rewritten as
81 G
aﬂ+k&::¥%—aﬂ, (1.70)

where prime denotes the derivative with respect to . Differentiating with respect
to n and using (1.64), we obtain

47 G
d' +ka = 22 (¢ —3p)a’. (1.71)

3
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This last equation, which corresponds to the trace of the Einstein equations, is useful
for finding analytic solutions for a universe filled by dust and radiation.

In the case of radiation, p = &¢/3, the expression on the right hand side of (1.71)
vanishes and the equation reduces to

a" +ka=0. (1.72)
This is easily integrated and the result is

sinhn, k=-1;
a(n) =am - "N, k=0; (1.73)
sin 7, k=+1.

Here a,, is one constant of integration and the other has been fixed by requiring
a(n = 0) = 0. The physical time ¢ is expressed in terms of 1 by integrating the
relation dt = a dn:

(coshn —1), k=-1;
t=an - n*/2, k=0; (1.74)

(I —cosn), k=+1.
It follows that in the most interesting case of a flat radiation-dominated universe,
the scale factor is proportional to the square root of the physical time, a o +/, and
hence H = 1/2¢. Substituting this into (1.67), we obtain

3
& = ———= X a™*.
321 Gr?

Alternatively, the energy conservation equation (1.64) for radiation takes the form

(1.75)

de, = —4de,dIna, (1.76)

also implying that &, oc a™*.

Problem 1.15 Find H(n) and €2() in open and closed radiation-dominated uni-
verses and express the current age of the universe 7y in terms of Hy and 2. Analyze
the result for 2y < 1 and give its physical interpretation.

Problem 1.16 For dust, p = 0, the expression on the right hand side of (1.71) is
constant and solutions of this equation can easily be found. Verify that

(coshn—1), k=-1;
an) = an - { %, k= 0; (1.77)
(1 —cosn), k=+I.

For each case, compute H(n) and Q2(n) and express the age of the universe in terms
of Hy and 2. Show that in the limit 3 — 0, we have 7y = 1/Hy, in agreement
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with the Newtonian estimate obtained by ignoring gravity. (Hint Use (1.70) to fix
one of the constants of integration.)

The range of conformal time 7 in flat and open universes is semi-infinite, +00 >
n > 0, regardless of whether the universe is dominated by radiation or matter. For
a closed universe, 7 is bounded: 7 > n > 0 and 27 > n > 0 in the radiation- and
matter-dominated universes respectively.

Finally, we consider the important case of a flat universe with a mixture of matter
(dust) and radiation. The energy density of matter decreases as 1/a> while that of
radiation decays as 1/a*. Therefore, we have

mera= (@4 @)). o

where a,, is the value of the scale factor at matter—radiation equality, when &, = &,.
Equation (1.71) now becomes

2r G
"_ 3 geqaz’q (1.79)
and has a simple solution:
G
a(n) = Tseqajqﬁ + Cn. (1.80)

Again, we have fixed one of the two constants of integration by imposing the
condition a(n = 0) = 0. Substituting (1.78) and (1.80 ) into (1.70), we find the
other constant of integration:

C = (4nGeyal,/3)".

2
a(m) = deg ((i> + 2<1)) , (1.81)
77* n*

N = (1Geega?,/3) " = neg /W2 = 1) (1.82)

Solution (1.80) is then

where

has been introduced to simplify the expression. (The relation between 7, and 7.,
immediately follows from a(n.,) = a.,.) For n < n.,, radiation dominates and
a « 1. As the universe expands, the energy density of radiation decreases faster
than that of dust. Hence, for n > 1,4, dust takes over and we have a & n>.
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Problem 1.17 Verify that, for a nonflat universe with a mixture of matter and
radiation, one has

(nwsinhn +coshn — 1), k=-—1;

(nssinn + 1 — cos ), k=+1. (1.83)

a(’?) =dam - {

Problem 1.18 Consider a closed universe filled with matter whose equation of
state is w = p/e, where w is constant. Verify that the scale factor is then

1+ 3w 2/(143w)
a(n) = a,| sin 7 n+C , (1.84)

where C is a constant of integration. Analyze the behavior of the scale factor for
w=—1,—1/2,—1/3,0 and +1/3. Find the corresponding solutions for flat and
open universes.

1.3.5 Milne universe

Let us consider an open universe with k = —1 in the limit of vanishing energy
density, ¢ — 0. In this case, (1.67) simplifies to

at=1
and has a solution, a = t. The metric then takes the form
ds® = dt* — t*(dx* + sinh® xd?), (1.85)

and describes a spacetime known as a Milne universe. One might naturally expect
that the solution of the Einstein equations for an isotropic space without matter
must be Minkowski spacetime. Indeed, the Milne universe is simply a piece of
Minkowski spacetime described in expanding coordinates. To prove this, we begin
with the Minkowski metric,

ds®> = dt* — dr* — r?dQ>. (1.86)

Replacing the Minkowski coordinates t and r by the new coordinates ¢ and y,
defined via

T =tcoshy, r =tsinhy, (1.87)
we find that

dt* —dr? = di* — ’dy?,
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and hence the Minkowski metric reduces to (1.85). A particle with a given comoving
coordinate y moves with constant velocity

lv|=r/t =tanh y <1 (1.88)

in Minkowski space and its proper time, /1 — |v|27, is equal to the cosmological
time ¢. To find the hypersurfaces of constant proper time ¢, we note that

2 =1>—r2 (1.89)

The hypersurface + = 0 coincides with the forward light cone; the surfaces of con-
stant # > 0 are hyperboloids in Minkowski coordinates, all located within the for-
ward light cone. Hence, the Milne coordinates cover only one quarter of Minkowski
spacetime (Figure 1.7).

Despite its obvious deficiencies as a practical model, the Milne universe does
illustrate some useful points. First, it shows the similarities and differences between
an explosion (the popular misconception of the “big bang” ) and Hubble expan-
sion. The Milne universe has a center. It is apparent from the fact that the Milne
coordinates cover only one particular quarter of Minkowski spacetime. The curved
Friedmann universe has no center. Second, the Milne universe reveals the subtleties
in the physical interpretation of recessional velocity. If the recessional velocity of
a particle were defined as |u| = r/¢ = sinh y, it would exceed the speed of light
for y > 1. Of course, there can be no contradiction with the principles of Spe-
cial Relativity and we know that the particle is traveling on a physically allowed,
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time-like world-line. Special Relativity says that the speed measured using rulers
and clocks of the same inertial coordinate system never exceeds the speed of light.
In the definition of |u|, however, we used the distance measured in the Minkowski
coordinate system and the proper time of the moving particle. This corresponds
to the spatial part of the 4-velocity, which can be arbitrarily large. The Hubble
velocity in a Milne universe is also not bounded when defined in the usual way:
vy = ax = x. Only |v| = tanh x is well defined. Although both |u| and vy are
approximately equal to |v| for x < 1, for x > 1 they are very different and can
have no invariant meaning. In curved spacetime, the situation is even more compli-
cated. The inertial coordinate system can be introduced only locally, on scales much
smaller than the four-dimensional curvature scale, roughly 1/ H. Hence, the relative
Minkowski velocity, the quantity which can never exceed the speed of light, is only
defined for particles whose separation is much less than 1/H. Any definition of
relative velocities at distances larger than the curvature scale, where the Hubble law
predicts velocities which exceed unity, cannot have an invariant meaning. These
remarks may be helpful in clarifying the notion of “superluminal expansion,” a
confusing term sometimes used in the literature to describe inflationary expansion.

The Milne solution is also useful as an illustration of the difference between
3-curvature and 4-curvature. A “spatially flat” universe (k = 0) generically has
nonzero 4-curvature. For example, in the case of a dust-dominated universe with
Q = 1, space is nonempty and the Riemann tensor is nonzero. The Milne universe
is a complementary example with nonzero spatial curvature (k = —1) but zero
4-curvature. Milne coordinates correspond to foliating the locally flat spacetime
with spatially curved homogeneous three-dimensional hypersurfaces. Hence, when-
ever the term “flat” is used in cosmology, it is important to distinguish between
3-curvature and 4-curvature.

Generally, one does not have a choice of foliation if it is to respect the homogene-
ity and isotropy of space. In particular, if the energy density is changing with time,
the appropriate foliation is hypersurfaces of constant energy density. This choice is
unique and has invariant physical meaning. Empty space, however, possesses extra
time-translational invariance, so any space-like hypersurface has uniform “energy
density” equal to zero. The other example of a homogeneous and isotropic space-
time with extra time-translational invariance is de Sitter space. In the next section
we will see that de Sitter space can be covered by three-dimensional hypersurfaces
of constant curvature with open, flat and closed geometry.

1.3.6 De Sitter universe

The de Sitter universe is a spacetime with positive constant 4-curvature that is
homogeneous and isotropic in both space and time. Hence, it possesses the largest
possible symmetry group, as large as the symmetry group of Minkowski spacetime
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(ten parameters in the four-dimensional case). In this book, we pay special attention
to the de Sitter universe because it plays a central role in understanding the basic
properties of inflation. In fact, in most scenarios, inflation is nothing more than a
de Sitter stage with slightly broken time-translational symmetry.

To find the metric of the de Sitter universe, we use three different approaches
which illustrate different mathematical aspects of this spacetime. First, we obtain the
de Sitter metric in a way similar to that discussed in Section 1.3.1, namely, as a result
of embedding a constant curvature surface in a higher-dimensional flat spacetime.
For the sake of simplicity, we perform all calculations for two-dimensional surfaces.
The generalization to higher dimensions is straightforward. As a second approach,
we analytically continue metric (1.39), describing a homogeneous, isotropic three-
dimensional space of constant positive curvature with Euclidean signature, to obtain
a constant curvature space with Lorentzian signature. Finally, we obtain de Sitter
spacetime as a solution to the Friedmann equations with positive cosmological
constant.

De Sitter universe as a constant curvature surface embedded in Minkowski space-
time (two-dimensional case) Let us consider a hyperboloid

—24+x*+y*=H.2, (1.90)
embedded in three-dimensional Minkowski space with the metric
ds? = dz? —dx*® — dy>. (1.91)

This hyperboloid has positive curvature and lies entirely outside the light cone
(Figure 1.8). Therefore, the induced metric has Lorentzian signature. (We noted
in Problem 1.8 that Lobachevski space can also be embedded in a space with
Lorentzian signature. However, Lobachevski space corresponds to a hyperbolic
surface lying within the light cone and has an induced metric with Euclidean
signature.) To parameterize the surface of the hyperboloid, we can use x and y
coordinates. The metric of the hyperboloid can then be written as

,  (xdx +ydy)®

ds® = — —
x2+y>—H,

dx?* — dy?, (1.92)

where x2 + y% > HXZ. This is the metric of a two-dimensional de Sitter space-
time in x, y coordinates. As with the cases considered in Section 1.3.1, it is more
convenient to use coordinates in which the symmetries of the spacetime are more
explicit. The first choice is ¢, x coordinates related to x, y via

x = Hy'cosh(Hpt)cos x, y = Hj,'cosh(Hat)sin . (1.93)
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These coordinates cover the entire hyperboloid for 400 >t > —oc and 27w >
x > 0 (Figure 1.8), and metric (1.92) becomes

ds* = dt* — Hy? cosh>(Hxt)d x> (1.94)

In the four-dimensional case, this form of the metric corresponds to a closed universe
with &k = +1.
Another choice of coordinates, namely,

x = Hy'cosh(Ha?), y= Hj'sinh(H,7)sinhj, (1.95)
reduces (1.92) to a form corresponding to an open de Sitter universe:
ds* = di* — Hy* sinh*(H\T)d 3% (1.96)

The range of these coordinates is +00 > 7 > 0 and +00 > ¥ > —00, covering
only the part of de Sitter spacetime where x > HXI and z > 0 (Figure 1.9). More-
over, the coordinates are singular at 7 = 0.

Finally, we consider the coordinate system defined via

1 _ B}
x=Hy' |:cosh(HAt) -3 exp(HAt))'(2:| .y =Hy exp(HAD¥, (1.97)
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where +00 > f > —o0 and +00 > ¥ > —o0. Expressing z in terms of 7, ¥, one
finds that only the half of the hyperboloid located at x + z > 0 is covered by these
“flat” coordinates (Figure 1.10). The metric becomes

ds* = di* — Hy*exp QHADd 7> (1.98)

The relation between the different coordinate systems in the regions where they
overlap can be obtained by comparing (1.93), (1.95) and (1.97):

cosh(Hxt) cos x =cosh(H7) = cosh(Hf) — %exp (HAD) %2,

~ 2 1.
cosh(Ht) sin x =sinh(Hf) sinh § = exp (Hat) X. (1.99)

De Sitter spacetime via analytical continuation (three-dimensional case) Since a
de Sitter universe is a spacetime of constant positive curvature with Lorentzian
signature, it can be obtained by analytical continuation of a metric describing a
positive curvature space with Euclidean signature. To see how analytical continu-
ation changes the signature of the metric let us consider (1.39) describing a closed
universe(k = +1) . After the change of variables,

a—>H;1,X—>HAt,0—>X,(p—>0,
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Fig. 1.10.

it is recast as
ds* = —di}; = —dt® — Hy*sin*(Hyt)(d x? + sin® xd6?). (1.100)

Then, analytically continuing T — it + /2, we obtain a three-dimensional de
Sitter spacetime in the form of a closed Friedmann universe:

ds* = dt* — Hy? cosh>(Hat)(d x> + sin? xd6?). (1.101)

Note that the coordinate y varies only from O to &, covering the entire space. The
same construction works for a four-dimensional closed de Sitter universe.

To obtain an open de Sitter metric we must analytically continue two coordinates
in (1.100) simultaneously: T — i7 and x — i}, giving

ds* = di* — Hy* sinh®(H\7)(d%* + sinh? 3d6?). (1.102)
Generalizing the procedure to four dimensions is again straightforward.
De Sitter universe as a solution of Friedmann equations with cosmological constant

(four-dimensional case) A cosmological constant is equivalent to a “perfect fluid”
with equation of state py = —¢,. It follows from ( 1.64) that

d8v = —3(8V + pv)dlna =0,
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and hence the energy density stays constant during expansion. Substituting e, =
const into (1.66), we obtain

i—Hia =0, (1.103)
where
Hy, = (87Gep/3)'2
A general solution of this equation is
a = Crexp(Hpt) + Crexp(—Hpt), (1.104)

where C; and C, are constants of integration. These constants are constrained by
Friedmann equation (1.67):

4HZ;C(Cy = k. (1.105)

Hence, in a flat universe (k = 0), one of the constants must be equal to zero. If
C, # 0 and C, = 0, then (1.104) describes a flat expanding de Sitter universe and
we can choose C| = H,(l. If both C; and C, are nonzero, the time ¢t = 0 can be

chosen so that |C;| = |C;|. For a closed universe (k = +1), we have
Ci=C = L,
2H,
while for an open universe (k = —1),
Ci=-C= L
2H,
The three solutions can be summarized as
sinh?(H 1) sinh? x k=—1;
ds* =dt* — Hy?| expQHat) | |dx?> +| x*> |dQ*| k=0; (1.106)
cosh?(Hy 1) sin® x k=+1,

where the radial coordinate x changes from zero to infinity in flat and open uni-
verses. In contrast to a matter-dominated universe, where the spatial curvature is
determined by the energy density, here all three types of solutions exist for any given
value of ey. They all describe the same physical spacetime in different coordinate
systems. One should not be surprised that it is possible to cover the same spacetime
using homogeneous and isotropic hypersurfaces with different curvatures, since de
Sitter spacetime is translational invariant in time. Any space-like hypersurface is a
constant density hypersurface.

The behavior of the scale factor a(¢), shown in Figure 1.11, depends on the
coordinate system. In a closed coordinate system, the scale factor first decreases,
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then reaches its minimum value, and subsequently increases. In flat and open co-
ordinates, a(¢) always increases as ¢ grows but vanishes as t —- —oo and ¢ = 0,
respectively. However, the vanishing of the scale factor does not represent a real
physical singularity but simply signals that the coordinates become singular. For
¢t > Hy ', the expansion is nearly the same in all coordinate systems, namely, ex-
ponential with a o< exp(Ht).

Problem 1.19 Calculate H(¢) and 2(¢) in open and closed de Sitter universes.
Verify that H(t) — H, and Q(¢) — 1 ast — oo in both cases.

In a pure de Sitter universe, there is no real evolution. In this sense, de Sitter
spacetime is similar to Minkowski spacetime. As in the case of the Milne universe,
the apparent expansion reflects the nonstatic character of the chosen coordinate
systems. However, unlike Minkowski spacetime, there exists no static coordinate
system which can cover de Sitter spacetime on scales exceeding H,(l. We will see
later that only a de Sitter solution with slightly broken time-translational symmetry
plays an important role in physical applications. The notion of de Sitter expan-
sion is still useful in the presence of perturbations that break the exact symmetry,
and the coordinate systems (1.106) are well suited to study the behavior of these
perturbations and the subsequent exit from the de Sitter stage.

Problem 1.20 Verify that for a flat universe filled with radiation and cosmological
constant, the scale factor grows as

a(t) = ap(sinh 2H,1)'?, (1.107)
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where H, is defined in (1.103). Analyze and discuss the behavior of this solution
in the limits t — 0 and # — o0. Derive the corresponding solutions for k = +1.
(Hint Use (1.71), replacing the conformal time with the physical time.)

Problem 1.21 Show that the solution of (1.67) and (1.68) for a flat universe with
cold matter (dust) and cosmological constant is

3 2/3
a(t) =ao(sinh EHAt) . (1.108)

Verify that in this case the age of the universe is given by

2 1 1+ 41—,

In

to = ,
T 3H, JT-%, v,

where H, is the current value of the Hubble constant and €2, is the cold matter
contribution to the cosmological parameter today.

(1.109)

Problem 1.22 Given a nonvanishing cosmological constant, find the static solution
for a closed universe filled with cold matter (Einsteins’s universe). Why 1is this
solution unstable?

Problem 1.23 Find the solutions for an energy component with equation of state
p = —¢&/3 in the presence of a cosmological term. Discuss the properties of these
solutions.
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Propagation of light and horizons

We obtain most of the information about the universe from light. Over the last
century, the development of x-ray, radio and infrared detectors has given us new
windows on the universe. Understanding the propagation of light in an expanding
universe is therefore critical to the interpretation of observations.

Problem 2.1 Estimate the total amount of energy received by all optical telescopes
over the course of the last century and compare this energy to that needed to return
this book to your bookshelf.

There is a fundamental limit to how far we can see, since no particles can travel
faster than light. The finite speed of light leads to “horizons” and sets an absolute
constraint on our ability to comprehend the entire universe. The term “horizon”
i1s used in different contexts in the literature, often without clear definition, and
one of the purposes of this chapter is to carefully delineate the various usages.
We will study in detail conformal diagrams, which are a useful pictorial way of
representing horizons and the causal global structure of spacetime. Finally, we
discuss the basic kinematical tests which aim to measure the distance, angular
size, speed and acceleration of distant objects. Using these tests, one can obtain
information about the expansion rate and deceleration parameter at earlier times,
and thus probe the evolutionary history of the universe.

2.1 Light geodesics

In Special Relativity, the spacetime interval along the trajectory of a massless
particle propagating with the speed of light is equal to zero:

ds* = 0. 2.1)

37
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In General Relativity, the same must be true in every local inertial coordinate frame.
Then, since the interval is invariant, the condition ds?> = 0 should be valid along
the light geodesic in any curved spacetime.

We consider mainly the radial propagation of light in an isotropic universe in a
coordinate system where the observer is located at the origin. The light trajectories
look especially simple if, instead of physical time ¢, we use the conformal time

_ /‘ dt
=) awy
The metric (1.47) in n, x coordinates is
ds* = a*(n)(dn* — dx?* — ®*(x)(d6* + sin’ 0dp?)), (2.2)

where

sinh® y, k= —1;
DX (x) =1 x% k=0; (2.3)
sin? x,  k=+1.

By symmetry, it is clear that the radial trajectory €, ¢ = const is a geodesic. The

function x(n) along the trajectory is then entirely determined by the condition
ds*> =0, or

dn* —dy*=0. 2.4)
Hence, radial light geodesics are described by
x(n) = £n + const, (2.5)

and correspond to straight lines at angles & 45° in the n—y plane.

2.2 Horizons

Farticle horizon If the universe has a finite age, then light travels only a finite
distance in that time and the volume of space from which we can receive information
at a given moment of time is limited. The boundary of this volume is called the
particle horizon. Today, the universe is roughly 15 billion years old, so a naive
estimate for the particle horizon scale is 15 billion light years.

According to (2.5), the maximum comoving distance light can propagate is

t
dt
Xp(M)=n—mn = — (2.6)
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where n; (or ;) corresponds to the beginning of the universe. At time 7, the infor-
mation about events at x > x,(7) is inaccessible to an observer located at x = 0.
In a universe with an initial singularity, we can always set n; = #; = 0, but in some
nonsingular spacetimes, for example, the de Sitter universe, it is more convenient
to take n; # 0. Multiplying x, by the scale factor, we obtain the physical size of
the particle horizon:

(i
d,(t) = a(t)x, = a(t) f — 2.7)

Until hydrogen recombination (see Section 3.6), which occurred when the uni-
verse was 1000 times smaller than now, the universe was opaque to photons. There-
fore, in practice, our view is limited to the maximum distance light can travel since
recombination. This is called the “optical” horizon:

: d
dops = a(m)n — 1) = ar) / = 2.8)

Problem 2.2 Calculate 1, /n¢ in a dust-dominated universe and verify that the
present optical horizon is less than the particle horizon by only a small percentage.

Although the optical horizon is not very different from the particle horizon, it
unfortunately obscures information about the most interesting stages of the evolu-
tion of the early universe. Primordial neutrinos and gravitational waves decouple
from matter before photons, and so could, in principle, bring us this information.
Sadly, the short-term prospects of detecting primordial neutrinos or cosmological
gravitational waves are not very promising.

Let us calculate the size of the particle horizon in flat matter-dominated and
radiation-dominated universes. Substituting a(t) ?/3 into (2.7), we find that in
a matter-dominated universe d,(t) = 3¢ (¢ = 1). If the universe is dominated by
radiation, then a(t) o t'/? and, correspondingly, d,(t) =2t.

Problem 2.3 Calculate the size of the particle horizon in a dust-dominated universe
with an arbitrary value of the current cosmological parameter 25 and show that
2

00) = gy

2.9

where the function @ is defined in (2.3).

Curvature scale (“Hubble horizon” ) vs. particle horizon When matter satisfies the
strong energy dominance condition, ¢ + 3p > 0, the particle horizon is usually of
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order the Hubble scale, 1/ H. Consequently, the terms “Hubble scale” and “particle
horizon” are sometimes used interchangeably. Some authors even conjoin the terms
and refer to a “Hubble horizon.” However, the Hubble scale, H~!, is conceptually
distinct from a horizon. Whereas the particle horizon is a scale set by kinematical
considerations, the curvature scale is a dynamical scale that characterizes the rate
of expansion and enters the equations describing, for instance, the evolution of
cosmological perturbations. Because H ! is of order the 4-curvature scale, it also
characterizes the “size” of the local inertial frame.

Although the Hubble scale and particle horizon are of similar magnitudes for
some models, they can differ by a large factor when the strong energy condition
is violated, ¢ 4+ 3p < 0. In this case, from (1.66), & > 0, that is, the expansion is
accelerating. Then, the integral in the expression

d,(t) = a(t)/% = a(t)/d—é_l (2.10)

aa

converges ast — oo and a — 00. Atlarge t , the particle horizon is proportional to
a(t), but the curvature scale, H~! = a/a, grows more slowly since @ also increases
during accelerated expansion. For instance, the particle horizon in a flat de Sitter
universe, where a(t) o exp (Hpt), is

dy(t) = exp(Hxt) /exp(—HAt)dt = Hgl(exp(HA(t —t) —1). (2.11)

For t —t; > Hj ', the size of the causally connected region grows exponentially
fast, whereas the curvature scale, Hy', is constant. Formally, as t; — —o0, the
particle horizon diverges, and hence all points were in causal contact. However,
this has limited significance since the flat slicing of de Sitter spacetime is geodesi-
cally incomplete (see next section). Moreover, when applied as an approximation
for inflation, we use only a part of the whole de Sitter spacetime. The beginning
of inflation corresponds to a finite initial time #; and, consequently, the particle
horizon is finite.

Despite the fact that the curvature scale is not, if properly considered, a horizon,
the use of the term “Hubble horizon” has become so widespread that we will
occasionally follow the “traditional terminology.” However, the reader is strongly
advised to keep in mind the distinction between the dynamical curvature scale and
the kinematical horizon.

Event horizon The event horizon is the complement of the particle horizon. The
event horizon encloses the set of points from which signals sent at a given moment
of time n will never be received by an observer in the future. These points have
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comoving coordinates

nmﬂx
X > xe(m) = / dn = Nmes — 1. 2.12)
n

Hence, the physical size of the event horizon at time ¢ is

de(t)za(t)/ %, (2.13)

where “max” refers to the final moment of time. If the universe expands forever,
then 7,,,« 1s infinite. However, the value of n,,x, and hence d., can be either infinite
or finite depending on the rate of expansion. In flat and open decelerating universes,
fmax and nmax are both infinite, x, and d, diverge, and so there is no event horizon.
However, if the universe undergoes accelerated expansion, then the integral in (2.13)
converges and the radius of the event horizon is finite, even if the universe is flat or
open. In this case, n approaches a finite limit 9pax, aS fmax — OC.
An important example is a flat de Sitter universe, where

d.(t) = exp(HAt)/exp(—HAt) dt = Hgl, (2.14)
t

that is, the size of the event horizon is equal to the curvature scale. Every event
that occurs at a given moment of time at a distance greater than HXl will never be
seen by an observer and cannot influence his future because the intervening space
is expanding too rapidly. For this reason, the situation is sometimes characterized
as “superluminal expansion.”

In a closed decelerating universe, the time available for future observations is
finite since the universe ultimately collapses. Therefore, there is both an event
horizon and a particle horizon.

Problem 2.4 Verify that, in a closed, radiation-dominated universe, the curvature
scale H ! is roughly equal to the particle horizon size at the beginning of expansion
but roughly coincides with the radius of the event horizon during the final stages
of collapse.

2.3 Conformal diagrams

The homogeneous, isotropic universe is a particular case of a spherically symmetric
space. The most general form of metric respecting spherical symmetry is

ds® = gap(x€)dx®dx’ — R*(x°)dQ?, (2.15)
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where the indices a, b and ¢ run over only two values, 0 and 1, corresponding to
the time and radial coordinates respectively. The angular part of the metric is rather
simple. It is proportional to

dQ? = d6? + sin® 0dy? (2.16)

and describes a 2-sphere of radius R(x¢). The only nontrivial piece of the metric is
the temporal-radial part, which can describe spaces with different causal structure.
The causal structure can be represented by a two-dimensional conformal diagram,
in which every point corresponds to a 2-sphere.

The global properties of the spacetime can be completely explored by considering
the radial geodesics of light. As we showed in Section 2.1, in a coordinate system
where metric (2.15) takes the form

ds® = a*(n, O[dn® — dx* — @*(n, ) dQ’], 2.17)
the radial propagation of light is described by the equation
x(n) = £n + const, (2.18)

or in other words, by straight lines at 45 degree angles in the n—yx plane.
In principle, it is always possible to find a coordinate system that allows us to
write (2.15) as (2.17). In the coordinate transformation

X — &= (n(x"), x (),

the freedom to choose the two functions n and y means we can impose the two
conditions

801=0, &oo=&=a® x)

Solving the equations for n and x can be difficult in general, but in cosmologically
interesting cases the metric is already in the required form.

Typically, n and x may extend over infinite or semi-infinite intervals. Since
our goal is to visualize the causal structure of the full spacetime, in these cases
we perform a further coordinate transformation that preserves the form of metric
(2.17) but maps unbounded coordinates into coordinates which vary over a finite
interval. We shall see that it is always possible to find such transformations. In this
section, we reserve the symbols 1 and x to refer only to bounded coordinates.

A conformal diagram is a picture of a spacetime plotted in terms of 1 and .
Hence, a conformal diagram always has finite size and light geodesics (null lines)
are always represented by straight lines at £45 degree angles. These are the defining
features of a conformal diagram. Although the finite ranges spanned by the coordi-
nates and the size of the diagram can be altered, its shape is uniquely determined.
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Note that the diagrams of different spacetimes are exactly the same if their metrics
are related by a nonsingular conformal transformation: g, = a*(x) g,.,-

In addition to the shape of the diagram, we must pay attention to the location of
singularities. Singularities, as well as the boundaries of the diagram, are determined
by the behavior of the scale factor a(#, x) and the function ®(n, x) in (2.17). We
will see that it is possible to have two spacetimes whose conformal diagrams have
the same shape but different singular boundaries.

Closed radiation- and dust-dominated universes For a closed universe filled with
radiation or dust, the conformal diagram can be immediately drawn based on the
solutions for a(n) found in Section 1.3.4. Metric (2.2) becomes

ds* =a’ n) (dn2 — d)(2 — sin? Xa’Qz), (2.19)

where
a =ay,sin n (2.20)

in a radiation-dominated universe and
a = a,(l —cos n) (2.21)

in a dust-dominated universe (see (1.73) and (1.77)). In both cases, x and n have
finite ranges and cover the whole spacetime:

T >y >0, T >n>0, (2.22)
for a radiation-dominated universe and
T >y >0, 27 >n >0, (2.23)

for a dust-dominated universe. The conformal diagrams are a square and rectangle
respectively, and are shown in Figures 2.1 and 2.2. Horizontal and vertical lines
represent hypersurfaces of constant n and x. The lower and upper boundaries
correspond to physical singularities where the scale factor vanishes and the energy
density and curvature diverge. In both cases, the lower half of the diagram describes
an expanding universe and the upper half corresponds to a contracting phase. The
scale factor reaches its maximum value at n = /2 in the radiation-dominated
universe and at n = 7 in the dust-dominated universe.

The essential difference between the diagrams is the comparative ranges of 7
and x: for the dust-dominated universe n has twice the range of x, while 1 and
x have the same range for the radiation-dominated universe. This has important
consequences for the particle and event horizons. In both cases, we can set ; = 0
at the lower boundary of the diagram. Then the particle horizon for the observer at
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x = 0 is given by
xp(m) =n—mn;i =n. (2.24)

In the radiation-dominated universe, the particle horizon spans the whole space
when n — m, that is, just as the universe recollapses. At this last moment of time,
all points in space become visible. The light that reaches an observer from the
most remote point, x = 7, reveals information about the state of the universe at the
beginning of expansion. In the dust-dominated universe, the whole universe also
becomes entirely visible at n = 7. However, here this corresponds to the moment
of maximum expansion. There remains enough time for light to make a second trip
across the whole space before the universe recollapses.
The event horizon is given by

Xe(M) = Nmax — 1. (2.25)

In the radiation-dominated universe, there exists an event horizon for any 7 since
Nmax = 7. In contrast, for the dust-dominated universe, where n,,,x = 27, the event
horizon exists only during the contraction phase when > . All events that occur
at n < m, no matter how far away, can be seen before the universe recollapses.

In summary, as shown in Figures 2.1 and 2.2, particle and event horizons ex-
ist at each 7 in the closed radiation-dominated universe. In the matter-dominated
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universe, the particle horizon exists only during the expansion phase, and the event
horizon exists only during the contraction phase.

The points x = 0, & are the opposite poles of the three-dimensional sphere
describing the spatial geometry at any given moment of time. Light propagating
with constant 6, ¢ away from an observer located at y = O reaches the opposite
pole at x = 7. Because the coordinate system we are using is singular at the poles,
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to clarify what happens to light after passing through the pole, one has to use another
coordinate system which is regular near y = .

Problem 2.5 Show that light propagating away from an observer at y = 0 in the
direction (6, ¢) begins to propagate back towards the observer along the direction
(6 =7 — 6, p = ¢+ m) after it passes through the pole at x = 7.

Thus, a light geodesic is “reflected” from the boundary at x = & and its angular
coordinates 6 and ¢ change. This change of the angular coordinates is not apparent
from the conformal diagram because they are suppressed there.

Let us use a conformal diagram to infer how a galaxy located at x = x, =
const appears to an observer at x = 0 in a dust-dominated universe. As is clear
from Figure 2.2, at n > 27 — x,, when the universe is contracting, there are two
geodesics along which light emitted by the galaxy can reach the observer. Hence, the
observer simultaneously sees two images of the same galaxy in opposite directions
in the sky. One image is older than the other by An = 2(m — x,). In a radiation-
dominated universe, only one image of the galaxy can be seen because light does
not have enough time to travel around the pole at x = 7 and reach an observer
before the universe recollapses.

Problem 2.6 Using (1.83), draw the conformal diagram for a closed universe filled
with a mixture of dust and radiation.

De Sitter universe De Sitter spacetime is an example of how different coordinate
systems used for the same spacetime can lead to different conformal diagrams. We
begin by rewriting metric (1.106) in terms of conformal time instead of physical
time ¢. For a closed universe, the relation is

t
- / d — arcsin[tanh(H,1)] — — (2.26)
= H ' cosh(H 1) B A 2° '

The conformal time 7 is always negative and ranges from — to O as ¢ varies from
—00 to 4o00. It follows from (2.26) that

cosh(Hat) = — (sinn)™!, (2.27)
which allows us to write the metric of the closed de Sitter universe as

ds? (dn* — dx* — sin® xdQ?). (2.28)

Hi sin? 7

Since the spatial coordinate y varies from O to 7 and the temporal coordinate n
changes from —m to 0, the conformal diagram for a closed de Sitter universe is
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a square. In fact, it has the same shape as the diagram for a closed, radiation-
dominated universe, with the difference that there are no singularities at n; = —m
and nmax = 0 — see Figure 2.3. Moreover, in a de Sitter universe, the scale factor,
a(n) = —1/Hj sinn, is infinite at the lower boundary of the diagram where n —
—m , decreases as n changes from —m to —7 /2, reaches its minimum value 1/Hj,
and then grows to infinity again as n — 0. The blowing up of the scale factor does
not signify a singularity. We have seen that all curvature invariants are constant in
de Sitter spacetime, and hence, the infinite growth of the scale factor is entirely a
coordinate effect.

As with the closed radiation-dominated universe, de Sitter spacetime has both a
particle horizon,

xXpM=m—n)=n+m, (2.29)

and an event horizon,

Xe(n) = (nmax - 77) =-n, (230)

which exist at any time 5. In both the closed de Sitter and radiation-dominat-
ed universes, the physical size of the event horizon d, (¢) approaches the curvature
scale H~! near the upper boundary of the conformal diagram. However, in de Sitter
spacetime, H, and consequently the size of the event horizon, remain constant; in a
radiation-dominated universe, H increases and the size of the event horizon shrinks.
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Problem 2.7 One can utilize for de Sitter spacetime the so called “static coordi-
nates” 7, r, related to i, x via

R cos sin
tanh(Hp?) = 0 Hpr = % 2.31)
cos sinn
Verify that in these coordinates the metric takes the following form:
ds* = [1 — (Hxr)*]d* — A (2.32)
[1 — (Har)?]

The hypersurfaces of constant » and 7 are shown in Figure 2.4. De Sitter horizons
correspond to r = HXI and 7 = +oo. The static coordinates cover only half of de
Sitter spacetime: regions I and III in Figure 2.4. They are singular on the horizons
but can be continued beyond. For r > H ', the radial coordinate r plays the role
of time and 7 becomes a space-like coordinate. Introduce the proper-time

1/2

dt = dr/[(Har)* — 1] (2.33)

and verify that in regions II and IV the “static” metric (2.32) describes contracting
and expanding space respectively. We conclude that there exists no static coordinate
system covering de Sitter spacetime on scales exceeding the curvature scale. Note
that the trajectory r = const is a geodesic only if » = 0.
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In a flat de Sitter universe, the scale factor grows as a(f) = HXI exp(HAT),
where the physical time 7 is related to the conformal time 7 via

exp(Hpf) = —1/7. (2.34)
Hence, in conformal coordinates the metric becomes
1
ds® = di? —dy* — 32dQ?) , 2.35
g T — 4 = 14 (2.35)

where 0 > 7 > —oo and 400 > j > 0. Unlike the case of a closed de Sitter uni-
verse, here 7, ¥ have infinite ranges and to draw the conformal diagram, we must
first transform to coordinates which range over finite intervals. Fortunately, there
is a natural choice for such coordinates: we simply use the 1, x coordinates of the
closed de Sitter universe. The relation between 7, ¥ and 1, x coordinates immedi-
ately follows from (1.99) if we express # and 7 in terms of 1 and 7 respectively. The
result is

sin i sin

P , = — 2.36
L cosn + cos x X CoS 1 + COS X ( )

Using these relations, one can draw the hypersurfaces of constant 77 and jy (the
coordinates in (2.35)) in the n—yx plane, as shown in Figure 2.5. We find that when
1, ¥ coordinates run over their semi-infinite ranges, they cover only half of de Sitter

X = const 10

0 o

1 = const

/
\ I

\

-7

Fig. 2.5.
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spacetime, a triangle whose lower boundary coincides with the particle horizon. On
the particle horizon, ) — —o0, ¥ — + 00, and hence, the flat coordinates become
singular.

Problem 2.8 To understand the shape of the constant # and constant ¥ hypersur-
faces near the corners of the triangular conformal diagram, ¥y =0, n = —x and
x =, n = 0, calculate the derivatives dn/d y along these hypersurfaces.

Viewing the flat de Sitter solution as describing an infinite space, we can cat-
egorize the types of infinities that arise. For instance, space-like infinity, where
X — oo along a hypersurface of constant 7, is represented on the conformal di-
agram by a point which is denoted as i®. The past time-like infinity, from where
all time-like lines emanate, occurs at ) — —oo for finite ¥ and is denoted by i .
The lower diagonal boundary of the flat de Sitter diagram corresponds to the region
from which incoming light-like geodesics originate. It is easy to verify that as we
approach this boundary, ¥y — oo and 7 — — oo but the sum x + 7 remains finite.
This infinity is called past null infinity and denoted by . ~.

In an open de Sitter universe, the relation between physical and conformal times
is

sinh (Hx7) = —1/ sinh 7 (2.37)
and the metric becomes
1
ds’ = ————— (d7® — d3? — sinh? 3d?) . 2.38
Hi sinh? n ( 7 X X ) ( )

The coordinates run over the same range as in a flat de Sitter universe, 0 > 7 > —oo
and +o00 > ) > 0, therefore the conformal diagrams of these two spaces will look
similar. We can again use the closed coordinates to determine which part of the
de Sitter spacetime is covered by the open coordinates. The corresponding relation
between coordinate systems follows from (1.99):

sin x

sin
tanh 7] = 7 , tanhjy = .
cos X cosn

(2.39)

In this case, the coordinates #, ¥ cover only one eighth of the whole de Sitter
spacetime (Figure 2.6), and thus, cover an even smaller part of the de Sitter manifold
than the flat coordinates. Of course, it only makes sense to compare the sizes of
different diagrams when they describe the same spacetime, as in the case of the de
Sitter manifold. Otherwise, as noted before, the size of the diagram has no invariant
meaning.

Problem 2.9 Calculate the derivative dn/dx along the hypersurfaces 7} = const
and ¥ = const, near i~ and i° respectively.
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The conformal diagrams show explicitly that flat and open de Sitter universes
are geodesically incomplete. For instance, following a geodesic for a photon, which
arrives at x = 0, into its past, we find that this geodesic leaves first the open and
then the flat de Sitter region.

Finally, we note that the hypersurfaces of constant time in all coordinate systems
become increasingly flat and similar for x < 7 /2 as n — 0~. In this limit, the
scale factor is inversely proportional to conformal time or, equivalently, increases
exponentially with physical time.

The reader may naturally wonder why we need to study the same de Sitter
spacetime in three different coordinate systems. As mentioned previously, the de
Sitter spacetime is useful in a practical sense because it can be viewed as the leading
order approximation to a universe undergoing inflationary expansion. In realistic
inflationary models, time-translational invariance is broken and the energy density
varies slightly with time. The hypersurface along which inflation ends is usually the
hypersurface of constant energy density and the geometry of the future Friedmann
universe depends on its shape. It can, in principle, be the surface of constant time
in closed, flat or open de Sitter coordinates and, as a result of a graceful exit from
inflation, one obtains a closed, flat or open Friedmann universe respectively.

The full cosmic history can be represented by gluing together the pieces of
conformal diagrams describing different phases of the universe’s evolution. When
gluing these pieces, however, one should not forget that every point of the diagram
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corresponds to a 2-sphere and that the 3-geometries of hypersurfaces along which
the diagrams are glued must match.

To complete the set of the diagrams needed in cosmology, we must also con-
struct the conformal diagrams describing open and flat universes filled by matter
and radiation. As a preliminary step, we first consider the conformal diagram for
Minkowski spacetime, which turns out to be useful in drawing the diagrams of
more complicated infinite spaces.

Minkowski spacetime In spherical coordinates the Minkowski metric takes the form
ds* = dt* — dr* — r?dQ>. (2.40)

It is trivially conformal but the time and radial coordinates range over infinite
intervals, +00 > t > —o0 and 400 > r > 0, and, therefore, have to be replaced
by coordinates with finite ranges. There exist many such coordinate systems for
Minkowski spacetime. One choice is to introduce 1 and x coordinates which are
related to the ¢ and r coordinates in the same way as closed and open de Sitter
coordinates are related (see (2.39)), namely,

inn

tanhf = - tanhr = 22X (2.41)
cos x cos 7
The Minkowski metric in the new coordinates then becomes
1
ds* = (dn* —dx* — ¥ (n, x)dQ?), (2.42)

~ cos? x —sin®
where W can be calculated but is not important for our purposes. Comparing the
Minkowski time ¢ to 7 in an open de Sitter universe (2.39), we see that ¢ runs from
—o00 to +00, while 7 is restricted to negative values (because the scale factor in
open de Sitter spacetime blows up as ) — 07). Therefore, in the n—x plane, the
hypersurfaces of constant ¢ and r span a large triangle, which can be thought of
as made from two smaller triangles describing the open de Sitter spacetime and its
time-reversed copy (Figure 2.7). Minkowski spacetime possesses two additional
types of infinities compared to an open de Sitter universe: a future time-like infinity
i*, where all time-like lines end (t — +o0, r is finite) , and a future null infinity
It (t - 400, r > +oo with ¢ — r finite), the region towards which outgoing
radial light geodesics extend. Region I in Figure 2.7 corresponds to a future light
cone which can also be covered by Milne coordinates. The Milne conformal diagram
is geometrically similar to the Minkowski one, though it is four times smaller.

Problem 2.10 Draw the conformal diagram for the Milne universe and verify this
last statement.
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Open and flat universes Now we will use the Minkowski conformal diagram to
construct the diagram for open and flat universes dominated by matter satisfying
the strong energy dominance condition, € + 3p > 0. The metric is

ds* = a* (i) (di* —dg* — *(3)dQ?), (2.43)

where the scale factor a vanishes at a singularity occurring at 7 = 0. (Here we have
added tildes to the notation in (2.2) since n, x are reserved for coordinates with
finite ranges.) The conformal time 7 is confined to the range (0, +00) . Since ® ()
is equal to ¥ for a flat universe and to sinh ¥ for an open universe, in both cases
X changes from 0 to +o0. For 7} > 0, the temporal-radial part of metric (2.43) is
related to the Minkowski metric (2.40) by a nonsingular conformal transformation.
The coordinates ¢ and r considered in the upper half of Minkowski spacetime (¢ > 0)
span the same range as the 7, ¥ coordinates. Hence, the conformal diagrams of open
and flat universes should have the same shape as the upper half of the Minkowski
conformal diagram (Figure 2.8). The hypersurfaces of constant #) and constant j¥
can then be drawn in the n—y plane, where 5, x are related to 7, ¥ as in (2.41) with
the substitutions t — #) and r — . In open and flat universes, the lower boundary
(f7 = 0) corresponds to a physical singularity.
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Problem 2.11 Draw the conformal diagram for open and flat universes where
the scale factor changes as a(¢) o< t”, p > 1. This is the situation for power-law
inflation. Note that the strong energy condition is violated in this case. Indicate the
particle and event horizons and the types of infinities. Draw the conformal diagram
for a flat universe filled by matter with equation of state p = —e /3. Compare this
case with the Milne universe.

Problem 2.12 The metric of an eternal black hole in the Kruskal-Szekeres coor-
dinate system takes the form

ds* = a*(v, u)(dv2 —du® — ¥ (v, u)sz) . (2.44)

The only extra information we need to draw the conformal diagram is that the space-
like coordinate u ranges from —oo to 400 and that there is a physical singularity
located at

v —u?=1.

The existence of a singularity means that, for every u, the spacetime cannot be
extended outside the interval

—V14u?<v<+v1+u2
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Draw the conformal diagram for the eternal black hole and identify the types of

infinities. The Schwarzschild radius of the black hole is located at v? = u?.

2.4 Redshift

The expansion of the universe leads to a redshift of the photon wavelength. To
analyze this effect, let us consider a source of radiation with comoving coordinate
Xem» Which at time 7., emits a signal of short conformal duration Az (Figure 2.9).
According to (2.5), the trajectory of the signal is

X (M) = Xem — (1 — Nem)

and it reaches a detector located at x,ps = 0 at time 1yps = Nem + Xem. Lhe confor-
mal duration of the signal measured by the detector is the same as at the source,
but the physical time intervals are different at the points of emission and detection.
They are equal to

Aty = a(Mem)An  and Aty = a(Nops) AN

respectively. If At is the period of the light wave, the light is emitted with wavelength
Aem = At,,;, but is observed with wavelength A,,; = At,py, SO that

)\'obs . a(nobs)
Aem a(Mem) ‘

(2.45)

Nobs+ AN

Nobs \ \

\/

nem 4

Fig. 2.9.
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Thus, the wavelength of the photon changes in proportion to the scale factor, A(f)
a (t), and its frequency, @ o 1/A, decreases as 1/a.

The Planck distribution, characterizing blackbody radiation, has the important
property that it preserves its shape as the universe expands. However, because each
photon is redshifted,  — w/a, the temperature T scales as 1/a. Therefore, the
energy density of radiation, which is proportional to T*, decreases as the fourth
power of the scale factor, in complete agreement with what we obtained earlier for
an ultra-relativistic gas with equation of state p = ¢/3. The number density of the
photons is proportional to T3, and therefore decays as the third power of the scale
factor so that the fotal number of photons is conserved.

Redshift as Doppler shift The cosmological redshift can be interpreted as a Doppler
shift associated with the relative motion of galaxies due to Hubble expansion. If
we begin with two neighboring galaxies separated by distance Al <« H~!, then
there exists a local inertial frame in which spacetime can be considered flat. Ac-
cording to the Hubble law, the relative recessional speed of the two galaxies is
v = H(t) Al < 1. Because of this, the frequency of a photon, w (¢;) , measured
by an observer at galaxy “1” at the moment ¢, will be larger than the frequency
of the same photon, w(#,) , measured at #, > #; by an observer at galaxy “2”, by a
Doppler factor (Figure 2.10):

Aw = o(t) — o) ~ o)) v = w(t) H(t) Al (2.46)

The time delay between measurements is At = t, — t; = Al and so we can rewrite
(2.46) as a differential equation:

w=—-H@{)w. (2.47)
This has the solution

wx1/a. (2.48)

Al s . v=HAl

"

Fig. 2.10.
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Although the derivation above has been performed in a local inertial frame, it can
be applied piecewise to a general geodesic photon trajectory. The result is therefore
valid in curved spacetime as well. However, the interpretation of the redshift as a
Doppler shift is not applicable for distances larger than the curvature scale. In this
limit, as we have pointed out, distance and relative velocity do not have an invariant
meaning, so the notion of Doppler shift becomes ill defined.

Redshift of peculiar velocities The peculiar velocities of massive particles (veloc-
ities with respect to the Hubble flow) are also redshifted as the universe expands.
The peculiar velocity of a particle, w(#;), measured by observer “1” at time ¢,
is different from the peculiar velocity of the same particle, w(z;), measured by
observer “2”, by the relative Hubble speed of the observers: v = H(t)Al. Hence,

w(t) —w(t) ~v=H() AL (2.49)

Given that the particle needs time At =, —t; = Al/w to make the journey be-
tween the two observers, we can rewrite this equation as

w=—H()w. (2.50)
Once again we have the solution
w x 1/a. (2.51)

Thus, the expansion of the universe eventually brings particles to rest in the co-
moving frame.

The temperature of a nonrelativistic gas of particles is proportional to the peculiar
velocity squared,

Tyas o€ w? o< 1/a?, (2.52)

and therefore, if the gas and radiation are decoupled, gas will cool faster than
radiation.

For the same reasons as in the case of radiation, the above derivation for peculiar
velocities is rigorous and applicable in curved spacetime. This can also be verified
directly by solving the geodesic equations for the particles.

Problem 2.13 Show that the geodesic equation

du®
ds

+ T ulu’ =0 (2.53)
can be rewritten as

dua lagﬂ,, By
e _8Pr =0. 2.54
ds 2 ox« v ( )
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One can always go to a coordinate system in which only the radial peculiar
velocity of the particle, uX, is different from zero. Taking into account that in an
isotropic, homogeneous universe the metric components g,, and g, , do not depend
on x, we infer from (2.54) that u, = const. Hence, the peculiar velocity,

w = au’* =ag*u, a’l, (2.55)

decays in inverse proportion to the scale factor.

2.4.1 Redshift as a measure of time and distance

The redshift parameter is defined as the fractional shift in wavelength of a photon
emitted by a distant galaxy at time ¢,,, and observed on Earth today:

)‘-0 s )"em
g =t Tem (2.56)
;kein

According to (2.45), the ratio A,ps/Xen 1s equal to the ratio of the scale factors at
the corresponding moments of time, and hence

l47=-2 (2.57)

where ay is the present value of the scale factor.

The light detected today was emitted at some earlier time 7,,, and, according
to (2.57), there is a one-to-one correspondence between z and t.,,. Therefore, the
redshift z can be used instead of time ¢ to parameterize the history of the universe.
A given z corresponds to a time when our universe was 1 + z times smaller than
now. We can express all time-dependent quantities as functions of z. For exam-
ple, the formula for the energy density ¢(z) follows immediately from the energy

conservation equation de = —3(¢ 4+ p)dIna:
&(2)
31+ 2) (2.58)
——— =3In 7). .
e+ p(e)

&o

To obtain the expression for the Hubble parameter H in terms of z and the present
values of Hy and €2y, it is convenient to rewrite the Friedmann equation (1.67) in
the form

k £
HA@) + S50 +27 = 2l (2.59)

0
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where the definitions in (1.21) and (2.57) have been used. At z = 0, this equation
reduces to

k
— =(Qo— 1) Hg, (2.60)
a4y
allowing us to express the current value of the scale factor a in a spatially curved
universe (k # 0) in terms of Hy and 2. Taking this into account, we obtain

, £\ 2
H(z) = Hy <(1 — Qo)1 +2)" + Qoe_o) . (2.61)
Generically, the expressions for a(¢) are rather complicated and one cannot di-
rectly invert (2.57) to express the cosmic time ¢ = f,,, in terms of the redshift
parameter z. It is useful, therefore, to derive a general integral expression for #(z).
Differentiating (2.57), we obtain

1= aydr = —(1 + 2) HQ) dt, (2.62)
a’(t)
from which it follows that
rod
r = / e (2.63)
H(Z)(1+2)
Z

A constant of integration has been chosen here so that z — oo corresponds to the
initial moment of time, = 0. Thus, to determine #(z), one should first find &(z)
and, after substituting (2.61) into (2.63), perform the integration.

Knowing the redshift of light from a distant galaxy we can unambiguously
determine its separation from us; that is, redshift can also be used as a measure
of distance. The comoving distance to a galaxy that emitted a photon at time #,,,
which arrives today is

)

dt
X =00 = Nem = / %' (2.64)

I€VV7
Substituting a(t) = ap/(1 + z) and the expression for dt in terms of dz from (2.62),
we obtain
1 [ d
z
)=— | —/—. 2.65
x(2) o] HO (2.65)
0
In a universe with nonzero spatial curvature (k # 0), the current value of the scale
factor a( can be expressed in terms of Hy and €2 via (2.60):

Clo_l = \/|Q() — 1|H0
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Note that as z — 00, x(z) approaches the particle horizon. Hence, the redshift
parameter measures distance only within the particle horizon.

Finally, let us find the explicit expressions for #(z) and x (z) in a dust-dominated
universe. In this case, £(z) = go(1 + z)° and

H(z) = Ho(1 +2) v 1+ Qoz.

For a flat universe (29 = 1), the integrals in (2.63) and (2.65) are straightforward
and we find

2 1 2 1
— - = 1— . 2.
'@ 3Ho(1 +2)**" 1@ a0H0< M) (200

Problem 2.14 Verify that in both open and closed dust-dominated universes

21920 — 1

(i) = A2 1l (20 +@0-2(Vitae-1)], @6
Q1 +2)

where the function & is defined in (2.3). Note that if Qyz > 1, then ®(x(z)) —

®(x,), given in (2.9). Derive the explicit expressions for (z).

2.5 Kinematic tests

For an object at a cosmological redshift, it is desirable to measure its angular size
(the angle the object subtends on the sky) or its apparent luminosity. Given a class
of objects of the same size (standard rulers), we find that the corresponding angular
size changes with redshift in a specific way that depends on the values of the
cosmological parameters. The same is also true for the apparent luminosities of
objects with the same total brightness (standard candles). Therefore, if we know
the appropriate dependencies for particular classes of standard rulers or standard
candles, we can determine the cosmological parameters. Moreover, because the
measurements refer to earlier times when the universe was 1 + z times smaller
than now, we can study its recent expansion history and distinguish among models
with different matter content.

2.5.1 Angular diameter-redshift relation

In a static, Euclidean space, the angle which an object with a given transverse
size subtends on the sky is inversely proportional to the distance to this object. In
an expanding universe, the relation between the distance and the angular size is
not so trivial. Let us consider some extended object of given transverse size [ at
comoving distance ., from an observer (Figure 2.11). Without loss of generality,
we can set ¢ = const. Then, photons emitted by the endpoints of this object at time
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o = const
0o = const

—
— Af
observer @ ___ - - -
X= 0 / Xem
t=ty %0 tem

Fig. 2.11.

t.n propagate along radial geodesics and arrive today with an apparent angular
separation A6. The proper size of the object, [, is equal to the interval between the
emission events at the endpoints:

l=v—-As?= a(tem) ©(Xem) AY, (2.68)
as obtained from metric (2.2). The angle subtended by the object is then

l )

A9 = = s
a(tem) cD(Xem) a(’?O - Xem) qD(Xem)

(2.69)

where we have used the fact that the physical time z,,, corresponds to the conformal
time 1e, = No — Xem- If the object is close to us, that is, ., << 1o, then

a(nO - Xem) ~ a(ﬁo) s cD(Xem) X Xems

and
l l

AR —— = —,
0(770) Xem D

We see that in this case A6 is inversely proportional to the distance, as expected.
However, if the object is located far away, namely, close to the particle horizon,
then 19 — Xem < 10, and

a(mo — Xem) K a(mo), P(Xem) = q)()(p) = const.

The angular size of the object,

l

A X ——,
0(770 - Xem)
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increases with distance and as it approaches the horizon its image covers the whole
sky. Of course, the apparent luminosity drops drastically with increasing distance,
otherwise remote objects would completely outshine nearby ones.

To understand this unusual behavior of the angular diameter, it is again useful to
turn to a low-dimensional analogy and consider how an observer on the north pole
of the Earth would see an object of a given size at various distances. In this analogy,
light propagates along meridians, which are geodesics on the Earth’s surface, and
we find that the angular size decreases with distance, but only if the object is north
of the equator. If the object is south of the equator, the angular size increases with
distance until, finally, an object at the south pole “covers the whole sky.” This
analogy, while illuminating, is not complete. The angular size of a very remote
object also grows in a flat universe because of the time dependence of the scale
factor; the 4-curvature of spacetime is responsible for the unusual behavior of the
angular diameter.

The angular size A6 can be expressed as a function of redshift z. Since
ao/a(t.,) = 1+ z, we can write (2.69) as

AB(z) =(1 +2) (2.70)

ao®(Xem(2)) ’
where x.,(z) is given by (2.65). In a flat universe filled with dust, the function
D(xem) equals x..,, whose explicit dependence on z was given in (2.66). Hence,
the angular diameter as a function of z is

IHy (1+42)7?

AB -
&= o1

(2.71)
At low redshifts (z < 1), the angular diameter decreases in inverse proportion to
Z, reaches a minimum at z = 5/4, and then scales as z for z > 1 (Figure 2.12).

The extension to more general cosmologies is straightforward. For example,
substituting ®(x.,,) from (2.67) into (2.70), we find that in a nonflat dust-dominat-
ed universe,

2 2
b = o 2l +2) . 2.72)
2 oz + (20— (1 + 222 = 1)

In principle, having standard rulers distributed over a range of redshifts we could
use the measurements of angular diameter versus redshift to test cosmological
models. Unfortunately, the lack of reliable standard rulers has hampered progress
in this technique for many years.

One spectacular success, though, has been a single standard ruler extracted from
measurements of the cosmic microwave background. The temperature autocor-
relation function measures how the microwave background temperature in two
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Ab

z=5/4 z
Fig. 2.12.

Y

directions in the sky differs; this temperature difference depends on the angular
separation. The power spectrum is observed to have a series of peaks as the angular
separation is varied from large to small scales. The “first acoustic peak” is roughly
determined by the sound horizon at recombination, the maximum distance that a
sound wave in the baryon—radiation fluid can have propagated by recombination.
This sound horizon serves as a standard ruler of length I, ~ H~'(z,). Recombin-
ation occurs at redshift z, ~ 1100. Since 20z, > 1, we can set x.,(z,) = x, in
(2.70) and in a dust-dominated universe, where ®(x,) = 2(agHo2) ™" (see (2.9)),
we obtain

~ 2 HoS ~ _Z_l/z
© 2H(z) 27

r

Q% ~0.87°9,/. (2.73)

We have substituted here Hy/ H (z,) =~ (Qozf) - 1/2, as follows from (2.61). Note that
in Euclidean space, the corresponding angular size would be A6, >~ ¢, /ty ~ z, N2
or about 1000 times smaller.

The remarkable aspect of this result is that the angular diameter depends directly
only on €2, which determines the spatial curvature, and is not very sensitive to
other parameters. As we will see in Chapter 9, this is true not only for a dust-
dominated universe, as considered here, but for a very wide range of cosmological
models, containing multiple matter components. Hence, measuring the angular
scale of the first acoustic peak has emerged as the leading and most direct method
for determining the spatial curvature. Our best evidence that the universe is spatially

flat (29 = 1), as predicted by inflation, comes from this test.
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2.5.2 Luminosity-redshift relation

A second method of recovering the expansion history is with the help of the
luminosity—redshift relation. Let us consider a source of radiation with total lum-
inosity (energy per unit time) L located at comoving distance ., from us. The
total energy released by the source at time ¢,,, within a conformal time interval An
is equal to

AEupm = LAton(An) = La(tum) An. (2.74)

All of the emitted photons are located within a shell of constant conformal width
Ax = An. The radius of this shell grows with time and the frequencies of the
photons are redshifted. Therefore, when these photons reach the observer at time
to, the total energy within the shell is

tem 2(tem
AE,,. — AE,, “en) _ o )An.

ap ao

(2.75)

At this moment, the shell has surface area

Ssnlto) = 4ag®*(xem)
and physical width

Al = agAx = apAn.

The shell passes the observer’s position over a time interval (measured by the
observer) Aty, = Aly, = apAn. Therefore, the measured bolometric flux (energy
per unit area per unit time) is equal to

AE g _ L az(tem)

F - 4
Ssn(to) At 4 q)z(Xem) agy

(2.76)

or, as a function of redshift,
L
F = > 5
47Ta() CDZ(Xem(Z))(l +2)

Here x.n(z) is given by (2.65). Instead of F, astronomers often use the apparent
(bolometric) magnitude, m,,;, defined as

2.77)

Mpoi(2) = —2,5log;y F = Slog,o(1 + 2) + 51og;o(P(xem(2))) + const, (2.78)

where const is z-independent.
For z « 1, we find that, irrespective of the spatial curvature and matter compo-
sition of the universe,

2.5
Mpo1(z) = 5log gz + m(l —qo)z+ O(zz) + const, (2.79)
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where go = —(éi JaH 2)0. In turn, the value of the deceleration parameter g is
determined by the equation of state. Using Friedmann equation (1.66), we obtain

1 P
g0 = —90(1 n 3—) . (2.80)
2 £/0

Thus, measuring the luminosity—redshift dependence for a set of standard candles,
we can, in principle, determine the effective equation of state for the dominant
matter components.

Measurements using Type IA supernovae as standard candles have produced a
spectacular result. The expansion of the universe has been found to be accelerating,
rather than decelerating. In other words, go is negative. In a matter-dominated
universe, the gravitational self-attraction of matter resists the expansion and slows
it down. According to Friedmann equation (1.66), acceleration is possible only if
a substantial fraction of the total energy density is a “dark energy” with negative
pressure or, equivalently, negative equation of state w = p/e.

One possibility is that the dark energy component is a vacuum energy density
or cosmological constant, which corresponds to w = —1. Alternatively, the dark
energy can be dynamical, such as a slightly time-varying scalar field. The latter
case is referred to as “quintessence.” The discovery of cosmic acceleration raises a
number of new problems in cosmology. At present, there is no convincing explana-
tion as to why dark energy came to dominate so late in the history of the universe
and exactly at the time to be observed. Additionally, because the nature of the dark
energy is uncertain, the long-term future of the universe cannot be determined.
If the dark energy is a cosmological constant, then the acceleration will continue
forever and the universe will become empty. On the other hand, if the dark energy
is a dynamical scalar field, then this field may decay, repopulating the universe
with matter and energy. In summary, dark energy is one of the most enigmatic and
challenging issues in cosmology today.

The supernovae that provide evidence for the dark energy component have red-
shifts of order unity and the expansion in (2.79), valid only for z < 0.3, is not
applicable for them. Therefore, to describe the observations, we have to use the
exact formula (2.78) and choose a particular class of cosmological models in order
to compute (.., (z)). For example, for a flat universe comprising only cold matter
and a cosmological constant, so that Q2 = Q, + €2, = 1, we have

1 j dz
Hoag J Ve +23 +(1 - Q)

D(Xem(2)) = Xem(2) = (2.81)

Calculating the integral numerically, we can find m,,;(z) for different values of 2,,
(Figure 2.13). The best fit to the data is achieved for €2, >~ 0.3.
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Fig. 2.13.

Problem 2.15 In Euclidean space, the observed flux F from an object of luminosity
L at distance d is F = L/4md? and the angular size of an object of known length
[ is A6 =1/d. Based on these relations, cosmologists sometimes formally define
the luminosity distance d;, and the angular diameter distance d4 to an object in an

L \'? !
dp = —— , dy=—, 2.82
k (471F> SN’ (282)

respectively. Calculate d; (z) and d4(z) in a dust-dominated universe. How are they
related in general? Verify that the distances d;, and d4 coincide only to leading
order in z and at small z revert to the Euclidean distance d. In contrast with d 4, the
luminosity distance d;, increases with z at large redshift, as common sense would
suggest. Both, however, are only formal for z > 1 where the notion of invariant
physical distance does not exist.

expanding universe as

2.5.3 Number counts

A further kinematic test is based on counting the number of cosmological objects
with a given redshift. Suppose the number of galaxies or clusters per unit volume at
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amoment of time characterized by redshift z is spatially uniform and equal to n(z).
Then, the number of galaxies with redshifts between z and z + Az, and within a
solid angle A, is

AN =n(2)a*@) P*(N)AX AR = n(2)(1 +2) 7 agH ™' (2) D*(X) AzAQ,
(2.83)
where we have used the relation between Ay and Az (see (2.65)). Substituting
®2(x) from (2.67), we find that in a dust-dominated universe

AN 4n(z) [Qoz + (20 — 2)((1 + Q02)"? = DI

_ 2.84
AZAQ  HIQY (14 2)° (1 4 Q02)'2 e

If we know n(z), then measurement of AN/Az AQ can be used as a test of cos-
mological models. The difficulty in applying this method is that the number of
galaxies varies with redshift not only because of the expansion but also as a result
of dynamical evolution. For example, small galaxies merge to form large ones.
Conceivably, this problem can be avoided if the number density of some subset of
galaxies has predictable evolution.

2.5.4 Redshift evolution

The redshift of a given object drifts slowly with time due to the acceleration (or
deceleration) of the universe. The effect is so small that it is not possible to measure
it using today’s technology. However, we introduce the concept as an example of a
measurement that could be possible in the coming decades.

Light from a source located at comoving distance yx that we observe today at
conformal time 7y was emitted at conformal time 1, = no — x. The appropriate
redshift depends on 7 and is equal to

2y = 0 = ) (2.85)
a. a(mo— x)

This redshift depends on the time of observation 71y and since x is constant, its time
derivative is
1 9z do de
= =R (4 )H—HG@).  (286)
a(’?o) 8770 de de

. dz
S

Taking into account that (z) = &g (24 + ,,(1 + z)?) in a universe with a mixture
of matter and vacuum density, and using this expressionin (2.61) for H(z), we obtain

z=(1+2) Ho{l —[1— Qo+ Qu(l+2)+ Q1 +2)"*1"?}. (2.87)
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In a flat universe, where Q2p =1 and Q, = 1 — ,,, the redshift drift, Av =
Az/(1 + z), is equal to
ZAt
Av = = —HoA{[2(1 +2) +(1 = @) (1 + D7 -1} (288)
The drift is negative for a matter-dominated universe (2,, — 1) and positive
if the cosmological constant dominates (£2,, — 0). For ©,, = 1 and 2, =0, its
magnitude is

Av~ =2(/1+z—1)cms™!

for observations made a period Ar = 1 year apart. Although the velocity shift is
tiny and beyond current detection capabilities, redshift is one of the most precisely
measured physical observables. Current technology would enable measurements
of shifts of perhaps 10 m s~! per year. The required improvement by a few or-
ders of magnitude in the next few decades is conceivable. Such a measurement
would represent a direct detection of acceleration which would complement the
luminosity—redshift tests.
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The hot universe

In the previous chapters we studied the geometrical properties of the universe.
Now we turn to its thermal history. This history can be subdivided into several
periods. Here we focus mainly on the period between neutrino decoupling and
recombination. This period is characterized by a sequence of important departures
from thermal and chemical equilibrium that shaped the present state of the universe.

We begin with an overview of the main thermal events and then turn to their
detailed description. In particular, in this chapter we study the decoupling of neu-
trinos, primordial nucleosynthesis and recombination. Our considerations are based
on well understood and tested laws of particle, nuclear and atomic physics below a
few MeV and, as such, are not likely to be a rich source of future research. How-
ever, this is important background material which underlies the concept of the hot
expanding universe.

3.1 The composition of the universe

According to the Friedmann equations, the expansion rate of the universe is de-
termined by the energy density and equation of state of its constituents. The main
components of the matter composition that played an important role at tempera-
tures below a few MeV are primordial radiation, baryons, electrons, neutrinos, dark
matter and dark energy.

Primordial radiation The cosmic microwave background (CMB) radiation has
temperature T, =~ 2.73 K. Its current energy density is about £, >~ 107* g cm™
and constitutes only 107> of the total energy density. The radiation has a perfect
Planckian spectrum and appears to have been present in the very early universe
at energies well above a GeV. Since the temperature of radiation scales in inverse
proportion to the scale factor, it must have been very high in the past.

Baryonic matter This is the material out of which the planets, stars, clouds of
gas and possibly “dark” stars of low mass are made; some of it could also form

69
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black holes. We will see later that the data on light element abundances and CMB
fluctuations clearly indicate that the baryonic component contributes only a small
percentage of the critical energy density (€2, =~ 0.04). The number of photons per
baryon is of order 10°.

Dark matter and dark energy The CMB fluctuations imply that at present
the total energy density is equal to the critical density. This means that the largest
fraction of the energy density of the universe is dark and nonbaryonic. It is not quite
clear what constitutes this dark component. Combining the data on CMB, large scale
structure, gravitational lensing and high-redshift supernovae it appears that the dark
component is a mixture of two or more constituents. More precisely, it is composed
of cold dark matter and dark energy. The cold dark matter has zero pressure and can
cluster, contributing to gravitational instability. Various (supersymmetric) particle
theories provide us with natural candidates for the cold dark matter, among which
weakly interacting massive particles are most favored at present. The nonbaryonic
cold dark matter contributes only about 25% of the critical density. The remaining
70% of the missing density comes in the form of nonclustered dark energy with
negative pressure. It may be either a cosmological constant (p, = —e, ) or a scalar
field (quintessence) with p = we, where w is less than —1/3 today.

Primordial neutrinos These are an inevitable remnant of a hot universe. If the
three known neutrino species were massless, their temperature today would be
T, >~ 1.9 K and they would contribute 0.68 times the radiation density (see Section
3.4.2). Atmospheric neutrino oscillation experiments suggest that the neutrinos
have small masses. Even so, it appears that they cannot constitute more than 1% of
the critical density.

The universe was hotter and denser in the past. The energy densities of radiation,
cold matter and dark energy scale with redshift z as

g, = e,0(1 +2)%, e =& (1 +2)°, g9 =&y Qo1 + 2™, (3.1

respectively. Here ey = 3Ho2 /87 G is the critical density today, €2, is the total
contribution of baryons and cold dark matter to the current cosmological parameter
and €2 is the contribution of dark energy. When we go back in time the dark energy
density grows the least quickly; its impact on the dynamics of the universe becomes
less than that of cold matter at redshift (see Figure 3.1)

20 = (Ro/ Q) " — 1. (3.2)

This occurs close to the present time, at zgp = 0.33 to 1.33, for -1 < w < —1/3,
Q, ~0.3and Qp ~ 0.7.

Problem 3.1 Find the value of z at which the accelerated expansion begins.
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Fig. 3.1.

The radiation energy density grows faster than the density of cold matter and
eventually becomes dominant at redshift

£y m

Zeg = — 1226 x 10*Q,,h3s, (3.3)

8}/0

where

Hy
h75 = 1 1
75 km s~ Mpc

Thus, we can distinguish three dynamically different stages in the expansion
history:

* the radiation-dominated epoch at 7 > 7.4 ~ 10*, where the universe is dominated by
ultra-relativistic matter with p = ¢/3 and scale factor increases as a o< ¢'/%;

* the matter-dominated epoch at z,;, > z > 7o, where the pressureless components deter-
mine the expansion rate and a o t%/3;

* the dark-energy-dominated epoch at z < zp, where the component with negative pres-
sure, p = we, leads to an accelerated expansion and a oc t2/31+®),

Note that the dark energy cannot begin to dominate too early because a substantial
period of matter domination is needed for structure formation. In fact, it becomes
relevant exactly at the present time. This astounding cosmic coincidence is one of
the greatest mysteries of contemporary cosmology.

Problem 3.2 How do ultra-relativistic neutrinos influence an estimate for the red-
shift at which the ultra-relativistic matter begins to dominate?
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Problem 3.3 Dark energy with equation of state w = —1/3 leads to a term o< 1/a>
in the Friedmann equation (1.67). How can we nevertheless distinguish it from the
spatial curvature term, k/a?, in an open universe?

3.2 Brief thermal history

The temperature of the cosmic radiation decreases as the universe expands. It is
unambiguously related to the redshift,

Ty (z) = Tyo(1 + 2), (3.4

and can be used as an alternative to time or redshift to parameterize the history of
the universe. To obtain an estimate for the temperature expressed in MeV, at the
time ¢ measured in seconds, we can use the formula
o)
Tvev =~ ——,
sec
which is valid during the radiation-dominated epoch (see Section 3.4.2).
Below we briefly summarize the sequence of main events constituting the history
of our universe (in reverse chronological order):

» ~10'°-10"7 s Galaxies and their clusters are formed from small initial inhomogeneities as
aresult of gravitational instability. Structure formation can be described using Newtonian
gravity. However, it is still a very complicated nonlinear problem, which can only be
solved numerically and it is likely to remain an active field of research for a long time.
One of the main unresolved fundamental issues regarding this period is the nature of dark
matter and dark energy.

e ~10'2-10" s At this time nearly all free electrons and protons recombine and form neu-
tral hydrogen. The universe becomes transparent to the background radiation. The CMB
temperature fluctuations, induced by the slightly inhomogeneous matter distribution at
recombination, survive to the present day and deliver direct information about the state
of the universe at the last scattering surface. Helium, which constitutes about 25% of the
baryonic matter, has recombined and become neutral before this time. After helium re-
combination there remain many free electrons and the universe is still opaque to radiation.
Helium recombination, therefore, is not a very dramatic event, though we must take it
properly into account when calculating the microwave background fluctuations because
it influences the speed of sound.

e ~10'" s (T ~ eV) This time corresponds to matter—radiation equality which separates
the radiation-dominated epoch from the matter-dominated epoch. The exact value of the
cosmological time at equality depends on the constituents of the dark component and,
therefore, is known at present only up to a numerical factor of order unity.

e ~200-300 s (T ~ 0.05 MeV) Nuclear reactions become efficient at this temperature. As
a result, free protons and neutrons form helium and other light elements. The abundances
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of the light elements resulting from primordial nucleosynthesis are in very good agree-
ment with available observation data and this strongly supports our understanding of the
universe’s evolution back to the first second after the big bang.

~1s (T ~ 0.5 MeV) The typical energy at this time is of order the electron mass. The
numerous electron—positron pairs present in the very early universe begin to annihilate
when the temperature drops below their rest mass and only a small excess of electrons
over positrons, roughly one per billion photons, survives after annihilation. The photons
produced are in thermal equilibrium and the radiation temperature increases compared to
the temperature of neutrinos, which decoupled earlier.

~0.2 s (T ~ 1-2 MeV) Two important events take place during this period as certain
weak interaction processes fall out of equilibrium. First, the primordial neutrinos decouple
from the other particles and propagate without further scatterings. Second, the ratio of
neutrons to protons “freezes out” because the interactions that keep neutrons and protons
in chemical equilibrium become inefficient. Subsequently, the number of the surviving
neutrons determines the abundances of the primordial elements.

~107° s (T ~ 200 MeV) The quark—gluon transition takes place: free quarks and gluons
become confined within baryons and mesons. The physics of the quark—gluon transition
is not yet completely understood, though it is unlikely that this transition leaves any
significant cosmological imprints.

~1071°-10"* s (T ~ 100 GeV—10 TeV) This range of energy scales can still be probed
by accelerators. The Standard Model of electroweak and strong interactions appears to
be applicable here. We expect that at temperatures above ~ 100 GeV the electroweak
symmetry is restored and the gauge bosons are massless. Fermion and baryon numbers
are strongly violated in topological transitions above the symmetry restoration scale.
~1071-10* 5 (10 TeV-10'" GeV) This energy range will probably not be reached by
accelerators in the near future. Instead, the very early universe becomes, in Zel’dovich’s
words, “an accelerator for poor people” that can give us some rough information about
fundamental physics. There is no reason to expect that nonperturbative quantum gravity
plays any significant role below 10'° GeV. Therefore, we can still use General Relativity to
describe the dynamics of the universe. The main uncertainty here is the matter composition
of the universe. It might be that there are many more particle species than are evident
today. For example, according to supersymmetry, the number of particles species must be
doubled at least. Supersymmetry also provides us with good weakly interacting massive
particle candidates for dark matter.

The origin of baryon asymmetry in the universe is also related to physics beyond
the Standard Model. There are good reasons to expect that a Grand Unification of the
electroweak and strong interactions takes place at energies about 10'® GeV. Topologi-
cal defects, such as cosmic strings, monopoles, that occur naturally in unified theories
might play some role in the early universe, though, according to the current microwave
background anisotropy data, it is unlikely that they have any significance for large scale
structure.

Perhaps the most interesting phenomenon in the above energy range is the accelerated
expansion of the universe — inflation — which probably occurs somewhere near Grand
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Unification scales. Itis remarkable and fortunate that the most important robust predictions
of inflation do not depend substantially on unknown particle physics. Therefore, the
existence of such a stage may be observationally verified in the near future.

e ~107% s (1019 GeV) Near the Planckian scale, nonperturbative quantum gravity domi-
nates and general relativity can no longer be trusted. However, at energies slightly below
this scale, classical spacetime still makes sense and we expect that the universe is in a self-
reproducing phase. Nevertheless, self-reproduction does not eliminate the fundamental
issues of spacetime structure at the Planckian scale. In particular, the question of cosmic
singularities still remains. It is expected that these problems will be properly addressed
in an as yet unknown nonperturbative string/quantum gravity theory.

3.3 Rudiments of thermodynamics

To properly describe the physical processes in an expanding universe we need,
strictly speaking, a full kinetic theory. Fortunately, the situation greatly simplifies
in the very early universe, when the particles are in a state of local equilibrium
with each other. We would like to stress that the universe cannot be treated as a
usual thermodynamical system in equilibrium with an infinite thermal bath of given
temperature: it is a nonequilibrium system. Therefore, by local equilibrium we
simply mean that matter has maximal possible entropy. The entropy is well defined
for any system even if this system is far from equilibrium and never decreases.
Therefore, if within a typical cosmological time the particles scatter from each
other many times, their entropy reaches the maximal possible value before the size
of the universe changes significantly.

The reaction rate responsible for establishing equilibrium can be characterized
by the collision time:

.~ L 3.5
onv
where o is the effective cross-section, n is the number density of the particles
and v is their relative velocity. This time should be compared to the cosmic time,
ty ~ 1/H, and if
te L ty, (3.6)

local equilibrium is reached before expansion becomes relevant. Let us show that
at temperatures above a few hundred GeV condition (3.6) is satisfied for both
electroweak and strong interactions. At such high temperatures, all known particles
are ultra-relativistic and the gauge bosons are all massless. Therefore, the cross-
sections for strong and electroweak interactions have a similar energy dependence
and they can be estimated (e.g. on dimensional grounds) as

2
o~ O(1)a\? ~ ‘;— (3.7)
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where L ~ 1/p is the de Broglie wavelength and p = E ~ T is the typical momen-
tum of the colliding ultra-relativistic particles. The corresponding dimensionless
running coupling constants « vary only logarithmically with energy and are of or-
der 10~'-1072. Taking into account that the number density of the ultra-relativistic
species is n ~ T3, we find that

1
te ~ aZ_T . (38)
Comparing this time to the Hubble time,
1 1 1

M E T

we find that at temperatures below 7 ~ O(1)a? ~ 10"°-10'7 GeV, but above a

few hundred GeV (where (3.7) is applicable), (3.6) is satisfied and the electroweak

as well as the strong interactions are efficient in establishing equilibrium between
quarks, leptons and intermediate bosons.

The discerning reader might question whether one can apply the formulae for

(3.9)

cross-sections derived in empty space to interactions which occur in extremely
dense “plasma”. To get an idea of the strength of the plasma effects, we have to
compare the typical distance between the particles 1/n'/3 ~ 1/T to the “size”
of the particles \/o ~ «/T. If the coupling constant « is smaller than unity, the
plasma effects are not very relevant.

Primordial gravitons and, possibly, other hypothetical particles that interact
through the dimensionful gravitational constant already decouple from the rest
of matter at Planckian times and propagate, subsequently, freely.

Below 100 GeV, the Z and W* bosons acquire mass (My =~ 80,4 GeV,
Mz ~ 91, 2 GeV) and, thereafter, the cross-sections of the weak interactions begin
to decrease as the temperature drops. As a result, the neutrinos decouple from the
rest of matter. Finally the electromagnetic interactions also become inefficient and
photons propagate freely. All these processes will be analyzed in detail later in the
chapter, but first we would like to concentrate on the very early stages when known
particles were in equilibrium with radiation and with each other. In this case, matter
can be described in a very simple way: all particles are completely characterized
by their temperature and corresponding chemical potential.

3.3.1 Maximal entropy state, thermal spectrum, conservation
laws and chemical potentials

In this section, we outline an elegant derivation of the main formulae describing the
maximal entropy state. This derivation is based entirely on the notion of entropy for
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a closed system and does not use any concepts from equilibrium thermodynamics.
Therefore, it can also be applied to the expanding universe.

Let us assume that all possible states of some (complicated) closed system can
be completely characterized and enumerated by a (composite) discrete variable
«; different o correspond to microscopically different states. If we know that the
system is in a certain state «, the information about this system is complete and
its entropy should be zero. This follows from the general definition according to
which the entropy characterizes the missing information. If, on the other hand, we
know only the probability P, of finding the system in state «, then the associated
(nonequilibrium) entropy is

S=—§:&me (3.10)

It takes its maximum value when all states are equally probable, thatis, P, = 1/T,
and is equal to

S=1InT, 3.11)

where I is the total number of possible microstates which the system can occupy.
Note that the last expression gives a finite result only if the total energy is bounded,
otherwise the number of possible states would be infinite.

Let us calculate the maximal possible entropy of an ideal gas of N bose particles
with total energy E placed in a box of volume V. It is clear that maximal entropy
occurs when there are no preferable directions and locations within the box. There-
fore, given the total energy and number of particles, each state of the system is
essentially given by the number of particles per mode of the one-particle energy
spectrum. Let us denote by AN, the total number of particles, each having energy
in the interval between € and € + A€, and by Ag, the total number of different
possible microstates that a particle could occupy in the one-particle phase space.
The total number of all possible configurations (microstates) for A N, bose particles
is equal to the number of ways of redistributing AN, particles among Ag. cells
(Figure 3.2):

(AN, + Ag. — D!

(ANON(Age — D!

(3.12)

€

Age—l
e
| o | o0 | | o0 0| | @
AN

Fig. 3.2.
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The total number of states for the whole system, therefore, is
F{AND) =[] aG.. (3.13)
€
Substituting (3.13) into (3.11), we find that the maximal possible entropy of the
system with the given energy spectrum {AN.} is
SHUAN)) = > InAG.. (3.14)
€

Let us assume that AN, and Ag. are much larger than unity. Using Stirling’s
formula,

N
N
1 1
lnN!=Zlnn%flnxdx+§1nN=(N+5)lnN—N, (3.15)
n=1

we find from (3.12) and (3.14) that, to leading order,

SUAND) = SUnh) =Y (e + DIn(l +no) —neInnJAge,  (3.16)

where n, = AN, /Ag. are called occupation numbers. They characterize the aver-
age number of particles per microstate of a single particle. The entropy depends
on the energy spectrum {n.} and we want to maximize it subject to the given total
energy

E({nc}) =) €AN =) encAge, (3.17)

and total number of particles

N(ne)) =)  ANe=) ncAge. (3.18)

To extremize (3.16) with the two extra constraints (3.17) and (3.18), we apply the
method of Lagrange multipliers. The variation of expression

S({neh) + M E({ne}) + AN({ne})

with respect to n, vanishes for

1
fle = exp(—Aje —Ay) — 1

(3.19)

Given spectrum (3.19), the Lagrange multipliers A; and XA, are the parame-
ters which allow us to satisfy the constraints. They can be expressed in terms
of E and N, or, instead, in terms of temperature 7 = —1/X; and chemical potential
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= AT (kg = 1). The distribution function (3.19) then takes the form
1
ne = .
exp((e —w)/T)—1
This spectrum describes bose particles in a state of maximal possible entropy and is
known as the Bose—FEinstein distribution. A similar derivation can be carried out for
fermi particles, the only difference being that we have to take into account the Pauli

exclusion principle, which forbids two fermions from simultaneously occupying
the same microstate.

(3.20)

Problem 3.4 Derive the following expression for the entropy of fermi particles:

S{neh) = Z [(ne = DIn(l —ne) —nelnne] Age, (3.21)

and show that it takes its maximal value for
1
ne = .
exp((e — ) /T) + 1
Problem 3.5 According to (3.20) and (3.22), the energy of a single particle € can, in
principle, be larger than the total energy of the whole system E, which contradicts

our assumptions. Where does the above derivation fail for € comparable to or larger
than E7?

(3.22)

In quantum field theory particles can be created and annihilated, so their total
number is generally not conserved. In this case the number of particles in equilib-
rium is determined solely by the requirement of maximal entropy for a given total
energy. This removes the need to satisfy the second constraint (3.18). If there are
no other constraints enforced by conservation laws, then the chemical potential p
is zero and there remains only one free parameter, A, to fix the total energy. For
example, the total number and the temperature of photons are entirely determined
by their total energy E.

Because of the conservation of electric charge, electrons and positrons can be
produced only in pairs. Therefore, the difference between the numbers of electrons
and positrons N,- — N,+ does not change. With this extra constraint, the Lagrange
variational principle takes the form

s[s({ne]) +s({ne'}) +mEe + Er + 22N = Ny =0, 323)

where we vary separately with respect to n¢ and n¢". It is not hard to show that
the variation vanishes only if the electrons and positrons both satisfy the Fermi dis-
tribution (3.22) with T = —1/A; and .- = —p.+ = T A;. Thus, the chemical po-
tentials of the electrons and positrons are equal in magnitude and have the opposite
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signs as a consequence of electric charge conservation. Only if the total electric
charge of the electron—positron plasma is equal to zero do they vanish.

Problem 3.6 Assume particles of types A, B, C, D are in equilibrium with each
other due to the reaction

A+B=C+D.

Itis easy to see that the following combinations are conserved: Ny + N¢, Ng + Np,
Np + N¢, Np + Np. Using this fact, show that the chemical potentials satisfy the
relation

ma+ e = e+ Up. (3.24)

Note that, if electrons and positrons are in equilibrium with each other and with
radiation due to the interaction e~ + e™ = y + y, then from (3.24) we recover the
result, (.- = —,+, since the chemical potential of radiation is equal to zero.

The above consideration can be directly applied to matter in a homogeneous and
isotropic expanding universe. If the interaction rate is much larger than the rate of
expansion, the entropy of matter reaches its maximal value very quickly. In a ho-
mogeneous universe there are no external sources of entropy, and therefore the total
entropy of matter within a given comoving volume is conserved. If the interactions
of some particles become inefficient, they decouple and evolve independently and
their entropy is conserved separately. For example, after recombination photons
propagate freely and they are not in thermal equilibrium. Nevertheless, they still
have maximal possible entropy and hence satisfy the Bose—Einstein distribution
as if they were in equilibrium. A similar situation occurs for neutrinos when they
decouple from matter.

The simple arguments above are not valid when the universe becomes highly
inhomogeneous as a result of gravitational instability. For this reason the initial
state of the universe, which looks like a state of * thermal death” where nothing
could happen, can evolve to a state where very complicated structures, such as
biological systems, occur. Nonequilibrium processes and gravitational instability
will be considered later in detail and here we concentrate on the local equilibrium
state. It is rather remarkable that in this state general arguments involving only the
entropy and conservation laws are sufficient to describe the system completely and
we do not need to use a kinetic theory or go into the details of quantum field theory.

3.3.2 Energy density, pressure and the equation of state

To calculate the energy density and pressure for a given distribution function n.,
we have to determine Ag,, the total number of possible microstates for a single
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particle having energy within the interval from € to € + Ae. Let us first consider a
particle with no internal degrees of freedom in one dimension. At any moment of
time its state can be specified completely by the coordinate x and the momentum
p- In classical mechanics two infinitesimally different coordinates or momenta
correspond to microscopically different states. Therefore, the number of microstates
is infinite and the entropy can be defined only up to an infinite additive factor.
However, in quantum mechanics, two states within a cell of volume 27/ in phase
space are not distinguishable because of the uncertainty relation. Hence, there is
only one possible microstate per corresponding phase volume. The generalization
for the case of a particle with g internal degrees of freedom in three-dimensional
space is straightforward:

e+Aed3 d3 v e+Ae

xa-p 8 3

Ag. = = d’p, 3.25
8 g/ Qrzhy?  Qrh)? / P G2

where we have assumed homogeneity and integrated over the volume V. Hence-
forth, we use natural units where ¢ = h = kg = G = 1. The energy € depends on
the momentum |p| and in the isotropic case we have

€+Ae

gV ) 8V
Age = = / Ipl*d |p| ~ 3 (€2 — m?)e Ae, (3.26)
€

where the relativistic relation,
& = IpP +m’,

has been used. Note that the state with the minimal possible energy, € = m, drops
out when the approximate expression in (3.26) is used. This state becomes very
important when the chemical potential of the bosons approaches the mass of the
particles. In this case any new particles we add to the system occupy the minimal
energy state and form a Bose condensate.

Taking the limit Ae — 0 and considering a unit volume(V = 1), we obtain the
following expression for the particle number density:

o]

g (€2 —m?)
=Y nAg = 5 de, 3.27
" Z" T ) epe—w/mFl G271
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Fig. 3.3.

where the minus sign applies to bosons and the plus to fermions. The energy density
is equal to

o0

8 (62_m2) 2
= E Age = — de. 3.28
S K (G Yi e R

Let us now calculate the pressure. To do so we consider a small area element
Aon, where n is the unit normal vector. All particles with velocity |v|, striking this
area element in the time interval between ¢ and ¢ + At, were located, att =0, ina
spherical shell of radius R = |v| ¢ with width |v| Az (Figure 3.3). The total number
of particles with energy e(|v|) within a solid angle A€ of this shell is equal to

AN = n.Ag R? V| AtAS,

where Ag. is the number of states per unit spatial volume. Not all particles in the
shell reach the target, only those with velocities directed to the area element. Taking
into account the isotropy of the velocity distribution, we find the total number of
particles striking the area element Aon with velocity v is

B (v-n)Ac . (v-n)Ao

AN, = ———— =
|v| 47 R? 47

neAgAtASQ.

If these particles are reflected elastically, each transfers momentum 2(p - n) to the
target. Therefore, the contribution of particles with velocity |v| to the pressure is

A :/2<p-n>ANa _ e
Ao At 2me

2
nGAgS/cosze sinfdfdy = %néAgé,

Q
where we have used the relation |v| = |p| /€ and integrated over the hemisphere.
The total pressure is then

PP e ng/"" € —m?)
exp((e —w)/T)F 1

=S P A =% de. 3.29
nelAge =3~ ¢ € (3.29)

m
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Note that massless particles (m = 0) always have an ultra-relativistic equation of
state,

=2, 3.30
P=3 (3.30)

independent of their spin and chemical potential.

Problem 3.7 Substituting (3.20) into (3.16) and (3.22) into (3.21), verify that the
entropy density is

— &:—l—p——,un (3.31)
T
(Hint Prove and then use the relation
p
== £ AgeIn(l£n,), (3.32)

where the plus and minus signs apply to bosons and fermions respectively. It follows
that for n, < 1 we have p >~ nT.)

Verify the following useful relations

P (3.33)
o oT

The above integrals over energy cannot be calculated exactly when both the mass
and chemical potential are different from zero. Therefore, we consider the limits
of high and low temperature and expand the integral in terms of small parameters.
At temperatures much larger than the mass the calculation of the leading terms can
be performed by simply neglecting the mass. However, it is not so easy to derive
the subleading corrections. The problem is that these corrections are nonanalytic
in both the mass and the chemical potential. Because the corresponding results are
not readily available in the literature, we provide below a derivation of the high-
temperature expansion. The reader who is not interested in these mathematical

details can skip the next subsection and go directly to the final formulae.

3.3.3 Calculating integrals

Changing the integration variable in (3.27), (3.28) and (3.29) from e to x = ¢/T
and taking into account the fact that the chemical potentials of particles and an-
tiparticles are equal in magnitudes and have opposite signs, the calculation of the
basic thermodynamical quantities reduces to computing the integrals

o2)2 I S 1Y
I, B) = /(x ) dr+ [T (3.34)
extB 11



3.3 Rudiments of thermodynamics 83

where

m
a=—, .
T T
In particular, the total energy density of particles(p) and antiparticles (p) is equal
to

T4
e=c,+ep= ‘;—(JG) 2JP), (3.35)
and the total pressure is
gT*
P=pPptpr= J9. (3.36)

Problem 3.8 Verify that the excess of particles over antiparticles is given by

87205
S = Y I

(3.37)
To find the expansions for the integrals J-. M and JZ S in the limits of high and low
temperatures, we first calculate the aux111ary 1ntegra1 J: D which for B < a can
be written as a convergent infinite series of the modlﬁed Bessel functions Kj:

np npy,—nx
JED = Z(il)”“/(e e e gy

n=1 \ —a?
—2 Z(:I:l)”“ cosh(nf) Ko(na) . (3.38)
n=1

Then, given the expansion for Jj(;]) (o, B), the functions JJ(F”)(oz, B) can be obtained
by integrating the recurrence relation

(v)
dJ=
o

which follows immediately from the definition of J in (3.34). Note that this
method works only for odd v. The “initial conditions” for (3.39) can be determined
by considering the limits &« = 0 or « — 00, where the corresponding integrals can
easily be calculated.

v=2)
=—vaJ 7, (3.39)

High temperature expansion At temperatures much larger than the mass of the
particles, that is, for 8 and o« much smaller than unity, every term in the series
(3.38) contributes significantly. In this case we can use a known expansion for the
sum of modified Bessel functions — formula (8.526) in I. Gradstein, I.Ryzhik, Table
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of Integrals, Series, and Products (San Diego: Academic Press, 1994). The result
for purely imaginary § can be analytically continued to the real § and we obtain

1 _ | w(a® =827 +(n(a/4n) + C) + 0(a?, B2),

T | =(n(e/7) + C) + O(?, B?), (3.40)

for bosons and fermions respectively. Here C ~0.577 is Euler’s constant and
O (a?, B?) denotes terms which are quadratic and higher order in « and B.

Problem 3.9 Verify that the next subleading correction to (3.40) is
7¢(3)
82

where ¢ is the Riemann zeta function.

F (@ +2B%),

To determine Jg) and Jf> from (3.39) and (3.40), we need the “initial conditions”
JJ(FV)(a =0, B). Setting = 0 and changing the integration variables, we can rewrite
the expression in (3.34) as

00 0 B
v Ay v Ay
190, ) = O+B)" "+ —8) dy + / y+58) dy — -8 dy.
2= | 2= | e’ F1
0 -8 0
(3.41)
Replacing y by —y in the last integral and noting that
1 n 1 o
eFl e vEl T
we obtain for odd v
o
+B"+0—B) gt
J20, ) = d . 3.42
20, p) o yF (342)
0
It follows that
1_2 _ 1p2
ﬂ%om=[3 2l (3.43)
F M 1.2, 12
Substituting (3.40) into (3.39) and taking into account (3.43), one finds
r, 1, I, o 1 5
—m? — —B* —mJa? - Br— —« ln(—>+C—— + a0,
a 3 2 2 4 2
" 2y gy 2(1n(2) +c-3 ) +a?0
-7 — a“|In( — —= a0,
6 2 2 T (3.44)
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where O = 0(012, ﬁz) . Similarly we obtain

2 1
E7T4 + §H2(2,32 _ az) + n(az _ 52)3/2 —A+at0,
79 = (3.45)
' ln“—{— l7r2(2;32 —a?)+ A— E(1n2)oz4+oz40
60 4 4 ’

where

A _! 2B* — 6a’B% — 3a* In ia
8 47 e3/4 '

Low-temperature expansion In the limit of small temperatures we have o =
m/T > 1 and Ko(na) « exp(—na) . Therefore, for « — 8 > 1, all terms on the
right hand side in (3.38) are negligible compared to the first term:

JEY ~ 2K () cosh B. (3.46)

Integrating (3.39) and taking into account that Ji”) must vanish as @« — 0o, we
obtain

3
J ~ 20K/ (@) cosh B = v/2mwae™ cosh B [1 oo+ 0(0{‘2)], (3.47)
o

and
15
I ~ 6(a®Ko(@) + 20K (@) cosh B == v/ 187 a3e ™ cosh ,3(1 + 8—). (3.48)
o

These formulae allow us to calculate the basic thermodynamic properties of nonrel-
ativistic particles when o — 8 > 1. In such cases the exponential term dominates
the denominator of the integrand in (3.34) and the difference between Fermi and
Bose statistics becomes insignificant because the occupation numbers are much
less than unity. We will see in the next section that this case is the situation most
relevant for cosmological applications.

3.3.4 Ultra-relativistic particles

Bosons For bosons the maximal value of the chemical potential cannot exceed
the mass, up < m. Assuming that both & and 8 are much smaller than unity and
substituting (3.45) into (3.37), we find that at high temperatures the excess of
particles over antiparticles to leading order is

gT
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To estimate the number density of ultra-relativistic bosons we set m = p, = 0 in
(3.27) and then obtain
3
np =~ —C(z)gT3, (3.50)
T

where ¢(3) ~ 1.202. From (3.49) and (3.50) one might be tempted to conclude
that at high temperatures the excess of particles over antiparticles is always small
compared to the number density of the particles themselves. This conclusion is
wrong, however. The expressionin (3.49) is applicable only if u;, < m.As u, — m,
new particles added to the system fill the minimal energy state € = m, which is

not taken into account in (3.49). These particles form a Bose condensate which can
have an arbitrarily large particle excess.

Problem 3.10 Given a particle excess per unit volume An, find the temperature Tz
below which the Bose condensate forms. Assume that 7 >> m and determine when
this condition is actually satisfied. How much does a Bose condensate contribute
to the total energy density, pressure and entropy?

If no Bose condensate is formed, the excess of bosons over antibosons is small
compared to the number density. In this case the energy densities of particles and
antiparticles are nearly equal and it follows from (3.35) and (3.45) that

Nsb—i-e,;wnz 4

~ ~ 3.51
Eb 7 308 (3.5
The pressure and the entropy density are
Ep 4 Ep 2 4
~ —, >y —_—— = . 352
Pr=73 P TR3T T 45c3)" (552)

respectively. For massless bosons the chemical potential should be equal to zero.
In this case (for example, for photons) all equations above are exact.

Fermions The chemical potential for fermions can be arbitrarily large and can
exceed the mass. We first derive the exact formulae for an arbitrary p ¢ in the limit
of vanishing mass. Taking « — 0 in (3.44) and (3.45) and substituting the result
into (3.35), we obtain

(3.53)

T2 308% 158*
8f+8f= 7 T4[1+ ﬂ IB],

1208 Tm? + T4
where B = u,/T. The pressure is equal to one third of the energy density as
expected for massless particles. It follows from (3.37) that the excess of fermions
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over antifermions is

2
nf—nf_g—ﬂ[w’g ] (3.54)
Substituting the expressions above into (3.31) for the entropy density, we obtain
Tn? 158
= —gT" 3.55
ST = g0 8 [ 7n] (3:39)

If the chemical potential is much larger than the temperature, the main contribution
to the total energy density comes from the degenerate fermions and is equal to
g/t /8m*. These fermions fill the states with energies smaller than the Fermi energy
er = s, which determines the Fermi surface. The temperature correction to the
energy, which to leading order is of order g7 M? /4, is due to the particles located
in the shell of width T near this Fermi surface. One can see from (3.55) that the
only states which contribute to the entropy are those near the Fermi surface. As
the temperature approaches zero, the entropy vanishes. In this limit all fermions
occupy definite states and information about the system is complete. Note that the
antiparticles, for which u7 < 0, disappear as the temperature vanishes.
If 8 <« 1, then
gT’
nf_nf:T'B (3.56)

and the excess of fermions over antifermions is small compared to the number
density. In this case we can neglect the chemical potential in (3.27) and, to leading
order, the number densities of fermions and antifermions are the same, namely,

353
ny T (3.57)
The energy density, pressure and entropy density of the fermions are
T T4, £ dey
~ = ~ - 3.58
I =08 0 PIE 3 3T (5:38)

respectively. If the mass is small compared with the temperature but nonzero, there
exist mass corrections, as can be inferred from the formulae derived in the previous
subsection. They are nonanalytic in « =m/T and if 8 = u/T # 0, cross-terms
simultaneously containing mass and chemical potential are also present.

Finally, we note the useful relation between the entropy of ultra-relativistic
fermions with a small chemical potential and the entropy of ultra-relativistic bosons
when the two types of particles have the same number of internal degrees of freedom:

7
S = gsb. (359)
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3.3.5 Nonrelativistic particles
If the temperature is smaller than the rest mass and in addition
m—
T

spin-statistics do not play an essential role and the formulae for bosons and fermions
coincide to leading order. Substituting (3.48) into (3.37), we find that in this case

> 1,

Tm\? m " 15T
B L O Y o [ Y
n—rn g<2n> exp T sin T + S ( )
It follows that the number density of particles is
Tm\/? m—pu 1_|_15T 3.61)
n~gl— exp| — — .
8 2 P T 8 m

and the number density of antiparticles, 71, is suppressed by a factor of exp(—2u/T)
compared to n and if w/7T > 1 the antiparticles can be neglected. In the early
universe the number density of any type of nonrelativistic species never exceeds
the number density of photons, that is, n < n, ~ T3, and hence the inequality
(m — ) /T > 1is fulfilled. The energy density of particles is obtained by substi-
tuting (3.47) and (3.48) into (3.35), and can be expressed in terms of the particle
number density as

3
&>~ mn+ EnT. (3.62)

The pressure p >~ nT is much smaller than the energy density and can be neglected
in the Einstein equations. The entropy density of the nonrelativistic particles can
easily be calculated from (3.31) and is equal to

m—u 5
~ — | n. 3.63
) ( T +2>n ( )

Problem 3.11 If m/T > 1but|m — u| /T < 1, one cannot ignore spin-statistics.
In this limit, however, the antiparticles are suppressed by a factor of exp(—2m/T)
and hence can be neglected. Calculate the corresponding energy density, pressure
and entropy for bosons and fermions in this case. Given a number density n, verify
that at temperatures below Tz = O(1) n*/3/m a Bose condensate is formed.

The chemical potential of fermions can be arbitrarily large and may signif-
icantly exceed the mass. If (uy —m)/T > 1, most fermions are degenerate.
When s > m, fermions near the Fermi surface have momenta of order
and are therefore relativistic, so we can use the results in (3.53)—(3.55). Other-
wise, if (uy —m) < m, the gas of degenerate fermions is nonrelativistic and the
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corresponding formulae are the standard ones found in any book on statistical
physics. Having completed our brief review of relativistic statistical mechanics, we
now apply the results derived to the early universe.

3.4 Lepton era

When the temperature in the universe drops below a hundred MeV(at t > 10~ s),
the quarks and gluons are confined and form color-singlet bound states — baryons
and mesons. We recall that baryons are made out of three quarks, each of which
has baryon number 1/3, while the mesons are bound states of one quark and one
antiquark, so that their resulting baryon number is zero.

The main ingredients of ordinary matter at temperatures below 100 MeV are pri-
mordial radiation (y), neutrons (), protons (p), electrons and positrons (e‘, e+),
and three neutrino species. Mesons, heavy baryons, p- and t-leptons are also
present, but their number densities are very small and become increasingly negli-
gible as the temperature decreases.

At energies of order a few MeV, the most important processes involve the weak
interactions in which leptons, such as neutrinos, participate. Therefore, one calls
this epoch the lepton era. At low energies, the baryon number and the lepton
numbers are each conserved. The total electric charge is obviously also conserved.
To enforce these conservation laws, a chemical potential is introduced for each
particle species. The number of the independent potentials, however, is equal to the
number of conserved quantities; any remaining potentials are expressed through
these independent potentials using the chemical equilibrium conditions (3.24).

To demonstrate this, let us consider a medium containing the following ingredi-
ents: photons, leptons e, u, T, neutrinos v,, v,, V., the lightest baryons p, n, A,
and mesons 7°, 7*. The corresponding antiparticles are also present in the state of
equilibrium. To enforce the conservation laws for electric charge, baryon number
and the three different lepton numbers, we take as independent the following five
chemical potentialS: fte-, fn, to,, Hy,, v, - All other potentials will be written in
terms of the members of this set. To start with,

Urzo =0 (3.64)
because, as a result of electromagnetic interaction, the 7° meson quickly decays
(tz0 ~ 8.7 x 107'7 s) into photons (7 — yy) which have p,, = 0. From A —
n(ry ~2.6 x 107s) , we find

UA = Wn + Hrg0 = Uy. (3.65)
The muon is unstable (tu ~22x107¢ s) and decays into an electron, an antineu-
trino and a neutrino, ©~ — e~ V,v,, and hence

My = Me= — My, + Ky, - (3.66)
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The t-lepton also decays, for example into e~ V., v, therefore

Mr = He= — My, + Ky, (3.67)

Finally, from the reactions 7~ — v, u~ and pe~ = nv,, we deduce that

Mpg—= = Me= — Ky, (3.68)

and

Mp = Mn + [y, — e (3.69)

All other possible reactions lead to relations that are consistent with the ones above.
We recall that the chemical potentials for antiparticles are equal in magnitude to
the chemical potentials for their corresponding particles but have opposite sign.
The five independent chemical potentials can be expressed through the five
conserved quantities. The conservation of the total baryon number means that the
number density of baryons minus antibaryons decreases in inverse proportion to
the third power of the scale factor a. If matter is in equilibrium, the total entropy
is conserved and, as the universe expands, the entropy density s also scales as a—>.

Therefore, the baryon-to-entropy ratio

An, + An, + Any
s

B

: (3.70)

remains constant. We denote here by An = n — 1 the excess of the corresponding
particles over their antiparticles. Similarly, the conservation law for total electric
charge can be written as

An, — An, — An, — An; — Ang,-

0= = const, 3.7
S

and for each type of lepton number we have

_ An; + Any,
N s

L; = const, (3.72)

where i = e,  or t. Because all An can be expressed through the temperature T
and the corresponding chemical potentials, the system of equations (3.70), (3.71)
and (3.72), together with the conservation law for the total entropy,

d(sa3)
dt

allow us to determine the six unknown functions of time: 7'(¢), e (¢), n(2), iy, (2),

Mo, (1), o, (1).
What is known about the numerical values of B, Q and L;? The universe appears
to be electrically neutral and hence Q = 0. The baryon-to-entropy ratio is rather well

=0, (3.73)
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established from observations and is of order B ~ 10~'°—107°. This means that
the entropy per one baryon or, equivalently, the number of photons (ny ~ s~ T3)
per baryon, is very large, ~ 10°-10'°. The lepton-to-entropy ratios L; are not so
well established. The most severe limits on L; are indirect. We will see in the next
chapter that the total fermion number is not conserved at temperatures higher than
100 GeV and, as a result, the combination

B+a(Le+Ly+L:),

where a ~ O(1), vanishes. Hence, if there are no special cancellations between the
lepton numbers, their absolute values cannot significantly exceed the baryon num-
ber, that is, |L;| < 107°. Limits from more direct observations are much weaker.

If the temperature is higher than the mass of a particular particle, the particle
is relativistic and many particle—antiparticle pairs are created from the vacuum,
so that the number density of pairs is of order the number density of photons,
ny, >~ T3. As the temperature drops below the mass, most of these pairs annihilate
and finally only the particle excess survives. Let us determine when the numbers of
particle—antiparticle pairs become negligible. The particle excess is characterized
by a constant number

n—n
p=—". (3.74)
)

which can be either a baryon number, a lepton number or electric charge. Solving
this together with the equation

Z—’z ~<?)3exp(—2—m), (3.75)

which follows from (3.61), we obtain

N B B> (m>3 2m\
s Taty g T\F) e T )
B B? (m)3 2m
=3 + 1 + T exp 7 )

It is clear that the number density of particle—antiparticle pairs becomes negligible

compared to the particle excess when the second term under the square root becomes
smaller than the first. For 8 < 1 this occurs at

" (%) 4 22 377
?> n(5)+§ n(n<5)+> (3.77)

For example, if 8 ~ 107, the particle-antiparticle pairs can be neglected when
the temperature drops by a factor of 25 below the mass. Thus, the number of

| S

(3.76)

v | S



92 The hot universe

baryon—antibaryon pairs becomes small compared to the baryon excess at temper-
atures below 40 MeV while positrons can be neglected at T < 20 keV.

At low temperatures, the conserved charge is mostly carried by the light-
est particles possessing the given charge. For example, taking into account that
Ua = WUy, from (3.60) we obtain

A 32 —m, 176 MeV
Ta (M exp M M) exp ey . (3.78)
An, my T T

Thus, at T < 176 MeV, the contribution of A particles to the total baryon number
can be discarded and the baryon asymmetry is due to the lightest baryons — protons
and neutrons. Similarly, at temperatures below 100 MeV, the electric charge excess
carried by leptons and mesons is mostly due to the overabundance of electrons, since
u- and t-leptons and the lightlest-charged mesons have relatively large masses,
namely, m, >~ 106 MeV, m, >~ 1.78 GeV and m,+ >~ 140 MeV.

3.4.1 Chemical potentials

At temperatures higher than a few MeV, the weak and electromagnetic interactions
are efficient and baryons, leptons and photons are in local thermal and chemical
equilibrium. Note that in general, thermal and chemical equilibria are distinct. For
example, while strong and electromagnetic interactions keep neutrons, protons and
radiation at the same temperature, if the weak interaction rate is smaller than the
expansion rate the chemical potentials of protons and neutrons do not need to satisfy
a chemical equilibrium condition.

At temperatures below 100 MeV, we can neglect all heavy baryons and leptons.
Let us estimate the chemical potentials of various matter components at these
temperatures, beginning with neutrinos. Assuming that the lepton numbers L; are
much smaller than unity, we find from (3.72) and (3.54) that

Po Cp (3.79)

where the entropy density is estimated as s ~ T and we have taken into account
that the main contribution to L. , comes from v, , because the 7- and u-leptons
have large masses. The electrons are the lightest leptons which carry the electric
charge needed to compensate the electric charge of the baryons. Therefore, their
contribution to L, is not negligible and the estimate, analogous to (3.79), applies to
the sum w, + (., rather than to the chemical potential of electron neutrinos alone.
We see that the chemical potentials of relativistic particles decrease in proportion
to the temperature as the universe expands.
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As we found, at T < 40 MeV, antibaryons can be neglected and, therefore,
An, , >~ n, ,. The conservation law of the total baryonic charge (3.70) implies that

np ny,
B ~ —(1 + —> (3.80)

remains constant. The factor inside the parentheses is of order unity. Using formula
(3.61) for n,,, we obtain

mp_,up(t) - l mp 3/2
e _ln<B<T> ) (3.81)

For B ~ 107!, the chemical potential w, changes from about —115 MeV to
+ 967 MeV as the temperature drops from 40 MeV to 1 MeV. The number density
of protons decays as T3 a3, Substituting (3.81) into (3.63), we obtain the
following estimate for the contribution of protons to the total entropy,

Sp (M N §) " Bln<l(ﬂ>3/2), (3.82)

K T() 2/) s B\T
Thus, nonrelativistic protons contribute only a small fraction of order 1078 to the
total entropy. It is interesting to note that the total entropy of protons themselves is
not conserved. It follows from (3.82) that this entropy logarithmically increases as
the temperature decreases. This has a simple physical explanation. If nonrelativistic
protons were completely decoupled from the other components, their temperature
would decrease faster than the temperature of the relativistic particles, namely, as
1/a? instead of 1/a. Therefore, to maintain thermal equilibrium with the dominant

relativistic components, the protons borrow the energy and entropy needed from
them.

Problem 3.12 Verify that the conservation of entropy and of the total number of
nonrelativistic particles implies that their temperature decreases in inverse propor-
tion to the second power of the scale factor. How does the chemical potential depend
on the temperature in this case?

To estimate the chemical potential of electrons, i., we use the conservation law
for the electric charge (see (3.71)). Because the universe is electrically neutral, we
have O = 0. Taking into account that electrons are still relativistic at 7 > 1 MeV
and skipping the negligible contributions from 7- and p-leptons and 7~ mesons in
(3.71), we find

e An, An,,

=8~ ~ ~ B~ 10719, (3.83)
T Ky Ky
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This is not surprising because we need only a small excess of electrons to compen-
sate the electric charge of the protons.

Finally, let us estimate the ratio of the number densities of neutrons and protons
when they are still in chemical equilibrium with each other and with leptons. At the
beginning of this section, we found that chemical equilibrium implies @, — @, =
Wy, — M. Using this relation together with (3.61), one immediately obtains

fin _ exp(— Mn — Mp & Hu = Me) ~ exp(—g), (3.84)
np T T

where Q = m,, —m, ~ 1.293 MeV and we have neglected u,, and . in the latter
equality. The relation above will be used to set up the initial conditions for primordial
nucleosynthesis.

3.4.2 Neutrino decoupling and electron—positron annihilation

At early times, the main contribution to the energy density comes from relativistic
particles. Neglecting the chemical potentials, (3.51) and (3.53) imply that their total
energy density is

g = kT*, (3.85)
where
7 (g ] (3.86)
K= 3p\82 T g8 ) ‘

and g, and g s are the total numbers of internal degrees of freedom of all relativistic
bosons and fermions respectively. Let us calculate « in the universe when the
only relativistic particles in equilibrium are photons, electrons, the three neutrino
species and their corresponding antiparticles. Photons have two polarizations, and
so g, = 2. Electrons have two internal degrees of freedom, but each type of neutrino
has only one because neutrinos are left-handed. The antiparticles double the total
number of fermionic degrees of freedom and, therefore, g = 10. Thus, in this
case, k ~~ 3.537. Every extra bosonic or fermionic degree of freedom changes « by
Axp 22 0.329 or Ak 2~ 0.288 respectively.

Comparing (3.85) to (1.75), we find the relation between the temperature and
the cosmological time in a flat, radiation-dominated universe:

3 1/2
t = (32 ) T2 (3.87)
TTK
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Converting from Planckian units, we can rewrite this relation in the following useful

form:
3 N\ /T \? 1
fooe = tp)| —— ) ~139% V2 ——|, 3.88
sec Pl(327’[l€) ( T ) K T2 ( )

MeV

where the cosmological time and temperature are measured in seconds and MeV
respectively.

When the temperature decreases to afew MeV, thatis, about a second after the big
bang, weak interactions become inefficient. These interactions are important in two
respects. First, they keep neutrinos in thermal contact with each other and with the
other particles, and second, they maintain the chemical equilibrium between protons
and neutrons. The two events, namely, the thermal decoupling of neutrinos and the
chemical decoupling of baryons, are somewhat separated in time. The first happens
when the temperature is about 1.5 MeV, while the second occurs at 7 ~ 0.8 MeV.
The chemical decoupling of the baryons is essential for nucleosynthesis and it will
be considered in detail in the next section. Here we concentrate on the thermal
decoupling of neutrinos.

The main reactions responsible for the coupling of the electron neutrinos to the
relativistic electron—positron plasma, and hence to radiation, are

et +e = v, + 0, ei+ve—>ei+ve, ei+De—>ei+De. (3.89)

Some diagrams describing these interactions in electroweak theory (see next chap-
ter) are shown in Figure 3.4. Both charged W*-bosons and the neutral Z-boson
contribute to these processes. At energies much smaller than the masses of the in-
termediate bosons the propagators of the Z- and W-bosons reduce to 1/ M%V’ , and
Fermi theory can be used to estimate the cross sections. For relativistic electrons

et
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we have

az

Tev = O(1) ——(p1 + p2)’, (3.90)
MW,Z

where «,, >~ 1/29 is the weak fine structure constant and p; » are the 4-momenta of
the colliding particles. The neutrinos decouple from the electrons when the collision
time,

ty 2(0on.) ' = O, My, T2, (3.91)

becomes of order the cosmological time ¢, which, in turn, is related to the tem-
perature via (3.87). When deriving (3.91) we have assumed that the electrons are
relativistic and hence (p; + p»)*> ~ T? and n, ~ T3. Comparing (3.91) to (3.87),
one finds that the electron neutrinos v, decouple at temperature

T, ~ 0() o, ** My, (3.92)

The exact calculation shows that the numerical coefficient in this formula is not
much different from unity and hence 7,, ~ 1.5 MeV.

At temperatures of order MeV, the number densities of p- and t-leptons are
negligibly small and the only reactions enforcing thermal contact between p- and
T-neutrinos and the rest of matter are the elastic scatterings of v, . on electrons
(ev,,r — ev, r); these are entirely due to Z-boson exchange. As a consequence,
the cross-sections for these reactions are smaller than the total cross-section of
the ev, interactions and the - and 7-neutrinos decouple earlier than the electron
neutrinos.

The most important conclusion from the above consideration is that all three
neutrino species thermally decouple before the electron—positron pairs begin to an-
nihilate at T ~ m, >~ 0.5 MeV. After decoupling, the neutrinos propagate without
further scatterings, preserving the Planckian spectrum. Their temperature decreases
in inverse proportion to the scale factor and is not influenced by the subsequent e*
annihilation. The energy released in the electron—positron annihilation is thermal-
ized and as a result the radiation is “heated.” Therefore, the temperature of radiation
must be larger than the neutrino temperature. Let us calculate the radiation-to-
neutrino temperature ratio. After decoupling the neutrino entropy is conserved sep-
arately. The total entropy of the other components, which is dominated by radiation
and the electron—positron plasma, is also conserved. Hence the ratio

Sy + Sex

Sy
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remains constant. Taking into account that s, Ty3 and s, oc T2, we have

(ﬂ)3<1 N S_*) _c (3.93)
T, Sy - '

where C is a constant. Just after neutrino decoupling, but before e*

T, =T, and 5.+ /s, = 7/4 (see (3.59)). Therefore, C = 11/4 and

T, 11\'3 52\ V3
(E)=<7) (1+§) | (3.94)

When the electron—positron pairs begin to annihilate at 7 ~ 0.5 MeV the ratio of
entropies s.+ /s, decreases and finally becomes completely negligible (see (3.82),
where one has to substitute m, instead of m,). Hence, after electron—positron

annihilation we have
T, 1\’
Xy=(= = 1.401. (3.95)
T, 4

Thus, the massless primordial neutrinos should have a temperature today of
T, ~2.73K/1.4 >~ 1.95 K. Unfortunately it is not easy, if even possible, to detect
the primordial neutrino background and verify this very robust prediction of the
standard cosmological model.

annihilation,

Problem 3.13 Assuming that neutrinos have a small, but nonvanishing mass, esti-
mate their temperature today.

Problem 3.14 Calculate the contribution of neutrinos to the energy density
after e* annihilation and determine at which redshift z the total energy density
of radiation and relativistic neutrinos is exactly equal to the energy density of cold
(nonrelativistic) matter.

3.5 Nucleosynthesis

The most widespread chemical element in the universe is hydrogen, constituting
nearly 75% of all baryonic matter. Helium-4 constitutes about 25%. The other light
elements and metals have only very small abundances.

Simple arguments lead to the conclusion that the large amount of “He could not
have been produced in stars. The binding energy of “He is 28.3 MeV, and therefore,
when one nucleus of “He is formed, the energy released per one baryon is about
7.1 MeV ~ 1.1 x 1073 erg. Assuming that one quarter of all baryons has been
fused into *He in stars during the last 10 billion years (3.2 x 10'”s), we obtain the
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following estimate for the luminosity-to-mass ratio:

L 1 1.1 x 1075 erg Nserg N25L@
My, 417 x1072%gm) x 32 x 10'7s)  “gms Mgy’

where Mg and L are the solar mass and luminosity respectively. However, the ob-
served L/Mp,, < 0.05Lg/ Mg, and therefore, if the luminosity of baryonic matter
in the past was not much larger than at present, less than 0.5% of “He can be fused
in stars.

The only plausible explanation of the helium abundance is that it was produced in
the very early hot universe when the fusion energy constituted only a small fraction
of the total energy. The energy released was then thermalized and redshifted long
before the universe became transparent. It is obvious that a substantial amount of
helium cannot be formed before the temperature drops below the binding energy
~28 MeV. Indeed, primordial nucleosynthesis took place at temperature roughly
0.1 MeV, that is, a few minutes after the big bang. The amount of helium produced
depends on the availability of neutrons at this time, which, in turn, is determined by
the weak interactions maintaining the chemical equilibrium between neutrons and
protons. These weak interactions become inefficient when the temperature drops
below a few MeV and, as a consequence, the neutron-to-proton ratio “freezes out.”
Thus, the processes responsible for the chemical abundances of primordial elements
began seconds after the big bang and continued for the next several minutes.

In this section, we use analytical methods to calculate the abundances of the light
primordial elements. Although more precise results are obtained with computer
codes, the quasi-equilibrium approximation used here reproduces the numerical
results with surprisingly good accuracy. In addition, the analytical methods allow
us to understand why and how the primordial abundances depend on cosmological
parameters.

3.5.1 Freeze-out of neutrons

We begin with the calculation of the neutron freeze-out concentration. The main
processes responsible for the chemical equilibrium between protons and neutrons
are the weak interaction reactions:

n+vepte, n+et = p47. (3.96)

Here v always refers to the electron neutrino. To calculate the reaction rates, we can
use Fermi theory according to which the cross-sections can be expressed in terms
of the matrix element for the four-fermion interaction represented in Figure 3.5:

IMI* = 16(1 +3g3) Gx(pa - Pv) (Pp - Do), (3.97)
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n p

where

_Tmay
- V2M3,

is the Fermi coupling constant and (p; - p;) are the scalar products of the 4-momenta

entering the vertex. The factor g4 =~ 1.26 corrects the axial vector “weak charge”

of the nucleon by accounting for the possibility that gluons inside the nucleon split

into quark—antiquark pairs, thus contributing to the weak coupling. Note that the

Fermi constant can be determined to very high accuracy by measuring the lifetime

of the muon, while g4 can be measured only in interactions involving nucleons.
For the process a + b — ¢ + d, the differential cross-section is

Gr ~1.17 x 107> GeV 2

1/2

dogy 1 |MP ((pc - pa)’ —mfmﬁ)

dQ — 87)(pa + pp)* 2

(3.98)
(Pa - Pp)* — m2m?

This expression is manifestly Lorentz invariant and can be used in any coordi-
nate system. The 4-momenta of the outgoing particles ¢ and d are related to the
4-momenta of the colliding particles a and b by the conservation law: p, + p; =

Pa + Pb-
Let us now consider the particular reaction

n+v—>p+e.
At temperatures of order a few MeV the nucleons are nonrelativistic and we have

(pn + pv)2 ~ mﬁ’ (pn . pv) = Mmpué€,,

\/(pp : pe)z - mf,m% ZXmpeey 1 _(me/ee)z = Mp€ele,

where €, is the energy of the incoming neutrino and €, >~ €, + Q is the energy of the
outgoing electron. The energy Q ~ 1.293 MeV, introduced in (3.84), is released
when the neutron is converted into the proton. Expression (3.98) is valid only in
empty space. At temperatures above 0.5 MeV there are many electron—positron
pairs and the allowed final states for the electron are partially occupied. As a result,

(3.99)
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the cross-section is reduced by the factor
—1
1 —ne, =[1+exp(—€./T)]

to account for the Pauli exclusion principle. Given this factor, the substitution of
(3.99) and (3.97) into (3.98) gives

G2ev, [1 4 exp(—e,/T)] . (3.100)

Oy =

1+3gA
T

Because the number density of the nucleons is negligible compared to the number
density of the light particles, the spectra of neutrinos and electrons are not signif-
icantly influenced by the above reactions and always remain thermal. Hence, the
nv interactions occurring within a time interval Af in a given comoving volume
containing N,, neutrons reduce the total number of neutrons by

AN, = _<Z anvneuv,)Agev)NnAt, (3.101)
€y

where

ne, = [1+exple,/T)] "

is the neutrino occupation number and Ag., is the phase volume element (see
(3.26), where V = g = 1). The velocity of neutrinos v, is equal to the speed of
light: v, = 1.

It is useful to introduce the relative concentration of neutrons

Nn nn
X, = = . (3.102)
N, + N, n, +n,

Taking into account that the total number of baryons, N, + N,, is conserved, and
substituting (3.100) into (3.101), we find that the rate of change of X,, due to the
nv reaction is

dx 143
( ) = Xy = fA G2 05J(1;00) X, (3.103)
dat /,, 2

. 2 2 _12d
Jah) = f/ (m/Q) i i,qn ) 7 God)
+eT <l+e Tq)

and the integration variable is

g=€/0)+1=¢/0.

where
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Before electron—positron annihilation the temperatures of the electrons and neu-
trinos are equal, that is, 7 = T,. To estimate the integral in (3.104) we note that
(m./Q)* =~ 0.15 and expand the square root in the integrand, keeping only the first
two terms. Furthermore, ignoring the Pauli exclusion principle for the electrons or,
equivalently, neglecting the second term in the denominator, we can calculate the
resulting integrals and obtain

A (TN, Tt (T 33) 1m2\ (T,\’
= S2(5) v () w0 -a3)(Q) - e

It is quite remarkable that this approximate expression reproduces the exact result
with very good accuracy at all relevant temperatures. For example, for 7,/ Q0 > 1,
the error is about 2%, improving to 1% or better for 7,/ Q < 1. Substituting (3.105)
together with the values of G r and Q into (3.103), and converting from Planckian
to physical units, we find

T\ (T 2
w163 =) [ =2 +025) s 3.106
(Q) (Q+ ) ° (100

Further simplifications made to obtain this last expression do not spoil the accuracy;
at the temperatures relevant for freeze-out , 7\, > 0.5 MeV, the error remains less
than 2% .

Problem 3.15 Verify that the reaction rate for ne™ — p¥v is equal to

1+3g32 M,
ne = 73 AG%?QSJ(—OO; _§> ) (3.107)

where J is the integral defined in (3.104). Check thatif 7, = T and T > m,, then
Ane 2 Any. Consider the inverse reactions pe~ — nv and pv — ne™. Show that
for T, = T their rates can be expressed through the rates of the direct reactions:

Ape =exXp(=Q/T) Apy, Aps = exp(=Q/T) Ape. (3.108)

Freeze-out The inverse reactions increase the neutron concentration at a rate
Ap—nX,. The balance equation for X, is therefore

dxX, -2 e
= =X+ Ay X = —hep(T4eF) (X - X3),  (3.109)

where A, , = Ay + Ap and A,_,, = A, + Ap; are the total rates of the direct
and inverse reactions respectively, and

X4 = ; (3.110)
1+exp(Q/T)
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is the equilibrium concentration of neutrons. To obtain the second equality in (3.109)
we used the relations in (3.108), assuming 7\, = T, as well as the fact that the proton
concentrationis X, =1 — X,,.

The exact solution of the linear differential equation (3.109), with the initial
condition X,, — Xy ast — 0, is

t t
X, (1) = X9(t) — /exp _ / A,H,,(f)<1 n e—%) di | X9(7)di,  (3.111)
0 7
where the dot denotes the derivative with respect to time.

The second term on the right hand side in (3.111) characterizes the deviation
from equilibrium and is negligible compared to the first term at small ¢. Integrating
by parts, we can rewrite the solution (3.111) as an asymptotic series in increasing
powers of the derivatives of X, :

1 X!
X, =X31- —gt - (3.112)
! < A p(1 +exp(=Q/T)) X' )

If the reaction rate is much larger than the inverse cosmological time, that is,
Ansp > 71~ =X/ X3, thenwehave X,, ~ X, in agreement with result (3.84).
Subsequently, after the temperature has dropped significantly, X, — 0, but the
second term on the right hand side in (3.111) approaches a finite limit. Instead
of vanishing, therefore, the neutron concentration freezes out at some finite value
X, = X,(t = 00). The freeze-out effectively occurs when the second term on the
right hand side in (3.112) is of order the first one or, in other words, when the
deviation from equilibrium becomes significant. This happens before e* annihila-
tion and after the temperature drops below Q ~ 1.29 MeV (as can be checked a
posteriori). Consequently we can set A,,_, , =~ 21, and neglect exp(—Q/T) in the
equality —X;'/ X,* >~ A, ,, which determines the freeze-out temperature. Sub-
stituting into this equality expression (3.110) for X, and expression (3.106) for
Any and using the temperature—time relation (3.88), the equation for the freeze-out

temperature reduces to
T\ (T 2
(5) (5 + 0.25) ~0.18«'/2, (3.113)

In the case of three neutrino species we have k =~ 3.54 and the freeze-out tem-
perature is T, ~ 0.84 MeV. The equilibrium neutron concentration at this time is
X, (T,) ~ 0.18. Of course, this number gives only a rough estimate for the ex-
pected freeze-out concentration. One should not forget that at T = T, deviations
from equilibrium are very significant and, in fact, X, (7,) exceeds the equilibrium
concentration by at least a factor of 2. Nevertheless, the above estimate enables
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us to see how the freeze-out concentration depends on the number of relativistic
species present at the freeze-out time. Because T, o «'/®, additional relativistic
components increase 7, and, hence, more neutrons survive. Subsequently, nearly
all neutrons fuse with protons to form “*He and we anticipate, therefore, that addi-
tional relativistic species increase the primordial helium abundance. For example,
in the extreme case of a very large number of unknown light particles, the tem-
perature T, would exceed Q and the neutron concentration at freeze-out would be
almost 50%. This would lead to an unacceptably large abundance of “He. Thus,
we see that primordial nucleosynthesis can help us to restrict the number of light
species.

Problem 3.16 Find the freeze-out temperature using the simple criterion r >~ 1/A
and verify that in this approximation one obtains the result quoted in many books
on cosmology, namely, T, o x!/6. What accounts for the difference between this
and the above result, T, o k1/82

Now we turn to a more accurate estimate for the freeze-out concentration.
Since X, — 0 as T — 0, X is given by the integral term in (3.111) when we
take the limit # — oo. The main contribution to the integral comes from T > m,.
Therefore we set A,_, , > 2A,,, where A,, is given in (3.106). Using (3.88) to
replace the integration variable f by y = 7'/, we obtain

X =

n

T exp(=5.42c712 [P (x +0.25)(1 + e V/*) d
/exp( K Jo(x + (1 + e 1) x)dy. G.114)

2y2(1 + cosh(1/y))
0

For the case of three neutrino species (k > 3.54) one finds X ~ 0.158. Thisresultis
in very good agreement with more elaborate numerical calculations. The presence
of an additional light neutrino, accompanied by the corresponding antineutrino,
increases « by amount 2 - Ax s 2~ 0.58, and the freeze-out concentration becomes
X, >~ 0.163. Thus, two additional fermionic degrees of freedom increase X, by
about 0.5% and we conclude that

X ~0.158 + 0.005(N, — 3), (3.115)

where N, is the number of light neutrino species.

Neutron decay Until now we have neglected neutron decay,
n—p+e +v. (3.116)

This was justified because the lifetime of a free neutron 7,, = 886 s is large compared
to the freeze-out time, 7, ~ O(1) s. However, after freeze-out the interactions (3.96)
and the inverse three-body reaction (3.116) become inefficient and neutron decay
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is the sole remaining cause for a change in the number of neutrons. As a result, the
neutron concentration decreases for ¢ > ¢, as

X, (1) = X*exp(—t/1,). (3.117)

Note that after freeze-out one can neglect the degeneracy of the leptons, which
would increase the neutron lifetime, and use t,, as quoted above. We will see that
nucleosynthesis, in which nearly all free neutrons are captured in the nuclei (where
they become stable), occurs at r ~ 250 s. This is a rather substantial fraction of
the neutron lifetime and hence the neutron decay significantly influences the final
abundances of the light elements.

3.5.2 “Deuterium bottleneck”

Complex nuclei are formed as a result of nuclear interactions. Helium-4 could,
in principle, be built directly in the four-body collision: p + p +n +n — *He.
However, the low number densities during the period in question strongly suppress
these processes. Therefore, the light complex nuclei can be produced only through a
sequence of two-body reactions. The first step is deuterium (D) production through
the reaction

p+n=D+y. (3.118)

There is no problem with this step because for t < 103 s the corresponding reaction
rate is much larger than the expansion rate.

Let us calculate the deuterium equilibrium abundance. We define the abundance
by weight:

XD = 2l’lD/l’lN,

where ny is the total number of nucleons (baryons) including those in complex
nuclei. The relation between Xp and the abundances of the free neutrons, X, =
n,/ny, and protons, X, = n,/ny, can be found using (3.61) for each component.
Because the deuterium nucleus with spin zero is metastable, its total statistical
weightis gp = 3. Taking into account that g, = g, = 2 and the chemical potentials
satisfy the condition up = w, + w,, we find

B
Xp = 5.67 x 10"4n0Toln exp< D > X, X0, (3.119)
Tvev

where

Bp =my “+m, — mp ~ 2.23 MeV
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is the binding energy of the deuterium. We have parameterized the baryon-to-photon

ratio by
no = 1010 x =¥ (3.120)
ny

This parameter is related to €2;, the baryon contribution to the current critical
density, via

Quh3s ~ 6.53 x 10 n9. (3.121)

At temperatures of order Bp, the abundance Xp is still extremely small and
even at T ~ 0.5 MeV, for example, it is only about 2 x 1013, One of the reasons
for this is the large number of energetic photons with € > Bp, which destroy the
deuterium. The number of such photons per deuterium nucleus is

20 —Bp/T 2
ny(e > By) BT ™ (@) BT (3122)
no nyXp noXp \ T

which becomes less than unity only at T < 0.06 MeV. Therefore, we expect that
deuterium can constitute a significant fraction of baryonic matter only if the tem-
perature is about 0.06 MeV. In fact, according to (3.119), for ;9 ~ O(1) the equi-
librium deuterium abundance changes abruptly from 107> to of order unity as the
temperature drops from 0.09 MeV to 0.06 MeV.

The rates of reactions converting deuterium into heavier elements are propor-
tional to the deuterium concentration and these reactions are strongly suppressed
until Xp has grown to a substantial value. This delays the formation of the other
light elements, including “He. In fact, because of the large binding energy of “He
(28.3 MeV), the equilibrium helium abundance would already be of order unity at
temperature 0.3 MeV. However, this does not happen and the helium abundance
is still negligible at 7 ~ 0.3 MeV because the rate of the deuterium reactions,
responsible for maintaining helium in chemical equilibrium with the nucleons, is
much smaller than the expansion rate at this time. As a result, the heavier elements
are chemically decoupled and present in completely negligible amounts despite
their large binding energies. Only protons, neutrons and deuterium are in chemical
equilibrium with each other. This situation is usually referred to as the “deuterium
bottleneck.”

Problem 3.17 Derive the formula for the equilibrium concentration of “He and
verify that it is of order unity at 7 ~ 0.3 MeV.

Let us determine when the deuterium bottleneck opens up. This occurs when the
main reactions converting deuterium into heavier elements,

()D+D— °He+n, (@)D+D-— T+ p, (3.123)
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become efficient. Within the relevant temperature interval, 0.06 MeV to 0.09 MeV,
the experimentally measured rates of these reactions are

(o v)pp; =(1.3-2.2) x 1077 cm? 571,
(0v)ppy =(1.2-2) x 1077 ecm® s71, (3.124)

respectively. Due to reactions (3.123), the number of deuterium nuclei in acomoving
volume containing Np nuclei decreases during a time interval Ar by

ANp = — (O’U)DD npNpAt. (3.125)

Rewriting this equation in terms of the concentration by weight, Xp = 2Np /Ny,
we obtain

AXp = —3AppXpAt, (3.126)
where
App =0 V)pp1 + (0 V)ppo) iy = 1.3 x 10°K(T) Tyeynio s~ . (3.127)

The function K (T) characterizes the temperature dependence of the reaction rate
and it changes from 1 to 0.6 as the temperature drops from 0.09 MeV to 0.06 MeV.
A substantial amount of the available deuterium is converted into helium-3 and
tritium within a cosmological time ¢ only if

|AXp| 2 (3) App XDt = Xp. (3.128)
It follows that the deuterium bottleneck opens up when

X](;m) ~ 2 ~ 12 X 1075
App! n1o0Tmev (X](gbn))

(3.129)

where we have used the time—temperature relation (3.88) with x ~ 1.11. From
(3.119), one can express the temperature as a function of Xp:

0.061

Tyvev(Xp) '
Mev(XD) (1 +2.7 x 102 ln(XD/mo))

(3.130)

Substituting this expression into (3.129) and solving the resulting equation for X g’ "

by the method of iteration for 10 > n;o > 107!, we find

XS~ 1.5 x 107407 (1 =7 x 1072 In nyo) - (3.131)
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Problem 3.18 Verify that after electron—positron annihilation, the value of « in
(3.85) becomes

k ~1.11 4+ 0.15(N, — 3), (3.132)

where N, is the number of neutrino species. (Hint Recall that the neutrino and
radiation temperatures are different after e annihilation.)

After the deuterium concentration reaches X g’ n everything proceeds very
quickly. According to (3.130) the equilibrium concentration Xp increases from
10~* to 1072 as the temperature drops from 0.08 MeV to 0.07 MeV. As a result, the
rate of deuterium conversion into heavier elements, proportional to Xp, becomes
100 times larger than the expansion rate. Such a system is far from equilibrium and
nucleosynthesis is described by a complicated system of kinetic equations which
are usually solved numerically. In Figures 3.7 and 3.8 below we present the results
of highly precise numerical calculations for the time evolution of the light element
concentrations and for their final abundances, respectively. We will now show how
these results can be reproduced analytically with good accuracy. The system of ki-
netic equations will be solved using the quasi-equilibrium approximation. This will
provide us with a solid physical understanding of primordial nucleosynthesis and
will reveal the reasons for the dependence of final abundances on the cosmological
parameters. To simplify our task we consider only the most abundant isotopes up
to 'Be, among which are “He, D,?He, T, lithium-7 ("Li) and beryllium ("Be) itself.
Other elements such as °Li, 8B etc. are produced in much smaller amounts and will
be ignored.

The most important nuclear reactions are shown schematically in Figure 3.6.
The reader is encouraged to keep a copy of this figure at hand throughout the
rest of this section. Every element corresponds to a “reservoir.” The reservoirs are
connected by “one-way pipes”, one for each nuclear reaction converting an element
into another. To simplify the diagram, we include only the initial elements involved
in the reaction; the outcome can easily be inferred from the diagram. The efficiency
of the pipe is determined by the reaction rate. For example, for the rate of escape
from the reservoir A due to the reaction AB — CD, we find

Xp=—Agz"2apXa Xz, (3.133)
and the rate of increase of the element C is
Xc = AcA ' Az AapXa X5, (3.134)

Here XA = Aana/ny, etc. are the concentrations by weight of the corresponding
elements, A are their mass numbers (for example, Ap = 2 and Ar = 3, etc.) and
Aap = (0V) s ny. The reaction is efficient only if Xa/Xa > 7.
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3He 4He

3He D

Fig. 3.6.

The general picture is as follows. Until the temperature drops to 0.08 MeV, the
p.n and D reservoirs are in equilibrium with each other and decoupled from the
rest (the deuterium bottleneck). However, as soon as the temperature drops to 0.08
MeV, the DD pipes become very efficient, rapidly converting the deuterium supply
from the np reservoir into heavier elements. Finally, nearly all free neutrons have
been bound in nuclei. Around this time the concentrations of the elements in the
various “reservoirs” freeze out at their final abundances. Now we consider the
build-up of each element in detail.

3.5.3 Helium-4

Once deuterium reaches the abundance X g’ " the bottleneck opens and nucleosyn-

thesis begins. However, at the beginning, deuterium production in the reaction
pn — Dy is still greater than its destruction in DD reactions. The ratio of the
corresponding rates is

_ 2
PonXpXn ~ 10* 1o~ (3.135)
App X3 ’

where the experimental value for A, /App is about 1073 at Tyev =~ 0.07—0.08 and
we have set X,, >~ 0.16, X, >~ 0.84. Because of the very high supply rate, deu-
terium remains in chemical equilibrium with nucleons until its abundance rises to
Xp 2~ 1072, After that, two-body DD reactions become dominant and Xp, begins to
decrease — see Figure 3.7, where the time dependence of abundances for 19 >~ 7
is shown. (Note that the deuterium photodestruction can be ignored now because it
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alone cannot prevent Xp from further growth.) Although the deuterium concentra-
tion ceases to grow, the concentration of free neutrons strongly decreases because
they go first to the deuterium reservoir and then, without further delay, proceed
down the pipes towards the heavier elements. For most of the neutrons, the final
destination is the “He reservoir. In fact, the binding energy of *He (28.3 MeV)
is four times larger than the binding energies of the intermediate elements, *He
(7.72 MeV) and T(6.92 MeV) and, therefore, if *“He were in equilibrium with these
elements, it would dominate at low temperatures. A system always tends to equi-
librium in the quickest possible way. Therefore, most of the free neutrons will form
“He to fulfil its largest equilibrium demand.

Problem 3.19 Verify that at T ~ 0.1 MeV the equilibrium concentrations of D,
*He and T are many orders of magnitude smaller than the “He concentration.

The reactions in which “He is formed proceed as follows. First, deuterium is
converted into tritium and He according to (3.123). Next, tritium combines with
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deuterium to produce “He:
TD — “Hen. (3.136)

In this sequence, two of the three neutrons end up in the newly formed “He nucleus
and one neutron returns to the np reservoir. The *He nucleus can interact either
with a free neutron and proceed to the T reservoir,

*Hen — Tp, (3.137)
or with deuterium and go directly to the *He reservoir,
‘HeD — “Hep. (3.138)

The ratio of the rates for these reactions is
)"3HenX3HeXn - 6Xn
A3HeD X3He XD Xp

(3.139)

Hence, until the concentration of free neutrons, X,,, drops below Xp (which never
exceeds 1072), (3.137) is more efficient than (3.138). Therefore, most of the neu-
trons are fused into “*He through the reaction chains np — D — T — “He and
np — D — 3He — T — “He. Within a short interval around the time when the deu-
terium concentration reaches its maximal value Xp ~ 1072, nearly all neutrons,
except a very small fraction ~10~%, end up in “*He nuclei. Therefore, the final “He
abundance is completely determined by the available free neutrons at this time.
According to (3.130), Xp is of order 102 at temperature

Ty 2 0.07(1 4 0.03 1n 19) , (3.140)
or, equivalently, at time
1 ~ 269(1 — 0.07(N, — 3) — 0.061n 10), (3.141)

where we have used (3.132) for « in (3.88). Because half of the total weight of “He
is due to protons, its final abundance by weight is

)
x7 —2Xn(t(N)):2X;‘exp(— ) (3.142)

‘He — T,
Substituting here X from (3.115) and t™) from (3.141), one finally obtains

X[, ~0.2340.012(N, — 3) +0.005In 719 (3.143)

This resultis in good agreement with the numerical calculations shown in Figure 3.8.
The “He abundance depends on the number of ultra-relativistic species N, and
the baryon density characterized by 7n;9. The presence of an additional massless
neutrino increases the final abundance by about 1.2%. This increase comes from two
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sources which give comparable contributions. First, the greater the number of ultra-
relativistic species, the faster the universe expands for a given temperature. This
means neutrons freeze out earlier, leading to larger X. Second, if there are more
light species, the nucleosynthesis temperature is reached sooner and more neutrons
avoid decay. Thus, given 119, we can put rather strong bounds on the number of
unknown light species using the observational data on helium-4 abundance. We will
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see later that ;¢ can be determined with high precision from data on deuterium
abundance and CMB fluctuations.

It follows from (3.141) that nucleosynthesis begins earlier in a more dense uni-
verse and hence more neutrons are available. Therefore, the final helium-4 abun-
dance depends logarithmically on the baryon density and, according to (3.143),
increases by 1% or so if the baryon density is 10 times larger.

3.5.4 Deuterium

To calculate the time evolution and freeze-out abundance of deuterium, we make
a series of assumptions which drastically simplify our task. The validity of these
assumptions can be checked a posteriori.

First, we ignore "Be and Li because their abundances turn out to be small
compared to the abundances of 3He and T. Second, we assume that the *He and
T abundances take on their quasi-equilibrium values, that is, they are completely
determined by the condition that “the total flux coming into each corresponding
reservoir must be equal to the outgoing flux” (see Figure 3.6). Concretely, in the
case of *He, the amount of *He produced within a given time interval via DD and
Dp reactions should be equal to the amount of *He destroyed within the same time
in *HeD and *Hen reactions.

Let us describe the primordial nucleosynthesis process once more, but this time
in greater detail. When the deuterium concentration reaches Xp ~ 102 the DD
reactions become efficient and the deuterium produced in the pn reaction is quickly
converted into *He and T. Thus, further deuterium accumulation stops and, in fact,
its concentration begins to decrease. As a result, neutrons are taken from the np
reservoir and sent, without delay in the D reservoir, directly to the *He and T
reservoirs along the DD and D p pipes. From there they proceed through *HeD and
TD pipes to their final destination — the *He reservoir.

Not all the neutrons reach the “He reservoir on their first attempt; some of them
“leak out” on the way there. Concretely, neutrons are released in the reactions
DD — 3Hen and TD — “Hen and they return to the np reservoir. From there, they
again try to reach the “He reservoir. Thus, after the beginning of nucleosynthesis,
there is a steady flux of neutrons from the np reservoir to the “He reservoir through
the intermediate D, *He and T reservoirs. The system of pipes is self-regulating and
maintains the *He and T concentrations in accordance with the demands of quasi-
equilibrium. To be precise, the rate of destruction of *He and T is proportional to
their concentrations and if, for example, the abundance of *He becomes larger or
smaller than the quasi-equilibrium concentration, then the size of the *Hen pipe
grows or shrinks respectively, and the concentration quickly returns to its quasi-
equilibrium value.
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If the universe were not expanding, then nearly all free neutrons would end up
in “He nuclei and there would be negligible abundances of the other light elements.
However, in an expanding universe, expansion acts as a “shut-off valve” for the
pipes. At the moment the expansion rate becomes larger than a particular reaction
rate, the corresponding pipe closes. When all pipes entering a reservoir have closed,
the abundance of that light element freezes out. The final abundances of *He and
T are determined by the freeze-out concentration of deuterium, which we now
calculate.

Let us derive the system of kinetic equations for the abundances by weight X,
Xp, X1 and Xsy.. The concentration of free neutrons decreases due to the reactions
pn — Dy and *Hen — Tp but increases in the processes DD — *Hen and DT —
“Hen. Therefore, taking into account (3.133) and (3.134), we obtain

an
dt

Deuterium is produced only in the reaction pn — Dy and destroyed in the reactions
DD — 3Hen, DD —Tp, Dp — *Hey, *HeD — *Hep, DT — “Hen. Hence,

= —ApnXpXy — $Monen Xowe X + $A0D1 XD + $AprXpX1.  (3.144)

dXp 1 2 1 1
7 == 2)\,anan - EA‘DDXD - )“DPXDXP - g}\,DTXDXT - 5)"3HeDX3HeXD’
(3.145)
where App = Appi + Appz. The equation for tritium is obtained similarly:
dXt
— = 3App2 XD + Aoten Xowe X — $Ap7T XpXT. (3.146)

We assume that the tritium concentration satisfies the quasi-equilibrium condition,
that is, the rate of its overall change is much smaller than the rates of the individual
reactions on the right hand side of (3.146). Therefore, we set d Xt/dt ~ 0 and
(3.146) reduces to

%)\.DDZX% + Agen Xope Xy & %)"DTXDXT- (3147)
The quasi-equilibrium condition for helium-3 takes the form
3App1 XD + 3App XD Xy A Ihinen Xone Xp + Aopen Xone Xor- (3.148)

Using (3.147) and (3.148) to express Xsy. and Xt through the neutron and deu-
terium concentrations, (3.144) and (3.145) become
an
dt

= oD XD — Apn X p X, (3.149)

dXp 5
—= = 2y XXy — Ao XD — 2y Xp X . (3.150)
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It is convenient to rewrite these equations using a temperature variable instead of a
time variable (see (3.88)). Substituting the explicit value for App from (3.127) then
gives

dX
~ = R X, —X3), 3.151
dToey ano(R 5) ( )
dx
P = danio(X2 + RoXp — 1R 1X,), (3.152)
dTyev

where
a=a(T)=0.86 x 10°K(T)

and the coefficient K (T") describes the temperature dependence of (o v)pp, . Its value
changes from 1 to 0.5 when the temperature drops from 0.09 MeV to 0.04 MeV.
Over the same temperature interval the coefficients R; and R, are

R, =4X, Apn ~(3-8) x 107°, R, = ZXP)LLD ~(2.5-2.3) x 107, (3.153)
ADD ADD
where the experimental value for the ratio of the corresponding reaction rates has
been used. The system of equations (3.151) and (3.152) has attractor solutions.

First we consider the initial stage of nucleosynthesis when Xp <« X,,. It turns
out that in this case the deuterium concentration satisfies the quasi-equilibrium
condition and we can set d Xp/dT =~ 01in (3.152). Since R, < R;, the term R, Xp
is small compared to R; X,,, and it follows from (3.152) and (3.151) that

v [RX T Xp
p=1— +0 )| (3.154)

This solution is valid after the deuterium concentration reaches its maximal value
of order 1072 and begins to decrease (Figure 3.7). It fails as soon as X,, drops to
Xp and, at this time, X,, ~ Xp ~ R;. Note that, according to (3.154), the maximal
concentration of deuterium is equal to Xp ~ 1072 for X,, ~ 0.12. This is in agree-
ment with the naive estimate derived earlier by comparing the rates of pn and DD
reactions. Substituting (3.154) into (3.151), we obtain

dX,
dTMeV = iamoRan. (3155)
In this regime the neutrons determine their own fate and also dictate the quasi-
equilibrium concentrations to the other elements, including deuterium. In other
words, they regulate the shut-off valves between the reservoirs in Figure 3.6. At
the beginning of nucleosynthesis, at 7 = Tl\(,fZi,, most of the neutrons are still free,
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and hence X, =~ 0.12. Neglecting the temperature dependence of «, we then find
the approximate solution of (3.155):

Xu(T) = 0.12exp(JamoR (T = Ty )) (3.156)

where TI\(,[]Z\), is given in (3.140). It follows that the neutron concentration becomes
comparable to the deuterium concentration, X,, ~ Xp ~ R, at the temperature

Tiiey ~ 0.07 4+ 0.0021n 119 — 0.02K 'y (3.157)

In a universe with very low baryon density, Kn;y < 0.3, the abundance of free
neutrons (neglecting their decay) does not decrease below X and freezes out at
the value

X[ = 0.12exp(— Jarmo Ri T ) ~ 0.12exp(—10K nyo) (3.158)

The remaining free neutrons then decay. This explains why, for instance, the *He
abundance is less than 1% in a universe with ;9 ~ 1072 (Figure 3.8).

Problem 3.20 At which value does the deuterium concentration freeze out in low
baryon density universe? How does it depend on ny?

In the derivation of the “He abundance presented above, we tacitly assumed that
the reactions converting the neutrons into “*He are very efficient in transferring most
of the available neutrons into heavier elements. This means that (3.143) is valid
only for K5y > 0.3. Observations suggest that 10 > 1,9 > 1 and therefore we will
assume below that g > 1.

When the neutron concentration becomes of order the deuterium concentration,
(3.154) fails and the system quickly reaches another attractor. Afterwards, the
neutron concentration satisfies the quasi-equilibrium condition, d X,,/dT ~ 0, and
it follows from (3.151) that

X—1X2 14+ 0 X (3.159)
"TRP Xp) |’ '

Equation (3.152) then becomes

dXp
dTviev

= 2am10(Xp + 2R Xp) - (3.160)

Now the deuterium determines its own fate and regulates the quasi-equilibrium
concentrations of the neutrons and the other light elements. Since R, changes
insignificantly within the relevant temperature interval (see (3.153)), it can be taken
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to be a constant. Equation (3.160) is then readily integrated:

*

2R, 2R,
1+ =(1+ exp| 4Rani0 | (T)dT |, (3.161)
T

Xp(T) Xp(T*)

where the temperature is expressed in MeV. As the temperature decreases, the
deuterium concentration freezes out at Xl'g = Xp(T — 0). Taking into account
that Xp(7T*) ~ Ry > R,, we obtain

; 2R,

X} =~ e (3.162)
where
-
A= 4R2/oz(T)dT ~ 4Rya (T*) Tyiev - (3.163)
T

The coefficient A depends only weakly on 1;; it increases by a factor of 2 as njg
goes from 1 to 10%. Taking as an estimate A ~ 0.1, we find good agreement with
the results of the numerical calculations shown in Figure 3.8.

For 19 < 1/A ~ 10, (3.162) simplifies to

X}~ jﬁ ~4x 1074y (3.164)
nio

For this range of 5o the deuterium freeze-out abundance decreases in inverse
proportion to 119. This dependence on n;¢ can easily be understood. For 1,9 < 10,
the freeze-out concentration X {) is larger than R, >~ 2 x 107> and, according to
(3.160), DD reactions dominate in destroying deuterium. The deuterium freeze-out
is then determined by the condition Xp/Xp ~ ADDX]"; ~ t71. Since App x ny
N1, we find that, to leading order, X{; X 771_01-

For ;o > 10, (3.162) becomes

X} ~ 2R, exp(—An) . (3.165)

In this case the deuterium abundance decays exponentially with 1,9 and decreases
by five orders of magnitude, from 107> to 107!, when 719 changes from 10 to
100 (Figure 3.8).In a universe with high baryon density, the reaction Dp — *Hey
dominates in the destruction of deuterium when Xp < R, ~ 2 x 107>. Hence, the
freeze-out concentration is determined by the term linear in Xp in (3.160).

Thus, deuterium turns out to be an extremely sensitive indicator of the baryon
density in the universe. The observational data certainly rule out the possibility of
a flat universe composed only of baryonic matter.
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3.5.5 The other light elements

Now we can calculate the final abundances of the other light elements by simply
using the quasi-equilibrium conditions.

Helium-3 The expression for the quasi-equilibrium concentration of 3He follows
from (3.148):

3/ A Mtten Xn\ !
Xoge A _< PPL X + 2&)(1,) (1 T i —”) : (3.166)
2 \ A3HeD 3HeD Asgep XD

If the baryon density is not too large, the rate of the dominant reaction in which *He is
destroyed is larger than the rate of the deuterium destruction. Therefore, the freeze-
out of *He occurs a little bit later than the freeze-out of deuterium. After deuterium
freeze-out, a small leakage from the D reservoir to the *He reservoir still maintains
a stationary flow through the *He reservoir and the quasi-equilibrium condition for
3He is roughly satisfied at the time of its freeze-out. Substituting X, ~ X 12) /R; into
(3.166) and the experimental values for the ratios of the corresponding reaction
rates, taken for definiteness at T =~ 0.06 MeV, we obtain

5 02X} +107

~ 2D T (3.167)
e 4% 109X,

where X]J; is given in (3.162). This result is in good agreement with the numerical
calculations shown in Figure 3.8. For example, for n;p = 1, we have X I~ 4%
10~* and X3fHe ~ 3 x 1075, that is, the final He abundance is 10 times smaller
than the deuterium abundance.

The difference between X IJ; and X fHe decreases for larger 1,9. For ;9 ~ 10, the
freeze-out concentrations of the deuterium and helium-3 are about the same and
equal to 107>, In a universe with 7,9 > 10, the reaction Dp — *Hey dominates
in producing *He around the freeze-out time and nearly all deuterium is destroyed
in favor of *He, which thus becomes more abundant than deuterium. In this case,
the freeze-out of *He is determined by two competing reactions, Dp — *Hey and
HeD — “Hen, and, irrespective of how large Xp is, they give rise to the final
3He abundance, X fHe > App/AsHeD 22 1073. The weak dependence of X 3fHe on the
baryon density for 119 > 10 is due to the temperature dependence of the reaction
rates, which we have ignored.

Tritium The quasi-equilibrium condition (3.147) gives

3 App2 Asten Xn
Xt == 2 X: Xp. 3.168
T ( 2 )\‘DT + )\‘DT Xlz) %He D ( )
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Assuming that tritium freeze-out occurs at about the same time as for deuterium,
and substituting X,, >~ X3 /R, into (3.168), we find

X{ =(0.015 +3 x 102X/, ) X}, (3.169)

where the experimental values Appy/Apr =~ 0.01 and Asge,/Apr =~ 1 have been

used. For 119 >~ 1, we have X{ ~ 107°. Note that, for any npo, the tritium final
abundance is several times smaller than the deuterium abundance.

Problem 3.21 When does tritium freeze-out take place? For which 1o can we use
X{; in (3.168) to estimate X{ ? Which value of X p should be used otherwise?

Problem 3.22 Explain why the *He concentration increases monotonically in time
(see Figure 3.7) but the tritium concentration first rises to a maximum and then
decreases until it freezes out.

Lithium-7 and beryllium-7 The quasi-equilibrium conditions for ’Li and "Be result
from the dominant reactions in which 7Li and "Be are produced and destroyed (see
Figure 3.6):

7

E)\‘4HCTX4HCXT + )‘7BenX7BeXn == )“7LipX7LiXpa (3170)
7
T Mhee Xt Xotie = Aben X7pe Xo- (3.171)

One can check that other reactions, such as 'Li + D — 2* He 4+n and "Be + D —
2*He + p, can be ignored for 119 > 1. It follows from these equations that

7 Xape [ A Py
Xop; = — ““e( “HeT) (XT + “H—e%x.;l{e) . (3.172)
12 Xp )"7Lip 4HeT

The ratio A+yer/A71i, 18 nearly constant over a broad temperature interval, increasing
only from 2.2 x 1073 to 3 x 1073 as the temperature drops from 0.09 MeV to
0.03 MeV, while

I"(T) = )\'AHQ:;HE
AsHer

changes significantly over the same temperature interval, namely, r ~ 5 x 1072
for T ~ 0.09 MeV and r >~ 6 x 1073 for T ~ 0.03 MeV. With these values of the
reaction rates we obtain

X ~ 1074(X1 4+ r(T) Xome) - (3.173)

To estimate the freeze-out concentration for 'Li we must know the values of X7,
r(T) and X3y at 'Li freeze-out. For 5 > 1,y > 1, freeze-out occurs after the
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deuterium reaches its final abundance, and we can substitute into (3.173) the values
of X fHe and X { obtained previously. For ;9 2~ 1, the first term on the right hand side
in (3.173) dominates and, using the estimate X{ ~ 107>, we obtain XfLi ~ 107°.
For larger 719, the tritium abundance X{ is smaller and, consequently, X;’pLi de-
creases as 19 grows, but only until the second term on the right hand side in
(3.173) starts to dominate. The minimum final ’Li abundance, XfLi ~ 10710, is
reached for 1o between 2 and 3 (see Figure 3.8). Then, further increase in 7;g
causes the "Li abundance to rise. This rise is mostly due to the temperature depen-
dence of r; for ;o > 3, the freeze-out temperature is determined by the efficiency
of the "Ben reaction, which in turn depends on the neutron concentration. In a
universe with high baryon density, the deuterium and free neutrons burn more effi-
ciently and disappear earlier (at a higher temperature) than in a universe with low
baryon density. Therefore, the ’Li concentration freezes out at a higher temperature
at which r is larger. Note also that, for 19 > 5, the "Ben reaction becomes ineffi-
cient before 3He reaches its freeze-out concentration, and hence, to estimate X le
properly we have to substitute in (3.173) the actual value of X%e at "Li freeze-out,
which is larger than X {He. Numerical calculations show that after passing through a
relatively deep minimum with X 7fLi ~ 10719, the lithium concentration comes back
to 10_9 atnyo 10.

In summary, the trough in the X7fLi — nyo curve is due to the competition of
two reactions. In a universe with 719 < 3, most of the ’Li is produced directly in
the “HeT reaction. For 1,9 > 3, the reaction "Ben is more important and "Li is
produced mainly through the intermediate "Be reservoir.

Beryllium-7 is not so important from the observational point of view, so, simply
to gain a feeling for its abundance, we estimate it in the range 5 > ;¢ > 1, in which
"Be freeze-out occurs after that of deuterium. The quasi-equilibrium solution for
free neutrons is valid at this time and, substituting X,, =~ Xlz) /Ry into (3.171), we
find

f f

7 A X X

XPy, = =Ry Xoy [ HeMe ) TlHe | jg-12_TiHe (3.174)
12 )‘7Ben (Xf) (Xf)

D D

where the experimental values for the ratios of the relevant reactions have been used.
In this case, the product of the corresponding ratios changes by a factor of 5 over
the relevant temperature interval, so (3.174) is merely an estimate. For njy =1,
we have Xé ~ 4 x 1074, X{He ~ 3 x 107 and, hence, X;’;e ~2.5x%x 10719,

The observed light element abundances are in very good agreement with theo-
retical predictions, thus lending strong support to the standard cosmological model.

Observations suggest that 7 > 1o > 3 at 95% confidence level.
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3.6 Recombination

The most important matter ingredients in thermodynamical processes after nucle-
osynthesis are thermal radiation, electrons, protons p (hydrogen nuclei) and fully
ionized helium nuclei, He?". The concentrations of the other light elements are very
small and we neglect them here. As the temperature decreases, the ionized helium
and hydrogen nuclei begin to capture the available free electrons and become elec-
trically neutral. In a short period of time, nearly all free electrons and nuclei have
combined to form neutral atoms and the universe becomes transparent to radiation.
Since this process occurs so quickly, we refer to this epoch as the recombination
moment.

We must, however, distinguish the helium and hydrogen recombinations, be-
cause they happen at different times. Helium has significantly larger ionization
potentials than hydrogen and therefore becomes neutral earlier. However, after he-
lium recombination, many free electrons remain and the universe is still opaque to
radiation. Only after hydrogen recombination have most photons decoupled from
matter; these are the photons that give us a “baby photo” of the universe. As a
result, hydrogen recombination is a more interesting and dramatic event from an
observational point of view.

Helium recombination, nevertheless, has some cosmological relevance. When
helium becomes neutral it decouples from the plasma thus altering the speed of
sound in the radiation—baryon fluid. We will see in Chapter 9 that this speed influ-
ences the CMB temperature fluctuations.

Recombination is not an equilibrium process. Hence, the formulae derived under
the assumption of local equilibrium can only be used to estimate when recombina-
tion occurs. This is sufficient when we consider helium recombination. However, the
subtleties of hydrogen recombination are very important for the calculation of the
CMB temperature fluctuations. Therefore, after estimating the hydrogen recombi-
nation temperature based on the equilibrium equations, we will use kinetic theory
to reveal the details of nonequilibrium recombination.

3.6.1 Helium recombination

The electric charge of the helium nucleus is 2, so it must capture two electrons to
become neutral. This occurs in two steps. First, the helium captures one electron,
becoming a singly charged, hydrogen-like ion He™. The binding energy of this ion
is four times larger than the binding energy for hydrogen:

By = m, +moy —my = 54.4¢V, (3.175)

where m,, and m, are the masses of He?>" and He™ respectively. This energy
corresponds to a temperature of 632 000 K. To estimate the temperature at which
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most of the helium nuclei are converted into helium ions, we assume that the
reaction

He’" + e~ S He™ +y (3.176)

is efficient in maintaining the chemical equilibrium between He?* and He*. Then,
the chemical potentials satisfy

Mot + e = Ky, (3.177)

and considering the ratio (n4n.)/ny, where the number densities are given by
(3.61), we obtain the Saha formula:

. T . 3/2 B
macne _ gz+ge( m ) exp<__+). (3.178)
ny 8+ 27 r

The ratio of the statistical weights here is equal to unity. Even complete recombi-
nation of helium reduces the number of free electrons by 12% at most. Therefore,
before hydrogen recombination, the number density of free electrons is

ne >~ (0.75 t0 0.88)ny ~ 2 x 1071y, T°. (3.179)
Substituting this into (3.178), we obtain
ny4 3 B+ B+
— 35.64+=-In| — ) ———1 . 3.180
g5 (%) - 2 ). s

If the expression in the exponent is positive, the concentration of He™ ions is small
compared to the concentration of completely ionized helium. Using the method of
iteration, we find that at the temperature

B

T, ~——t
T 42 —Innyo

~ 15000 x (1 +2.3 x 107> Inn;o)K, (3.181)
theratio ny, /n is of order unity. At this time, the He™ ions constitute about 50% of
all helium and the rest is completely ionized. Very soon after this, nearly all helium
nuclei capture an electron and are converted into Het. Expanding the expression in
the exponent in (3.180) about T = T, we find, to leading order in AT =T, — T

LTy,
B, AT AT
o P exp A )~ expl —42— ). (3.182)
ny T+ T+ T+

When the temperature falls only 20% below T (going from 15000 K to 12 000 K),
the number density of He?* reduces to n,, ~ 10™*n,.. We see in (3.181) that the
temperature 77 varies logarithmically with the baryon density 71o; the larger the
baryon density, the earlier recombination occurs (i.e., at a higher temperature).
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After most of the helium is converted into He™ ions, the singly charged ions
capture a second electron and become neutral. The second electron also ends up in
the first orbit. The electron—electron interaction substantially reduces the binding
energy: it is only 24.62 eV for the second electron. Therefore, the second stage of
helium recombination occurs at a lower temperature than the first. For example,
at 7 ~ 12000 K, the density of neutral helium atoms is still negligible; only after
the temperature decreases below 7' ~ 5000 K does helium become neutral and
decouple from radiation. At this time hydrogen is still fully ionized and the universe
remains opaque to radiation.

Problem 3.23 Assuming chemical equilibrium, derive the expression for the ratio
of the number densities of He™ and neutral He. Verify that for 79 >~ 5 this ratio is
equal to unity at T ~ 6800 K and is about 10~* at T ~ 5600 K.

Problem 3.24 Explain why the recombination temperature is significantly smaller
than the corresponding ionization potential energies.

3.6.2 Hydrogen recombination: equilibrium consideration
The main reaction responsible for maintaining hydrogen and radiation in equilib-
rium is
p+e = H+y, (3.183)

where H is a neutral hydrogen atom. For the ground(15S) state, the binding energy
of neutral hydrogen,

By=m,+m,—my=13.6¢V, (3.184)

corresponds to a temperature of 158 000 K. In this case, the Saha formula can be
derived in the same manner as (3.178) and takes the form

npn, Tm, 3/2 By (3.185)
—_— = — exp| —— ), .
ny 2 P T

where ny is the number density of the hydrogen atoms in the ground state and we
have taken into account that the corresponding ratio of the statistical weights g;
is equal to unity. At equilibrium, neutral hydrogen atoms are also present in the
excited states: 25, 2P.... However, at T < 5000 K, their relative concentrations
are negligible: for example,

3B
nar _ gz_PeXp(___H) <1071, (3.186)
nH 81s 4T
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Therefore, for now, we neglect the excited hydrogen atoms and introduce the ion-
ization fraction:

X, = ¢ (3.187)
ne + ny

Since n, = n, and
ne +ny = 0.75 x 1070102, ~ 3.1 x 107°910(T/ Tyo) em™,  (3.188)
(3.185) becomes

X 3774+ 2m(20) _ B, (3.189)
—— =ex . —In{— )] ———In . .
-x, °F 2\ )" T "
The expression in the exponent vanishes at
Trpe = B ~3650(1 4 2.3 x 10 Inn;p)K. (3.190)
43.4 — In nio

At this time, the ionization fraction is X, ~ 0.6 and the temperature 7,.. character-
izes the moment when hydrogen recombination begins. At earlier times X, — 1;
for example, 1 — X, ~ 107> at T =~ 5000 K. As soon as the temperature decreases
below T,,., recombination proceeds very rapidly. According to (3.189), a 10% fall
in temperature reduces the ionization fraction by a factor of 10; at 7 ~ 2500 K, we
have X, ~ 107*.

The equilibrium Saha formula tells us that the ionization fraction should con-
tinue to decrease exponentially as the temperature drops. However, this does not
occur in an expanding universe; the ionization fraction freezes out instead. More
importantly, the equilibrium description fails almost immediately after the begin-
ning of recombination. The main reason for the failure of the Saha formula is the
large number of energetic photons emitted when the nuclei and electrons combine.
These nonthermal photons significantly distort the high-energy tail of the thermal
radiation spectrum exactly at energies crucial to recombination. As a result, it be-
comes essential to take into account deviation from equilibrium and we must use
kinetic theory.

3.6.3 Hydrogen recombination: the kinetic approach

Direct recombination to the ground state accompanied by the emission of a photon
does not substantially increase the number of neutral atoms because the emitted
photon has enough energy to immediately ionize the first neutral hydrogen atom
it meets. These two competing processes occur at very high rates and result in
no net change in ny. More efficient is cascading recombination, in which neutral
hydrogen is first produced in an excited state and then decays to the ground state in
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a sequence of steps. However, even in cascading recombination, at least one very
energetic photon is emitted corresponding to the energy difference between the 2 P
and 1S states of the hydrogen atom. This so-called Lyman-« photon, L, has energy
3By/4 = 117000 K and a rather large resonance absorption cross-section, o, =~
10~17-10~'% cm?, at the recombination temperature. Therefore, the L, photons are
reabsorbed in a short time, 7, ~ (o,ny)~" ~ 10°=10* s, after emission. We have to
compare this time to the cosmological time at recombination. During the matter-
dominated epoch, the cosmological time can easily be expressed in terms of the
radiation temperature by equating the energy density of cold particles (see (3.1))
with the critical density ¢ = 1/ (671t2) and noting that T = T,,o(1 + z) . We obtain

Sz Tyo\?
free 2= 2.75 x 10'7(Q,,h%5) " (%) . (3.191)

At the moment of recombination, 7, < ¢ ~ 10'3 s and, consequently, the L, pho-
tons are not significantly redshifted before reabsorption. To simplify our consider-
ations we will neglect the redshift effect.

The presence of a large number of L, photons and other energetic photons
results in a greater abundance of electrons, protons and hydrogen atoms in excited
2S and 2P states than expected according to the equilibrium Saha formula. This
delays recombination so that, for a given temperature, the actual ionization fraction
exceeds its equilibrium value. The full system of kinetic equations describing non-
equilibrium recombination is rather complicated and is usually solved numerically.
To solve them analytically, we use the method of quasi-equilibrium concentrations,
as was applied to the problem of nucleosynthesis. The results obtained by this
method are in good agreement with the numerical calculations.

We will make a series of simplifying assumptions whose validity can be checked
a posteriori. First of all, we neglect all highly excited hydrogen states and retain
only the 1§, 25 and 2 P states of neutral hydrogen. The remaining ingredients are
electrons, protons and thermal photons, as well as L, and other nonthermal pho-
tons emitted during recombination. The main reactions in which these components
participate are symbolically represented in Figure 3.9. The direct recombination to
the ground state can be ignored because it results in no net change of neutral hydro-
gen, as explained above. Thermal radiation dominates in ionizing the 2§ and 2P
states. In fact, to ionize an excited atom, the energy of a photon must only be larger
than By/4. The number of such thermal photons is much greater than the number
of energetic nonthermal photons, and hence, when considering the ionization of
excited atoms, we can ignore the distortion of the thermal radiation spectrum.

In contrast, thermal photons play no significant role in transitions between 15
and 2 P states after the beginning of recombination. These transitions are mostly due
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thermal radiation

%

Fig. 3.9.

to the nonthermal L, photons. When the deviation from equilibrium becomes large
and the 2§ level is overpopulated, we can ignore the transition 1S4y +y —
28 compared to the two-photon decay 25 — 1S + y + y. (A transition with a
single photon is forbidden by angular momentum conservation.) The rate for the
two-photon decay, Wys_, s =~ 8.23 s~ is very small (compare, for example, with
Wap_1s =~ 4 x 10% s71); nevertheless, this decay plays the dominant role in non-
equilibrium recombination. In terms of the pipe-and-reservoir picture, the two-
photon transition is the main source of irreversible leakage from the e, p reservoir
to the 1S reservoir. Because all other processes result in high-energy photons which
reionize neutral hydrogen and return electrons to the e, p reservoir, the rate of net
change in the ionization fraction is

dX,  dXus
dr — dt

where X, = n./ny, Xos = nps/nr, and nr is the total number density of neutral
atoms plus electrons, given in (3.188). Once a substantial fraction (~50%) of neutral
hydrogen has formed, (3.192) is a good approximation to use until nearly the end
of recombination.

= —WysXos, (3.192)
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To express X,s in terms of X,, we use the quasi-equilibrium condition for the
intermediate 2.5 reservoir; this is justified by the high rate of the reactions, shown
in Figure 3.9. For the 2.5 reservoir, this condition takes the following form:

(OV)epsyas Melp —(0) 25 ep Ny M2s — Wasisnas = 0, (3.193)

where n5! is the number density of thermal photons. The relation between the cross-
sections for the direct and inverse reactions, ep < y 28§, can be found if one notes
that in a state of equilibrium these reactions compensate each other. Then, we have

<0>y25—>6p n?/q _ nzqn;q _ Tme " ex _@ (3 194)
(O'v>ep%)/2s B n;?? B 2 P 4T ) |

where the Saha formula has been used to obtain the latter equality (recall that the
binding energy of 2§ state is By/4). With the help of this relation, we can express
X»s, from (3.193), as

1

Was Tm,\"? Bu\ | )
Xog = —— X2, 3.195
2 |:<O'v>ep%25 +( 2n ) P 4T e ( )

and (3.192) becomes

—1
dx 1% Tm,\>"? B
¢ = W 5 b (Z2) exp( 2| arx2 (3.196)
dt <O’v>ep*>25 27'[ 4T

When the first term inside the square brackets is small compared to the second,
the electrons and excited hydrogen atoms are in equilibrium with each other and
with the thermal radiation. Therefore, the ratio of the e, p and 25 number densities
satisfies a Saha-type relation (see the second equality in (3.194)). The ionization
fraction, however, does not obey (3.189) because, as mentioned above, the ground
state is not in equilibrium with the other levels after the beginning of recombination.
The excited states are more abundant than one expects in full equilibrium and the
ionization fraction significantly exceeds that given in (3.189).

Problem 3.25 The cross-section for recombination to the 25 level is well approx-
imated by the formula

B\ /2
(00) epsyas = 6.3 X 10—14(5) em® sl (3.197)

Using this expression, verify that the two terms inside the square brackets in (3.196)
become comparable at the temperature 7 =~ 2450 K.

Hence, only at 7 > 2450 K is the reaction y2S & ep efficient in maintaining
chemical equilibrium between the electrons, protons and hydrogen 2.5 states. After
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the temperature drops below 7" =~ 2450 K, thermal radiation no longer plays an
essential role, and the quasi-equilibrium concentration of the 2.5 states is determined
by equating the rates for recombination to the 2.5 level and two-photon decay (see
(3.193), where the second term can be neglected). At T < 2450 K, the second term
in the square brackets in (3.196) can be neglected and (3.196) simplifies to

dX, )
5~ {ov)yasnr X (3.198)

Thus, in this regime, the rate of recombination is entirely determined by the rate
of recombination to the 2.5 level and does not depend on W,s. At this time, the
number density of L, photons is almost completely depleted due to two-photon

decays and the 2 P states also drop out of equilibrium with electrons, protons and
thermal radiation. Consequently, nearly every recombination event to the 2P state
or any other excited state succeeds in producing a neutral hydrogen atom. This
effect becomes relevant only at late stages and can be incorporated in (3.198) and
(3.196) by replacing (ov),,,,2s With the cross-section for recombination to all
excited states. The latter is well approximated by the fitting formula

B 0.8
(OV)p0 =~ 8.7 X 10—14(ﬁ) em?® s~ (3.199)

It is convenient to rewrite the corrected (3.196) using the redshift parameter z =
T/T,o — 1, instead of cosmological time (see (3.191)). After some elementary
algebra, we obtain

—1
dx 0.3 14400
¢ 0.1 —10 |:0.72< : ) +104zexp(——>i| X2. (3.200)
Z

dz o, 14400

This equation is readily integrated:

NIO > d
X.(z)~ 6.9 x 10~* P / Y
o 072503 + 1.44 x 108y exp(—1/y)

13400

—1

(3.201)

The solution X,.(z) is not very sensitive to the initial conditions when X.(z;,) >
X.(z) because the main contribution to the integral comes from z < z;,. For
z > 900, or equivalently, at T > 2450 K, the first term in the denominator of
the integrand can be neglected and expression (3.201) is well approximated by

o Qmhis 14400
X (2) 1.4 x 10—z~ exp(— ) . (3.202)
Mo Z
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In this regime the rate of recombination is completely determined by the rate of
two-photon decay. Obviously, (3.201) and (3.202) are valid only after the ion-
ization fraction decreases significantly below unity and the deviation from the
equilibrium becomes significant. Compared with numerical results, they become
efficiently accurate after the concentration of neutral hydrogen has reached about
50% (Figure 3.10). According to (3.202), for realistic values of the cosmological
parameters (£2,,h35 2 0.3 and 739 2 5) , this occurs at z > 1220 or, equivalently,
at T ~ 3400 K. Hence, the range of applicability of (3.202) is not very wide,
namely, 1200 > z > 900. During this time, however, the temperature drops only
from 3400 K to 2450 K but the ionization fraction decreases very substantially,
to X, (900) ~ 2 x 1072, It is interesting to compare this result with the prediction
of the equilibrium Saha formula (3.189), according to which X,(2450 K) ~ 107,
Thus, at z 2~ 900, the actual ionization fraction is a thousand times larger than
the equilibrium one. It is also noteworthy that the equilibrium ionization frac-
tion is completely determined by the baryon density and the temperature but the
nonequilibrium X,(z), given in (3.201), also depends on the total density of nonrel-
ativistic matter. This is not surprising because nonrelativistic matter determines the
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cosmological expansion rate, which is an important factor in the kinetic description
of nonequilibrium recombination.

Problem 3.26 Compare nonequilibrium recombination with the predictions of the
Saha formula for various values of the cosmological parameters th% and 7o.
In which cases is the deviation from the Saha result large immediately after the
beginning of recombination?

At z < 900, when the temperature drops below 2450 K, the approximate for-
mula (3.202) is no longer valid and we should use (3.201). The ionization frac-
tion continues to drop at first and then freezes out. For example, (3.201) pre-
dicts X,(z = 800) ~ 5 x 1073, X,(400) ~ 7 x 10~*and X,(100) >~ 4 x 10~*, for
th% ~ 0.3 and n;9 =~ 5. To calculate the freeze-out concentration, we note that
the integral in (3.201) converges to 0.27 as z goes to zero; hence,

Js
~ 1.6

N
X/ ~25x107°+—~1.6x107° =",
n10 Qph7s

(3.203)

After the ionization fraction drops below unity, the approximate results given in
(3.201) and (3.202) are in excellent agreement with the numerical solutions of the
kinetic equations, while the Saha approximation fails completely (see Figure 3.10).

Problem 3.27 Freeze-out of the electron concentration occurs roughly when the
rate of the reaction ep — H y becomes comparable to the cosmological expansion
rate. Using this simple criterion, estimate the freeze-out concentration.

At the beginning of recombination, most of the neutral hydrogen atoms are
formed as a result of cascading transitions, and the number of L, photons is about
the same as the number of hydrogen atoms. What happens to all these L, photons
afterwards? Do they survive and, if so, can we observe them today as a (redshifted)
narrow line in the spectrum of the CMB? During recombination, the number density
of L, photons, n,, satisfies the quasi-equilibrium condition for the L, reservoir:

Wap_1snap = (0q) nanis. (3.204)

Since n;s — nr and nyp X X?, the number of L, photons decreases with the
ionization fraction and nearly all of them disappear by the end of recombination.
Their number density is depleted due to two-photon decays of the 2. states. Hence,
there will be no sharp line in the primordial radiation spectrum. Nevertheless, as a
result of recombination, the CMB is warped in this part of the Wien region. This
region is significantly obscured, however, by radiation from other astrophysical
sources.
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Finally, let us find out when exactly the universe becomes transparent to radi-
ation. This occurs when the typical time for photon scattering begins to exceed
the cosmological time. The Rayleigh cross-section for scattering on neutral hydro-
gen is negligibly small and, therefore, despite of the low concentration of elec-
trons, the opacity is due to Thomson scattering from free electrons. Substituting
or >~ 6.65 x 1073 cm?, cosmological time ¢ and total number density n, from
(3.191) and (3.188) respectively, into

1
o~ —, (3.205)

GTntXe

we find that photon decoupling occurs when

Qnh3s £\ 32
X% ~ 6 x 103T75 (Fyo) . (3.206)
1 ec

It follows that T,.. ~ 2500 K, or equivalently, z.. ~ 900, independent of the
cosmological parameters. For th%s ~ (.3 and 19 =~ 5, the ionization fraction at
this time is about 2 x 1072, It is interesting to note that this time coincides with
the moment when e, p and 2§ levels fall out of equilibrium and the approximate
(3.202) becomes inapplicable.

Radiation decoupling does not mean that matter and radiation lose all thermal
contact. In fact, the interaction of a small number of photons with matter keeps the
temperatures of matter and radiation equal down to redshifts z ~ 100. Only after
that does the temperature of baryonic matter begin to decrease faster than that of
radiation. There is no trace of this temperature in baryons seen today because most
of them are bound to galaxies where they are heated during gravitational collapse.
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The very early universe

The laws of particle interactions are well established only below the energy cur-
rently reached by accelerators, which is about a few hundred GeV. The next gen-
eration of accelerators will allow us to go a couple of orders of magnitude fur-
ther, but even in the remote future it will be impossible to overcome the existing
gap of about seventeen orders of magnitude to reach the Planckian scale. There-
fore, the only “laboratories” for testing particle theories at very high energies are
the very early universe and astrophysical sources of highly energetic particles.
The quality of cosmological information is much worse than that gained from
accelerators. However, given the lack of choice, we can still hope to learn es-
sential features of high-energy physics based on cosmological and astrophysical
observations.

The particle theory describing interactions below the TeV scale is called the
Standard Model and it comprises the unified electroweak theory and quantum
chromodynamics, both based on the idea of local gauge symmetry. Attempts to
incorporate the electroweak and strong interactions in some larger symmetry group
and thus unify them have not yet met with success. Unfortunately, there are too
many ways to extend the theory beyond the Standard Model while remaining in
agreement with available experimental data. Only further experiments can help us
in selecting the “correct theory of nature.”

This situation determines our selection of topics for this chapter. First, we con-
sider the Standard Model, and explore the most interesting consequences of this
theory for cosmology. In particular, the quark—gluon transition, restoration of elec-
troweak symmetry and nonconservation of the fermion number will be discussed
in great detail.

Two important cosmological issues beyond the Standard Model are the gener-
ation of baryon asymmetry in the universe and the nature of weakly interacting
massive particles, a possible component of cold dark matter. In the following chap-
ter we will see that any initial baryon asymmetry is washed out during inflation and
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its generation is a crucial element of inflationary cosmology. The general conditions
under which this asymmetry occurs are rather simple and model-independent. How-
ever, the particular realization of these conditions depends on the particle theory
involved. At present, there exists no preferable scenario for the origin of baryon
asymmetry. There are many possibilities and the problem is, as always, to select
the correct one. For these reasons, we will only demonstrate that the important sin-
gle number, characterizing baryon excess, can be easily “explained.” The situation
for the origin of cold dark matter is very similar, and we likewise concentrate on
general ideas here.

Almost all plausible extensions of the Standard Model have a number of fea-
tures in common, which are rather insensitive to the details of any particular
theory. Among these features is a nontrivial vacuum structure, potentially re-
sponsible for phase transitions in the very early universe. As a result, topologi-
cal defects, such as domain walls, strings, or monopoles, could also have been
formed. There is no doubt that such good physics belongs to a primary course on
cosmology.

We begin with a brief overview of the elements of the Standard Model, which
should by no means be considered a substitute for standard textbooks in particle
physics. It serves as a reminder of the basic ideas we need in cosmological appli-
cations. To shorten the presentation, we follow an “antihistorical” approach: the
theory is formulated in its “final” form, and then its consequences for cosmology
are explored. However, the reader should not forget that the numerous building
blocks of the Standard Model were discovered as a result of concerted — and
rarely straightforward — efforts to understand and interpret an enormous amount
of experimental data.

4.1 Basics

Elementary particles are the fundamental indivisible components of matter. They are
completely characterized by their masses, spins and charges. Different charges are
responsible for different interactions and the interaction strength is proportional to
the corresponding charge. There are four known forces: gravitational, electromag-
netic, weak, and strong. The first two are long-range forces whose strength decays
following an inverse square law. The weak and strong interactions are short-range
forces. They are effective only over short distances and then decay exponentially
quickly outside this range. Gravity is described by Einstein’s theory of General
Relativity, and the other three interactions by the Standard Model, based on the
idea of local gauge invariance.
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4.1.1 Local gauge invariance

Particles are interpreted as elementary excitations of fields. The field describing
free fermions of spin one half (for instance, electrons) obeys the Dirac equation

iy 9, —my =0, 4.1)

where v is the four-component Dirac spinor and y* are the 4 x 4 Dirac matrices.
This equation can be derived from the Lorentz-invariant Lagrangian density

L=iyy"du ¥ —mir, (4.2)

where ¥ = ¥y°. This Lagrangian is also invariant under global gauge transfor-
mations: that is, it does not change when we multiply ¥ by an arbitrary complex
number with unit norm, for example exp (—if), where 6 is constant in space and
time. What happens, however, if we allow 6 to vary from point to point, taking
0 = eA(x%) to be an arbitrary function of space and time? Will the Lagrangian still
remain invariant under such local gauge transformation? Obviously not. Acting on
A(x*), the derivative 0, generates an extra term,

A — (e MY) = e M@, — ie(d, )Y, 4.3)

and the invariance of the original Lagrangian (4.2) can only be preserved if we
modify it by introducing an extra field. Under gauge transformations this field
should change in such a way as to cancel the extra term in (4.3). Let us consider
a vector gauge field A,, and replace the derivative 0, in (4.3) with the “covariant
derivative”

D, =, +ieA,. (4.4)
If we assume that under gauge transformations A, — A, then
D, — Dy(e ") = e M8, +ieA, —ie(d, ).
Therefore we postulate the transformation law
Ay — A, =A,+ A, (4.5)
and find
Dl My) = 7D, .
Hence

&VMD;M& g (‘zeiek)yﬂﬁu(e_iMW) = @V“Dlﬂﬁ-
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and Lagrangian (4.2), when we substitute D,, for 9,,, is invariant under local gauge
transformations.

The gauge field A,, can be a dynamical field. To find the Lagrangian describing
its dynamics, we have to build a gauge-invariant Lorentz scalar out of the field
strength A, and its derivatives. As follows from (4.5),

Fu,=D,A, —D,A, =, A, — d,A, (4.6)

does not change under gauge transformations and therefore the Lorentz scalar
F,, F*" is the simplest Lagrangian we can construct. The scalar A, A", which
would give mass to the field, is not allowed because it would spoil gauge invariance.
In the resulting full Lagrangian,

L=iyy" 8, —myy — {Fu F* — ey y)A,, 4.7)

in which the reader will immediately recognize electrodynamics with the coupling
constant proportional to the electric charge e. Because the fine structure constant
o = e?/4w ~ 1/137 is small, one can consider the interaction term as a small
correction and hence develop perturbation theory.

It is convenient to represent this perturbation theory by Feynman diagrams,
where the interaction term e(yy*1)A, corresponds to a vertex where electron
lines v, ¥ meet photon line A. The incoming solid line corresponds to v and the
outgoing to Y. Assuming that time runs “horizontally to the right,” Figure 4.1(a)
is read as follows: the electron enters the vertex, emits (or absorbs) the photon,
and goes on. A rule, which is justified in quantum field theory, is the following:
an electron “running backward in time” on the same diagram, but reoriented as in
Figure 4.1(b), is interpreted as its antiparticle, a positron, running forward in time.

(@) (b) (©)

time

Fig. 4.1.
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Therefore, this diagram describes electron—positron annihilation with the emission
of a photon. Because the photon is its own antiparticle, we do not need an arrow on its
line. More complicated processes can be described by simply combining primitive
vertices. For instance, Figure 4.1(c) is responsible for the Coulomb repulsion of
two electrons.

The replacement of all particles by antiparticles (charge conjugation C) corre-
sponds to the reversal of all arrows on the diagrams. Lagrangian (4.7) is invariant
with respect to charge conjugation.

Problem 4.1 Consider a complex scalar field ¢ with Lagrangian
L= 5(0"¢* 00 — m*@*p). (4.8)

How should this Lagrangian be generalized to become local