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Anatomy and Physiology 
of the Thyroid Gland

Nikolaos Stathatos

The thyroid gland is located in the lower part of 
the anterior neck, at the level of the second to 
third tracheal rings, inferior to the larynx. It is a 
shield-shaped organ, named after the thyroid car-
tilage of the trachea that was described as “shield- 
like” (“thyreos” is the Greek name for shield) [1]. 
It is made of two lobes, each laying on the cor-
responding side (right and left) of the tracheal 
wall. They are connected with a thin strip of thy-
roid tissue that extends across the anterior surface 
of the trachea called the isthmus (Fig. 1). Each 
lobe is about 3–4  cm long, 2  cm wide, and, in 
most cases, a few millimeters (mm) thick. The 
isthmus is usually only a few millimeters thick 
and up to 15 mm in height. Occasionally, an elon-
gated, finger-like structure is also present that 
extends from the isthmus superiorly, called the 
pyramidal lobe. This represents the remnant of 
the thyroglossal duct, a structure that is formed at 
the time of the thyroid embryogenesis, the forma-
tion of the thyroid gland in the first trimester of 
pregnancy. The primitive thyroid gland (also 
called the thyroid enlarge) first appears during 
the fourth week of gestation in the floor of the 
primitive pharynx (at the level of the base of the 
tongue) [2]. There is however more recent evi-
dence that suggests that molecular events critical 

for the development of the thyroid gland take 
place before the development of the thyroid 
enlarge: the expression of key transcription fac-
tors the presence of which is critical, such as the 
NK2 homeobox [Nkx2]-1 and the paired box 
[Pax]-8 [2]. Although the exact molecular path-
ways necessary for the proper development of the 
thyroid gland remain largely unknown, it is 
becoming more and more clear that defects dur-
ing this very complex process can lead to prob-
lems from thyroid dysgenesis [3] to syndromes 
of reduced thyroid hormone sensitivity [4]. As 
embryonic development progresses, the thyroid 
gland descends inferiorly into the neck while 
retaining its connection to the tongue with a small 
duct. This is the thyroglossal duct mentioned 
above. The gland reaches its final location by 
week 7. In most cases, the thyroglossal duct has 
disappeared completely by week 10. There are 
however several variations to this sequence of 
events: As stated above, the pyramidal lobe forms 
at the location of the inferior most part of the thy-
roglossal duct, usually attached to the isthmus of 
the thyroid gland. This is considered a normal 
variation and requires no intervention. A much 
less frequent variation is that the thyroglossal 
duct remains present and patent. In such cases, 
the formation of cysts along the path of this duct 
is a common occurrence, most commonly at the 
level of the hyoid bone [5]. Most are asymptom-
atic and up to one third diagnosed later during the 
adult life of a patient. These represent the most 
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common cystic lesions found in the neck, and 
because they are associated with thyroid malig-
nancies [6], they should be carefully evaluated. 
More rare developmental events include a lingual 
thyroid, hemiagenesis or complete agenesis of 
the thyroid gland. A lingual thyroid is formed 
when the thyroid does not descent into the neck 
at all and remains at the base of the tongue [7]. It 
is often noted as a mass at the base of the tongue. 
In cases of thyroid agenesis, the thyroid gland 
does not form at all. In cases of hemiagenesis, 
only half or some part of the thyroid forms [3]. 
These conditions are very important to diagnose 
early because they are associated with thyroid 

dysfunction very early in life (often noted during 
neonatal screening for thyroid disorders). 
Recently, attempts to identify potential genetic 
etiologies have been undertaken but with limited 
success so far [8].

Traditionally, thyroid cells were thought to 
have a monoclonal origin, all originating from 
the same precursor cell. A very interesting con-
cept has arisen recently, that of a polyclonal ori-
gin of thyroid hormone producing cells within 
the thyroid gland, possibly even with different 
malignant potential [9, 10].

Another embryonic structure incorporated 
into the thyroid gland during embryonic 
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 development is the ultimobranchial body (itself 
derived from the brachial pouches). Cells of neu-
ral crest origin migrate into this structure prior to 
its incorporation into the thyroid gland. These are 
the cells that will ultimately produce calcitonin 
(also called parafollicular or C-cells). Because of 
the way the primitive thyroid and the ultimobran-
chial body interact with each other during this 
critical developmental process, the result is an 
uneven distribution of the calcitonin producing 
cells in the fully developed thyroid gland. They 
are restricted to the middle and upper third of the 
gland, while the poles and the isthmus are devoid 
of these cells. That way is very rare to find tumors 
originating from the C-cells in these parts of the 
thyroid gland.

The location of the thyroid gland has several 
significant clinical implications. Examples 
include that nodules located posteriorly and 
medially, near the wall of the trachea may more 
difficult to palpate and as a result can be more 
easily missed. Also, tumors that originate there 
are more difficult to detect and may invade sur-
rounding structures like the trachea and/or esoph-
agus prior to detection.

Several critical structures are located around 
the thyroid gland. The parathyroid glands are 
small glands (usually a few milligrams in weight) 
that are located posterior to each thyroid pole 
(upper and lower, right and left). Although they 
have no functional relationship with the thyroid 
gland, their close anatomical relationship has 
very important clinical implications. Their proper 
identification is critical at the time of thyroid sur-
gery, because their accidental removal will result 
in permanent hypoparathyroidism, a condition 
with life-long morbidity and potentially even 
mortality.

Also located along the posterior aspect of the 
thyroid gland are the two recurrent laryngeal 
nerves, innervating the muscles of the vocal 
cords. Injury to these nerves at the time of thyroid 
surgery can result in a hoarse voice (if unilateral) 
to stridor and the need for a permanent tracheos-
tomy (if bilateral). It is very important for a sur-
geon to be intimately familiar with the local 
anatomy as well as the many variations that have 
been described so that the possibility of a surgical 

complication is reduced to an absolute minimum. 
These nerves originate from the vagus nerve on 
each side at the level of the aortic arch. They run 
superiorly along the tracheoesophageal groove, 
posteriorly to the thyroid gland, although several 
variations have been described [11]. They are 
located close to the inferior thyroid artery but can 
be found posteriorly, anteriorly, or even in 
between the branches of the blood vessel. This 
close relationship of these nerves to the thyroid 
gland and its blood supply requires that the sur-
geon pays very close attention to identifying 
them through careful dissection in order to avoid 
damaging them. Recently, guidelines have been 
published to assist with the surgical management 
of thyroid nodules and cancer [12].

The blood supply of the thyroid gland comes 
from two arteries on each side: the superior thy-
roid arteries originate from the external branch 
of the carotid artery. Accompanied by the supe-
rior laryngeal nerve, they enter into the upper 
poles of the thyroid gland. Due to the close prox-
imity of these blood vessels to the superior 
laryngeal nerves, it is usually recommended that 
the surgeon ligates the superior thyroid arteries 
as close to the thyroid gland as possible in order 
to avoid damaging the nerves. The inferior thy-
roid arteries are branches of the thyrocervical 
trunk and, as stated above, are in close proximity 
to the recurrent laryngeal nerves. Another artery 
called thyroidea ima artery occasionally pro-
vides blood supply to the thyroid gland. This can 
originate from either the thyrocervical trunk or 
the aortic arch. The superior, middle, and infe-
rior thyroid veins provide the venous drainage of 
the thyroid gland. The superior and middle veins 
drain into the internal branch of the jugular vein, 
while the inferior thyroid veins anastomose with 
each other anteriorly to the trachea and drain 
into the brachiocephalic vein. The lymphatics of 
the thyroid gland drain into the lymph nodes of 
the central cervical (level VI) compartment. The 
paratracheal nodes are also involved in drainage 
of the thyroid gland. This is very important 
because it is these nodes that are the first to be 
involved in the metastatic process of many thy-
roid malignancies and need to be removed at the 
time of surgery.

Anatomy and Physiology of the Thyroid Gland
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As stated above, because of embryonic devel-
opment of the thyroid gland, thyroid tissue can 
be found anywhere along the path of the thyro-
glossal duct, from the base of the tongue to the 
normal location of the adult thyroid gland. 
However, thyroid tissue has been described in 
many ectopic locations in the human body, 
including the carotid bifurcation [13], intracar-
diac [14, 15], the ascending aorta [16], the gall-
bladder [17, 18], the porta hepatis [19], 
intramesenteric [20], and the ovaries [21]. 
Thyroid cancer has also been described in many 
of these sites [22], although it is not clear if these 
represent a primary or metastatic focus.

The thyroid follicle is the characteristic his-
tologic structure of the gland (Fig.  2). It con-
sists of a single layer of thyroid cells 
(“thyrocytes”), surrounded by a basement 
membrane. The follicle is filled with a viscous 
honey-like fluid called colloid. It contains thy-
roglobulin, a very large glycoprotein (660 KDa) 
that represents the precursor and storage form 
of thyroid hormone. The size of the follicles 
can vary significantly, but their average size is 
about 200 μm. There are fibrous septa that sepa-
rate follicles (usually into groups 20–40). The 
calcitonin producing C-cells are located 
between the thyroid follicles, usually in small 
groups in the middle and upper one third of the 
thyroid parenchyma.

 Thyroid Physiology

The thyroid gland plays a critical role in the reg-
ulation of multiple bodily functions such as the 
metabolic rate, energy expenditure, and the func-
tion of organs like the heart and the brain. 
Levothyroxine is the main product of the thyroid 
gland, also known simply as thyroid hormone. It 
is the product of two tyrosine molecules, each 
carrying two atoms of iodine. In order to be able 
to synthesize adequate amounts of thyroid hor-
mone, thyroid cells have developed complex 
mechanism to incorporate, concentrate, and 
store iodine from the circulation, even against a 
concentration gradient. A dedicated transporter, 
the sodium (Na)-iodine symporter (NIS), is 
located in the basal membrane of these cells 
(Fig. 3). Its function is to actively (at the expense 
of energy in the form of adenosine triphos-
phate—ATP) transport inorganic iodide present 
in the circulation inside the thyroid cells. This 
results in an iodine concentration inside these 
cells that is 20–40 times that of the serum iodine 
level. This symporter can also be found in the 
epithelial cells of salivary glands. This is signifi-
cant because when patients with thyroid cancer 
are treated with radioactive iodine, this can con-
centrate inside these glands and in some cases 
cause radiation sialadenitis and even xerostomia. 
This symporter has recently become the focus of 
intense study in cases of poorly differentiated 
thyroid cancers. These cancers often do not 
express the sodium iodine symporter, or the 
symporter is not present in the basal membrane 
of these so that it can be functional. As a result, 
these cancer cells lose the ability to concentrate 
the radioactive iodine given to treat them, a step 
that is absolutely critical for the radioactive 
iodine to be effective. Several clinical trials are 
currently under way with pharmaceutical mole-
cules targeting specific intracellular targets (e.g., 
MEK or BRAF), some with promising results, 
showing increased expression or functionality of 
the symporter and increased concentration of 
radioactive iodine in these cells [23].

Once the iodine enters the thyroid cells, it is 
organified; it is incorporated onto tyrosine resi-
dues present in the amino acid sequence of 

1
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Fig. 2 Thyroid histology: (1) Thyroid follicle. (2) 
Follicular cells. (3) Parafollicular (C-) cells
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 thyroglobulin. This is accomplished at the apical 
membrane of the thyroid cell, with multiple key 
enzymes playing a critical role, such as the thy-
roid peroxidase (TPO) that requires the presence 
of hydrogen peroxide, pendrin, and possibly the 
calcium-activated anion membrane channel 
anoctamin 1 [24] that has been most recently 
associated with apical iodine efflux. Each thyroid 
hormone molecule can take up to four iodine 
atoms, forming the various forms of thyroid hor-
mone. Once formed, thyroid hormone is stored in 
the colloid as part of the structure of thyroglobu-
lin (Fig. 3).

When thyroid cells are stimulated by TSH, 
thyroglobulin enters the thyroid cell from the col-
loid (pinocytosis) where it is broken down in 
lysosomes, cleaved by endopeptidases, so that 
thyroid hormone that is incorporated into its 
amino acid structure can be released into the cir-
culation, mostly in the form of levothyroxine. 
About 90% (75–100 μg/day) of the thyroid gland 
output is in the form of levothyroxine and about 
10% (6 μg) in the form of triiodothyronine.

The thyroid peroxidase enzyme is the target of 
the immune system in cases of thyroid autoim-
mune disease, and detection of antibodies against 
this enzyme (anti-TPO antibodies) in the serum 

of patients is diagnostic of this process. It is how-
ever important to note here that it remains unclear 
if these antibodies are the cause or simply the 
result of the autoimmune process. A mutation of 
the other enzyme necessary for the organification 
of iodine, pendrin, results in a rare genetic dis-
ease called Pendred disease, manifested clini-
cally by sensorineural deafness, a goiter, and 
hypothyroidism. Finally, thyroglobulin, which is 
also present in the circulation under normal cir-
cumstances, is often the target of the immune 
system. Up to 10% of the population with no evi-
dence of thyroid disease have detectable anti- 
thyroglobulin antibodies in their blood. This is 
thought to be related to the extensive glycosyl-
ation of the thyroglobulin residues [25]. 
However,  the clinical significance (if any) of 
these antibodies remains largely unknown, 
although they have been associated with increased 
risk of pregnancy loss [26]. The presence of these 
antibodies in the serum does make the measure-
ment of serum thyroglobulin unreliable, which is 
often a significant limitation for some patients 
with thyroid cancer.

It is critical for the clinician that manages 
patients with thyroid diseases to have an in-depth 
understanding the role of iodine in thyroid 
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 physiology. As discussed above, iodine plays a 
central role in the function of the thyroid gland. 
Iodine deficiency is a well-known cause of goi-
ters and hypothyroidism, a finding that has led 
many countries in adopting iodine supplementa-
tion policies, such as fortifying salt. If, however, 
iodine-deficient patients are given iodine, their 
thyroid gland can produce large amounts of thy-
roid hormone, often in excess, causing hyperthy-
roidism. This is called the “Jod-Basedow” effect 
[27]. The rapid iodination of thyroglobulin that 
contains little iodine, mostly in the setting of a 
“toxic or hot” nodule or underlying Graves’ dis-
ease is thought to be the potential cause although 
this remains to be proven.

On the other hand, the presence of excess 
amounts of iodine in the thyrocytes can inhibit 
the process of iodine uptake and organification 
(by inhibiting the NIS and TPO) and result in 
hypothyroidism. This is called the “Wolff- 
Chaikoff” phenomenon [28, 29]. This phenome-
non is most often thought to take place in thyroid 
glands that are iodine sufficient. This inhibition is 
however temporary: the result of the Wolff- 
Chaikoff effect is the depletion of intracellular 
iodine that allows for the reset of the organifica-
tion mechanism and synthesis of new thyroid 
hormone. This is called the “escape from the 
Wolff-Chaikoff effect.”

 Hypothalamic-Pituitary-Thyroid 
Axis

TSH (thyroid-stimulating hormone or thyrotro-
pin) is the main regulator of thyroid function 
(Fig. 4). It is a peptide hormone produced in the 
anterior pituitary gland (adenohypophysis). TSH 
is in turn under the regulation of both TRH 
(thyrotropin- releasing hormone) that is produced 
in the hypothalamus and the circulating levels of 
thyroid hormone. It is actually sensitive to small 
changes on the levels of peripheral thyroid hor-
mone. This is a classical feedback loop, fre-
quently described in various endocrine axes. 
Thyroid hormone inhibits TRH production. This 
leads to decreased TSH synthesis and release 
from the pituitary gland and, in turn, decreased 

stimulation of the thyroid gland to uptake iodine 
and synthesize and release thyroid hormone. It 
has been shown that measuring serum TSH is the 
most sensitive method of assessing thyroid func-
tion and diagnosing most functional thyroid 
problems, like hypo- and hyperthyroidism [30], 
the rare exception being pituitary or hypotha-
lamic diseases which represent more challenging 
forms of thyroid axis pathology [31, 32].

 Peripheral Actions of Thyroid 
Hormone

Thyroxine (T4) and triiodothyronine (T3) are 
the two main forms of circulating thyroid hor-
mone. They are mostly bound to various serum 
protein, the three major being thyroid-binding 
globulin (TBG), transthyretin, and albumin 
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[33]. Thyroid hormone has also been shown to 
bind to thyroid hormone autoantibodies [34] 
and lipoproteins [35]. These carrier proteins 
serve to both carry large amounts of thyroid hor-
mones that are readily available when needed as 
well as to protect the different tissues from 
exposure to excess amounts of free thyroid hor-
mones. Genetic defects of these carrier proteins 
can lead to altered binding of thyroid hormone 
and “abnormal” thyroid function tests [36]. It is 
very important for these conditions to be sus-
pected and diagnosed early because patients are 
clinically euthyroid and require no treatment. 
One such example is a condition called familial 
dysalbuminemic hyperthyroxinemia. This is the 
result of a mutation of albumin that results in a 
dramatic 60-fold increase in the affinity of this 
protein for thyroid hormone. Carriers of such a 
mutation have an elevated level of serum thy-
roxine but a normal TSH and are clinically 
euthyroid [36].

Traditionally, thyroid hormone was thought to 
enter the target cells by simple diffusion through 
the cell membrane. However, several transport-
ing proteins have been identified recently. These 
include the monocarboxylate transporter 8 
(MCT8), MCT10, the organic anion-transporting 
polypeptide 1C1 (OATP1C1) [37], and the L-type 
amino acid transporters LAT1 and LAT2 [38]. 
The clinical significance of these transporters has 
been clearly shown because syndromes of 
reduced thyroid hormone sensitivity have been 
described in patients carrying mutations in one of 
these proteins [39].

As stated above, thyroxine is the main meta-
bolic product of the thyroid gland, carrying four 
atoms of iodine. This is however thought of as a 
pre-hormone, which has to be metabolized to the 
active triiodothyronine, carrying three atoms of 
iodine in specific locations, which is the active 
hormone exerting all the peripheral effects of thy-
roid hormone. The conversion of T4 to T3 is a 
peripheral event that does not take place in the 
thyroid gland. This is achieved with the help of a 
selenium-containing enzyme called deiodinase. 
There is a total of three isoforms of the deiodin-
ase enzyme: types 1, 2, and 3, each with appar-
ently different functions.

Type 1 deiodinase (D1) has been described as 
a scavenger enzyme, given its higher affinity for 
reverse T3 (rT3). This is an inactive form of thy-
roid hormone, although there is some evidence to 
suggest it may actually be biologically active 
[40]. D1 has also more recently been shown to 
play a role in the synthesis of thyronamines, a 
class of endogenous compounds that seem to 
play a significant role on the actions of thyroid 
hormone [41], even with potential therapeutic 
possibilities, as in cases of acute stroke by induc-
ing transient hypothermia [42].

The main deiodinase enzyme responsible for 
the conversion of T4 to the active T3 is the type 2 
isoenzyme (D2) [43]. It also provides critical 
regulation of intracellular T3 actions by regulat-
ing the availability of its nuclear receptors.

Finally, D3 catalyzes the conversion of T4 and 
T3 to the inactive rT3 and to 3, 3′-diiodothyro-
nine, which is also metabolically inactive. It 
seems to represent the physiologic inactivator of 
thyroid hormones [43]. Of interest, a very rare 
condition called consumptive hypothyroidism 
has been described where a hepatic hemangioma 
overexpresses D3. The result is a state of hypo-
thyroidism because of excessive deactivation of 
T3 and T4 [44].

Thyroid hormone exerts its peripheral effects 
through both genomic and non-genomic path-
ways. Traditionally, they were thought to act by 
binding and activating specific nuclear receptors 
that in turn alter the expression of target genes 
(genomic actions of thyroid hormone). Two main 
groups of receptors have been identified so far: 
Thyroid receptor alpha (TRα) and beta (TRβ). 
Several isoforms of these receptors have also 
been described (TRα1, TRα2, TRβ1, TRβ2), 
each with tissue-specific expression and func-
tions. The TRα1 receptor is widely expressed but 
has especially high expression in cardiac and 
skeletal muscles. The TRα2 is also widely 
expressed. The TRβ1 is mostly expressed in the 
brain, liver, and kidney, while the TRβ2 is limited 
to the hypothalamus and pituitary gland. 
Examples of isoform specific function include 
the effects on plasma cholesterol that are medi-
ated by TRβ1 [45] and the cardiovascular effects 
mediated by isoform TRα1 [46]. Several attempts 
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to mimic these specific functions have been 
undertaken, mostly trying to lower serum choles-
terol [47], unfortunately still with only limited 
success so far. The timing of these isoforms’ 
expression during embryogenesis has also been 
shown to be critical with TRα being expressed 
widely and early during development, whereas 
the TRβ being restricted and expressed later [48].

Non-genomic actions of thyroid hormone 
have also been described [49]. These are medi-
ated through a number of different membrane 
receptors that may or may not homologies to the 
their nuclear receptor counterparts. Examples 
include a truncated version of the TRα that seem 
to be essential for the non-genomic maintenance 
of the actin cytoskeleton by T4 [50] or a thyroid 
hormone receptor located on integrin ανβ3 that 
can activate the MAPK and PI3K pathways as 
well as regulate the intracellular trafficking of 
intact TRβ1 and MAPK from the cytoplasm to 
the nucleus [51, 52]. However, it has been 
recently shown that the postsynaptic effects 
induced after these membrane receptors have 
been activated by thyroid hormone may also 
include direct alteration of gene expression 
(including the genes for TRα, TRβ, and those 
encoding angiogenesis such as FGF2, MMP2, 
H1F1A, and COX2 [53, 54]), thus showing over-
lapping activity with the nuclear receptors.
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The Hypothalamic-Pituitary- 
Thyroid Axis: Physiological 
Regulation and Clinical 
Implications

Alina Gavrila and Anthony N. Hollenberg

Thyroid hormone (TH) has a key role in regulat-
ing the function of the majority of body tissues 
and organs, being essential for normal growth 
and differentiation as well as control of energy 
homeostasis and metabolism during adult life. 
TH acts primarily through nuclear receptors in 
different tissues to control a wide variety of 
genomic programs. TH levels need to be tightly 
regulated since even mild decreases or increases 
in circulating levels resulting in subclinical hypo- 
or hyperthyroidism, respectively, can negatively 
affect physiologic function. The hypothalamic- 
pituitary- thyroid (HPT) axis has the crucial role 
to maintain normal TH levels, and this has been 
achieved by the development of a neuroendocrine 
loop consisting of a negative feedback mecha-
nism between circulating TH levels and the hypo-
thalamus and pituitary gland [1–3]. Remarkably, 
there is significant interindividual variability 
with only narrow intraindividual variability in the 
HPT function under basal conditions in healthy 
people. Each individual has a physiological HPT 
axis set point where it functions optimally. This 
set point is determined mainly by genetic factors 
(40–60%) with some effect from environmental 

factors [4]. Numerous mutations or polymor-
phisms in the HPT axis that affect thyroid hor-
mone production and function have been 
identified that could explain the different indi-
vidual set point. To understand how the set point 
is defined and maintained, the following chapter 
will review the components of the HPT axis and 
their integration. Additionally, the regulation of 
the HPT axis in health and disease will be 
described.

 Thyrotropin-Releasing Hormone 
(TRH)

TRH, produced in the hypothalamus, plays an 
essential role in the regulation of the HPT axis. 
Although not necessary for thyrotroph cell 
development in the pituitary gland, TRH is 
essential for both appropriate thyroid-stimulat-
ing hormone (TSH) and TH synthesis [5, 6]. 
Mice lacking the TRH gene develop central 
hypothyroidism [7]. TRH receptor mutations in 
humans have also been identified and cause cen-
tral hypothyroidism [8].

TRH is a tripeptide synthetized from a larger 
inactive precursor preproTRH containing 242 
amino acids in humans through several co- and 
posttranslational processes [3]. TRH is produced 
in several hypothalamic nuclei and other central 
nervous system (CNS) regions. Only the hypo-
physiotropic TRH-secreting neurons from the 
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paraventricular nucleus (PVN) in the 
 hypothalamus project to the median eminence 
(ME) and are part of the HPT axis playing a role 
in the regulation of TSH production [1, 3].

The PVN is located medially and symmetri-
cally in the hypothalamus at the level of the upper 
third of the third ventricle and has a lateral mag-
nocellular and medial parvocellular subdivision. 
The magnocellular area contains neurons that 
produce oxytocin and vasopressin and project in 
the posterior pituitary. The hypophysiotropic 
TRH neurons are located in the parvocellular 
area and project to the external zone of the ME, 
where the TRH is released from axon terminals 
into the portal capillaries. TRH is transported 
through the hypophysial portal system to the 
anterior pituitary, where it binds to TRH recep-
tors (TRHR1) and regulates the production and 
secretion of TSH from thyrotrophs and prolactin 
from lactotrophs [1]. TRHR1 is the only TRH 
receptor present in the pituitary gland; a second 
TRHR2 with unknown function was found to be 
expressed mainly in the brain and is likely only 
functional in rodents [9].

TRH stimulates the synthesis, secretion, and 
biological activity of TSH.  TRH stimulates the 
release of pre-synthesized TSH and also increases 
the synthesis of both the alpha TSH subunit com-
mon to all glycoprotein pituitary hormones 
[luteinizing hormone (LH) and follicle- 
stimulating hormone (FSH)] and the specific 
TSH-beta subunit which encodes for biologic 
specificity [1]. TRH also regulates TSH glycosyl-
ation/posttranslational processing of TSH oligo-
saccharide chains, which is important for folding, 
secretion, clearance, and biological activity of 
TSH.  Animal and human studies have showed 
that TRH deficiency is associated with inappro-
priately low pituitary production of TSH, which 
also has decreased biological activity [10].

The location of the hypophysiotropic TRH 
neurons in the PVN is critical to their function in 
regulating the thyroid axis. The PVN receives 
and integrates multiple neuronal and humoral 
signals and adjusts the HPT axis to adapt to exter-
nal and internal environmental changes, such as 
cold, starvation, and illness [1, 3]. Numerous 
neuronal axons from different hypothalamic and 

brain areas project and form synaptic associa-
tions with the TRH neurons in the PVN. In addi-
tion, the TRH neurons receive humoral signals 
from the circulation through the vascular supply 
of the ME or the PVN [1, 3].

In both rodents and humans, the PVN receives 
input from the arcuate nucleus (ARC) in response 
to peripheral feeding-related signals. Specifically, 
the ARC sends inhibitory signals from orexigenic 
neurons which co-secrete agouti-related peptide 
(AgRP) and neuropeptide Y (NPY) and stimula-
tory signals from anorexigenic neurons which 
secrete the alpha-melanocyte-stimulating hor-
mone (alpha-MSH) from their axon terminals in 
the PVN. These signals are important in HPT axis 
response to starvation and illness and can result in 
the suppression of TRH production and secretion. 
The PVN also receives input from the catechol-
amine-producing brainstem neurons, which stim-
ulates TRH gene transcription during cold 
exposure (2/3 adrenergic neurons and 1/3 norad-
renergic neurons) [1, 3]. Input received from the 
dorsomedial nucleus (DMN) may be involved in 
the circadian regulation of the TRH neurons [1].

The role of the non-hypophysiotropic TRH 
neurons located in the hypothalamus and other 
CNS areas is not known; however, they may play 
a role in the autonomic regulation of thermogen-
esis by projecting to the brain stem and spinal 
cord and also in food intake/appetite/feeding 
behavior by projecting to the satiety center (ven-
tromedial hypothalamus, VMH) and hunger cen-
ter (lateral hypothalamus, LH) [1–3]. TRH 
administration to rodents is known to induce 
anorexia, to inhibit food and water intake without 
affecting the TSH [3]. TRH is also synthetized in 
peripheral organs, such as the intestinal tract, 
pancreas, and heart, which probably contribute to 
circulating TRH.  Hypothalamic TRH is not 
thought to affect circulating TRH levels.

 TRH and the Regulation of Prolactin 
Secretion

TRH binds to TRH receptors (TRHR1) and regu-
lates the production and secretion of TSH from 
thyrotrophs and prolactin from lactotrophs in the 
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anterior pituitary [1]. Exogenous TRH adminis-
tration increases prolactin production and secre-
tion from the anterior pituitary in humans. 
Endogenous TRH is not important for the devel-
opment or differentiation of fetal pituitary lacto-
trophs or in maintaining prolactin secretion under 
normal conditions [11]. In addition, only a small 
percentage of patients with hypothyroidism and 
increased endogenous TRH production in the 
hypothalamus have elevated prolactin levels [11]. 
It is recommended to measure thyroid function 
tests in patients who present with hyperprolac-

tinemia, since thyroid hormone treatment in 
hypothyroid patients can result in normalization 
of prolactin levels.

 Thyroid-Stimulating Hormone 
(TSH)

TSH is a glycosylated polypeptide produced in 
the anterior pituitary gland in cells termed thyro-
trophs (Fig. 1). TSH is a heterodimeric glycopro-
tein consisting of an alpha subunit common for 
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Fig. 1 The hypothalamic-pituitary-thyroid (HPT) axis. 
Hypophysiotropic thyrotropin-releasing hormone (TRH) 
neurons located in the paraventricular nucleus (PVN) of 
the hypothalamus close to the third ventricle (III) project 
to the median eminence (ME) and release TRH into the 
local portal system. Thus, TRH reaches the pituitary, 
where it binds to specific receptors and stimulates the 
thyroid-stimulating hormone (TSH) production and secre-
tion into the circulation. Circulating TSH binds to specific 
receptors in the thyroid to stimulate the thyroid hormone 
(TH) production and secretion. Tetraiodothyronine (T4) 
represents 80%, while triiodothyronine (T3) represents 
20% of the TH produced in the thyroid. T4 is a prohor-
mone, which is converted in the periphery to T3, the active 
form of TH. TH regulates the function of the majority of 
body tissues and organs, playing an important role in nor-
mal growth and differentiation as well as control of energy 

homeostasis and metabolism during adult life. Circulating 
T4 is transported into specialized cells called tanycytes 
(T) located in the hypothalamus, which produce type 2 
deiodinase (DIO2)  and convert T4 to T3. Locally synthe-
tized T3 binds to specific receptors in the hypophysiotro-
pic TRH neurons and inhibit TRH synthesis. Large 
amounts of circulating T3 can directly cross into the 
brain and control TRH production. Similar to the hypo-
thalamus, the majority of T3 that acts in the pituitary is 
produced locally by the DIO2, which is expressed in 
the pituitary in stellate cells located adjacent to thyro-
trophs. The hypophysiotropic TRH neurons in the PVN 
receive projections from neurons in the arcuate nucleus 
(ARC) that express leptin receptors and respond to 
changes in circulating leptin levels during fasting/food 
intake. The ARC mediates the leptin-induced changes in 
the HPT axis
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all of the glycoprotein hormones [TSH, LH, FSH, 
and human chorionic gonadotropin (hCG)] and a 
unique beta subunit that encodes for its biologic 
specificity. TRH plays an important role in TSH 
glycosylation, which does not interfere with the 
immunological TSH assay; however, it can affect 
TSH bioactivity in humans. Lack of TRH severely 
impairs the regulation of TSH secretion and its 
biological activity. In hypothalamic hypothyroid-
ism, serum TSH levels are normal or only slightly 
increased, and the TSH has decreased bioactivity, 
which accounts for the low T4 levels [5, 9, 10].

While hypothalamic TRH and circulating TH 
are the most important regulators of TSH synthesis 
and secretion, other hormonal pathways also 
impact its production. Dopamine inhibits TSH 
production and secretion by activation of dopa-
mine- 2 receptor (D2R) in pituitary thyrotrophs, 
while at a lesser degree, it stimulates TRH secre-
tion in the PVN. Somatostatin inhibits TSH release 
by activation of the SST2 and SST5 receptors 
expressed on thyrotrophs [12]. Glucocorticoids 
decrease TRH gene expression in the PVN and 
also directly suppress TSH production and secre-
tion, thus resulting in low TSH levels. Physiological 
cortisol levels may play a role in the diurnal TSH 
rhythm, which is characterized by lower levels in 
the morning and higher levels at night, opposite to 
the cortisol rhythm [13]. Leptin acts directly and 
indirectly via alpha- MSH/CART expressing neu-
rons from the ARC to stimulate TRH synthesis and 
secretion in the PVN [1]. Leptin and TSH secre-
tion follows a similar pattern [12].

 Negative Feedback Regulation 
of TRH and TSH Production by 
Thyroid Hormone (TH)

There are simultaneous changes at multiple lev-
els in the HPT axis in response to circulating TH 
levels (Fig. 1). Indeed, the entire axis is designed 
to be activated when TH levels are low and sup-
pressed when TH levels are high. For this reason 
the serum TSH has become the most important 
laboratory test in interpreting thyroid function in 
humans as it is easily measurable in the periph-
eral circulation.

In hypothyroidism, there are increased TRH 
production and secretion from hypophysiotropic 
TRH neurons in the PVN and also decreased 
expression of the TRH-degrading enzyme pres-
ent in cells near the hypothalamus (tanycytes) 
and increased TRHR1 synthesis in the pituitary. 
Together, these changes allow TRH action to 
increase such that it leads to increased TSH pro-
duction and release from the pituitary. Opposite 
changes are seen in hyperthyroidism [9]. While 
TRH is not required for the induction of TSH in 
hypothyroidism, it greatly accentuates its rise. 
Most of the changes caused in TRH production 
by TH are mediated at the mRNA level such that 
TRH mRNA is increased in hypothyroidism and 
decreased in hyperthyroidism. The actions of TH 
on TRH gene expression are rapid and can occur 
in hours [1].

The effects of TH in the hypothalamus are pri-
marily mediated by T3. The majority of T3 is 
produced locally in the hypothalamus from circu-
lating T4 that is transported into specialized cells 
called tanycytes located between the PVN and 
ME, which produce type 2 deiodinase (DIO2). 
When present in large amounts in the circulation, 
T3 itself can directly cross into the brain and reg-
ulate TRH gene expression. T3 binds to its recep-
tors in the hypophysiotropic TRH neurons from 
the PVN, specifically the THR-beta2 isoform, 
and inhibits TRH mRNA expression [2]. While 
other thyroid hormone receptors exist, termed 
THR-alpha and THR-beta1, it is likely the TRH- 
beta2 which is of paramount importance in the 
hypothalamus and pituitary [14]. In the absence 
of T3, TRH gene expression is activated presum-
ably by the TRH-beta2, which no longer has hor-
mone bound to it. The mechanism by which the 
TRH-beta2 is able to repress in the presence of 
ligand and activate in its absence remains 
unknown.

As discussed, most T3 that acts on hypophy-
siotropic TRH neurons is produced locally in the 
hypothalamus by the conversion of T4 to T3 by 
DIO2 in tanycytes which line the third ventricle. 
Presumably, the T3 produced in this area is then 
able to access TRH neurons to allow for its regu-
lation [6, 9]. The presence of this local generator 
of T3 allows for the DIO2 to be a target to control 
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TRH production and release. For example, in 
sepsis or other acute severe illnesses where the 
HPT axis is suppressed and low TH levels are 
seen in the presence of inappropriately normal or 
suppressed TSH levels, the expression of DIO2 
in the hypothalamus is activated by inflammatory 
pathways leading to increased local T3 and sup-
pressed TRH production [1].

In addition to its role in regulating TRH pro-
duction, TH also directly controls TSH produc-
tion in pituitary thyrotrophs. Similar to the 
hypothalamus, the majority of T3 that acts in the 
pituitary is produced locally by DIO2, which is 
expressed in stellate cells located adjacent to thy-
rotrophs in the pituitary. Like TRH, both the 
TSH-alpha and TSH-beta subunits of TSH are 
negatively regulated at the mRNA levels by T3 
via the THR-beta2 receptor expressed in pituitary 
thyrotrophs. In the hypothyroid state, TSH sub-
unit expression is activated by both increased 
TRH levels and the unliganded effects of THR- 
beta2. The converse occurs in hyperthyroidism. 
Interestingly, DIO2 is also regulated by TH, spe-
cifically by T4 and only minimally by T3. In the 
presence of high levels of T4, DIO2 is rapidly 
degraded at the protein level to prevent the con-
version of T4 to T3 and inhibit further conse-
quences of hyperthyroidism [1, 9, 14].

 Clinical Implications

The regulation of TSH at multiple levels by local 
T3 has made it the most reliable biomarker for 
interpreting thyroid function. Initial models 
assumed a simple inverse linear correlation; how-
ever, more recent studies have showed an intrain-
dividual log-linear relationship between TSH and 
circulating free T4 levels [15, 16]. There is an 
exaggerated TSH response to subtle TH changes; 
therefore, the TSH test is considered to be more 
sensitive than the free T4 test. The TSH assay is 
very reliable and cost-effective and is the main 
laboratory test used in the clinical setting to diag-
nose and monitor patients with hypo- and hyper-
thyroidism. Third-generation TSH assays are 
currently available, which have increased sensi-
tivity and can separate low TSH levels in hyper-

thyroid patients from low normal TSH levels in 
euthyroid subjects. The advent of sensitive TSH 
assays has allowed for the identification of sub-
clinical hypo- and hyperthyroidism. In these situ-
ations the TSH is abnormal with T4 and T3 levels 
still within normal range [15].

The most recent large cross-sectional studies 
examining the TSH-free T4 relationship over the 
entire thyroid function range, from hypo- to 
hyperthyroidism (instead of rather extrapolating 
results from euthyroid patients), showed a curvi-
linear shape with a steeper response of TSH to 
free T4 changes in the hypothyroid or hyperthy-
roid spectrum and a damped response in the mid-
dle in the euthyroid range; thus, the greater the 
deviation from optimum normal function toward 
hypo- or hyperthyroidism, the greater the TSH 
change in response to free T4 changes [15]. This 
challenges whether TSH is the best test to use to 
estimate thyroid function in euthyroid patients, 
when there are smaller TSH changes in response 
to free T4 changes.

Approximately 10–15% of hypothyroid 
patients requiring TH replacement report not 
feeling well, despite of normal thyroid function 
test results. This could be explained by the fact 
that the TSH on treatment returns to the normal 
population range; however, it does not achieve 
the genetically determined physiological set 
point [4]. In addition, in treated athyreotic 
patients, it is still unclear whether levothyroxine 
doses used to normalize TSH levels can still 
fully normalize T3 levels in all tissues [15, 17, 
18]. There may be multiple reasons to explain 
this, but T3 action may be different in the hypo-
thalamus and the pituitary than in other cell 
types, based on the thyroid receptor isoform 
present or whether different deiodinases are 
present.

 Multifaceted Feedback Control

While the negative feedback regulation of the 
HPT axis by circulating TH levels was probably 
the first mechanism developed during evolution, 
other newer complex regulatory mechanisms of 
the HPT axis have emerged to allow for 

The Hypothalamic-Pituitary-Thyroid Axis: Physiological Regulation and Clinical Implications



18

 adaptation to different environmental changes 
[14]. Several exogenous physiologic and patho-
logic factors can affect the HPT axis and result 
in deviations from the fixed set point-negative 
regulatory loop [19]. Indeed, there is a diurnal 
TSH rhythm with a nocturnal TSH surge, and 
prolonged fasting results in decreased in TSH 
and TH levels. When interpreting the TSH level 
in a clinical setting, we may need to take into 
consideration the time of the day and the fed 
status of the individual.

 Circadian Rhythm of the HPT Axis

As outlined, TSH is secreted from thyrotrophs 
located in the pituitary gland into the circulation 
in a pulsatile manner. TSH has a circadian 
rhythm with the lowest levels in the afternoon 
between 1600 and 2000  h, followed by a rise 
during the evening and maximum levels between 
0200 and 0400  h; there are no gender differ-
ences [12, 20]. No circadian rhythm has been 
observed for T4, probably because of its long 
half-life. T3 has a circadian rhythm that corre-
lates with the TSH circadian rhythm, the peak 
T3 lagging 90 min behind the peak TSH level. 
This suggests that TSH plays a role in maintain-
ing circulating T3 levels [21]. In primary hypo-
thyroidism, there is an increased basal serum 
TSH concentration with preserved circadian 
rhythm and pulsatility; the total TSH secretion 
is increased 10-fold in subclinical hypothyroid-
ism and 200-fold in severe hypothyroidism [12]. 
The physiological role of the TSH circadian 
rhythm is not known [14].

The suprachiasmatic nucleus (SCN) of the 
hypothalamus may play a role in the regulation of 
the diurnal TSH oscillations. SCN neurons proj-
ect to the PVN, and ablation of this center affects 
the circadian TSH rhythm. Circulating TH does 
not affect the gene expression in the SCN; thus 
the diurnal TSH oscillations are independent of 
the negative feedback mechanism [14]. In addi-
tion, the dorsomedial nucleus (DMN) may be 
involved in the circadian regulation of TRH neu-
rons which would contribute to the rhythmicity 
of TSH secretion [1].

 The HPT Axis and Food Deprivation

It has been known for many years that fasting 
decreases circulating TH levels, which is thought 
to represent an adaptive mechanism to conserve 
energy. Food restriction results in decreased TRH 
mRNA expression in the PVN and, consequently, 
lower TSH and TH levels [3, 6]. More recently, 
leptin has been shown to play a critical role in 
this mechanism by affecting the function of one 
of the main hypothalamic centers controlling 
food intake and energy homeostasis, the ARC 
(Fig.  1). Fasting decreases leptin production, 
which results in increased appetite, energy con-
servation, and changes in the neuroendocrine 
axis. The ARC mediates the leptin-induced 
changes in the HPT axis during fasting [14].

The hypophysiotropic TRH neurons in the 
PVN receive projections from leptin-responsive 
neurons that express leptin receptors in the 
ARC. One group of ARC neurons produces the 
anorexic peptide alpha-MSH which binds to spe-
cific receptors on TRH neurons and prevents the 
fasting-induced suppression of the thyroid axis 
[3]. Food intake results in increased leptin levels 
and increased alpha-MSH expression. In con-
trast, a second group of ARC neurons co-express 
the orexigenic peptides, NPY and AGRP; leptin 
inhibits these neurons. Since fasting results in 
decreased leptin levels, these neurons are acti-
vated and elevate AgRP and NPY expression 
which, in turn, suppresses TRH mRNA expres-
sion, thus causing central hypothyroidism [3].

During fasting, there are also changes in the 
peripheral TH metabolism affecting the conver-
sion of T4 into T3 and reverse T3 (rT3). Evidence 
exists for enhanced metabolism and excretion of 
T4 in the liver by type 3 deiodinase (DIO3), sul-
fotransferases, and glucuronidating enzymes and 
decreased T3 production by downregulation of 
the liver type 1 deiodinase (DIO1) [22–24].

The positive influence of leptin on the TRH 
axis could explain the thyroid function changes 
noted in patients with anorexia nervosa and obe-
sity. Adolescents with anorexia nervosa have low 
fat stores resulting in low leptin levels, and they 
also have low TSH and free T3 levels. In agree-
ment with this, obese patients have increased 
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body fat and leptin levels as well as slightly ele-
vated TSH and free T3 levels. The leptin, TSH, 
and free T3 levels normalize with weight gain in 
patients with anorexia nervosa and weight loss in 
obese patients. These changes in the TRH axis 
may represent an adaptation mechanism that 
decreases energy expenditure to conserve energy 
in thin patients and increases energy expenditure 
thus reducing the conversion of energy into fat in 
obese patients. Pharmacological treatment to 
normalize the thyroid axis has not proved to be 
beneficial in patients with abnormal weight 
[25–27].

 The HPT Axis and Cold Exposure

Exposure to cold stimulates the HPT axis through 
adrenergic inputs to the hypophysiotropic TRH 
neurons in the PVN.  Catecholamine-expressing 
neurons from the medulla and pons project to the 
hypophysiotropic TRH neurons in the PVN 
(alpha2 adrenergic receptors) and also to the 
external layer of the ME (alpha1 adrenergic 
receptors). Cold exposure increases the prepro-
TRH mRNA levels in the PVN within 30–60 min, 
increases TRH release from the ME, and stimu-
lates TSH secretion from the pituitary gland, 
which results in increased circulating T4 and T3 
levels [3]. However, despite these anatomic path-
ways being present, there is little clinical signifi-
cance seen as circulating thyroid hormone levels 
do not vary with temperature.

 The HPT Axis and Illness

Illness affects the negative feedback loop cen-
trally resulting in downregulation of the HPT 
axis. This condition is characterized by initially 
low circulating T3 and in severe illness low T4, 
increased rT3, and inappropriately normal or low 
TSH levels and is called the “non-thyroidal ill-
ness syndrome” (NTIS) (also “euthyroid sick 
syndrome” or “low T3 syndrome”).

TRH mRNA expression in the PVN of hypo-
thalami collected from patients who died after 
prolonged illness was decreased and correlated 

positively with premortem serum TSH and T3 
levels measured in samples collected less than 
24 h before death [28]. The mechanism of these 
changes is not completely understood. As dis-
cussed, animal models for NTIS have showed a 
significant increase in DIO2 expression in tany-
cytes, which is thought to increase the local T3 
production and through this decrease the TRH 
mRNA expression in both acute and chronic ill-
ness. Cytokines associated with illness, including 
interleukin 1 (IL1), IL6, and tumor necrosis 
factor- alpha (TNF-alpha), mediate the develop-
ment of this syndrome [29, 30].

Animal models have showed that illness also 
results in decreased TSH-beta mRNA expression 
in the pituitary and low circulating TSH levels. 
The mechanism is unclear, since DIO2 expres-
sion in the pituitary is either increased or 
decreased in NTIS, depending on the species and 
type of illness studied [29].

The NTIS picture is complex, involving vari-
ous illness-induced changes in the thyroid func-
tion and local TH metabolism of different organs 
in acute vs. chronic disease in addition to the cen-
tral changes in the hypothalamus and pituitary. 
Cytokines released in NTIS may also inhibit TH 
synthesis and secretion from the thyroid gland as 
well as the TH transport inside peripheral cells. 
In addition, in NTIS, there is cytokine-mediated 
local regulation of TH metabolism in different 
organs independently of the circulating TH lev-
els, mainly by affecting the expression of the dif-
ferent types of deiodinases present in different 
peripheral tissues. For example, in the liver, 
which is thought to be a major source of circulat-
ing T3, there is decreased DIO1 expression 
resulting in decreased local T3 production in 
acute inflammation, while the local T3 produc-
tion does not seem to be affected in chronic 
inflammation. In skeletal muscle, there is 
increased DIO2 associated with decreased DIO3 
expression resulting in increased local T3 pro-
duction in acute inflammation, while there is 
increased expression of both DIO2 and DIO3, 
resulting in lower local T3 and higher T2 produc-
tion in chronic inflammation [29, 30]. For exam-
ple, changes in the local TH metabolism in the 
muscle during severe illness may play a role in 
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the myopathy associated with prolonged ventila-
tor dependence [29].

The classical view is that in illness there is an 
adaptive decrease in body metabolism to pre-
serve energy. The combination of low T3 and T4 
levels is associated with poor prognosis in 
severely ill patients, and T3 and/or T4 adminis-
tration in different conditions associated with 
NTIS to restore circulating T3 levels has not been 
beneficial and may result in a poorer outcome 
[23, 29, 31]. The only condition where T3 treat-
ment may be beneficial is in NTIS associated 
with heart failure and cardiac surgery; however, 
further studies are required in this area before 
treatment can be recommended [32–34].

It is currently thought that the body changes 
occurring during the acute phase of illness are 
supportive but they become harmful during pro-
longed critical illness [29]. In critically ill patients 
supported with intensive medical care for several 
weeks, administration of exogenous TRH and 
growth hormone-releasing peptide (GHRP2) 
restored TSH and GH pulsatile secretion and 
resulted in increased anabolism [35]. This indi-
cates that at least part of the wasting syndrome of 
protracted critical illness is caused by relatively 
insufficient secretion of GH and TSH and can be 
reversed by continuous infusion of the hypotha-
lamic releasing factors [29, 35].

 The HPT Axis and Aging

Population-based studies have showed that TSH 
levels tend to increase with age [36–38]. This 
seems to be beneficial since higher TSH levels in 
very elderly has been associated with decreased 
mortality [39, 40]. Therefore, the high prevalence 
of subclinical hypothyroidism in older people 
may be overestimated and result in unnecessary 
treatment that can be harmful. Using age-specific 
TSH reference intervals for TSH has been sug-
gested [38]. In addition, serum T3 levels are 
reduced with preserved T4 levels, and there is a 
lesser TSH response to hypothyroxinemia in older 
individuals. It has been hypothesized that there is 
increased inhibition by T3 versus decreased TRH 
action on the TSH production [41, 42].

 Drugs that Affect the HPT Axis

In addition to TH and cytokines, there are a num-
ber of other drugs used clinically that can affect 
the HPT axis at the level of hypothalamus or 
pituitary.

High doses of exogenous glucocorticoids 
act mainly on receptors located on the TRH 
neurons in the PVN and may decrease TRH 
gene expression but also on the pituitary 
directly to suppress TSH production and secre-
tion. Together this can result in low TSH lev-
els [13, 43]. A dexamethasone dose of only 
0.5 mg can lower the serum TSH level, while 
20–30 mg of prednisone or 100 mg of hydro-
cortisone or more per day is required to have 
this effect [13, 44, 45]. Physiologic levels of 
hydrocortisone may play a role in the diurnal 
TSH rhythm characterized by lower levels in 
the morning and higher levels at night [46]. 
Interestingly, long-term high doses of gluco-
corticoids or endogenous hypercortisolism in 
Cushing’s disease do not result in central 
hypothyroidism, probably because the 
decrease in TH levels will overcome the glu-
cocorticoid effect and increase TSH secretion 
[13]. In contrast, patients who present with 
Addison’s disease may have a slightly high 
TSH level which reflects glucocorticoid defi-
ciency [46].

Dopamine used in the ICU setting binds and 
activates D2Rs in the hypothalamus and pitu-
itary. Dopamine is a natural catecholamine 
released from hypothalamic neurons located in 
the ARC in the local portal circulation that plays 
an important role in prolactin regulation and also 
affects TSH secretion in the pituitary. Although 
dopamine appears to stimulate the TRH release 
from the hypothalamus, it has a stronger effect 
on the pituitary where it decreases the TSH pulse 
amplitude, thus resulting in decreased TSH lev-
els [13, 47]. The HPT axis suppression second-
ary to dopamine infusion will further worsen the 
suppression of this axis associated with non- 
thyroidal illness syndrome in critically ill 
patients [13].

Dopamine agonists, such as bromocriptine 
used to treat hyperprolactinemia, have similar 
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suppressive effects on the HPT axis, while dopa-
mine receptor antagonists, such as metoclo-
pramide or domperidone, have opposite effects 
during acute administration [13, 48, 49]. 
Interestingly, chronic treatment with these drugs 
will not affect the TSH secretion, probably 
because the decrease in TH levels will overcome 
their effect on the HPT axis [13].

Somatostatin is a peptide secreted in the peri-
ventricular nucleus and ARC in the hypothala-
mus that enters the local portal system and binds 
to five types of receptors (SST-1 to SST-5) in the 
pituitary, playing an important inhibitory role on 
GH secretion. Somatostatin also directly inhibits 
TSH secretion from the pituitary thyrotrophs 
[47]. Long-term administration of somatostatin 
analogues, such as octreotide in acromegaly, 
does not cause clinically significant central 
hypothyroidism [13]. However, somatostatin 
analogues are effective in treating patients with 
TSH- secreting pituitary adenoma in addition to 
surgery as well as patients with resistance to TH 
[50, 51].

Retinoids are vitamin A analogues that bind a 
nuclear hormone receptor, the retinoid X receptor 
(RXR). The RXR forms heterodimers with other 
nuclear transcription factors, including TH recep-
tors resulting in activation of these receptors and 
inhibition of TSH secretion in the pituitary. 
Patients with subcutaneous T-cell lymphoma 
treated with bexarotene develop reversible cen-
tral hypothyroidism [52, 53].

Several anticonvulsants (carbamazepine, 
oxcarbamazepine, and valproic acid) may result 
in central hypothyroidism in addition to increas-
ing TH metabolism through the activation of the 
P450 system [54].

Tricyclic antidepressants, antipsychotic phe-
nothiazines, as well as atypical antipsychotics 
may interfere with the HPT axis and decrease the 
TSH response to TRH [55]. The clinical signifi-
cance is likely not important with this class of 
drugs.

Metformin can lower TSH level through an 
unknown mechanism in hypothyroid, however 
not in euthyroid patients who have an intact 
hypothalamic-pituitary feedback mechanism 
[56].

 Summary and Conclusions

The HPT axis is obviously critical to maintaining 
the euthyroid state and can be interrogated rapidly 
with the TSH assay in order to determine the func-
tional status of an individual patient. While this 
works in most clinical situations, it is imperative 
that the clinician be aware of other clinical states 
that can invalidate the normal regulation of the 
HPT axis. From a clinical perspective, the most 
important to consider are illness and co- 
administered medications, but as reviewed, many 
other physiologic states can and will influence the 
set point of the axis. It is likely that further work in 
each of these areas will help us better understand 
how to interpret the function of the HPT axis.
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Abbreviations

AFU Angio-follicular unit
CH Congenital hyperthyroidism
CNS Central nervous system
Cts Cathepsin gene
DIT Diiodothyronines
DUOX Dual oxidase
ER Endoplasmic reticulum
ERAD ER-associated degradation
fT4 Free T4

IYD Iodotyrosine deiodinase
M6P Mannose 6-phosphate
MIT Monoiodothyronines
MPR Mannose 6-phosphate receptor
NIS Sodium-iodide symporter
PDI Protein disulfide isomerase
rER Rough endoplasmic reticulum
rT3 Reverse T3

T2 3,3′-Diiodothyronine and 
3,5-diiodothyronine

T3 3,5,3′-Triiodothyronine
T4 3,5,3′,5′-Tetraiodothyronine, thyroxine
TAM Thyronamines
Tg Thyroglobulin
TGN trans-Golgi network

TH Thyroid hormone
TPO Thyroid peroxidase
TSH Thyroid-stimulating hormone

 Introduction: The Thyroid Gland 
and Its Tasks

Thyroid-derived molecules are the classical TH 
3,5,3′-triiodothyronine (T3) and 3,5,3′,5′-tet-
raiodothyronine (thyroxine, T4), their nonclassi-
cal metabolic derivatives 3,3′-diiodothyronine 
and 3,5-diiodothyronine, and possibly also the 
thyronamines (TAM), primarily 3-T1AM and 
T0AM.  Collectively, these thyroid molecules 
from “T4−T0” have been referred to as the thyro-
nome [1–3].

This review will focus on classical T3 and T4 
[4–9]. They are delivered with the blood circula-
tion to peripheral organs and to the central ner-
vous system (CNS). Deiodinases of TH target 
cells are required to convert circulating T4 upon 
uptake into the biologically active T3. 
Alternatively, T4 is converted into biologically 
inactive reverse T3, which is part of the body’s 
TH inactivation pathways. The TH deiodinating 
enzymes are selenoproteins, which are expressed 
in a tissue- and cell type-specific manner and 
which are also present in thyroid epithelial cells 
along with a number of other selenoenzymes that 
have critical functions, particularly during the 
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iodination of Tg [10] (see section “Iodination of 
Tg in the Thyroid Follicle Lumen: A Unique 
Posttranslational Modification”).

The thyroid gland’s tasks are relevant to all 
body functions. This conclusion is derived from 
the notion that adequate TH levels are required 
for the development and proper functioning of 
nearly every organ in all phases of life, i.e., from 
early embryonic tissue morphogenesis to postna-
tal development, from childhood to adulthood, as 
well as aging.

To fulfill its tasks, the thyroid gland is built by 
functional units, the so-called thyroid follicles, 
which are composed of a monolayer of thyroid 
epithelial cells (thyrocytes) [11, 12], and few 
calcitonin-producing C cells [13, 14]. In addition, 
thyroid follicle cells are in intimate contact with 
endothelial cells of the blood vessels forming a 
basket-like, highly complex vasculature around 
each individual thyroid follicle [11]. Thyroid fol-
licles with associated blood vessels are collec-
tively referred to as angio-follicular units (AFU; 
[15, 16]). The microvasculature of thyroid folli-
cles not only consists of blood vessels but also 
contains lymphatic vessels, typically surrounding 
clusters of few thyroid follicles [17].

 Biosynthesis of Tg, Its Folding 
and Trafficking, and Acquisition 
of Different Posttranslational 
Modifications

Thyroglobulin (Tg) is synthesized at the rough 
endoplasmic reticulum (rER) of thyroid epithelial 
cells as a protein consisting of 2768 amino acids 
with a 19-amino-acid signal peptide [18–21]. 
Upon import into and folding within the ER 
lumen, Tg is transported via the Golgi apparatus 
and the trans-Golgi network (TGN) to the apical 
plasma membrane domain of thyroid epithelial 
cells for its subsequent secretion into the thyroid 
follicle lumen (Fig. 1). During its transport along 
the secretory pathway [22], Tg undergoes several 
posttranslational modifications, i.e., it becomes N- 
and O-glycosylated, mannose 6- phosphorylated, 
and sulfated, and eventually, upon its secretion 
into the extracellular lumen, Tg is iodinated in a 

reaction that is unique for the thyroid gland (see 
section “Iodination of Tg in the Thyroid Follicle 
Lumen: A Unique Posttranslational Modification”). 
Tg typically occurs as a soluble dimer, but addi-
tionally, it has the ability to multimerize (see sec-
tion “Compaction and Storage of Tg as Covalently 
Cross-Linked Thyroid Globules”). The biosynthe-
sis of Tg is regulated by thyroid-stimulating hor-
mone (TSH) (see sections “Regulation of Tg 
Utilization for TH Liberation” and “Further 
Mechanisms of Thyroid Function Regulation”).

Investigations on structure-function relation-
ships and the molecular evolution of Tg have 
recently unraveled its multi-domain architecture 
to be unique among proteins of vertebrates [23]. 
The glycosylation of Tg is unusual in that it fea-
tures an evolutionary early character, whereby 
complex, hybrid, high-mannose, and glucos-
amine types of carbohydrates are detected in 
N-glycosylated Tg, which is also O-glycosylated, 
and can bear a considerable proportion of up to 
10% of its molecular mass as carbohydrate moi-
eties [24–31].

The significance and consequence of Tg’s 
manifold posttranslational modifications, includ-
ing its species-specific glycosylation patterns, are 
not yet fully understood, but the posttranslational 
and pre-iodination modifications of Tg may help 
thyroid epithelial cells to monitor Tg’s proper 
folding by chaperone-mediated ER quality con-
trol mechanisms and to regulate its intrathyroidal 
transport as well as its iodination upon secretion 
into the extracellular thyroid follicle lumen [22, 
27, 30–34]. In specific forms of congenital hypo-
thyroidism (CH), mutations in the TG gene can 
result in altered intracellular transport of Tg, 
eventually leading to defective TH synthesis [30, 
33, 35–37]. In the context of intrathyroidal Tg 
transport, it is of particular interest to note that 
misfolding of Tg in the ER lumen can be the 
causative basis of such specific forms of CH in 
which quality control and the safe-guarding 
ER-associated degradation (ERAD) mechanisms 
are outcompeted [22, 33, 38–40]. The result is an 
overload of the thyrocyte’s rER with an accumu-
lation of excessive amounts of misfolded Tg, 
leading to a massive expansion of the ER and, 
eventually, to thyroid dysfunction.
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Fig. 1 Biosynthesis, iodination upon secretory release, 
luminal storage, processing, and degradation of thyro-
globulin for TH generation, liberation, and release from 
thyroid follicles. Schematic diagram depicting molecules 
of thyroid epithelial cells that are important for (i) TH 
generation on the protein backbone of thyroglobulin (Tg), 
(ii) liberation of thyroxine (T4) and some triiodothyronine 
(T3) by extra- and intracellular means of proteolysis, and 
(iii) TH release from thyroid follicles into the surrounding 
blood circulation through Mct8- and Mct10-mediated 
transport across the basolateral plasma membrane domain 
of thyrocytes. Left: Tg biosynthesis at the rER is followed 
by its folding and acquisition of different posttranslational 
modifications (PTM), and multimerization before the TH 
precursor molecule becomes iodinated upon its secretory 
release. The basolateral sodium-iodide symporter (NIS) 
and the apical sodium-iodide anti-porter pendrin enable 
iodide transport across the epithelial sheet into the thyroid 
follicle lumen. Oxidative conditions are generated by 
DUOX and DUOX-associated proteins of the apical 
plasma membrane domain (not shown), thereby enabling 
the heme-containing thyroid peroxidase (TPO) to iodinate 
tyrosine residues and intramolecularly couple them to pre-
form iodothyronines on Tg’s backbone. A number of 
dehalogenases are important for recycling of surplus 
iodine (not shown). Tg is covalently cross-linked for effi-
cient storage in the follicle lumen in a form that keeps the 
iodine-rich molecule osmotically inert. Extracellularly 
acting proteolytic enzymes first solubilize Tg from its 
high molecular mass storage forms, before T4 can be liber-
ated by a combinatory action of endo- and exopeptidases. 
Aspartic cathepsin D; cysteine cathepsins B, C, K, L, and 
S; as well as a plasminogen-like serine protease (not 
shown) and a metallopeptidase (not shown) have been 

shown to proteolytically process Tg before or after its 
endocytosis and delivery to endo-lysosomes, where it is 
completely degraded for its turnover. In particular, TH lib-
eration from Tg and its degradation fragments can be per-
formed by cathepsins K and S or by combined action of 
the cathepsins with the ectoenzymes aminopeptidase N 
(APN) and dipeptidylpeptidase IV (DPPIV) of the apical 
plasma membrane domain of thyrocytes. The proteolytic 
processing and TH liberation from Tg by extracellular 
means are regulated by endogenous cysteine peptidase 
inhibitors, the type 2 cystatins C, D, E, and F, which may 
further involve substrate-assisted means of regulation by 
thyropins (see Fig. 2). Tg re-internalization is believed to 
depend on binding proteins of low, medium, or high affin-
ity, to which low-density lipoprotein (LDL)-related pro-
teins such as megalin and sortilin belong. The thyroid 
hormones T3 and T4 are translocated across the mem-
branes of thyroid epithelial cells by means of TH trans-
porting molecules, such as the monocarboxylate 
transporters Mct8 and Mct10, that export T4 and T3 into 
the extracellular space from where they can enter the 
blood circulation to become bound to transporter proteins 
like the thyroxine binding globulin (TBG; not shown), 
which deliver the TH to their target organs in the body 
periphery and the central nervous system. Tg can also 
reach the blood circulation as an intact iodinated protein 
by transepithelial vesicular transport, i.e., transcytosis, 
which bypasses endo-lysosomal degradation. Thyroid 
functions are directed in many aspects by thyroid- 
stimulating hormone (TSH), released from pituitary cells 
upon a shortage in circulating TH levels, and negative 
feedback onto the hypothalamus to release the thyroid- 
releasing hormone thyroliberin (TRH; not shown). The 
schematic drawing omits the recently discovered G 

(continued)
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Mannose 6-phosphorylation of proteins is 
believed to serve as a targeting signal for sorting 
into transport vesicles destined to late endosomes 
and lysosomes through interaction of the man-
nose 6-phosphate (M6P) moieties upon their 
addition in the cis-Golgi cisternae, with the 
cation- dependent 46  kDa M6P receptor 
(CD-MPR) in the trans-Golgi network (TGN) 
[41–46]. However, this potential targeting route is 
bypassed in fully functional thyrocytes because 
Tg trafficking typically skips recognition by the 
CD-MPR in the TGN and the protein is further 
transported along the secretory pathway, resulting 
in secretion of mannose 6-phosphorylated Tg into 
the extracellular space [47–50]. It may be specu-
lated that the extensive and somewhat unusual N- 
and O-glycosylation of Tg explains why the M6P 
signal is masked and why the thyroid- specific 
protein Tg reaches the extracellular thyroid folli-
cle lumen rather than being delivered directly to 
late endosomes and lysosomes for proteolytic 
degradation [38, 48, 51–53].

For thyroid function, the transport of Tg along 
the secretory pathway and its delivery at the api-
cal plasma membrane are critically important 
because only then the protein can become iodin-
ated [54]. Thus, only if Tg follows the secretory 
pathway all the way up to its secretion into the 
extracellular follicle lumen, it may serve as the 
TH precursor molecule that it is. Hence, it may 
be speculated that fully glycosylated Tg is a bet-
ter substrate for thyroid-specific iodination reac-
tions, while poorly glycosylated Tg might be 
suboptimal for iodination, thus yielding low- 
iodinated, poorly glycosylated, and potentially 
less stable Tg. However, it has been shown that 
altered posttranslational modifications—e.g., 
desialylation—and increasing concentrations of 
Tg paradoxically accelerate iodination [55].

Sulfation of Tg is not well studied, but it is 
known to happen in the Golgi apparatus of thy-
roid epithelial cells in a species-specific manner, 
yielding sulfated tyrosine residues and sulfated 

high-mannose carbohydrates on Tg [56]. The 
biological significance of sulfated Tg to thyroid 
physiology has been addressed only occasion-
ally. However, it was proposed that sulfated tyro-
sine residues are likely affecting the efficiency of 
Tg iodination [57, 58]. Negatively charged chon-
droitin sulfate side chains, characterizing human 
Tg in particular, are less prevalent in papillary 
thyroid carcinoma [59] and, hence, must be con-
sidered a feature of the differentiated state of thy-
rocytes. All in all, these results show that further 
studies on the importance of Tg’s posttransla-
tional modifications, in context of subsequent 
iodination, are necessary.

Apart from the abovementioned general post-
translational protein modifications, a species- 
specific covalent cross-linkage of Tg occurs 
while traveling along the secretory route and 
upon its secretion into the extracellular thyroid 
follicle lumen [60–64] (see section “Compaction 
and Storage of Tg as Covalently Cross-Linked 
Thyroid Globules”).

Finally, Tg undergoes a highly complex 
sequence of proteolytic processing, i.e., the irre-
versible posttranslational modifications that are 
initiated in the thyroid follicle lumen by extracel-
lular proteolysis before complete Tg degradation 
continues in the compartments of the endocytic 
pathway [65–73]. Extracellular proteolytic pro-
cessing of Tg results in the liberation of TH prior 
to Tg’s re-internalization, thereby also yielding 
differently sized molecular mass fragments of the 
TH precursor molecule, which might involve in 
substrate-assisted pathways of thyroid autoregu-
lation (see section “Tg Proteolysis by Extra- and 
Intracellular Means and Regulation of Tg 
Utilization for TH Liberation”). Thus, the bidi-
rectional transport pathway that Tg follows in 
thyroid epithelial cells is typically completed 
with its endo-lysosomal degradation (Fig.  1). 
Alternatively, re-internalized Tg may bypass 
endo-lysosomes to reach the blood circulation as 
an intact molecule [32, 74]. Circulating Tg [20, 

protein- coupled receptors of the apical plasma membrane 
domain at primary cilia of thyroid epithelial cells [200], 
namely, the trace amine-associated receptor 1 (Taar1), 
that is known to be triggered by a nonclassical, TH-related 
molecule, 3-iodothyronamine (3-T1AM), which is gener-

ated from classical TH by decarboxylation and deiodin-
ation. It is not known to date whether 3-T1AM is generated 
within thyroid follicles or by extra-thyroidal means. It was 
proposed very recently that Taar1 and TSH receptors co-
regulate thyroid functions in mice [201]
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75] reaches, e.g., the liver, where Kupffer cells 
have the ability to internalize circulating Tg and 
to liberate TH by extra-thyroidal means [76–78].

 Iodination of Tg in the Thyroid 
Follicle Lumen: A Unique 
Posttranslational Modification

Tg iodination by thyroid peroxidase (TPO) for TH 
generation [10, 79–87] depends on both iodide 
trapping and an oxidative environment provided 
by the H2O2-generating system consisting of thy-
roid-unique dual oxidases (DUOXs) and their acti-
vating maturation factors, the DUOXAs [88]. 

However, the exact reaction mechanism of iodin-
ation at the side chains of tyrosine residues (involv-
ing radical iodine or anionic iodide) and the 
intramolecular coupling of the resulting iodotyro-
syls to form Tg backbone- bound iodothyronines 
remains somewhat enigmatic [86, 89]. Moreover, 
it was emphasized that iodotyrosyl formation by 
iodination of Tg as such is a separate event, unas-
sociated with the coupling reaction that yields 
iodothyronine formation [90]. Accordingly, iodo-
tyrosine residues are distributed along the length 
of the Tg molecule, whereas coupling to form 
protein-bound mono-, di-, tri-, or tetraiodothyro-
nines (preformed MIT, DIT, T3, or T4, respectively) 
happens in a directed fashion [91].

T4 T3T4 T4

IB IIIA IIIA IIIAIIIB IIIB

T4

T4 T3T4

T4

Thyroglobulin processing

Activation of thyropins &
inactivation of cysteine cathepsins
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T4

T4

T4 T4
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Fig. 2 Proposal of substrate-assisted regulation of Tg 
proteolysis. Schematic illustration of Tg proteolysis by 
cysteine cathepsins (red) which, upon cleavage of Tg 
internal sequences (light green), may unmask thyropins 
and render them inhibitory against Tg-processing enzymes 

in a substrate-assisted fashion (bright green). A cysteine 
cathepsin cleavage site in human Tg has been detected by 
an in vitro degradation assay which, if used, would yield 
activated thyropin sequences [72], hence, indicating the 
principle possibility of such a regulatory mechanism
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Iodine trapping begins with the entry of iodide 
through facilitated transport across the basolat-
eral plasma membrane of polarized thyroid epi-
thelial cells which is mediated by the 
sodium-iodide symporter (NIS) [85, 92]. At the 
opposite cell pole, the chloride-iodide anti-porter 
pendrin and the more recently identified calcium- 
activated anion channel protein anoctamin 1 are 
believed to enable iodide transport across the api-
cal plasma membrane [85, 93, 94], thereby allow-
ing iodide to reach the extracellular follicle lumen 
in which the apically located TPO then mediates 
iodine organification by iodotyrosyl formation on 
Tg. Iodination at tyrosine residues and coupling 
to iodothyronines, therefore the generation of T3 
and T4, preformed at distinct positions in the Tg 
molecule, occur in the direct vicinity of the apical 
plasma membrane, because the reactive domain 
of TPO faces the thyroid follicle lumen and the 
strictly required oxidative conditions are gener-
ated in its pericellular, apically apposed region 
(Fig.  1). Excessive iodination at the hydroxyl 
side groups of tyrosine residues can be handled 
by a recently discovered flavoprotein, the iodoty-
rosine deiodinase IYD, which is also present at 
the apical plasma membrane domain of thyro-
cytes and serves in a salvage pathway that allows 
efficient iodide recycling [95].

It is important to note that iodination of Tg’s 
tyrosine residues and their coupling to the pre-
formed TH on the Tg backbone is a very complex 
reaction which is unique for the thyroid gland. It 
remains unanswered why iodine organification 
on Tg is such a thyroid-specific reaction—despite 
the notion of thyroid-specific iodide transport-
ers—and why it does not occur elsewhere in the 
body, although iodination-competent peroxidases 
are present in several cell types, including other 
epithelial tissues. It may be speculated in this 
regard that the specific architecture of thyroid 
follicles promotes the iodination reaction on Tg, 
because the follicle lumen ensures a secluded 
extracellular environment that restricts all players 
in this complex and potentially cytotoxic chemi-
cal reaction to a small sub-follicular area. This 
notion and interpretation is also reflected by 
coining of the term “thyroxisome” which 
describes the iodination machinery including the 

H2O2-generating system [15, 96]. However, cell 
biologically speaking, the complex assortment of 
the molecules constituting the iodination machin-
ery that acts in certain, spatially confined areas of 
the extracellular thyroid follicle lumen is not 
enclosed in a biological membrane.

Eventually, one preformed T3 and four pre-
formed T4 molecules are positioned at the very N- 
and C-terminal ends and in the middle of the TH 
precursor molecule Tg [54, 97, 98]. Although the 
three-dimensional structure of iodinated Tg mole-
cules is still not known, it is tempting to speculate 
that the preformed TH are strategically positioned 
and exposed at the periphery of the Tg molecule, 
such that their liberation by proteolytic processing 
is rendered an efficient and very fast process that 
does not necessarily require complete degradation 
of Tg [71, 72, 97, 98] (see section “Tg Proteolysis 
by Extra- and Intracellular Means”). Thus far it 
can be concluded that the protein sorting and traf-
ficking mechanisms of thyroid epithelial cells are 
following noncanonical principles, and may even 
be considered unique, as in the instance of the 
iodination reaction that occurs just before Tg is 
compacted and stored in the extracellular follicle 
lumen and/or taken up by endocytosis for reentry 
into thyroid epithelial cells.

 Compaction and Storage of Tg 
as Covalently Cross-Linked Thyroid 
Globules

Tg monomers, dimers, and calcium-compacted 
multimers are eventually secreted at the apical 
plasma membrane domain of thyroid epithelial 
cells and may be further compacted in the extra-
cellular follicle lumen upon iodination. Thus, 
storage of Tg occurs at astonishingly high protein 
concentrations reaching up to 800  mg/mL [99, 
100]. Luminal Tg is typically found in different 
hydrodynamical states of compaction [101, 102]. 
This is to say that the so-called thyroid colloid 
found in the follicle lumina of mammalian thy-
roid glands is typically made of multilayered, 
quasi-crystalline thyroid globules which are sur-
rounded by a variably thick layer of soluble Tg 
(Fig. 3) [61, 62, 66]. Thyroid globules can occur 
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as one or several entities in the extracellular fol-
licle lumen [61, 62, 66, 101], thereby reflecting 
the state of Tg utilization for TH liberation in 
each follicle of a thyroid lobe individually.

A range of enzymes are involved in Tg cross- 
linking, including disulfide bridges-forming pro-
tein disulfide isomerase (PDI), dityrosine-building 
peroxidase, and tissue transglutaminase which 
connects Tg molecules by isodipeptide linkages 
[60–62, 64]. The nature of the cross-linkage 
between Tg molecules depends to a certain extent 
on the species in which Tg multimerization 
occurs, where covalent cross-linkage differs in 
mouse, rat, porcine, and bovine thyroid glands 
[66]. Notably, disulfide bonds are most prevalent 
in human thyroid globules, which consist of sev-
eral layers of covalently cross-linked Tg [61]. 
Moreover, especially in the human thyroid gland, 
self-assisted covalent cross-linkage of Tg is pos-
sible due to its ability to act as a disulfide- forming 
molecule through the thioredoxin “CXXC- 

boxes” located in the N-terminal half of the Tg 
molecule [63].

Concentric rings, representing onion-like lay-
ers of seemingly separate sheets made of Tg mul-
timers, are easily detected in the thyroid follicle 
lumen when cryo-sections of thyroid tissue are 
inspected by phase contrast or immunofluores-
cence microscopy upon labeling with anti-Tg 
antibodies (Fig. 3; [66]). However, the concentric 
rings of Tg deposited in the thyroid follicle lumen 
are not so prominently observed when thyroid tis-
sue is paraffin-embedded such as routinely per-
formed for standard histological inspection. Thus, 
different preparation protocols might explain why 
Tg multimerization by covalent cross-linking had 
been overlooked for a long time before it was first 
described in the 1990s [62].

It has been suggested that covalently cross- 
linked Tg is a sign of aging and represents “insol-
uble” aggregates of compact Tg in the colloid, 
characterized by very low, if any, Tg turnover 

Fig. 3 Different levels of compaction and accessibility of 
Tg enable and represent the heterogeneity of functional 
states in which individual follicles exist across a thyroid 
lobe at any given time. Phase contrast and corresponding 
confocal fluorescence micrographs of mouse thyroid 
cryo-sections immunolabeled with Tg-specific antibodies, 
and counter-staining of nuclear DNA, as indicated (left). 
Schematic drawing illustrating how Tg is stored in the 
extracellular lumen of thyroid follicles in covalently 
cross-linked form, thereby acquiring heterogeneous states 

and different levels of compaction (right, cf. left panel). 
Luminal solubilization activity is seen by the formation of 
ringlike soluble Tg around compacted Tg forms (box 1). A 
uniform Tg labeling indicates a compact, non-solubilized 
colloid in its cross-linked form (box 2), whereas higher- 
intensity labeling implies solubilized Tg, which allows a 
higher degree of antibody accessibility to reactive Tg epi-
topes. In particular, an intense luminal periphery (box 3) 
indicates Tg solubilization by extracellularly secreted 
Tg-processing proteases at the apical-apposing pole
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[101–103]. Hence, thyroid follicles in which 
covalently cross-linked Tg is stored as “insoluble” 
aggregates would denote these follicles as older 
follicles of the heterogenous follicle population of 
a thyroid gland. However, originally, it was sug-
gested that covalently cross-linked Tg serves to 
store Tg at high concentrations and in an osmoti-
cally inert, compacted form [61, 62]. Thyroid 
globules persist for long time intervals, before 
they eventually become solubilized, and Tg is 
subsequently utilized as TH precursor protein in 
times of high TH demand [65, 71, 72, 101, 104].

Hence, since its first description [62], the sig-
nificance of Tg storage as thyroid globules con-
sisting of covalently cross-linked Tg multimers 
has been discussed in the context of different con-
cepts. The notion of a physiological significance 
of thyroid globule formation as an iodine storage 
pool is supported by the observation of the afore-
mentioned concentric rings upon incubating iso-
lated human thyroid globules with H2O in vitro, 
which first results in swelling, followed by peel-
ing off of the Tg multimers, layer by layer, from 
the isolated thyroid globules [61]. These findings 
indicate several rounds of Tg biosynthesis, depo-
sition into the follicle lumen, and appositional 
compaction into thyroid globules, to alternate 
with rounds of Tg solubilization from the storage 
forms (discussed in [62, 66, 101, 104]). Such a 
concept would find further support if differently 
iodinated Tg would be found in the multilayered 
thyroid globules. This hypothesis is, however, dif-
ficult to test since covalently cross- linked Tg is 
not readily accessible in its intact form to immu-
nolabeling where, in principle, antibodies against 
differently iodinated Tg could be used (see Fig. 3) 
[61, 66, 71, 101]. However, in times of high TH 
demand, thyroid globules gradually disappear 
from the thyroid follicle lumen [61, 101], support-
ing their role as iodine and TH storage pool rather 
than representing aged protein aggregates.

 Tg Proteolysis by Extra- 
and Intracellular Means

Thyroid globules consisting of differently cross- 
linked Tg forms can easily reach up to ten times 
the size of a thyroid epithelial cell. Therefore, it 

was proposed that they are physiologically pro-
cessed by means of extracellular protease- 
mediated Tg solubilization from the covalently 
cross-linked storage forms, a process preceding 
Tg’s re-internalization for endo-lysosomal deliv-
ery [65, 66, 71, 73, 104].

Extracellular proteolysis within the thyroid 
follicle lumen was first suggested in 1941 [105] 
when the luminal content was aspirated and 
found to contain acidic proteinases. Several 
decades later, it was described that Tg can 
undergo limited proteolysis mediated by extra-
cellularly acting cysteine peptidases, followed by 
the endocytic uptake of partially degraded Tg 
into thyroid epithelial cells [65, 71–73]. Thus, 
thyroid functions are enabled by the sequential 
proteolytic processing of Tg, resulting in the lib-
eration of T4 and, to a lesser extent, T3. In this 
view, proteolytic processing of Tg for TH libera-
tion starts already in the extracellular thyroid fol-
licle lumen and is completed intracellularly 
within endosomes and lysosomes of thyroid epi-
thelial cells (Fig. 1).

In situ proteolysis of both human and mouse 
Tg is mediated by the cysteine cathepsins B, K, 
L, and S [65, 66, 71–73, 104, 106]. In addition, a 
plasminogen-like serine protease was proposed 
to act specifically on Tg multimers of human thy-
roid follicles [103, 107]. Moreover, the dimeric 
cysteine cathepsin C and plasma glutamate car-
boxypeptidase, a metallopeptidase, presumably 
involve in Tg degradation for TH liberation in the 
thyroid gland of rats, as these proteases have 
been detected as secretory products of Fischer rat 
thyroid cells and have been shown to be able to 
process Tg in  vitro [108]. Therefore, cysteine 
cathepsins constitute a major group of enzymes 
among the proteases known to process Tg. 
Notably, the thyroid functions of cysteine cathep-
sins are well in line with the notion that these pro-
teases are widely expressed, playing essential 
roles in selective protein turnover for mainte-
nance of tissue homeostasis and regulation of cell 
signaling [109–111].

Mice with deficiencies in distinct cysteine 
cathepsins are characterized by impaired prote-
olysis of Tg, resulting in its persistence in the 
thyroid gland of cathepsin B (Ctsb−/−)- and L 
(Ctsl−/−)-deficient animals [71]. The typical mul-
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tilayered appearance of extracellularly stored Tg 
was retained in cathepsin K-deficient (Ctsk−/−) 
mice only, suggesting cathepsins B and L to be 
the main proteases involved in solubilizing Tg 
from its covalently cross-linked storage forms 
[71]. Mice deficient in cathepsin L, or both 
cathepsins K and L, exhibit significantly reduced 
serum levels of free T4 (fT4), indicating that Tg 
utilization for T4 liberation is mediated by a com-
binatory action of cathepsins K and L [71]. 
Besides, cathepsin K is special among the cyste-
ine cathepsins as it is able to directly liberate T4 
from Tg, while the other Tg-processing enzymes 
require a combined action with additional exo-
peptidases to cleave off T4 from the Tg peptides, 
derived by preceding proteolytic processing of 
Tg mono-, di-, or multimers [72, 73].

A rearrangement of the endocytic system with 
a redistribution of these Tg-processing enzymes 
toward extracellular locations, plus lysosomal 
swelling, was demonstrated in thyroid tissue of 
cysteine cathepsin-deficient mice [71]. 
Furthermore, cathepsin L was identified as a sur-
vival factor for thyroid epithelial cells because its 
absence resulted in increased numbers of dead 
cells accumulating in the extracellular follicle 
lumina of Ctsl−/− mice [71]. Cysteine cathepsin- 
deficient mice were further characterized by flat 
epithelia and increased follicle areas, correlating 
with reduced levels of serum fT4. Thus, animals 
lacking cathepsin K and L functions feature 
altered Tg-processing abilities and exhibit a phe-
notype resembling thyroid goiter [71]. 
Accordingly, it is concluded that in the mouse 
thyroid, cathepsins B and L are the main enzymes 
responsible for Tg solubilization, while T4 libera-
tion from Tg is mediated by a combinatory action 
of cathepsins K and L [71]. Thus, in the thyroid 
gland of mice, cysteine cathepsins play pivotal 
roles in the utilization of the prohormone Tg for 
TH liberation via sequential extra- and intracel-
lular Tg-processing and degradation [71, 104].

In an approach simulating the in situ situation 
of Tg proteolysis in the human thyroid gland, an 
assay was developed to test for proteolytic pro-
cessing of human Tg, thereby accounting for 
redox potentials and pH values corresponding to 
the conditions expected in the extracellular space 
of the thyroid follicle lumen and in comparison 

to the conditions typically detected within endo- 
lysosomes of mammalian cells [72]. Cleavage 
patterns of human Tg by different combinations 
of cysteine cathepsins B, K, L, and/or S indi-
cated distinct, compartment-specific processing 
of the prohormone [72]. Moreover, and similar 
to the findings in mice, the localization of cyste-
ine cathepsins in the human thyroid gland was 
shown not to be restricted to endo-lysosomes, 
but they are also present in the thyroid follicle 
lumen [72, 104].

In addition, a plasminogen-like protein, pres-
ent in the pericellular environment at the apical 
pole of human thyroid epithelial cells, has been 
suggested to contribute to Tg degradation by 
extracellular means, due to this serine protease’s 
ability to specifically degrade “insoluble” Tg 
multimers [103, 107]. Accordingly, the 
plasminogen- like protein is likely to also be asso-
ciated in the regulation of the composition of the 
luminal content of thyroid follicles in human. It 
was further proposed that the secreted 
plasminogen- like serine protease, by acting on 
“insoluble” Tg forms, prevents accumulation of 
the latter upon aging [103].

In addition to this likely scenario, the cysteine 
cathepsin-mediated Tg proteolysis pathways fea-
ture specific spatiotemporal action patterns, since 
cysteine cathepsins and other endopeptidases can 
act on both covalently cross-linked and soluble 
Tg alike [71, 104]. This depends on where they 
meet with their natural substrate, e.g., cysteine 
cathepsins B, K, L, and S cleave Tg in a limited 
fashion in the extracellular milieu of the thyroid 
follicle lumen for initial and fast T4 liberation, 
before these enzymes, together with aspartic 
cathepsin D, completely degrade Tg within endo- 
lysosomes for liberation of T3 and T4 [25, 65–68, 
71–73, 104, 112]. However, the prospect of TH 
liberation from Tg by cysteine cathepsins in the 
oxidizing milieu of the thyroid follicle lumen has 
been questioned [113], because reducing and 
acidic conditions are required for their optimal 
activity. In keeping with the notion of extracellu-
lar stabilization of cysteine cathepsins by an 
excess of substrate [114–116], experimental evi-
dence was provided that cysteine cathepsins K 
and S, in particular, liberate T4 from human Tg in 
non-favorable, neutral (pH 7.0), and oxidizing 
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conditions (−150 mV), such as expected for the 
extracellular thyroid follicle lumen [72].

Recently, a mouse model, i.e., cystinosin- 
deficient mice (Ctns−/−), has underlined the 
necessity of proper redox conditions in thyro-
cytes as a precondition to both productive Tg 
folding in the rER and efficient Tg degradation 
[117]. Cystinosin is a cystine transporter of endo- 
lysosomal membranes whose deficiency results 
in lysosomal storage disease phenotypes, first 
manifesting in the kidney but also becoming 
prevalent, among other organs, in the thyroid and 
pancreas of the afflicted patients [118]. Cystinosin 
deficiency in mice results in hypothyroidism due 
to altered biosynthesis of Tg through ER stress 
and altered Tg-processing within endo- lysosomes 
[117]. Collectively, the results denote redox con-
ditions as an important factor for proper Tg fold-
ing in the rER [22] and for the extent of Tg 
degradation by extra- and intracellular means 
[71, 72, 104, 117]. Accordingly, hematopoietic 
stem cell transplantation was eventually shown to 
rescue the hypothyroid phenotype of cystinosin 
deficiency, whereby the transplanted hematopoi-
etic stem cells differentiated into macrophage- 
like cells that interacted with thyroid follicle cells 
via nanotubes, such that proper redox states were 
reconstituted in thyroid follicles, restoring the 
euthyroid state [119].

In conclusion, Tg-processing enzymes that are 
able to liberate TH from different Tg forms 
(intact or partially degraded monomers, dimers, 
or multimers, as well as thyroid globules) must 
be further studied in more detail, since a com-
plete image appears to still be missing some 
important players. So far, obvious thyroid pheno-
types (hypothyroidism) were described for 
Ctsk−/−/Ctsl−/− mice [71] and for Ctns−/− animals 
[117]. The proteolytic enzymes, considered thus 
far as playing a role in Tg utilization, are able to 
process and degrade Tg either alone (cathepsins 
K and S) or in combination with other peptidases 
(cathepsins B, C, D, and L, plasma glutamate car-
boxypeptidase, and plasminogen-like protease). 
Therefore, it is likely that additional Tg-processing 
protease candidates will be identified in the 
future, when more organ-specific animal models 
are established, in particular thyroid-specific 

knockouts. The reason why single protease defi-
ciency is often not enough to cause severe patho-
logical phenotypes, with regard to the thyroid or 
any other organ, is viewed in the ability of prote-
ases to functionally compensate each other 
through redundancy, i.e., by transcriptional and 
translational upregulation of related enzymes 
upon targeted gene deletion or pharmacological 
inhibition of a specific protease [71, 109, 111, 
112].

A better understanding of the delicate balance 
between different proteases acting on distinct Tg 
forms in neutral, or acidic and oxidizing, or 
reducing environments of the follicle lumen and 
the endocytic compartments of thyrocytes, 
respectively, would certainly help to explain 
mechanistically the thyroid gland’s autoregula-
tive mechanisms.

 Tg Re-Internalization

Tg reenters thyroid epithelial cells to follow dif-
ferent fates; first and of foremost importance for 
the TH-generating tasks of the thyroid gland, Tg 
is internalized upon TSH stimulation of thyroid 
epithelial cells [120–122], thereby reaching 
endosomes and lysosomes for its degradation, 
resulting in exhaustive TH liberation [25, 32, 66, 
104, 113, 123]. Second, low-iodinated Tg is 
internalized in a TSH-independent manner for 
recycling and to eventually undergo another 
round of iodination. Different modes of Tg bind-
ing to cell surface constituents have been sug-
gested in this regard [123–125], among these, 
sortilin-mediated recycling pathways of Tg have 
been shown to occur in male but, astonishingly, 
not in female mice [126]. Third, non-processed, 
variably iodinated Tg enters thyrocytes and 
bypasses endo-lysosomal delivery to become 
subsequently secreted at the basolateral plasma 
membrane domain [74, 127, 128], thereby even-
tually reaching the blood stream.

With regard to the canonical pathway of Tg 
utilization, Tg re-internalization from its storage 
compartment—the extracellular thyroid follicle 
lumen—for subsequent endo-lysosomal degrada-
tion is believed to occur either by receptor- 
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mediated endocytosis or, especially in rodents, 
by macropinocytosis. The latter uptake mecha-
nism is similar to fluid-phase uptake (small vol-
umes), which does not involve specific ligand 
receptors and is, therefore, nonselective. 
However, macropinocytosis is a process that also 
bears morphological characteristics of phago-
cytic uptake (large volumes), which typically 
involves receptors.

Beyond the discussion about the precise cell 
biological mechanisms and volumes of Tg enti-
ties taken up by thyrocytes, a number of potential 
Tg receptors have been proposed to act at the api-
cal surface of thyroid epithelial cells in this path-
way. Such receptors have been suggested to 
distinguish between different forms of Tg. Thus, 
Tg endocytosis and its potentially involved recep-
tors constitute part of the “last come—first 
served” hypothesis [123, 127, 129], which pre-
dicts that newly synthesized Tg is taken up right 
after its iodination upon secretion into the follicle 
lumen and thus used immediately for TH libera-
tion by lysosomal degradation. Such a mecha-
nism would allow thyrocytes to distinguish 
high- from low-iodinated Tg, and the involve-
ment of a receptor, specific for iodinated Tg, 
would indeed make sense to select between Tg 
molecules of different iodination states [25]. 
Conversely, it has also been argued that the apical 
pericellular space of the thyroid follicle lumen is 
so packed with high concentrations of soluble, 
mostly well-iodinated, Tg molecules and that 
thyrocytes would not necessarily need a 
Tg-specific receptor to further concentrate the 
TH precursor protein within clathrin-coated pits 
for its subsequent receptor-mediated uptake [49, 
62, 123, 130, 131]. Nevertheless, the debate con-
tinues since decades, and a number of receptors 
have been proposed to be involved in the re- 
internalization of Tg.

The cation-dependent and cation-independent 
MPRs were suggested as Tg receptors, thereby 
considering the M6P modifications on Tg as 
interaction targets (see section “Biosynthesis of 
Tg, Its Folding and Trafficking, and Acquisition 
of Different Posttranslational Modifications”) 
[50]. Such an uptake mechanism would imply 
that the MPRs are abundantly present at the api-

cal plasma membrane domain of thyrocytes to 
overcome the fact that the M6P moieties are 
somewhat buried in the Tg structure, i.e., not well 
exposed for receptor binding (mannose 
6- phosphorylated Tg skips recognition by the 
CD-MPR of the TGN, see section “Biosynthesis 
of Tg, Its Folding and Trafficking, and Acquisition 
of Different Posttranslational Modifications”). 
This proposition has consequently been ruled 
out, at least for porcine thyrocytes [49].

Alternatively, an asialoglycoprotein receptor 
(ASGPR) was suggested to specifically identify 
exposed galactose or N-acetylgalactosamine resi-
dues on desialylated and otherwise deglycosyl-
ated Tg [132–134]. It is important to note that the 
same ASGPR of thyrocytes has been proposed to 
contribute to pathways of thyroid autoregulation, 
whereby thyroid-specific gene expression is sup-
pressed by luminal Tg (see section “Further 
Mechanisms of Thyroid Function Regulation”) 
[135, 136].

Moreover, Tg re-internalization and its deliv-
ery to endo-lysosomes have been suggested to be 
mediated by low-affinity [49] or moderate- to 
high-affinity receptors of unknown identities 
[130].

Megalin/gp330 is an LDL receptor-like pro-
tein (LRP) [137] that is expressed at the apical 
plasma membrane of thyrocytes. It was proposed 
to serve as a receptor binding to the C-terminal 
portion of monomeric Tg, which is subsequently 
delivered to the blood circulation by following 
the transcytotic route of thyrocytes [123, 138–
140]. Transcytosis across the thyroid epithelium 
explains mechanistically the appearance of intact 
forms of Tg that are frequently detectable in the 
blood circulation, albeit at low levels [127]. 
Whether or not such circulating Tg may serve as 
an extra-thyroidal source of TH is not yet fully 
understood, although it was shown that circulat-
ing Tg is taken up specifically by liver resident 
macrophages which are indeed capable of liber-
ating TH from circulating Tg in the body periph-
ery [76–78].

All in all, despite the different concepts that 
have been put forth offering attractive solutions 
as to how thyroid epithelial cells could efficiently 
handle the heterogeneous bulk of stored Tg from 
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the extracellular lumen, the question as to 
whether Tg re-internalization from the follicle 
lumen follows nonselective endocytic pathways, 
or is receptor-mediated, remains posed.

Recently, the genome-wide association study 
SHIP (Study of Health in Pomerania) has demon-
strated that a few traits correlate significantly 
with thyroid volume and goiter risk. These 
include genetic loci upstream of or within 
CAPZB, i.e., a gene encoding an actin-binding 
protein important for the regulation of actin 
polymerization [141]. The same genetic locus 
was also found to associate with TSH levels in 
the SHIP, SHIP-TREND, CARLA, and HUNT 
studies of Germany and Norway, respectively 
[142]. Thus, genes coding for proteins that are 
well-known to be involved in enabling actin 
dynamics in cell migration and/or phagocytosis 
were found to correlate with hypothyroid pheno-
types. However, further cell biological studies are 
required to verify and validate these interesting 
indications derived from the cohort studies. 
Hence, future studies might clarify whether the 
detected associations of CAPZB and hypothy-
roidism might nurture substantial support for a 
revival of the classical concept of macropinocy-
tosis [131, 143, 144]. This cellular process is con-
sidered to serve as a fast means of Tg uptake in 
high quantities, thereby providing thyrocytes 
with an efficient (but nonselective) mechanism of 
TH liberation through endo-lysosomal Tg 
degradation.

 Regulation of Tg Utilization for TH 
Liberation

From the above considerations, it becomes clear 
that the extracellular thyroid follicle lumen har-
bors a plethora of functions critical to TH genera-
tion. It is the side of Tg iodination for TH 
preformation on Tg’s protein backbone. The fol-
licle lumen serves as storage device in which 
compaction of Tg is realized through covalent 
cross-linkage for thyroid globule formation. In 
addition, the thyroid follicle lumen, together with 
the apical plasma membrane of thyrocytes, fea-
tures molecular mechanisms by which the fate of 

stored Tg is determined toward its subsequent 
recycling, transcytosis, or degradation. Moreover, 
limited proteolysis of Tg for its solubilization 
from the covalently cross-linked thyroid globules 
and, finally, partial Tg utilization resulting in T4 
liberation is initiated in the thyroid follicle lumen 
by extracellularly acting proteases.

Another very important notion, however, is 
that TH liberation by proteolytic processing of 
Tg is tightly regulated, regardless of whether Tg 
is utilized extra- or intracellularly. The central 
regulation of thyroid functions by the so-called 
HPT axis (hypothalamus-pituitary-thyroid axis) 
[15, 145] involves activation of thyrocytes from 
their resting state by thyroid-stimulating hor-
mone (TSH) binding to the basolateral TSH 
receptors [146]. These belong to the G protein- 
coupled receptor (GPCR) family [147]. The 
short-term effects of TSH activation of thyrocytes 
are mediated by Gαq signaling, whereby the phos-
phatidylinositol cascade is initiated, leading to 
enhanced cytosolic Ca2+ levels [148–150]. In par-
ticular, short-term TSH stimulation of thyrocytes 
causes rapid retrieval of Tg-processing proteases 
out of endo-lysosomes into transport vesicles 
destined to the apical cell surface for the subse-
quent secretion of the active enzymes into the 
thyroid follicle lumen [104, 106, 111, 151]. 
Hence, reallocation of vesicles containing, e.g., 
cysteine cathepsins B, K, and L from the perinu-
clear region to the apical plasma membrane of 
thyrocytes via retrograde trafficking initiates Tg 
solubilization and T4 release extracellularly [65, 
66, 71, 73, 151]. Tg is then re-internalized, 
 further processed, and completely degraded 
within endo-lysosomes [71, 104]. As a conse-
quence of long-term TSH stimulation, however, 
transcriptional regulation ensures the restoration 
of the luminal Tg storage pool via de novo bio-
synthesis of Tg, mediated by the Gαs signaling 
pathway [39, 121, 152]. In addition, chronic TSH 
stimulation contributes to transcriptional upregu-
lation of the expression of Tg-processing prote-
ases like the cathepsins B, D, and S [153–155].

Another pathway of regulating Tg utilization 
is provided by the protein itself. This is to say that 
specific domains of the Tg molecule, the so- 
called Tg type-1 domains, or thyropins [156–
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158], are proposed to act as inhibitors of the 
Tg-processing aspartic and cysteine cathepsin 
proteases, namely, when these are cleaved off in 
a protease inhibitor-competent form from Tg’s 
protein backbone (Fig.  2). Such a pathway of 
substrate-assisted autoregulation of TH liberation 
has been proposed by several groups, but, to the 
best of our knowledge, it has not been formally 
proven [66, 72, 104, 159].

Further proposed regulatory pathways of 
timely termination of Tg proteolysis in the extra-
cellular follicle lumen involve the Tg-selective 
binding molecule megalin/gp330/LRP2 (see sec-
tion “Tg Re-internalization”). It is tempting to 
speculate that megalin may also serve as a recep-
tor that mediates reuptake of the Tg-processing 
proteases, because it belongs to the class of LDL 
receptor-related proteins. The LRPs provide 
“moonlighting” functions due to the multi- 
domain structure of their extended extracellular 
domains, thereby enabling the binding of a broad 
range of molecules, including proteases and their 
inhibitors [160–162]. In the thyroid gland, mega-
lin is strategically positioned at the apical plasma 
membrane domain of thyrocytes [163], such that 
its extracellular domain, with the many different 
ligand-binding properties, reaches out into the 
follicle lumen. Hence, megalin may not only 
serve as a Tg binding cell surface receptor, 
thereby determining the fate of internalized Tg 
destined to become either degraded or trans-
cytosed (see section “Tg Re-internalization”), but 
it might also serve as a molecule which can inter-
act with the Tg-processing proteases.

Future studies have to elucidate the molecular 
and cellular mechanisms that explain intrathyroi-
dal balancing of proteolytic and anti-proteolytic 
activities acting on Tg as their natural substrate.

 Further Mechanisms of Thyroid 
Function Regulation

TSH stimulation of thyrocytes can be considered 
uniform, since a uniform supply of this circulat-
ing pituitary glycoprotein hormone can be 
secured through the network of capillaries 
encompassing each follicle, as well as through a 

fairly homogeneous distribution of the TSH 
receptor at the basolateral plasma membrane 
domain of thyrocytes. Nevertheless, within the 
same thyroid lobe, individual follicles are typi-
cally found at different activation states at any 
given point in time. The prevalence of such func-
tional heterogeneity across the thyroid, reflected 
in a heterogeneity in the follicular Tg content, 
introduces the concept of the “follicular cycle 
model,” wherein the function of the thyroid gland 
is co-regulated by (1) TSH signaling from the 
basolateral pole of the thyrocytes and (2) Tg act-
ing from the apical pole onto the thyrocytes of an 
individual thyroid follicle [135, 164–166].

Accordingly, Tg is believed to act as a negative 
regulator of thyroid-specific gene expression [167], 
while TSH is a well-known positive regulator of 
thyroid differentiation and function. This means 
that a thyroid follicle rich in luminal colloid con-
tent will attain a state of luminal Tg saturation that 
is “sensed” by self-regulatory means, where Tg 
acts as a negative self-regulator of its own biosyn-
thesis. Additionally, the storage capacity of indi-
vidual thyroid follicles is coupled to interfollicular 
differences in TSH-induced kinetics of Tg utiliza-
tion. Thus, certain follicles would degrade Tg faster 
than others, thereby contributing more to the over-
all TH release from the thyroid gland [168].

Upon TSH stimulation, the initial response is 
an increased rate of Tg degradation that exceeds 
the rates of Tg biosynthesis, iodination, and stor-
age. As TSH signaling persists but with luminal 
Tg content reduced in favor of TH liberation, the 
thyrocytes will eventually shift in their response 
in favor of restoring their Tg store, wherein the 
rate of Tg de novo biosynthesis overtakes the rate 
of Tg utilization [165, 168]. The morphological 
equivalent of these cyclic shifts of Tg deposition 
and Tg utilization is the concentric ringlike lay-
ered appearance of intraluminal Tg (see section 
“Compaction and Storage of Tg as Covalently 
Cross-Linked Thyroid Globules”) [66]. In line 
with such a regulatory scenario, low follicular 
content of Tg is known to induce maximal pen-
drin expression, and is subsequently accompa-
nied by enhanced iodide transport, thereby 
involving Tg iodination in the regulatory path-
ways directed by both TSH and Tg [169].
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Another essential notion that must also be 
considered in this context is the “Wolff-Chaikoff 
effect” (reviewed in [165, 170]) that describes 
how excess iodide suppresses TH generation by a 
mechanism that diminishes iodine organification 
and, therefore, TH generation. This effect is 
eventually overcome through regulation at the 
level of iodide import into thyroid follicles, 
namely, by the downregulation of NIS at the 
basolateral plasma membrane. Thus, the concept 
emerges that Tg biosynthesis and iodine organifi-
cation are mutually regulated by each other, 
resulting in temporally differing luminal contents 
of thyroid follicles.

It is concluded that Tg, in addition to TSH and 
iodine, must be viewed as an important player 
involving in thyroid autoregulation at the follicu-
lar, hence, the local sub-thyroidal level (Fig. 4).

 Perspectives

As elegant as the described concepts of thyroid 
autoregulation are, important questions remain 
unanswered. Namely, how can the thyroid epithe-
lial cell of one thyroid follicle differentiate 
between low-iodinated and high-iodinated forms 
of Tg, while the neighboring thyroid follicle 
might consume all of its luminally stored Tg at 
once, indicating that this is high-iodinated Tg 
giving rise to high amounts of TH eventually 
reaching the blood circulation? The answer to 
this question is likely to involve Tg receptors 
such as megalin. However, the expression of 
megalin appears astonishingly uniform across 
neighboring follicles of porcine thyroid tissue 
[171], and bearing in mind that the blood supply 
to follicles is uniform, the differences in func-
tional activity between individual follicles of a 
given thyroid gland remain a mystery.

However, we propose to include the outflow of 
iodine from the thyroid gland via T4 and T3 
release from thyroid follicles into the blood cir-
culation by TH transporters as further means of 
thyroid autoregulatory mechanisms.

TH transporters facilitate selective TH trans-
port across the plasma membrane of TH target 
cells [172–187]. The monocarboxylate trans-

porter 8 (MCT8) has attracted the most attention 
in the past, since its functional absence, which 
leads to alterations in TH export from thyroid fol-
licles and altered TH import into target cells, thus 
consequently, in the TH amount supplied to the 
central nervous system, results in severe X-linked 
psychomotor retardation in patients suffering 
from the Allan-Herndon-Dudley syndrome [188, 
189].

In the human thyroid gland, the monocarbox-
ylate transporter 8 (MCT8) and the type 2 
L-amino acid transporter (LAT2) are the main 
TH transporting molecules [190], while in mice, 
Mct8, Mct10, Lat1, Lat2  in addition to the 
organic anion-transporting polypeptide Oatp1c1, 
and Oatp1a4 are expressed in thyrocytes [191]. 
The Mct8 protein, in particular, facilitates TH 
transport across the basolateral plasma mem-
brane of thyrocytes and, thus, enables T4 export 
from the thyroid gland [190, 192–195]. In addi-
tion, it has been proposed that not only TH export 
but also TH import into thyroid epithelial cells 
requires TH transporters [1, 196]. It is further 
predictable that specific molecules are required 
to facilitate TH transport across any biological 
membrane (see Fig. 1). Consequently, TH trans-
porter molecules are not only required at the 
basolateral plasma membrane domain, but their 
presence is essential at the apical plasma mem-
brane of thyroid epithelial cells as well as at 
endo-lysosomal membranes (see Figs. 1 and 4), 
i.e., at all sub-cellular locations where proteolytic 
liberation of TH from Tg can occur [197].

However, TH transporters at the apical plasma 
membrane and at endo-lysosomal membranes of 
thyroid epithelial cells and their functional rela-
tion to the basolateral TH transporting molecules 
(Mct8 and Mct10) have not yet been studied in 
sufficient detail. Here, we propose that the main 
T4- and T3-exporting molecules Mct8 and Mct10, 
respectively, are both present at the basolateral 
plasma membrane domain of thyroid epithelial 
cells, where they involve in intrathyroidal 
 regulation of Tg-processing in mice. Indeed, an 
enhanced extent of Tg-processing by cathepsin 
proteases B, D, and L in thyroid tissue of Mct8- 
and/or Mct10-deficient mice was recently 
observed [198, 199]. Thus, TH transporters would 
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act as critical sensors of the amount of TH made 
available by the thyroid gland to the body periph-
ery. Thus, it must be clarified how the levels and 
activities of Tg-processing proteases correlate to 
the expression levels and localization patterns of 

TH transporters in thyroid tissue and how TH 
transporter function correlates to TSH regulation 
of the thyroid gland (Fig.  4). Answers to these 
questions will allow a better understanding of 
how TH levels are sensed by thyroid epithelial 
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intact Tg
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Fig. 4 Canonical and noncanonical feedback regulation 
of thyroid functions. Schematic drawing depicting differ-
ent pathways of central and intrathyroidal regulation of 
thyroid functions. TSH, secreted by the pituitary gland in 
response to low levels of circulating TH, is delivered to 
thyrocytes via the blood circulation. It binds to TSH 
receptors located on the basolateral plasma membrane 
domain of thyrocytes. The TSH receptor activation results 
in the short-term TSH action mediated by the Gαq signal-
ing pathway, leading to the reallocation of Tg-processing 
proteases and their subsequent secretion into the extracel-
lular follicle lumen (1 and 2). Then, Tg solubilization 
begins in the follicle lumen and results in the initial libera-
tion of T4 (3). Partially degraded Tg molecules are re- 
internalized into the thyrocyte (4), in part in a 
receptor-mediated fashion. Intracellular Tg degradation is 
resumed in endo-lysosomal compartments, leading to fur-
ther TH liberation (5). The TH is then transported into the 
cytosol and, next, into the extracellular space via specific 
TH transporters (e.g., Mct8) located on the basolateral 

plasma membrane of thyroid epithelial cells, where it can 
access the blood circulation. TH is then delivered to vari-
ous target organs, including the central nervous system, 
where high TH levels negatively feedback on TRH and 
TSH release from hypothalamic neurons and pituitary 
cells, respectively. Persistent TSH stimulation activates 
eventually the Gαs signaling pathway, thereby promoting 
the “long-term” TSH effect, which primarily drives de 
novo Tg synthesis. This process is initiated by an upregu-
lation in Tg biosynthesis and iodide transport genes (6). 
Newly synthesized Tg undergoes posttranslational modi-
fication in the ER, following which it is transported along 
the secretory route (7) to be finally secreted into the extra-
cellular follicle lumen, where it undergoes iodination and 
is compacted into its cross-linked form for storage. Tg 
accumulation in the follicle lumen exerts negative regula-
tory feedback on its own biosynthesis genes, as well as on 
iodide transporters (i.e., NIS and pendrin). Additionally, 
Tg production is regulated at the level of iodine organifi-
cation via the “Wolff-Chaikoff” effect
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cells [200] and, subsequently, how autoregulation 
is achieved by integrating TSH- regulated TH lib-
eration through Tg proteolysis and TH transport 
across the membranes of thyroid epithelial cells. 
In this regard, we proposed very recently that 
Taar1 and TSH receptors may co-regulate thyroid 
functions, namely TH liberation by Tg processing 
and TSH regulation of thyroid follicles, because 
Taar1-deficient mice feature mildly altered Tg 
processing, mislocalized TSH receptors and 
hyperthyropinemia [201]. This proposal awaits 
further experimental evidence to predict possible 
Taar1-TSH receptor co-regulation of thyroid 
states in species other than the mouse.

Several of the open questions discussed in this 
review on thyroid cell biology are currently being 
addressed in the framework of Thyroid Trans Act 
[196].
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Disorders of Thyroid Hormone 
Transporters and Receptors

W. Edward Visser

 Introduction

Thyroid hormone (TH) is indispensable for nor-
mal development and metabolism of all tissues. 
Primary thyroid diseases characterized by abnor-
mal serum TH concentrations result in a variety 
of clinical symptoms. Hypothyroid symptoms 
include cold intolerance, constipation, weight 
gain, and bradycardia, while thyrotoxic symp-
toms include heat intolerance, weight loss, anxi-
ety, and increased heart rate. The importance of 
TH for development is illustrated by the conse-
quences of untreated congenital hypothyroidism, 
resulting in severe growth failure and permanent 
intellectual disability [1].

Clinical effects of an altered thyroid state arise 
from changes in TH physiology at the cellular 
level. At TH target tissues, cellular TH homeosta-
sis requires adequate function of (1) TH trans-
porter proteins, (2) deiodinating enzymes, and 
(3) nuclear receptors (Fig. 1). Defects in any of 
these processes give rise to distinct syndromes, 
collectively called disorders of TH signaling. 
This chapter addresses clinical aspects of disor-
ders due to defective transport and receptor func-
tion, while SBP2 defects are covered in the 
chapter by Rayman and Duntas.

 Regulation of TH Bioactivity

The hypothalamus–pituitary–thyroid (HPT) axis 
principally regulates circulating serum TH con-
centrations. The hypothalamus produces thyro-
tropin-releasing hormone (TRH), which 
stimulates the pituitary to produce thyroid-stimu-
lating hormone (TSH). TSH acts on the thyroid 
gland to synthesize and secrete predominantly 
the prohormone T4 and to a lesser extent the bio-
active hormone T3. Circulating TH inhibits TRH 
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receptors (TRs) and modulates gene expression of 
T3-target genes
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and TSH synthesis and secretion, thereby com-
pleting the endocrine negative feedback loop.

The vast majority of TH in the bloodstream 
is bound to carrier proteins. As a consequence, 
approximately 0.02% of total T4 and 0.3% of 
total T3 concentrations are available as free 
hormone in the blood. The main binding pro-
teins are thyroxine-binding globulin (TBG), 
albumin, or transthyretin (TTR), of which TBG 
is quantitatively the most important carrier. 
Mutations in these carrier proteins generally do 
not produce clinical symptoms but can affect 
thyroid function tests, which can be easily mis-
interpreted [2].

Transport of TH across the plasma membrane 
is a crucial first step to govern intracellular TH 
concentrations. Given the lipophilic nature of 
TH, it has been assumed for decades that trans-
location of TH across the lipid bilayer of cell 
membranes occurred by diffusion [3]. However, 
experimental evidence over the last 40 years and 
clinical studies in the last decade have clearly 
shown that TH traverses the cell membrane 
mainly through transporter proteins [4]. Many 
different transporters have been identified that 
are capable of TH transport, although only a few 
are highly specific for TH [4]. Monocarboxylate 
transporter 8 (MCT8, SLC16A2) has been 
shown to transport the iodothyronines T4, T3, 
rT3, and 3,3′-T2 [5]. In addition to aromatic 
amino acids, the highly homologous MCT10 
(SLC16A10) transports T3 and to a lesser extent 
T4 [6]. MCT8 and MCT10 have a wide tissue 
expression. The organic anion-transporting 
polypeptide 1C1 (OATP1C1, SLCO1C1) trans-
ports T4 and is importantly expressed in the 
brain [7].

At the pre-receptor level, deiodinating 
enzymes importantly control intracellular thyroid 
state by removing iodine moieties from iodothy-
ronines [8]. In general, the type 1 and type 2 deio-
dinases (D1 and D2) are regarded as TH-activating 
enzymes as they catalyze T4 to T3 conversion, 
while the type 3 (D3) deiodinase (D3) is regarded 
as an TH-inactivating enzyme. The three deiodin-
ases display a strict spatiotemporal expression. 
D1 is highly expressed in the liver, kidney, and 
thyroid and can catalyze outer-ring and inner-

ring deiodination. Under physiological condi-
tions, D1 has an important role in serum rT3 
clearance [9]. D1 also contributes to serum T3 
levels, in particular during thyrotoxicosis. The 
antithyroid drug propylthiouracil (PTU) inhibits 
D1 activity, which is of clinical relevance in the 
context of the management of thyroid storm. D2 
catalyzes outer-ring deiodination and is impor-
tant for the local generation of T3  in the brain, 
pituitary, brown adipose tissue, and skeletal mus-
cle. The role of D3 is to degrade T3 and T4 to 
lesser iodothyronines. During fetal development 
D3 is widely expressed, but during adult life, D3 
has a limited expression. D3 can be reactivated 
under certain pathological conditions [8]. A clini-
cal relevant condition can be rarely observed in 
tumors expressing strongly elevated D3 activity. 
The consequent excessive inactivation of TH 
affects systemic TH levels, and, therefore, this 
condition is coined consumptive hypothyroidism 
[10, 11]. Consumptive hypothyroidism requires 
supraphysiological TH replacement doses, and 
only removal of the tumor provides definitive 
treatment.

The genomic actions of T3 are induced via 
binding to its nuclear T3 receptor (TR), which 
functions as a ligand-dependent transcription 
factor [12]. TRs are encoded by two genes, 
THRA and THRB, which generate different 
receptor isoforms. TRα1 is predominantly 
expressed in the brain, bone, and heart, whereas 
TRβ1 is considered the major isoform in the 
liver and kidney. TRβ2, which only differs from 
TRβ1 at the N-terminus, is present in the retina, 
cochlea, and pituitary. TRs interact with a num-
ber of co-activators and co-repressors to form 
functional transcriptional units [12]. Binding of 
T3 to the TR, located on T3 response elements 
(TREs) in the promoter region of target genes, 
induces a conformational change of the recep-
tor with release of co-repressors and recruit-
ment of co-activators. The subsequent 
recruitment of the basal transcription machin-
ery to the gene promoters results in altered tran-
scription of these genes. Change in expression 
of T3-target genes ultimately underlies the clin-
ical features observed in hypothyroidism or 
thyrotoxicosis.
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 Defective Cellular TH Transport 
(Allan–Herndon–Dudley Syndrome)

To date, the Allan–Herndon–Dudley syndrome 
(AHDS) is the only known disorder caused by a 
defective TH transporter. Mutations in MCT8, 
which is located on the X-chromosome, cause the 
AHDS [13, 14]. It is estimated that mutations in 
MCT8 account for approximately 1–2% of 
X-linked mental retardation syndromes [15]. 
Although the clinical syndrome was reported in 
1944, it took 60  years before the genetic basis 
was identified. Ever since, a large number of fam-
ilies harboring mutations in MCT8 have been 
identified [16]. A wide variety of mutations have 
been reported ranging from large deletions and 
nonsense mutations to missense mutations that 
alter expression, subcellular localization, or sub-
strate transport.

 Clinical Phenotype

The clinical phenotype comprises a “neurocogni-
tive” component and a “peripheral” component 
dominated by signs of thyrotoxicosis. Prominent 
neurological features include a severe intellectual 
disability with IQ scores mostly below 30 and a 
globally delayed neurodevelopment. Most 
patients are unable to talk and hence communi-
cate through sounds and nonverbal expressions 
(e.g., smiling, crying).

Neurological examination displays hypotonia, 
which is distinct for the axial muscles and mani-
fested by the inability to keep their head upright 
and to maintain postural balance without support. 
Peripheral dystonia is a noticeable extrapyrami-
dal sign. Dystonic posturing can occur spontane-
ously but is commonly provoked by passive 
movement of the body. Also, intentional and pur-
poseful grasping (e.g., for toys) nearly always 
produces dystonia of the used limb and fingers. 
Dystonia has long been confused with spasticity, 
which only becomes slowly apparent with 
increasing age and is more pronounced in the 
lower versus upper extremities as is evidenced by 
the occurrence of hyperreflexia, tightening of the 
heel cords, and a positive Babinski sign [17]. 

Swallowing difficulties may limit adequate 
dietary intake and pose an increased risk to aspi-
ration pneumonia.

Seizures have been reported in up to one quar-
ter of AHDS patients [18]. It is important to doc-
ument seizures with electroencephalogram 
(EEG), as repetitive movements due to extrapyra-
midal signs can be mistakenly interpreted as 
epilepsia.

Body weight, height, and head circumference 
are unremarkable at birth. Low body weight and 
profound low muscle mass evolve with advanc-
ing age. Since adequate dietary intake is already 
compromised by the severe neurological pheno-
type, the progressive decline in body weight can 
result in life-threatening cachexia. Increased per-
spiration and tachycardia are frequently noted.

Some patients are less severely affected. They 
are able to walk with support, have significant ver-
bal comprehension, produce meaningful words, 
and are well able to communicate using assist 
devices (e.g., typing words on computers). Such 
patients are also able to keep their head upright 
and display less pronounced dystonic features.

 Biochemical Studies

The AHDS is associated with abnormal TFTs. 
Serum T3 concentrations are strongly raised, 
which is particularly pronounced in childhood. 
Serum (F)T4 levels are low or in the low-normal 
range. Also, serum rT3 levels are generally 
decreased. In particular the T3:T4 ratio and 
T3:rT3 ratio are strongly elevated. Serum TSH 
levels are usually within the reference range but 
deemed inappropriate in view of both the low 
FT4 and high T3 levels. Little is known about 
TFTs at birth. Retrospective analysis of neonatal 
screening records has indicated that T4 levels are 
low and TSH levels are normal in AHDS patients 
shortly after birth [19].

Serum markers reflecting peripheral thyroid 
state can be abnormal due to the peripheral thyro-
toxicosis. Illustrative examples include high sex 
hormone-binding globulin (SHBG) and ferritin 
levels and low creatinine, creatine kinase (CK), 
and cholesterol serum levels.
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 Imaging Studies

Virtually all AHDS patients have undergone brain 
imaging. A vast array of abnormalities noticed on 
brain MRI scans have been described in various 
case reports, with a delayed myelination pattern 
being a consistent finding [17]. Some parts of the 
brain ultimately show myelination (e.g., corpus 
callosum and cortical spinal tracts), whereas other 
areas remain delayed in myelination (e.g., subcor-
tical U-fibers and periventricular white matter). 
Diffusion tensor imaging (DTI) can highlight the 
microstructural changes of white matter tracts 
[17]. Magnetic resonance spectroscopy (MRS) 
studies indicate increased brain choline levels, 
consistent with abnormal myelination [20].

 Carriers

Female carriers harboring a heterozygous MCT8 
mutation do not show overt neurological features. 
Compared to noncarriers, females have some-
what lower serum FT4 levels [21]. One female 
with AHDS has been described, caused by a 
chromosomal translocation resulting in disrup-
tion of the MCT8 accompanied by a complete 
nonrandom inactivation of the normal 
X-chromosome [22].

 Mechanisms of Disease

Defective TH transport by mutant MCT8 is the 
pathogenic cause of the AHDS. The clinical fea-
tures are best explained by a mix of hypothyroid 
and thyrotoxic tissues. Depending on the expres-
sion of MCT8 and other TH transporters, tissues 
are either deprived of TH (e.g., brain) or exposed 
to toxic TH levels (e.g., liver and muscle). The 
current dogma holds that MCT8 is importantly 
expressed at the blood-brain barrier (BBB) [23–
25]. Therefore, defective MCT8 precludes entry 
of TH into the brain resulting in inadequate cere-
bral TH levels. In view of this crucial relevance 
of TH for normal development, it is conceivable 
that MCT8 deficiency causes abnormal neurode-
velopment. The concept of cerebral hypothyroid-

ism in AHDS patients is supported by MRI scans 
showing delayed myelination, which is a 
T3-dependent process as well as postmortem his-
tological studies in brains of AHDS patients [26].

The peripheral thyrotoxicosis is caused by the 
strongly elevated serum T3 levels. The origins of 
the typical TFTs in AHDS patients are not clari-
fied yet. Likely, increased D1 activity largely 
contributes to elevated T3 levels in serum [27]. 
The low T4 levels are possibly explained by a 
combination of impaired thyroidal secretion and 
renal trapping of T4 [28–30].

 Treatment

Treatment options for patients with the AHDS 
are limited and based on expert opinion or small 
case series.

Referral to rehabilitation physicians early in 
life is important to advice on measures anticipat-
ing contractures and scoliosis. In a multidisci-
plinary team including physiotherapists and 
occupational therapists, appropriate therapies, 
devices, and assistive technology can be individ-
ualized. Physiotherapists should acknowledge 
the prominence of the movement disorder in 
childhood compared with a stronger spastic com-
ponent later in life.

All patients should be offered empirical symp-
tomatic treatment. Seizures may warrant antiepi-
leptic drugs. Empirical treatment with drugs to 
alleviate dystonia and drooling (e.g., anticholin-
ergic drugs) can provide relief, but usually to a 
limited extent.

Feeding problems arise from difficulties in 
swallowing. Dieticians can provide advice on 
food intake, taking into account the catabolic 
state caused by the thyrotoxicosis in untreated 
patients. Nevertheless, percutaneous endoscopic 
gastrostomy (PEG) feeding is often required to 
meet daily calorie requirements.

Thyroxine has been prescribed to many 
patients, often before the diagnosis was geneti-
cally confirmed. Usually, thyroxine replacement 
therapy has been empirically initiated because of 
suspected central hypothyroidism in the context 
of normal serum TSH and low serum FT4 levels. 
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This approach is hardly effective in normalizing 
FT4 levels, but further worsens the elevated 
serum T3 levels, probably due to immediate con-
version of T4 to T3 [15]. Therefore, thyroxine 
supplementation cannot be recommended for 
AHDS patients.

To reduce the peripheral thyrotoxicosis, a 
block-and-replace regimen has been applied in a 
few patients [15, 31, 32]. Patients were treated 
with PTU given its inhibitory effects on D1 activ-
ity together with a replacement dose of thyrox-
ine. This treatment strategy was able to improve 
serum T3 levels along with other markers of thy-
rotoxicosis, although expectedly no neurocogni-
tive improvement was noticed. Other antithyroid 
drugs (e.g., methimazole) were not effective in 
reducing serum T3 levels [15]. Given the rare but 
potentially severe and life-threatening side effects 
of PTU, the risks and benefits should be carefully 
balanced when initiating this therapy, in particu-
lar the lifelong need of PTU.

Effective therapy should not only normalize 
toxic TH effects in peripheral tissues but also nor-
malize the decreased TH signaling in the brain. 
Theoretically, compounds that mimic T3 action 
but rely on other transporters than MCT8 for cel-
lular entry are suited to reverse or prevent the neu-
rological phenotype in AHDS patients. Also, such 
analogs expectedly negatively regulate TSH lev-
els, thereby reducing endogenous TH production 
and secretion. After beneficial effects in Mct8 KO 
mice were noted, the T3 analog diiodothyropropi-
onic acid (DITPA) has reportedly been applied in 
four patients [32, 33]. Serum T3 and SHBG con-
centrations improved in all patients, although no 
consistent effect on body weight was observed. 
The absence of beneficial effects on the neuro-
logical phenotype can be explained by different 
possibilities including the irreversibility of brain 
damage, age beyond therapeutic window, or 
insufficient access to the brain with the used dose.

Positive effects of triiodothyroacetic acid 
(Triac) have been observed on neuromotor 
parameters in an AHDS mouse model [34]. 
Studies are underway if Triac has potential as 
treatment in AHDS patients. Future trials should 
investigate if early initiation of T3 analog therapy 
can ameliorate the clinical phenotype.

 Resistance to Thyroid Hormone 
Due to Mutations in TRβ (RTH-β)

Resistance to thyroid hormone (RTH-β) is caused 
by heterozygous mutations in TRβ. The first clin-
ical description of RTH-β was reported over 
50 years ago before the underlying genetic defect 
was identified [35]. Before the causative role of 
TRβ mutations was known, RTH-β was subclas-
sified as generalized RTH (GRTH) or pituitary 
RTH (PRTH) based on the constellation of clini-
cal signs and symptoms [36]. This classification 
was abandoned when genetic studies revealed 
that patients (within families) harboring identical 
mutations were assigned to different categories. 
Careful studies documented that clinical and bio-
chemical markers did not differ between GRTH 
and PRTH patients [36].

Over 3000 individuals are known with RTH-β, 
and the incidence of RTH-β is estimated at 
1:40,000 [36]. The vast majority is caused by het-
erozygous mutations, with a few individuals har-
boring homozygous TRβ mutations or deletions. 
Most patients have single nucleotide changes in 
the ligand-binding domain or the adjacent hinge 
domain, and three different clusters of hotspots 
have been identified. Between 10 and 15% of 
patients with features reminiscent to RTH-β do 
not harbor mutations in TRβ [36]. The molecular 
basis for this phenomenon is still elusive.

 Clinical Phenotype

The clinical presentation is highly variable, rang-
ing from isolated biochemical abnormalities to a 
mixture of hypothyroid and thyrotoxic features.

The vast majority of patients with heterozy-
gous mutations have a goiter and sinus  tachycardia. 
Approximately half of the RTH-β patients have 
neurocognitive symptoms. These can include 
anxiety and emotional disturbances, attention def-
icit hyperactivity disorder (ADHD), learning dis-
abilities, and frank intellectual disability. 
Recurrent ear and throat infections are also com-
mon, in particular during childhood. A low body 
weight and height can be noted in children, 
although most patients reach a normal stature.
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A few patients have been reported with homo-
zygous TRβ mutations. Their clinical phenotype 
is more severe and includes apart from goiter 
and tachycardia also intellectual disability, 
delayed speech development and hearing loss, 
and severe and persistent growth retardation if 
left untreated [37].

 Biochemical Studies

Patients with RTH-β display a typical endocrine 
fingerprint in serum. Serum FT4 and TT4 levels 
are elevated accompanied by non-suppressed or 
elevated TSH levels. T3 levels and rT3 levels 
are above the reference range as well. In patients 
with this constellation of biochemical results, 
RTH-β should be differentiated from a TSH-
oma after assay interference has been ruled out. 
Additional tests include alpha subunits, SHBG 
(as a marker of T3 action in the liver—normal in 
RTH-β), and a TRH test (flat in TSH-oma). 
Markers of TH action in peripheral tissues are 
usually within the reference range.

 Mechanisms of Disease

Most patients with RTH-β have heterozygous 
mutations. Several mechanisms may explain why 
heterozygous mutations cause RTH-β. Mutants 
can exhibit absent or diminished T3 binding and/
or display abnormal binding with co-activators or 
co-repressors. Dominant negative activity of 
mutant over wild-type receptor explains why het-
erozygous mutations produce their clinical effects. 
Only homozygous TRβ deletion results in RTH-β, 
as wild-type TRβ expressed from one allele is suf-
ficient for function. Therefore, RTH-β is domi-
nantly inherited in heterozygous TRβ mutations, 
but recessively inherited in TRβ deletions.

The clinical features of RTH-β result from a 
combination of hypothyroid and thyrotoxic tis-
sues, dependent on the predominant TR isoform 
expression. In general, mutations in TRβ result in 
decreased T3 action in predominantly TRβ-
expressing tissues, whereas T3 action is increased 
in predominantly TRα-expressing tissues. As the 
pituitary solely expresses TRβ, the pituitary is 

less sensitive in detecting serum TH levels, 
explaining the non-suppressed TSH levels in the 
context of elevated circulating TH levels. The 
tachycardia is explained by the effects of toxic 
TH levels on the TRα-expressing heart. The 
growth problems are best explained by advanced 
ossification and increased mineralization medi-
ated via supraphysiological TH levels acting on 
bone where TRα is the principal isoform [38]. 
Likewise, the hyperactivity, anxiety, and learning 
disabilities can be explained by elevated TH lev-
els in the brain, which mainly expresses TRα. 
Alternatively, it has been proposed that mutant 
TRβ interferes with normal TRα function in tis-
sues where both isoforms are expressed.

 Imaging Studies

Ultrasound evaluation of the neck may be helpful 
to document and evaluate progression of a goiter. 
X-ray studies may reveal delayed bone matura-
tion in children with RTH-β [39].

 Treatment

There is no standard treatment for RTH-β. Given 
the large variability in symptoms, therapy should be 
individually tailored to alleviate symptoms. Beta-
blockers may be helpful to reduce tachycardia.

In a subset of patients, administration of the 
T3 analog Triac, which has a higher affinity for 
TRβ than TRα, can be useful. Triac is still able to 
bind and modulate most of the mutated TRβ 
receptors. Triac interferes with TSH production 
in the pituitary, thereby reducing endogenous TH 
production and secretion, while simultaneously 
Triac mimics T3 action in other tissues. Case 
series indicate that Triac may normalize TFTs, 
alleviate symptoms of thyrotoxicosis, and 
improve nervousness, attention deficit, and 
hyperkinetic behavior and restlessness.

Monotherapy with antithyroid drugs has no 
standard place in the treatment of RTH-β. 
Antithyroid drugs lower serum TH levels and, 
consequently, increase serum TSH levels, thereby 
further stimulating goitrogenesis in both children 
and adults. Under certain circumstances, such as 
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children with failure to thrive and uncontrolled 
hypermetabolism, cautious use of antithyroid 
drugs might be prescribed [36].

 Resistance to Thyroid Hormone 
Due to Mutations in TRα (RTH-α)

Although TRα was cloned 30 years ago [40] and 
its importance clearly established by transgenic 
mouse models [41–43], the first patients with 
inactivating mutations in TRα were identified in 
2012 [44, 45]. Although the prevalence of RTH-α 
is unknown, it might be anticipated that it is sim-
ilar to RTH-β. Mutations in TRα are either non-
sense or missense mutations affecting the LBD.

 Clinical Phenotype

Many patients display features of abnormal bone 
development. Growth retardation is noticed in 
childhood and, if left untreated, results in a short 
stature. In particular, the lower limbs seem dis-
proportionally small [46]. In infancy, delayed 
closure of the fontanel and skull sutures has been 
reported. Macrocephaly is commonly observed. 
Clinical examination may reveal a broad face, 
flattened nose, macroglossia, and thick lips. An 
excessive number of skin tags are present in most 
adult cases, predominantly localized in the face, 
neck, and upper chest [46].

Patients may present with delayed motor and 
mental milestones in childhood. In particular, 
abnormalities in fine and gross motor skills mani-
fested as dyspraxia, difficulty (“clumsiness”) 
climbing stairs, ataxic gait, and dysarthria were 
noted. Frank intellectual disability including mod-
erately low IQ has been reported in the minority of 
cases. Due to delayed bowel movements, consti-
pation is a frequently encountered problem.

 Biochemical Studies

Typical TFTs show normal serum TSH levels in 
the presence of low or low-normal FT4 and TT4 
levels accompanied by raised FT3 and TT3 lev-
els. Very low serum rT3 levels can be present, 

producing markedly elevated T3:rT3 ratios. 
However, many RTH-α patients do not display 
these characteristic hallmarks and TFTs, when 
tested, are within the normal range [47].

Mild normocytic, normochromic anemia is 
present in virtually all cases. Other hematologi-
cal indices (iron, ferritin, folate, vitamin B12) 
are reportedly normal. CK levels can be elevated. 
IGF1 levels are reportedly low or low-normal.

 Imaging Studies

X-ray studies are useful to detail delayed bone 
maturation. X-ray of the skull may reveal worm-
ian bones, delayed fontanelle closure, and a 
thickening of the skull.

Delayed tooth eruption can be documented by 
dental radiographs. MRI studies of the brain may 
show microcephaly and smaller cerebellar size.

 Mechanisms of Disease

At the molecular level, the pathogenic mecha-
nisms are similar to those in RTH-β. TRα mutants 
bind T3 with variably affinities, and binding to 
co-activator or co-repressor proteins can be dis-
turbed [46]. Dominant negative effects represent 
the interference of mutant TRα with wild-type 
TRα, a phenomenon also observed in patients 
with TRβ mutations.

The clinical features of RTH-α are best 
explained by diminished TH signaling in tissues 
that express the TRα isoform. The delayed bone 
maturation and growth are in keeping with the 
prominent role of TRα in bone through which T3 
exerts its effects [38]. As TRα is the main isoform 
in the brain, the neurocognitive phenotype is best 
understood in the context of abnormal TH signal-
ing in the developing brain. Also, constipation is 
explained by diminished TH signaling in the gut, 
as it has a predominant TRα expression.

The abnormal constellation of thyroid 
parameters are not completely understood, but 
likely caused by abnormal deiodination. 
Possibly, D3 activity is dysregulated as it is 
under the control of TRα in physiological con-
ditions [48].
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 Treatment

Beneficial effects of thyroxine have been 
described [44, 45]. Administration during 
childhood reportedly increased height [44] 
and constipation [45]. Although positive 
effects of thyroxine initiation in infancy were 
associated with improved neurocognitive 
development [49], the neurocognitive pheno-
type may become less obvious during the nat-
ural course of this disease. Possibly, thyroxine 
treatment in adulthood might improve certain 
neurological features such as dyspraxia and 
social interaction [46].

A remarkably consistent finding is the absence 
of any thyroxine effect on anemia. The conse-
quences of thyroxine treatment in RTH-a on the 
longer term are unknown. Given that TSH is 
readily suppressed, TRβ-expressing tissues might 
be exposed to elevated TH levels, possibly result-
ing in undesired thyrotoxic effects.

Theoretically, compounds that modify 
mutant TRα or interfere with the dominant neg-
ative activity of mutant TRα by preventing or 
altering aberrant co-repressor binding or histone 
deacetylase enzymatic activity could improve 
the phenotype [46]. In an RTH-α mouse model, 
the HDAC inhibitor suberoylanilide hydroxamic 
acid ameliorated some phenotypic abnormali-
ties [50].

 Thyroid Hormone Metabolism 
Defect

No disorders caused by inactivating mutations in 
any of the deiodinases have been reported yet. 
Deiodinases are selenoproteins as they contain 

the rare amino acid selenocysteine (Sec). Sec is 
crucially required for normal enzyme function, 
since it is located in the catalytic domain of the 
deiodinases. The genes encoding selenoproteins 
form a distinct group of 25 proteins in the human 
proteome and recode the UGA codon into a Sec. 
This requires the presence of an RNA stem loop 
structure called the Sec insertion sequence 
(SECIS) element, which is located in the 3’-UTR 
of the deiodinase mRNA. SECIS-binding protein 
2 (SECISBP2 or SBP2) binds to the SECIS ele-
ment and subsequently recruits selenocysteine 
transfer RNA (tRNA[Ser]Sec) to insert Sec at the 
UGA position.

Three disorders involving defective process-
ing of selenoprotein synthesis have been reported: 
mutations in SBP2, in SEPSECS, and in tRNA[Ser]

Sec.
Mutations in SBP2 affect selenoprotein syn-

thesis, including the deiodinases. Since the dis-
covery of the first patients with homozygous or 
compound heterozygous mutations in SBP2  in 
2005, eight families have been reported [16]. 
SBP2 deficiency is a multisystem selenoprotein 
disorder with a typical thyroid fingerprint: serum 
(F)T4 and rT3 levels are raised, while T3 levels 
are low or low-normal, causing an elevated T4:T3 
ratio, whereas TSH levels are either in the upper 
normal range or slightly elevated. All patients 
reportedly have delayed growth, but normal final 
height is reached in all patients. Most patients 
have myopathy, particularly of the proximal 
lower limbs and sensorineural hearing loss. Also, 
increased fat mass has been observed. Other 
reported (adult) features include central obesity, 
primary infertility, delayed developmental mile-
stones, and enhanced skin photosensitivity [51, 
52]. Measurements of selenoproteins in serum 
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such as glutathione peroxidase (GPx) and seleno-
protein P (SePP) are decreased. Likewise, serum 
levels of selenium are typically low. X-ray stud-
ies can demonstrate delayed bone growth during 
childhood, while MRI scans can document 
abnormalities of specific muscle groups and an 
elevated ratio of subcutaneous fat to visceral fat 
[52]. Pulmonary function testing may indicate 
decreased pulmonary capacity likely due to 
myopathy.

Reduction in SBP2 activity principally affects 
the whole selenoproteome. The variation in clin-
ical features between patients and compared to 
other selenoprotein deficiency syndromes is 
likely explained by residual activity of the SBP2 
mutants and the biological hierarchy of seleno-
protein synthesis. The clinical features result 
from deficiency of tissue-specific selenoproteins 
or accumulation of reactive oxygen species due 
to impaired antioxidant function (glutathione 
peroxidases and thioredoxin reductases). The 
exact mechanisms underlying the abnormal 
TFTs are not well understood, but the elevated 
T4 and rT3 levels over T3 levels indicate that 
outer-ring deiodination is predominantly 
affected.

There is no standard treatment for patients 
with SBP2 deficiency. Although growth is 
delayed in SBP2 deficiency, patients likely reach 

a normal final height spontaneously. Therefore, 
standard triiodothyronine administration in 
SBP2-deficient patients is not recommended. 
Selenium supplementation has been reported, but 
beneficial effects were not observed [53]. Vitamin 
E treatment can be considered to reduce elevated 
peroxidation products [54].

One patient has been reported with defective 
tRNA[Ser]Sec who bears partial similarity to SBP2-
deficient cases [55]. Patients with SEPSECS defi-
ciency have a severe neuromotor phenotype, but 
no obvious TFT abnormalities [56].

 Conclusion

Disorders in TH signaling represent a growing 
group of clinical distinct entities. An overview of 
most common observations is summarized in 
Table 1. Although the molecular mechanisms are 
being increasingly elucidated, the need remains 
to cross-reference molecular studies with clinical 
observations to fully comprehend the underlying 
pathophysiology. Systematical clinical studies 
will help to further characterize and refine the 
clinical features of these disorders. As TH signal-
ing disorders are rare diseases, treatment options 
should be explored in well-controlled studies 
through global joint efforts.
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Table 1 Clinical, biochemical, and imaging studies and treatment in thyroid hormone signaling disorders

Transport Metabolism Nuclear receptors
Gene name MCT8 SBP2 THRB THRA
Clinical manifestations
Neurocognitive Severe intellectual disability 

and delayed motor 
development; dystonia

Mild delayed mental 
and motor 
development

ADHD; anxiety; 
intellectual 
disability in 
minority

Mild to severe 
delayed motor and 
mental development

Muscle Hypotonia Muscle weakness Normal Hypotonia can be 
present in early 
childhood

Growth Decline in body weight 
during childhood

Delayed bone age 
and growth 
retardation in 
childhood

Delayed growth 
in minority 
during childhood

Delayed bone age 
and growth 
retardation

Heart Tachycardia Normal Tachycardia Normal or 
bradycardia

Other Seizures Skin 
photosensitivity; 
primary infertility

Skin tags; 
constipation

Laboratory studies
TSH Normal Normal or slightly 

elevated
Normal or 
elevated

Normal

FT4 Low; low-normal High High Normal or 
low-normal

T3 High Low or low-normal Normal or 
elevated

Normal or slightly 
elevated

rT3 Low High High Low or normal
SHBG High High Normal or high Normal or high
Other CK, creatinine low Low selenium levels; 

low GPX activity
Lipids slightly 
elevated

Mild normocytic 
anemia

Imaging studies
Delayed myelination 
(MRI-brain)

Fatty infiltration in 
paraspinal/adductor 
muscle (MRI)

Delayed bone 
age (X-ray); 
goiter (thyroid 
ultrasound)

Delayed bone age 
and skull wormian 
bones (X-ray); 
microcephaly (MRI)

Histological studies
Low expression of 
T3-dependent genes (brain)

Myopathy (muscle) Follicular 
hyperplasia 
(thyroid)

Treatment
Supportive (anticholinergics; 
antiepileptic drugs); PTU/
thyroxine for thyrotoxicosis; 
T3 analogs (study)

Vitamin E can be 
considered

Supportive 
(beta-blockers)

Thyroxine
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Deiodination and Peripheral 
Metabolism of Thyroid Hormone

Monica Dentice and Domenico Salvatore

 Introduction

Canonical thyroid hormone (TH) signaling 
results from the interaction of T3 with nuclear 
receptors and stimulation or repression of target 
genes. Ligand (T3) availability is under tight 
control of several intracellular checkpoints, 
which enable target cells to modify their own T3 
fingerprint. A crucial step of intracellular T3 
metabolism is catalyzed by the deiodinases. 
These enzymes can, within the single cell, 
enhance (D1 and D2) or reduce (D3) T3 concen-
trations. Thyroid hormone transport within the 
target cells is also a limiting step of thyroid hor-
mone action. Various specific transporters have 
been isolated for the entrance and the clearance 
of the iodothyronines and constitute a complex 
system of active transport of THs inside and out-
side the cells. Concerted modulation of the dif-
ferent TH regulating factors is responsible for a 
spatiotemporal precise adaptation of the hor-
monal signal to the different cell-specific 
requirements.

 Peripheral Metabolism of Thyroid 
Hormones

The thyroid gland accumulates iodide from the 
circulation to produce the thyroid hormones T4 
and T3. These are iodinated molecules that exert 
diffuse and pleiotropic effects in vertebrates. 
Although both molecules are biologically active, 
T3 is the most active thyroid hormone that can 
bind to thyroid hormone receptors and regulate 
the expression of thyroid hormone-regulated 
genes [1]. T4 (levothyroxine) is a pro-hormone 
that must be converted into T3 (triiodothyronine) 
to be active (Fig. 1). A consequence of this pro-
cess is that there are two sources of T3, one 
directly produced and secreted by the thyroid 
gland and one derived from tissue conversion of 
T4 into T3. Of note, the human thyroid produces 
less than 20% of the body’s T3 (about 30 μg/die) 
and peripheral conversion is responsible for 80% 
of it [2]. Thyroid-generated T3 (about 5 μg/die) is 
obtained partly via intracellular thyroglobulin 
digestion and partly via intrathyroidal T4-to-T3 
conversion. These two processes produce thyroi-
dal secretion of both T4 and T3 in a molar range 
of approximately15–11:1; this ratio may change 
depending on such conditions as iodine supple-
mentation or thyroid disease. The conversion of 
T4 to T3 occurs consequent to the removal of an 
outer-ring iodine on T4 (known as “5′-deiodin-
ation”) which is catalyzed by two enzymes, deio-
dinases type 1 and type 2 (D1 and D2) [3]. 
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Importantly, these enzymes are expressed in a 
tissue-specific fashion and are independently reg-
ulated to enable different tissues to modulate their 
“thyroid status” (i.e., to regulate the percentage of 
saturation of thyroid hormone receptor in the sin-
gle cell) irrespective of serum thyroid hormone 
levels. 5′-Deiodination by D1 and D2 can increase 
intracellular T3 levels thereby potentially leading 
to intracellular thyrotoxicosis. In the opposite 
direction, type 3 deiodinase (D3) is considered 
the physiological inactivator of thyroid hormones 
because it catalyzes the conversion of T4 and T3 
into inactive products (rT3 and T2) via a 5-deio-
dination reaction. This process locally produces a 
state of relative hypothyroidism.

 Deiodination and Deiodinases

Every cell in the body is a potential target of thy-
roid hormones, which regulate the metabolism, 
growth, and differentiation. In healthy condi-
tions, the thyroid gland produces about 80% of 
the body’s T4 and about 20% of the body’s T3. 
However, T3 is considered the only bioactive thy-
roid hormone because it has a much stronger 

affinity for thyroid receptors than the other 
iodothyronines.

Conversion of T4 to T3 by deiodination is the 
first step of thyroid hormone action and not only 
is regulated by the thyroid but is also catalyzed 
within target cells by a family of three seleno-
proteins, the iodothyronine deiodinases, that cat-
alyze the reductive dehalogenation of 
iodothyronines, which is the major metabolic 
pathway regulating thyroid hormone action at 
pre-receptoral level [1, 3]. Depending on whether 
deiodination occurs on the inner (IDR) or outer 
ring (ODR) of the iodothyronine substrate, deio-
dination results in an activating pathway, or inac-
tivating pathway, respectively. The rare amino 
acid selenocysteine (Sec) is essential for the 
dehalogenation reaction [4], as demonstrated by 
the finding that replacement of selenocysteine-
cysteine drastically reduces the affinity of all 
three deiodinases for their substrates [3]. The 
main features of the deiodinases are shown in 
Table 1.

Type 1 deiodinase (D1) catalyzes both inner- 
and outer-ring deiodination mainly in the liver, 
kidney, and thyroid. D1-dependent deiodination 
is the only deiodination highly sensitive to inhibi-

Fig. 1 Thyroid hormones landscape. Thyroid hormones 
T3 and T4, produced by the thyroid gland, are transported 
by the plasma to each target tissue where they can be acti-

vated or inactivated by deiodinases. Only the active form, 
T3, can bind receptors thereby activating or repressing the 
expression of target genes
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tion by PTU [5]—a finding that led to the first 
demonstration of the specificity of the T4-to-T3 
conversion [6]. The human Dio1 gene consists of 
four exons. The selenocysteine codon is located 
in exon 2 and the selenocysteine insertion 
sequence (SECIS) element is located in the fourth 
exon [7]. The Dio1 gene encodes a protein of 
27  kDa, and the molecular mass of the solubi-
lized wild-type enzymes is about 50–60  kDa, 
which suggested that, like the other two enzymes, 
D1 forms homodimers in its native form thanks 
to integral membrane residues [8].

Thanks to its tissue-specific expression, D1 
contributes to the regulation of systemic T3 levels 
by providing a significant portion of the circulat-
ing plasma T3 in euthyroid vertebrates, including 
humans [9–11]. In hyperthyroid conditions, 
increased thyroidal D1 activity is the first cause of 
the elevated T3 concentrations observed in hyper-
thyroid patients. Apart from  hyperthyroidism, D1 
plays critical roles in the non-thyroidal illness 
syndrome (NTIS) and in several human neopla-
sias [7]. Although the pathogenesis of NTIS is 
still controversial and some observations seem to 

question the effective roles played by deiodinases 
in the low T3 levels in illness [12, 13], it has been 
demonstrated that the peripheral T4-to-T3 con-
version is reduced in illness due to a decrease in 
both hepatic/renal D1 activity and skeletal muscle 
D2 activity, which in turn increases the levels of 
rT3 and T2 [14, 15].

Besides its canonic deiodination activity, D1 
modulates the clearance of TH [16]. Indeed, D1 
has a remarkable substrate preference for reverse 
T3 (rT3) as well as for sulfated iodothyronines 
and could act as a scavenger to recycle iodine to 
enable the thyroid homeostatic production of THs 
[16]. Accordingly, in D1KO mice, iodothyronines 
escape deiodination and are massively excreted 
with a marked loss of the associated iodine, which 
demonstrates that D1 serves to recycle iodine 
within the organism and might be particularly 
important in an iodine deficiency setting [16].

Type 2 deiodinase (D2) mediates primarily 
outer-ring deiodination, and given its high affin-
ity for T4, it is considered the main activator of 
T3 at peripheral level [17]. The human D2 pro-
tein is approximately 31  kDa and contains a 

Table 1 Main biochemical features and physiologic relevance of iodothyronine deiodinase
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hydrophobic NH2 terminus and two selenocyste-
ine residues, one in the active center and the other 
located close to the 3′ end of D2 mRNA [3, 18].

The activity of D2 has been extensively studied 
in brain and brown adipose tissues (BATs), where 
the D2-mediated T4-to-T3 conversion is an essen-
tial component of thyroid hormone action. In the 
brain, D2 is expressed in astrocytes, which convert 
T4 into T3 for the brain requirement by producing 
more than 75% of the nuclear T3  in the cerebral 
cortex in rat [2]. In the fetus, the brain almost 
entirely relies on the T3 generated locally by D2, 
while systemic T3 plays a critical role in the late 
postnatal and adult stages [19]. Such a finely tuned 
regulation of D2 activity correlates with T3’s highly 
sensitive requirement of TH in the developmental 
period and shows how deiodinases can activate or 
inactivate TH in specific extraglandular tissues, in a 
spatial and temporal regulated fashion.

In brown adipose tissue (BAT), D2 is barely 
expressed in normal conditions but increases 
10-fold–50-fold during cold exposure [20]. In 
vivo, BAT-specific D2 expression is essential for 
adaptive thermogenesis. Indeed, despite normal 
plasma T3 concentrations, cold-exposed D2KO 
mice are hypothermic and cold-intolerant due to 
impaired BAT thermogenesis, and they survive 
only by compensatory shivering which results in 

acute weight loss [20]. Accordingly, in  vitro, 
brown adipocytes from D2KO mice have a mark-
edly attenuated susceptibility to sympathetic 
stimuli by norepinephrine and forskolin, which 
induced only modest lipolysis, UCP1 mRNA, 
and O2 consumption due to impaired cAMP gen-
eration [20].

Recent findings have shown that D2 plays a 
role also in the skeletal muscle. Although it has 
long been known that D2 is expressed in the 
muscle [21], its biological role in the muscle has 
only recently been demonstrated because of its 
low levels [22, 23]. We recently demonstrated 
that D2 is required for normal mouse skeletal 
muscle differentiation of muscle stem cells (sat-
ellite cells) and regeneration (Fig. 2). The regen-
erative ability of mice lacking D2 and D2-null 
satellite cells is sharply delayed and can be res-
cued in  vitro by T3 treatment. Furthermore, 
more sensitive assays of muscle D2 activity have 
shown that D2 is present and higher in slow than 
in fast muscles [24, 25].

Type 3 deiodinase (D3) has only inner-ring 
deiodination ability, thus preventing T4 activation 
and terminating T3 action, which is the main phys-
iological inactivation of thyroid hormone action 
[26]. Human and mouse Dio3 genes comprise a 
single exon, coding for a protein of 278 residues, 

Quiescent MSC
Myotube

Differentiation

Foxo3 D2

T4 T3

MyoD

Activation

Fig. 2 Role of D2 and the local production of T3 in myo-
genesis and satellite cell differentiation. Quiescent satel-
lite cells (MSC) can be activated by a stimulus such as a 
trauma and, once activated, undergo a program of regen-
eration-differentiation which is tightly regulated by T3. 

Type 2 deiodinase is positively regulated by the transcrip-
tional factor FoxO3a and is upregulated during muscle 
differentiation. T3 activation by D2 increases MyoD 
expression and enables proper differentiation of 
myofibers
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with a molecular mass of about 32 kDa, including 
a selenocysteine-encoding TGA in the catalytic 
pocket and an SECIS element in the 3’UTR [27]. 
A unique aspect of D3 is its high expression in 
developmental tissues and its absence in almost all 
adult tissues (with the exception of the skin and 
brain). Therefore, studies on D3 have focused on 
its role during development and have shown that 
D3 action is critical to protect the fetus from exces-
sive exposure to active thyroid hormone [28]. 
However, studies conducted in the last two decades 
have shown that D3 expression is reactivated in 
specific pathophysiological contexts correlated 
with hyperproliferation conditions, such as tissue 
repair [29–31], inflammation [32], and cancer [33, 
34]. Akin to fetal growth, most of these conditions 
are characterized by an elevated proliferation rate 
and cell growth, thereby introducing the new con-
cept of D3 as oncofetal protein [26]. One of the 
most robust indications that many cancer cells 
reactivate D3 expression came from the discovery 
of the impressively low serum levels of THs found 
in patients with juvenile and adult hemangiomas, 
which was classified as “consumptive hypothy-
roidism” since it was discovered that by producing 
high levels of D3, the inactivation rate of thyroid 
hormone in the tumor exceeded the secretory 
capacity even of the thyroid gland, thus resulting 
in hypothyroidism [35, 36]. Later, two similar 
examples in basal cell carcinomas (BCC) of the 
skin and in colon cancer showed that D3 expres-
sion and activity were much higher in these two 
epithelial tumors than in the relative normal tissue. 
D3 inactivation in BCC and in colon cancer drasti-
cally reduces tumorigenesis both in  vivo and 
in vitro. Importantly, the Shh/Gli2 pathway, miR21 
pathway, and the Wnt-/β-catenin pathway are pos-
itive regulators of D3 expression in these two neo-
plasias, which highlight the relevance of D3  in 
oncogenic networks [26, 37].

Heart failure and several cardiac disorders are 
accompanied by alterations in TH levels and D3 
expression [38, 39]. D3 is significantly induced 
during severe heart failure, and the fetal program is 
reactivated [40]. The finding of direct regulation of 
D3 transcription by the hypoxia-inducible factor 
(HIF-1α) reinforced the concept of D3 as a critical 
TH regulator in the cardiac-specific hypothyroid 
condition that follows myocardial infarct [38].

D3 also participates in the innate immune 
response by reducing T3 bioavailability and 
probably by supplying iodine required by myelo-
peroxidase to enable inflammatory cells to kill 
microbes [41]. Extensive studies carried out by 
Boelen and Fliers have shown that inflammation 
is often associated with low serum TH levels and 
with changes in the expression of liver D1 and 
D3 and of muscle D2 and D3 [32]. Both acute 
and chronic inflammation are marked by high D3 
expression in neutrophils that infiltrate infected 
organs, predominantly polymorphonuclear cells 
and granulocytes, suggesting that enhanced deg-
radation of T3 during inflammation may contrib-
ute to such a process, although the underlying 
mechanism is not yet known [42–44]. Similarly, 
D3 has been suggested as one of the effectors 
contributing to the pathogenesis of NTIS by 
reducing circulating TH levels during chronic ill-
ness [45]. Indeed, reactivation of D3 activity has 
been reported in the liver and skeletal muscle of 
critically ill patients, and moreover, high D3 lev-
els were found in skeletal muscle biopsies from 
patients with septic shock and NTIS [46]. 
Importantly, D3 expression in these contexts pos-
itively correlates with serum rT3 [47] and nega-
tively correlates with the serum T3/rT3 ratio [45].

Liver regeneration is a classic example of D3 
reactivation associated with cellular prolifera-
tion. After keratectomy of 70% of the liver, qui-
escent liver cells reenter the cell cycle (G1 phase) 
and start a proliferation phase as the first step of 
liver regeneration [48]. These early regeneration 
events are characterized by reactivation of many 
fetal genes, which are not expressed in normal 
adult liver [48, 49]. D3 is among these genes 
[29]. D3 activity indeed was increased tenfold 
20 h after partial hepatectomy in mice and was 
associated with a decrease in D1; BrdU levels, 
marker of proliferation, correlate with D3 activ-
ity. Importantly, serum T3 and T4 levels decreased 
and reached minimum levels 36  h after partial 
hepatectomy, thereby coinciding with the peak in 
D3 activity and BrdU incorporation [29].

The elucidation of the role played by deiodin-
ases in all the above-reported biological pro-
cesses revealed the importance of the deiodinases 
in the homeostasis of thyroid hormone action and 
opened the possibility of exploiting deiodination 
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to specifically modulate TH action in  local cir-
cumstances and to overcome alterations of circu-
lating hormone levels.

 Transporters

The lipophilic biochemical nature of thyroid hor-
mones has long supported the notion that passive 
diffusion across the plasma membrane is sufficient 
to enable thyroid hormones to bypass the bilayer of 
the eukaryotic plasma membrane. Only three 
decades ago did it emerge that specific carrier-
mediated mechanisms of active transport are neces-
sary for thyroid hormones [50]. Subsequently, many 
transporter families were identified, among which, 
monocarboxylate transporters (MCT 1–10), organic 
anion-transporting polypeptides (OATP), the L-type 
amino acid transporters LAT1 and LAT2, and bile 
acid transporters [51, 52]. These transporters medi-
ate  TH uptake in an energy- and Na+-dependent 
manner [53], and together with deiodinase action, 
this represents a critical pre-receptoral step in the 
control of TH availability in the cell.

Evidence of the physiological relevance of the 
MCT8 transporter came from the discovery of 
patients carrying the MCT8 mutation who had 
elevated serum T3 levels and severe psychomotor 
retardation, thereby indicating that MCT8 plays a 
pivotal role in brain development [54, 55]. Male 
MCT8-null patients are affected by the Allan-
Herndon-Dudley syndrome (AHDS), which is an 
X-linked inherited brain disorder that causes 
severe neurologic dysfunctions [54, 55]. It also 
causes central hypotonia, muscular hypoplasia, 
spastic tetraplegia, and a global delayed develop-
ment and myelination [56]. The observation that 
fibroblasts from AHDS-affected patients, associ-
ated with intracellular hypothyroidism, increased 
D2 activity and elevated TSH levels demonstrates 
that the absence of MCT8 generates a state of 
relative insensitivity to thyroid hormone. The 
clinical symptoms associated with AHDS indi-
cate that the MCT8-expressing neurons are in a 
hypothyroid state consequent to the inactivating 
mutations in MCT8 [56–59].

Mice models of MCT8 knockout only par-
tially recapitulate the TH-associated abnormal-
ities of MCT8-mutant patients [59–61]. Indeed, 

unlike the severe neurological phenotype of 
patients with MCT8 mutations, both male and 
female MCT8 KO mice have a very mild neuro-
logic phenotype. Nevertheless, MCT8 knock-
out animals fully recapitulate the alterations in 
circulating TH levels of AHDS patients, namely, 
impaired brain T3 uptake and decreased brain 
levels of T4 and T3. Unexpectedly, the liver and 
kidneys were in a thyrotoxic situation: increased 
T4 and T3 uptake and elevated T4 and T3 levels 
[59]. A second mouse model, lacking both 
MCT8 and OATP1C1 transporters, was much 
more similar to AHDS in terms of brain abnor-
malities [62], thus indicating partial overlap-
ping of the functions of thyroid hormone 
transporters in the brain. MCT8/OATP1C1 KO 
mice showed similar alterations in peripheral 
TH homeostasis to those of MCT8 KO mice. 
Importantly, the uptake of T3 and T4 was much 
lower in the double KO mice than in the single 
mutant MCT8 KO and OATP1C1 KO mice, 
and, moreover, the double KO mice displayed 
pronounced abnormalities and compromised 
differentiation of GABAergic interneurons in 
the cerebral cortex [62].

Studies by Heuer [63] and Bernal [64] ele-
gantly illustrated that the brain regulates its T3 
supply by differentially expressing specific trans-
porters and deiodinases (Fig.  3). Their model 
starts with the passage of T4 by OATP1C1 
through the blood-brain barrier and the uptake of 
T4  in astrocytes. Subsequently, astrocytes acti-
vate a D2-mediated T4-to-T3 conversion and 
release T3, which is available for the uptake into 
the neurons by MCT8. Finally, neurons can 
degrade T3 by the action of type 3 deiodinase. 
Overall, this complex regulation exemplifies how 
the finely tuned expression of TH modulators can 
closely control TH action in a spatial- and time-
dependent manner and reveals the unique func-
tion of MCT8 and OATP1C1  in mediating the 
passage of T3 into the central nervous system.

It is important to note that intracellular TH 
availability depends not only on its rate of uptake 
but also on the rate of TH efflux, which also occurs 
via active transport across the plasma membrane. 
All the transporters identified so far are capable of 
bidirectional transport, which involves both the 
intra- and extracellular exchanges [52].
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 Role of Deiodinases and Regulation 
of Local TH Metabolism

 Local Thyroid Hormone Metabolism
Appropriate levels of thyroid hormones are 
required in all tissues in many pathophysiological 
conditions. Consequently, it is not surprising that 
correct spatial and temporal expression of the three 
deiodinases, receptors, and transporters is an essen-
tial condition in healthy humans. The wide-ranging 
actions of local modulation of TH must therefore 
be exquisitely regulated at different levels. Many 
regulators of deiodinase expression and activity 
have been discovered in the last two decades. The 
first regulator of deiodinase expression and activi-
ties are the same TH substrates, as classical homeo-
static feedback mechanism. T3 levels positively 
regulate D1 expression at a transcriptional level 
(the D1 promoter comprises two thyroid hormone-
responsive regions [TREs]) [65, 66]. D2 expres-
sion is closely controlled by T4 at both 
transcriptional and posttranscriptional level [67]. 
D3 expression is also T3- dependent being posi-
tively regulated by TH and thus represents a power-
ful homeostatic mechanism of TH inactivation in 
thyrotoxic states [68]. Besides T3, other endocrine 

factors regulate D1 transcription, namely, GH [69], 
TSH [70], and glucocorticoids [71, 72].

D2 expression is cAMP-dependent as elegantly 
demonstrated in BAT [20]. CREB controls D2 tran-
scription via a canonic CRE binding site located in 
the human Dio2 promoter [73]. Tissue-specific D2 
expression in the thyroid and heart is under the con-
trol of tissue-specific transcriptional factors TTF-1 
(in thyroid cells) [74], Nkx-2.5, and GATA4 in car-
diomyocytes [75]. Furthermore, NF-kB increases 
D2 expression, which highlights the involvement of 
deiodinases in pathological contexts [76]. Unlike 
D1 and D3, D2 mRNA expression thus not strictly 
correlates with protein synthesis due to a prominent 
posttranscriptional machinery that regulates D2 sta-
bility [77]. Proteasomal degradation tightly controls 
D2 protein degradation, thereby considerably short-
ening D2 half-life to only 120 min [67]. Extensive 
studies have revealed a specific degradation machin-
ery constituted by ubiquitination-deubiquitination 
enzymes that govern this type of regulation of D2 
stability [33, 67, 78–80]. A more recent study 
showed that D2 and D3 activity, and thereby thyroid 
hormone signaling, can be modulated by the Sonic 
hedgehog (Shh) protein [79], which is a highly 
potent proliferation promoting morphogen [81].
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T4 T4
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D2
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T3
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Fig. 3 Complex role of transporters and deiodinases in 
thyroid hormone metabolism in the central nervous sys-
tem. T3 and T4 from the circulation can pass the blood-
brain barrier. Upon entering the brain, T4 reaches the 

astrocytes via Oatp1c1-mediated transport. In the astro-
cytes, D2-mediated deiodination produces the active hor-
mone T3, which can enter the neurons via MCT8-mediated 
transport
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There is a close correlation between changes in 
the level of D3 mRNA and changes in D3 activity, 
which indicates that D3 is primarily modulated at 
transcriptional level. Various agents are able to 
regulate D3 expression both in vitro and in vivo. 
First, the different growth factors EGF, FGF, TPA, 
serum, and phorbol esters modulate D3 expression 
[1, 82]. Importantly, D3 has been demonstrated to 
be under the control of critical morphogens con-
trolling development and tumorigenesis. The first 
such demonstration was the discovery by Huang 
et al. that TGF-β stimulates D3 transcription via a 
Smad2/4- or 3/4-dependent pathway [83]. 
Subsequently, the Shh and Wnt pathways were 
found to be critical mediators of D3 and TH action 
in BCC and colon cancer [33, 34].

 Plasmatic Thyroid Hormone 
Metabolism
At the plasma level, the deiodinases represent an 
important homeostatic mechanism that acts as 
the first line of defense when thyroid function is 
impaired or when the supply of iodine is not suf-
ficient to maintain plasma T3 (and T4) level con-
stant. In this context, during hypothyroidism or 
iodine deficiency, the T3-producing enzyme D2 
is upregulated, while the levels of the inactivating 
D3 are reduced.

Under normal conditions, D2 is the major pro-
ducer of plasmatic T3, whereas D1 contributes a 
minimal amount. Kinetics studies indicate that the 
T3 generated by D1 (mostly in the liver and kidney) 
can rapidly exit the cell and equilibrate with plasma 
probably because of the subcellular plasmatic local-
ization of the enzyme. Vice versa, T3 generated by 
D2 is located in the nucleus and perhaps, for this 
reason, remains within the cell for a longer time 
(approximately 8 h). D1–D2 induce a positive flow 
of T3 that exits the cells and enters the circulation, 
while D3 reduces the amount of thyroid hormones 
that, being intracellularly degraded, do not return to 
the circulation. Type 2 deiodinase is a highly pro-
cessive enzyme, with a very short half-life (about 
30 min). It is expressed in the skeletal muscle, pitu-
itary, brain, BAT, and reproductive tract.

Given the diffuse D2 expression, it is likely 
that multiple tissues collectively contribute to the 
daily T3 production via the D2 pathway. A mouse 

strain with a targeted deletion (Dio2 knockout 
mouse) had no gross phenotypic abnormalities, 
and development and reproductive function 
appeared normal, except for mild growth retarda-
tion (9%). Serum T4 and TSH levels were both 
significantly elevated (40% and 100%, respec-
tively), which suggests that the pituitary gland is 
resistant to the feedback effect of plasma T4. 
Human diseases due to mutations in the Dio2 
gene have not been identified. However, three 
single nucleotide polymorphisms (SNPs) have 
been identified in the human population. The best 
characterized of these (Thr92Ala) at codon 92 
(rs225014) is quite common in various ethnic 
groups. The D2-Ala mutant isoform results from 
a nonconservative A→G variation in position 274 
of the DIO2 gene coding region [16] that deter-
mines the presence of an alanine in position 92 of 
the D2 protein, thus altering the first amino acid 
of an 18 amino acid loop critical for D2 recogni-
tion by its ubiquitinating complex [17]. The prev-
alence of the homozygous expression of D2-Ala 
in the general population ranges between 12.7 
and 16.4% [15]. Although the threonine residue 
in position 92 is not phylogenetically conserved, 
D2-Ala mutants have been related to various clin-
ical conditions all suggestive of impaired TH 
action, i.e., insulin resistance and type 2 diabetes 
mellitus, mental retardation and low IQ [18], and 
altered bone metabolism [19]. Although exten-
sive data indicate that the action of D2-Ala is 
defective in a clinical setting, the few studies that 
have investigated its enzymatic activity reported 
conflicting results.

The serum active thyroid hormones (T3 and FT3) 
are quite stable in the circulation over time, apart 
from a nocturnal peak in TSH secretion, despite a 
relatively short half-life (approximately 12–18  h). 
The combined potent homeostatic control mediated 
by the hypothalamus-pituitary-thyroid axis and the 
deiodinases ensures that T3 levels remain stable in 
humans for days, weeks, or months. Notably, the 
deiodinases represent an efficient tool with which to 
preserve serum T3 levels during disease or adverse 
conditions given the inverse relationship between 
D2 and D3 observed during hypo-/hyperthyroidism. 
While D2 (the T3-producing enzyme) is negatively 
regulated by T3, the opposite applies to D3. This 
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condition results in enhanced T3 production during 
hypothyroidism (and also during iodine deficiency) 
helped by a decreased TH clearance due to reduced 
D3 activity. The net effect is a synergic action medi-
ated by deiodinase which help, together with the 
HPT axis, to maintain serum T3 levels within nor-
mal range.

 Animal Models

Genetic mouse models of deiodinase deficiency 
have been instrumental in understanding the role 
of these enzymes in terms of developmental pro-
cesses and of the complexes processes governing 
the systemic local control of TH action in adult 
tissues. However, paradigms of deiodinase 
actions have been challenged by the complex and 
somewhat unexpected phenotypes of D1, D2, and 
double D1–D2KO mice (reviewed by Galton 
et al. [84]). Surprisingly, both D1KO and D2KO 
but also double D1–D2KO mice have normal 
serum T3 levels and general health, growth, and 
reproductive capacity, thus challenging the gen-
erally accepted concept that the T4-to-T3 conver-
sion induced by double D1–D2 deiodination is 
the major pathway to maintain normal T3 levels 
in the thyroid and extra-thyroidal districts. 
However, studies of D2KO mice reveal that 
peripheral control of the T4-to-T3 conversion is 
altered in genetic D2 depletion as demonstrated 
by abnormal TSH regulation [85], impaired adap-
tive thermogenesis [20], auditory dysfunction 
[86], and altered muscle regeneration [22]. D3KO 
mice had impaired fertility, significant perinatal 
mortality, and impaired growth [87]. The most 
prominent feature of this mouse model is a 
greatly altered thyroid status and physiology, 
which highlights the pivotal role of the D3 
enzyme in this setting and in the maintenance of 
the HPT axis. Indeed, overexposure of the D3KO 
mouse to excessive levels of TH in utero and dur-
ing the first weeks of perinatal life disrupts the 
HPT axis, with a subsequent hypothyroidism in 
the adult life. Strikingly, the HPT axis alterations 
in this mouse model resemble those observed in 
children born to mothers affected by hyperthy-
roidism during pregnancy [88].

All the complexities observed in the these ani-
mals might be explained by the alterations of the 
central control of thyroid hormones consequent to 
altered levels of deiodinases during the develop-
mental period, which complicate the assessment of 
the functional roles of these enzymes in the adult-
hood. Consequently, investigations are now focus-
ing on the use of conditional and tissue-specific 
knockout animals, which enable targeting of deio-
dinase expression to specific tissues at specific 
times. It is important to recall that the thyroid phys-
iology of rodents differs considerably from that of 
humans, which partially explains the differences in 
phenotype between animal models and humans.
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 Introduction

Thyroid diseases are amongst the most prevalent 
of medical conditions. Their manifestations vary 
considerably from area to area and are deter-
mined principally by the dietary availability of 
iodine which is an essential component of the 
thyroid hormones thyroxine (T4) and triiodothy-
ronine (T3) produced by the thyroid gland. 
Thyroid dysfunction can be classified according 
to the severity of clinical findings, serum hor-
mone levels, the presence or absence of thyroid 
antibodies, or the biochemical or physiological 
effect in the target tissues. The problems encoun-
tered in epidemiological studies of thyroid disor-
ders are those of definition, for example, overt 
hypothyroidism and subclinical hypothyroidism; 
the selection criteria of the sample used; the 
influence of age, sex, genetic and environmental 
factors; and the different techniques used for the 
measurement of thyroid hormones. The limita-
tions of epidemiological studies of thyroid disor-
ders should therefore be borne in mind when 
considering the purported frequency of thyroid 
diseases in different communities [1].

Almost one-third of the world’s population 
live in areas of iodine deficiency despite major 
national and international efforts to increase 

iodine intake, primarily through the voluntary or 
mandatory iodisation of salt [2]. Most of these 
people are in developing countries, but many in 
large industrialised countries of Europe are also 
affected. The ideal dietary allowance of iodine 
recommended by the World Health Organization 
(WHO) in adults is 150  μg of iodine per day 
which increases to 250 μg per day in pregnancy 
and lactation. International efforts to control 
iodine deficiency are slowing, and reaching the 
third of the worldwide population that remains 
deficient poses major challenges. Iodine defi-
ciency impairs thyroid hormone production and 
has adverse effects throughout life, particularly 
early in life as it impairs cognition and growth. 
Recent epidemiological data suggest that iodine 
deficiency is an emerging issue in industrialised 
countries, previously thought of as iodine-suffi-
cient [3].

In iodine-replete areas, most persons with thy-
roid disorders have autoimmune disease, ranging 
from primary atrophic hypothyroidism to 
Hashimoto’s thyroiditis to thyrotoxicosis caused 
by Graves’ disease. Cross-sectional studies in 
Europe and the United States (USA) have deter-
mined the prevalence of hyperthyroidism and 
hypothyroidism and the frequency and distribu-
tion of thyroid autoantibodies in different, mainly 
Caucasian, communities [1]. Data from screen-
ing large US population samples [4, 5] have 
revealed differences in the frequency of thyroid 
dysfunction and serum thyroid antibody 
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 concentrations in different ethnic groups, whereas 
studies from Europe [6] and China [7] have 
revealed the influence of dietary iodine intake on 
the epidemiology of thyroid dysfunction. Studies 
of incidence of autoimmune thyroid disease have 
only been conducted in a small number of devel-
oped countries [8]. Incidence rates provide a 
direct measure of the rate at which individuals in 
a given population develop a disease and thus 
provide a basis for statements about probability 
or risk of disease. By comparing incidence rates 
of a disease among population groups varying in 
one or more identified factors, analytic studies 
can detect whether a factor affects the risk of 
acquiring a disease and provide an estimate of the 
magnitude of the effect. Longitudinal studies are 
necessary to determine incidence rates, aetiologi-
cal risk factors and the natural history of the dis-
ease process. The logistical and administrative 
difficulties of such studies explain their relative 
paucity [1].

 Iodine Deficiency Disorders

Iodine deficiency occurs in an environment 
where the soil has been deprived of iodine from 
past glaciation, compounded by the leaching 
effects of snow, water and heavy rainfall, which 
removes iodine from the soil. The term iodine 
deficiency disorders (IDD) refers to all the ill-
effects of iodine deficiency in a population that 
can be prevented by insuring that the population 
has an adequate intake of iodine (Table 1) [9]. 
The development of a goitre is the most visible 
effect of iodine deficiency, and endemic goitre 
exists in a population when more than 5% of the 
preadolescent (6–12 years) school-age children 
have an enlarged thyroid gland as assessed by 
clinical criteria. Iodine deficiency is defined by 
the WHO as a population median urinary iodine 
(UI) excretion of less than 100  μg per litre 
(Table 2).

Iodine deficiency is the most common cause 
of preventable mental impairment worldwide, 
and iodine supplementation pre-pregnancy may 
prevent this mild retardation in the intellectual 
development of future infants and children. In 

areas where the daily iodine intake is below 
50 μg, goitre is usually endemic, and when the 
daily intake falls below 25 μg, congenital hypo-
thyroidism is seen, which is a condition  associated 

Table 1 The spectrum of iodine deficiency disorders

Foetus Abortions
Stillbirths
Congenital anomalies
Increased perinatal mortality
Endemic cretinism

Neonate Neonatal goitre
Neonatal hypothyroidism
Endemic mental retardation
Increased susceptibility of the 
thyroid gland to nuclear radiation

Child and 
adolescent

Goitre
(Subclinical) hypothyroidism
Impaired mental function
Retarded physical development
Increased susceptibility of the 
thyroid gland to nuclear radiation

Adult Goitre with its complications
Hypothyroidism
Impaired mental function
Spontaneous hyperthyroidism in the 
elderly
Iodine-induced hyperthyroidism
Increased susceptibility of the 
thyroid gland to nuclear radiation

Table 2 Epidemiological criteria presently recom-
mended for assessing iodine nutrition based on median 
urinary iodine concentrations in school-age children

Median 
urinary 
iodine 
μg/L Iodine intake Iodine nutrition
<20 Insufficient Severe iodine deficiency
20–49 Insufficient Moderate iodine deficiency
50–99 Insufficient Mild iodine deficiency
100–
199

Adequate Optimal

200–
299

More than 
adequate

Risk of iodine-induced 
hyperthyroidism within 
5–10 years following 
introduction of iodised salt 
in susceptible

≥300 Excessive Risk of adverse health 
consequences (iodine-
induced hyperthyroidism, 
autoimmune thyroid 
diseases)
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with severe learning disabilities, deafness and 
impaired motor development. Epidemiological 
studies have demonstrated that reduced iodine 
intake during pregnancy leads to goitrogenesis, 
lower free T4 concentrations and increased serum 
TSH in pregnant women [2]. The prevalence of 
goitre in areas of severe iodine deficiency can be 
as high as 80%. Populations at particular risk 
tend to be remote and live in mountainous areas 
in Southeast Asia, Latin America and Central 
Africa. Controlled studies performed in iodine-
deficient regions have confirmed that iodine sup-
plementation eliminated new cases of congenital 
hypothyroidism, reduced infant mortality and 
improved cognitive function in the general popu-
lation [8]. Goitrogens in the diet, such as thiocya-
nate in incompletely cooked cassava or 
thioglucosides in Brassica vegetables, can 
explain some of the differences in the prevalence 
of endemic goitre in areas with similar degrees of 
iodine deficiency. Autonomy can develop in nod-
ular goitres leading occasionally to thyrotoxico-
sis, and iodisation programmes can also induce 
thyrotoxicosis, especially in those aged over 
40 years with nodular goitres.

National (n  =  121) or large subnational 
(n = 31) UI surveys have been done in 152 coun-

tries, representing 98% of the world’s population 
(Fig. 1) [10]. In 2014, iodine intake was adequate 
in 112 countries, deficient in 29 countries and 
excessive in 11 countries [2]. During the past 
decade, the number of iodine-sufficient countries 
has increased from 67 to 112. Large countries 
that are still iodine deficient include developing 
countries (e.g. Ethiopia, Morocco and 
Mozambique) and countries in transition (e.g. 
Russia and Ukraine), but also several high-
income countries (e.g. Denmark, Italy and the 
UK). Moreover, in several high-income coun-
tries, including the USA and Australia, iodine 
intakes have decreased in the past 30  years. 
Results of surveys suggest that many pregnant 
women in both developing and high-income 
countries, including the UK and the USA, have 
deficient iodine intakes. Of the European coun-
tries that have assessed iodine nutrition during 
pregnancy, two-thirds have reported inadequate 
iodine intakes [11].

The effects of mild-to-moderate iodine defi-
ciency on cognition are less well known than 
those of moderate-to-severe deficiency, but it is 
assumed that there is a continuum of disability 
with more subtle impairments of intelligence 
quotient (IQ) and motor ability associated with 

No data

The boundaries, colours, denominations, and other information shown on this
map do not imply any judgment on the part of the Iodine Global Network
concerning the legal status of any territory or the endorsement or acceptance of
such boundaries.

Sub-national data

Excess iodine intake (mUIC ≥300 µg/L)

Optimal iodine intake (mUIC 100-299 µg/L)

Mild iodine deficiency (mUIC 50-99 µg/L)

Moderate iodine deficiency (mUIC 20-49 µg/L)

Fig. 1 Global scorecard of iodine nutrition, 2014–2015. Based on median UI concentration in school-age children [10]
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less severe deficiency. A systematic review of 
available published studies from 1980 to 2011 
examined the relationship between iodine and 
mental development of children 5 years old and 
under and found that, regardless of study design, 
iodine deficiency had a substantial impact on 
mental development which translated into 6.9–
10.2 IQ points lower in iodine-deficient children 
compared with iodine-replete children [12]. 
Methodological concerns included weak study 
designs, the omission of important confounders, 
small sample sizes, the lack of cluster analyses 
and the lack of separate analyses of verbal and 
non-verbal subtests. No large trials have been 
done in pregnant women with mild-to-moderate 
iodine deficiency to assess the effects of iodine 
repletion on infant development or post-partum 
maternal outcomes. As maternal T4 is crucial to 
foetal nervous system maturation, even modest 
states of iodine deficiency could be deleterious. 
Data from the USA, the Netherlands and 
Tasmania suggest that the children of women 
with hypothyroxinaemia may have psychoneuro-
logical deficits and delayed mental and motor 
function when compared with controls [3]. This 
correlates with the studies in classic areas of 
iodine deficiency where a range of psychological 
and neurological deficits in children has been 
described, but it is maternal hypothyroxinaemia 
rather than high serum TSH that is the clear bio-
chemical abnormality.

Although the introduction of iodised salt has 
considerably improved the situation globally in 
the developing world, iodine deficiency remains 
an issue in continental Europe where it is esti-
mated that up to 50% of children live in iodine-
deficient communities [2]. The iodine intake may 
vary markedly within a country because of sig-
nificant variations in the natural iodine content of 
food and water. Unless iodised salt is available, 
the main source of iodine in typical diets in North 
America and Europe is dairy products, supplying 
up to 50% of intakes, and this was confirmed in a 
survey of iodine status in 737 UK schoolgirls 
aged 12–14 years in whom the median UIC was 
80 μg/L [13]. Milk intake was positively associ-
ated with UI, and a reduced milk intake was 
responsible for the decline in the UK iodine sta-

tus. A study using samples and data from the 
UK-based Avon Longitudinal Study of Parents 
and Children (ALSPAC) found an association 
between low iodine status in early pregnancy 
(urinary iodine-to-creatinine ratio  <  150  μg/g) 
and lower verbal IQ and reading scores in the off-
spring aged 8 years [14].

Despite the clear benefits in correcting iodine 
deficiency, a fear of iodine-induced thyroid dys-
function has at times delayed or limited the 
implementation of iodine supplementation in 
regions with iodine deficiency. In adults, mild 
iodine deficiency is associated with a decreased 
risk of overt and subclinical hypothyroidism, as 
well as autoimmune thyroiditis and an increased 
risk of non-toxic nodular goitre [2]. A sudden 
increase in iodine supply to those in an iodine-
deficient region may enhance thyroid autoimmu-
nity through both a cellular and humoral immune 
response and may result in hypothyroidism in 
those with damaged thyroid glands and hyperthy-
roidism in those with an underlying multinodular 
goitre or Graves’ disease, although it is unlikely 
to do so if the deficiency is not severe and if the 
increase is relatively small. In developed coun-
tries there is a strong public health objective to 
lower salt intake to reduce the risk of hyperten-
sion. Salt iodisation is safe, equitable, largely 
self-financing and extremely cost-effective in an 
industrialised country. Iodisation methods can 
fortify salt to provide recommended iodine 
intakes even if salt intakes per head are reduced 
to less than 5 g per day. The alternative strategy is 
daily oral potassium iodide supplements to target 
the most susceptible groups, such as women if 
possible at least 3 months pre-pregnancy [2, 3].

 Goitre and Thyroid Nodules

The most common thyroid disease in the com-
munity is simple (diffuse) physiological goitre 
[1]. Ultrasonography has been used in epidemio-
logical studies to assess thyroid size, leading to 
much higher estimates of goitre prevalence than 
in studies in which goitre size was assessed by 
physical examination. In cross-sectional surveys, 
the prevalence of diffuse goitre declines with age, 
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the greatest prevalence is in pre-menopausal 
women, and the ratio of women to men is at least 
4:1. In the Whickham survey, among the women 
26% had a goitre; the frequency ranged from 
31% in those aged less than 45 years (mostly dif-
fuse) to 12% in those aged over 75 years (who 
had a higher proportion of nodular goitre).

Epidemiological studies suggest that 1% of 
men and 5% of women have thyroid nodules 
detected clinically and that the frequency 
increases with age and in iodine-deficient popu-
lations. With the increasing use of sensitive imag-
ing techniques, an increasing proportion of 
thyroid nodules are detected incidentally. Many 
nodules are detected because of their size or ante-
rior position in the neck, or the skill of the physi-
cian performing the examination, but most 
thyroid nodules will not be clinically recognised. 
Up to 50% of nodules greater than 1 cm detected 
by ultrasound are undetected by clinical exami-
nation. The prevalence of thyroid incidentaloma 
as an unexpected, asymptomatic thyroid nodule 
discovered during the investigation of an unre-
lated condition is 67% with ultrasonography 
(US) imaging, 15% with computed tomography 
(CT) or magnetic resonance imaging (MRI) of 
the neck and 1–2% with fluorodeoxyglucose 
(FDG) positron emission tomography [15].

 Congenital Hypothyroidism

In iodine-replete areas, congenital hypothyroid-
ism affects about one newborn in 3500–4000 
births and is the most treatable cause of mental 
retardation [1]. There is an inverse relationship 
between age at diagnosis and IQ in later life. 
Eighty-five percent of the cases are due to spo-
radic developmental defects of the thyroid gland 
(thyroid dysgenesis) such as the arrested migra-
tion of the embryonic thyroid (ectopic thyroid) 
or a complete absence of thyroid tissue (athyreo-
sis). The remaining 15% have thyroid dyshor-
monogenesis defects transmitted by an autosomal 
recessive mode of inheritance. Clinical diagnosis 
occurs in less than 5% of newborns with hypo-
thyroidism because symptoms and signs are 
often minimal. Without prompt diagnosis and 

treatment, most affected children gradually 
develop growth failure, irreversible mental retar-
dation and a variety of neuropsychological defi-
cits. The value of screening for congenital 
hypothyroidism in heel-prick blood specimens is 
unquestioned, and it is now done routinely in 
many countries.

The apparent incidence of congenital hypo-
thyroidism has more than doubled in recent years 
because of several factors, including more inclu-
sive diagnostic criteria, shifting demographics 
and increasing survival of preterm infants [16]. 
The greatest increase has occurred in mildly 
affected children. Congenital hypothyroidism 
may be transient or persistent, but the natural his-
tory cannot be predicted by severity at diagnosis. 
In premature infants, who are especially vulner-
able to hypothyroidism, the rise in serum TSH 
may be delayed and therefore detected only by 
routine follow-up screening.

 Asymptomatic Autoimmune 
Thyroiditis

Raised serum concentrations of thyroid antibod-
ies (antithyroid peroxidase (microsomal) 
(TPOAb) and anti-thyroglobulin (TGAb)) corre-
late with the presence of focal thyroiditis in thy-
roid tissue obtained by biopsy and at autopsy 
from patients with no evidence of hypothyroid-
ism during life. Early post-mortem studies con-
firmed histological evidence of chronic 
autoimmune thyroiditis in 27% of adult women, 
with a rise in frequency over 50 years, and 7% of 
adult men and diffuse changes in 5% of women 
and 1% of men [1]. Patients with hypothyroidism 
caused by either atrophic or goitrous autoim-
mune thyroiditis usually have high serum con-
centrations of these same antibodies. These 
antibodies also are often detected in serum of 
patients with Graves’ disease and other thyroid 
diseases, but the concentrations are usually lower.

The percentage of subjects with high serum 
TPOAb and TGAb concentrations increases 
with age in both men and women, and high con-
centrations are more prevalent in women than 
in men and less prevalent in blacks than in other 
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ethnic groups [5]. Using a competitive immu-
noassay procedure, the reported prevalence of 
detectable TGAb and TPOAb levels was 10% 
and 12% of the healthy population. A 
hypoechoic ultrasound pattern or an irregular 
echo pattern may precede TPOAb positivity in 
autoimmune thyroid disease, and TPOAb may 
not be detected in more than 20% of individuals 
with ultrasound evidence of thyroid autoimmu-
nity [17].

 Hypothyroidism

Primary hypothyroidism is an insidious condition 
with a significant morbidity and often subtle and 
nonspecific symptoms and clinical signs. The 
earliest biochemical abnormality is an increase in 
serum TSH concentration associated with normal 
serum free T4 and triiodothyronine (T3) concen-
trations (subclinical hypothyroidism), followed 
by a decrease in serum free T4 concentration, at 
which stage most patients have symptoms and 
benefit from treatment (overt hypothyroidism). 
The cause is either chronic autoimmune disease 
(atrophic autoimmune thyroiditis or goitrous 
autoimmune thyroiditis (Hashimoto’s thyroid-
itis)) or destructive treatment for hyperthyroid-
ism with either radioiodine or surgery which may 
account for up to one-third of cases of hypothy-
roidism in the community. Less frequent causes 
include surgery and radioiodine ablation for 
benign nodular thyroid disease and thyroid can-
cer, external beam irradiation of malignant 
tumours of the head and neck and drugs includ-
ing lithium, amiodarone, interferon and check-
point inhibitor therapies.

In iodine-replete communities, the prevalence 
of spontaneous hypothyroidism is between 1% 
and 2%, and it is more common in older women 
and ten times more common in women than in 
men [1]. Studies in Northern Europe, Japan and 
the USA have found the prevalence to range 
between 0.6 and 12 per 1000 women and between 
1.3 and 4.0 per 1000  in men investigated. The 
prevalence is higher in surveys of the elderly in 
the community. A lower prevalence is seen in 
areas of iodine deficiency (Table 3).

 Subclinical Hypothyroidism

In epidemiological studies, the term subclinical 
hypothyroidism (or mild thyroid failure) is used 
to describe the finding of a raised serum thyrotro-
pin TSH but a normal free T4. It represents a 
compensated state in which increased TSH out-
put is required to maintain normal circulating 
thyroid hormone levels. An elevated serum TSH 
is a sensitive indicator of some degree of thyroid 
failure, and there is a clear inverse relationship 
with free T4 levels. The term implies that patients 
should be asymptomatic, although symptoms are 
difficult to assess, especially in patients in whom 
thyroid function tests have been checked because 
of nonspecific complaints such as tiredness.

In the community, the most common aetiol-
ogy is chronic autoimmune thyroiditis [1]. In the 
Whickham survey, 8% of women (10% of women 
over 55 years of age) and 3% of men had sub-
clinical hypothyroidism. In the Colorado study, 
9.4% of the subjects had a high serum TSH con-
centration (Fig. 2) [4]. Among those with a high 
serum TSH concentration, 74% had a value 
between 5.1 and 10 mU/L, and 26% had a value 
greater than 10 mU/L. The percentage of subjects 
with a high serum TSH concentration was higher 
for women than men in each decade of age and 
ranged from 4 to 21% in women and 3 to 16% in 
men. In the National Health and Nutrition 
Examination Survey (NHANES III), serum TSH 
concentrations increased with age in both men 
and women and were higher in whites than 
blacks, independent of serum antithyroid anti-
body concentrations (Fig. 3) [5]. Approximately 
2% of adolescents aged 12–19 years had a serum 
TSH greater than 4.5  mU/L.  Subclinical hypo-
thyroidism is found at higher frequency in areas 
where iodine intake is high, but most cases are 
not of autoimmune origin (Table 3).

Table 3 The effect of environmental iodine intake on the 
prevalence of subclinical thyroid disease

Iodine 
status

Subclinical 
hypothyroidism (%)

Subclinical 
hyperthyroidism (%)

Deficient 1–4 6–10
Replete 4–9 1–2
Excess 18–14 <1
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There has been a growing controversy about 
the upper limit of the reference range for serum 
TSH [18, 19]. Reference ranges are derived from 
a reference population that comprises a large 
group of subjects who do not have thyroid dis-
ease and are otherwise well. By convention, a 
reference range usually only comprises 95% of a 
reference population. Thus, 2.5% of ‘normal’ 
individuals will fall above the reference range 

and 2.5% will fall below the range. For serum 
TSH, the reference population shows a log nor-
mal distribution and has a diurnal variation with 
the reference range in thyroid disease-free indi-
viduals typically cited as between 0·4 and 
4·0 mU/L. The serum TSH reference range var-
ies in different ethnic communities and trimes-
ters of pregnancy and progressively shifts 
towards higher concentration with age. A further 
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analysis of the NHANES III data suggests that 
the reference range for serum TSH rises with age 
as the 97.5 centile for those subjects aged greater 
than 80  years was 7.49  mU/L, and 70% had a 
serum TSH greater than the population-defined 
upper limit of the reference range of 4.5 mU/L of 
whom only 40% were antithyroid antibody posi-
tive [20].

Spontaneous recovery has also been described 
in subjects with subclinical hypothyroidism, 
although the frequency of this phenomenon is 
unclear. In one study, 37% of patients normalised 
their serum TSH levels over a mean follow-up 
time of 32 months [21]. Normalisation of serum 
TSH concentrations is more likely to occur in 
patients with negative antithyroid antibodies and 
serum TSH levels less than 10 mU/L and within 
the first 2 years after diagnosis [17].

 Incidence of Hypothyroidism

The 20-year follow-up of the Whickham cohort 
provided incidence data and allowed the deter-
mination of risk factors for spontaneous hypo-
thyroidism in this period [22]. The mean annual 
incidence of spontaneous hypothyroidism dur-
ing the 20-year follow-up period was 3.5 per 
1000 and 0.6 per 1000 in surviving women and 
men, respectively (Fig.  4). Either raised serum 
TSH or positive thyroid antibodies alone or in 
combination were associated with a significantly 
increased risk of developing hypothyroidism. In 

the surviving women, the annual risk of sponta-
neous overt hypothyroidism was 4% in those 
who had both high serum TSH and antithyroid 
antibody concentrations, 3% if only their serum 
TSH concentrations was high and 2% if only 
their serum thyroid antibody concentration was 
high; at the time of follow-up, the respective 
rates of hypothyroidism were 55%, 33% and 
27%. The probability of developing hypothy-
roidism was higher in those women who had 
serum TSH concentrations greater than 2.0 mU/L 
and high serum titres of antithyroid microsomal 
antibodies during the first survey (Fig.  5). All 
studies indicate that the higher the serum TSH 
value, the greater the likelihood of development 
of overt hypothyroidism in subjects with chronic 
autoimmune thyroiditis.

The other incidence data for hypothyroidism 
are from short (and often small) follow-up stud-
ies [8]. In elderly subjects, the annual incidence 
rate of hypothyroidism varies widely between 0.2 
and 7% in the available studies. Data from the 
large population study in Tayside, UK, have dem-
onstrated that the standardised incidence of pri-
mary hypothyroidism varied between 3.90 and 
4.89 per 1000 women per year between 1993 and 
2001. The incidence of hypothyroidism in men 
significantly increased from 0.65 to 1.01 per 
1000 per year (P  =  0.0017). The mean age at 
diagnosis of primary hypothyroidism decreased 
in women from 1994 to 2001 [23, 24].
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 Hyperthyroidism

The most common causes of hyperthyroidism are 
Graves’ disease, followed by toxic multinodular 
goitre, whilst rarer causes include an autono-
mously functioning thyroid adenoma, thyroiditis 
(viral or autoimmune) and drugs including iodine 
and amiodarone. In epidemiological studies, 
however, the aetiology is rarely ascertained. The 
prevalence of hyperthyroidism in women is 
between 0.5 and 2% and is ten times more com-
mon in women than in men in iodine-replete 
communities [1]. In NHANES III, in those sub-
jects who were neither taking thyroid medication 
nor reported histories of thyroid disease, 2 per 
1000 had ‘clinically significant’ hyperthyroid-
ism, defined as a serum TSH concentration less 
than 0.1 mU/L and a serum total T4 concentra-
tion greater than 170 nmol/L [5]. The prevalence 
data in elderly persons show a wide range 
between 0.4 and 2.0%, and a higher prevalence is 
seen in iodine-deficient areas [1].

 Subclinical Hyperthyroidism

Subclinical hyperthyroidism is defined as a low 
serum TSH concentration and normal serum T4 
and T3 concentrations, in the absence of hypo-
thalamic or pituitary disease, non-thyroidal ill-
ness or ingestion of drugs that inhibit TSH 
secretion such as glucocorticoids or dopamine 
[1]. Epidemiological studies differ in the defini-
tion of a low serum TSH concentration and 
whether the subjects included were receiving 
levothyroxine (l-T4) therapy. The reported over-
all prevalence is approximately 3%, with men 
and women over 65  years having the highest 
prevalence with approximately 50% taking l-T4. 
In the NHANES III study, the prevalence was 
highest in those subjects aged 20–39 years and 
those aged greater than 79 years [5]. In this study 
the percentage of subjects with serum TSH con-
centrations less than 0.4 mU/L was significantly 
higher in women than men, and black subjects 
had significantly lower mean serum TSH concen-
trations and therefore a higher prevalence of sub-
clinical hyperthyroidism (0.4%) than whites 

(0.1%) or Mexican Americans (0.3%). The prev-
alence of subnormal serum TSH concentrations 
is higher in iodine-deficient populations (6–10%), 
due to functional autonomy from nodular goitres 
(Table 3) [2].

Among subjects with subclinical hyperthy-
roidism, those with low but detectable serum 
TSH values may recover spontaneously when 
retested. Non-thyroidal illness is an important 
cause of false-positive TSH test results. Data on 
the risk of progression of subclinical hyperthy-
roidism to overt hyperthyroidism are limited. In 
the majority of subjects, a detectable below nor-
mal serum TSH will eventually rise towards nor-
mal. In those subjects with an undetectable serum 
TSH and a confirmed aetiology as determined by 
thyroid scintigraphy due to Graves’ disease or 
nodular disease, it has been calculated that the 
annual incidence is approximately 5–8% [25]. A 
large population study in Tayside, Scotland, fol-
lowed 2024 subjects with at least two serum TSH 
measurements below the reference range for at 
least 4 months for up to 7 years [26]. Few sub-
jects developed hyperthyroidism (0.5–0.7%), and 
the percentage of those reverting to normal 
increased with time, and this was more common 
in those with a baseline serum TSH between 0.1 
and 0.4 mU/L.

 Incidence of Hyperthyroidism

The incidence data available for overt hyperthy-
roidism in men and women from large population 
studies are comparable, at 0.4 per 1000 women 
and 0.1 per 1000 men, but the age-specific inci-
dence varies considerably [1, 8]. The peak age-
specific incidence of Graves’ disease was 
between 20 and 49  years in two studies but 
increased with age in Iceland and peaked at 
60–69  years in Malmö, Sweden [1]. The peak 
age-specific incidence of hyperthyroidism caused 
by toxic nodular goitre and autonomously func-
tioning thyroid adenomas in the Malmö study 
was greater than 80 years.

In the Whickham survey cohort, the mean 
annual incidence of hyperthyroidism in women 
was 0.8 per 1000 with no new cases detected in 
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men (Fig. 4) [22]. In a large population study in 
Tayside, Scotland, 620 incident cases of hyper-
thyroidism were identified with an incidence rate 
of 0.77 per 1000 per year (95% confidence inter-
val (CI), 0.70–0.84) in women and 0.14 per 1000 
per year (95% CI, 0.12–0.18) in men [23]. The 
incidence increased with age, and women were 
affected two to eight times more than men across 
the age range. Further analysis suggested that the 
incidence was increasing in women but not in 
men between 1997 and 2001 [24].

 Post-partum Thyroiditis

Thyroid antibodies, particularly TPOAb, occur in 
10% of women at 14 weeks of gestation, which is 
compatible with the prevalence of thyroid antibod-
ies in community surveys [1]. A proportion of these 
women will have subclinical hypothyroidism with 
a high serum TSH, but most will be euthyroid. 
However, after delivery a transient, destructive 
autoimmune thyroiditis that occurs between the 
12th and 16th week post-partum will develop in 
50% of TPOAb-positive women, as ascertained in 
early gestation, clinically apparent as post-partum 
thyroiditis (PPT). It presents as a temporary, usu-
ally painless, episode of hypothyroidism, occasion-
ally preceded by a short episode of hyperthyroidism. 
Up to about a quarter of women progress to perma-
nent hypothyroidism within approximately 5 years 
following an episode of PPT, particularly those 
with high antibody titres [27].

 Screening for Thyroid Disease

Controversy exists as to whether healthy adults 
living in an area of iodine sufficiency benefit 
from screening for thyroid disease. The benefit 
from a screening programme must outweigh the 
physical and psychological harm caused by the 
test, diagnostic procedures and treatment [28]. 
The prevalence of unsuspected overt thyroid dis-
ease is low, but a substantial proportion of sub-
jects tested will have evidence of thyroid 
dysfunction, with approximately 10% with sub-
clinical hypothyroidism and 1% with subclinical 

hyperthyroidism. No appropriately powered pro-
spective, randomised, controlled, double-blinded 
interventional trial of either l-T4 therapy for sub-
clinical hypothyroidism or antithyroid therapy 
for subclinical hyperthyroidism exists [1].

Although epidemiological studies have shown 
an association between subclinical hypothyroid-
ism and coronary heart disease in younger people 
(less than 65  years) or those with high serum 
TSH (greater than 10  mU/L) [29], recent evi-
dence suggests that in older people, higher serum 
TSH and lower free T4 concentrations within the 
euthyroid range are associated with lower risk of 
multiple adverse events including mortality [30]. 
Treatment in those who are symptomatic, preg-
nant or preconception aged less than 65  years 
appears justified [31].

A meta-analysis demonstrated that endoge-
nous subclinical hyperthyroidism was associated 
with increased risk of total, coronary heart dis-
ease (CHD) mortality and incident atrial fibrilla-
tion (AF) [32]. The highest risk of CHD mortality 
and AF is noted when the serum TSH is less than 
0.10  mU/L.  Subclinical hyperthyroidism might 
be associated with an increased risk for hip and 
non-spine fractures, but additional large, high-
quality studies are needed [33]. Treatment may 
be indicated in patients older than 65 years with 
serum TSH less than 0.1  mU/L to potentially 
avoid these serious cardiovascular events, frac-
tures and the risk of progression to overt hyper-
thyroidism [34]. Any potential benefits of therapy 
in subclinical hyperthyroidism must be weighed 
against the morbidity associated with the treat-
ment of hyperthyroidism.
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Classification of Thyroid Diseases

Leonidas H. Duntas and Sofia Tseleni-Balafouta

 Introduction

Classification of disease is a cardinal step toward 
the organization of its pathogenesis and symp-
tomatology, the aim being the implementation of 
the optimal diagnostic and therapeutic approach. 
The last systematic classification of thyroid dis-
eases was performed in 1969 by the American 
Thyroid Association and was mainly based on 
thyroid function and clinical aspects [1]. 
However, a new classification is required to 
incorporate the numerous advances achieved 
over the past half century in the genetics, molecu-
lar biology, and pathogenesis of thyroid diseases, 
the many results of studies, and the new thera-
peutics. In other words, there is today a need for 
a thoroughly updated platform upon which diag-
nostic and therapeutic management of thyroid 
diseases may be created and firmly established.

Valid suggestions have been made that a new 
classification should consider thyroid function, 
the evolution of disease, and various environmen-

tal factors as well as determine the parameters 
that identify real disease [2]. For instance, the 
widely used ICD-8 and ICD-10 classification 
systems are not uniform regarding the causes of 
hyperthyroidism, this being of importance when 
therapeutic guidelines should be implemented, 
while in cases of hyperthyroidism, cardiovascu-
lar risk likely depends on the degree of disease 
severity. Graves’ disease is accompanied by 
higher FT4 levels in contrast to autonomous 
functioning nodule(s) that are marked by higher 
T3 levels.

 Acute and Chronic Thyroiditis

The term thyroiditis includes a complex group of 
acute, subacute, and chronic inflammatory disor-
ders of the thyroid, with a wide spectrum of eti-
ologies ranging from autoimmune to infectious 
causes. While the classification of acute and sub-
acute thyroiditis has been fairly effortlessly 
agreed upon and implemented, a number of ten-
tative classifications of autoimmune thyroiditis 
are as yet controversial. This is mainly due to the 
complex character of the disease and the variable 
immune status and clinical picture of patients. 
The term “autoimmune thyroiditis” covers both 
Hashimoto’s disease (HD) and Graves’ disease 
(GD), as some patients with HD may initially 
present with or progress to hypothyroidism and 
those with GD may regress to hypothyroidism 
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[3]. In both the above cases, patients are likely to 
exhibit autoantibodies against thyroglobulin 
(TgAB) or against thyroid peroxidase (TPOAB) 
or else both autoantibodies and antibodies against 
the TSH receptor that possibly act by stimulating 
or, less frequently, inhibiting the receptor [4]. It is 
thus evident that the inflammatory background in 
these two disorders is both similar and persis-
tently present, as revealed through clinical and 
immune system laboratory tests.

In the past few years, the discovery has been 
made that HT can be differentiated into IgG4-
positive and non-IgG4 thyroiditis [5], HT IgG4-
positive being a new disease category involving a 
large number of organ systems, including in par-
ticular the thyroid [6]. Patients with HT IgG4-
positive tend to be of younger age by comparison 
with the IgG4-negative group, though no major 
differences were observed as concerns sex or thy-
roid function status distribution or duration of 
disease between the two categories. The degree 
of fibrosis appears to be higher in the IgG4-
positive than in the IgG4-negative group, and his-
tology via IgG4 immunostaining is the mainstay 
of diagnosis [6]. A classification based on posi-
tivity or none of IgG4 could well be highly useful 
in determining immune-phenotype. Management 
of IgG4-RTD is both medical and surgical, with 
steroids, which usually induce a swift response, 
constituting first-line treatment [6].

Interferon-alpha (IFNα)-induced thyroid dys-
function is observed in up to 20% of patients with 
hepatitis C receiving the drug [7], while as many 
as 40% of patients developed thyroid antibodies 
[8]. It is thus clear that interferon-induced thy-
roiditis (IIT) is a major clinical problem among 
patients receiving interferon therapy. IIT can be 
classified into the autoimmune type and the non-
autoimmune type, both of which can manifest as 
destructive thyroiditis or as hypothyroidism. 
Moreover, autoimmune IIT may manifest through 
the development of thyroid antibodies with no 
clinical disease; it can however develop into clin-
ical disease, including both autoimmune hypo-
thyroidism (Hashimoto’s thyroiditis) and 
autoimmune thyrotoxicosis (Graves’ disease). In 
a randomized international clinical trial, adminis-
tration for up to 24  weeks of IFNα2a every 

2 weeks in 869 patients with hepatitis C induced 
biphasic thyroiditis, with extreme values for the 
nadir and/or peak TSH being observed in 58% of 
the patients and hypothyroidism with TSH above 
10 mU/L in 6.1% of subjects. It was additionally 
noted that pretreatment serum TSH levels were 
higher in females and that being Asian and a cur-
rent smoker were negative predictive values [9].

Postpartum thyroiditis (PPT) is the occurrence 
of de novo autoimmune thyroid disease, exclud-
ing Graves’ disease, in the first year postpartum. 
The incidence of PPT is 5.4% in the general pop-
ulation, and it is increased in individuals with 
other autoimmune diseases such as type 1 diabe-
tes mellitus. The classic presentation of PPT of 
hyperthyroidism followed by hypothyroidism is 
seen in 22% of cases. The majority of women 
with PPT experience an isolated hypothyroid 
phase (48%), with the remainder experiencing 
isolated thyrotoxicosis (30%). Up to 50% of 
women who are thyroid antibody positive (thy-
roid peroxidase antibody and/or thyroglobulin 
antibody) in the first trimester will develop PPT 
[10].

Riedel’s thyroiditis (RT) is a rare chronic 
fibrosing disorder characterized by a hard, infil-
trative lesion in the thyroid gland; this is often 
associated with multifocal fibrosclerosis, as well 
as by local restrictive symptoms that are dispro-
portionate to a palpable mass, and biochemically 
low serum calcium levels [11]. Interestingly, the 
clinicopathological features of RT suggest that 
IgG4 is often the underlying condition [12]. Once 
the diagnosis is established, an early initiation of 
anti-inflammatory agents positively influences 
the clinical outcome.

 Classification of Thyroid Neoplasms

Most neoplasms located in the thyroid gland 
represent a primary neoplastic focus. Clinically 
detected metastatic foci in the thyroid are excep-
tionally rare, with the most frequent being renal 
cell carcinoma, breast and lung carcinoma, and 
metastatic melanoma [13]. Table  1 depicts the 
WHO classification of thyroid tumors published 
in 2004 [14]. Epithelial tumors are by far the 
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most frequent primary neoplastic lesions, while 
primary lymphomas of the thyroid are the sec-
ond most frequent malignancy, accounting for 
approximately 2% of extranodal lymphomas. 
Most of these are non-Hodgkin large B-cell 
lymphomas arising against a background of 
Hashimoto’s thyroiditis [15]. Occasionally, neo-
plasms with mesenchymal differentiation are 
encountered, such as angiosarcomas or smooth 
muscle tumors as well as other rare tumors [16]. 
Primary thyroid epithelial tumors include 
benign lesions (adenomas) and a large heteroge-
neous group of malignancies (carcinomas). 
Thyroid epithelial malignancies (carcinomas) 
are principally divided according to their histo-
genesis into three main groups: (1) carcinomas 
originating from (or, more precisely, differenti-
ating toward) the follicular cell epithelium, 
exhibiting some degree of thyroglobulin expres-
sion, (2) carcinomas from the parafollicular (C) 
cells of the thyroid gland with calcitonin expres-
sion, and (3) rare carcinomas with mixed fol-
licular cell and parafollicular cell differentiation 
(mixed carcinomas) with co-expression of thy-
roglobulin and calcitonin (either by the same 
neoplastic cells or by different cell 
populations).

The vast majority of thyroid carcinomas are 
follicular cell carcinomas and are frequently 
grouped under the general term “thyroid cancer.” 
Follicular cell carcinoma (FCC) represents a het-
erogeneous group of malignant neoplasms char-
acterized by variable histologic appearance, 
molecular profiles, and largely indolent behavior, 
though they include certain subtypes with aggres-
sive behavior. Since the management of cancer is 
invariably based on a histological classification 
of the tumor, while the biology of tumors corre-
lates to a varying degree with the histological 
phenotype, it is evident that an accurate histo-
logical classification is essential for the follow-
up of such tumors and for the validation and 
standardization of treatment strategies [17]. 
However, the above classification currently in use 
poses considerable difficulties for attending phy-
sicians, while in addition interobserver variabil-
ity, even among “thyroid experts,” further 
complicates the situation.

Table 1 Classification of thyroid diseases

1. Goiter
  (a) Nontoxic diffuse
  (b) Nontoxic single nodule
  (c) Nontoxic multinodular
2. Tumors
  (a) Benign neoplasms (adenomas)
  (b) Malignant (carcinomas)
    • Differentiated (papillary and follicular)
    • Poorly differentiated
    • Undifferentiated (anaplastic)
    • Medullary
       – Nonhereditary (sporadic)
       – Hereditary (familial)
3. Thyroiditis
  (a) Acute thyroiditis
  (b) Subacute thyroiditis (De Quervain)
  (c)  Chronic autoimmune thyroiditis or 

Hashimoto’s thyroiditis (HT)
    • Typical (goiter)
    • Nontypical (atrophic thyroiditis)
  (d)  HT IgG4-positive
    HT IgG4-negative
  (e) Postpartum and silent thyroiditis
  (f) Riedel’s thyroiditis
Primary hyperthyroidism
1.  Diffuse hyperthyroid goiter with thyroid-associated 

orbitopathy or Basedow-Graves’ disease
2.  Multinodular hyperthyroid goiter or Plummer’s 

disease
3. Autonomous single nodule
Other forms: Hyperthyroidism due to Hashimoto’s 
disease (Hashitoxicosis), pituitary resistance to thyroid 
hormones, TSH-secreting pituitary adenoma 
(secondary form), chorionic gonadotropin-secreting 
tumor, adenoma or carcinoma (follicular) of the 
thyroid, excessive exogenous thyroid hormones, 
amiodarone- or iodine-induced, postinflammatory, or 
from destruction of thyroid
1. Subclinical hyperthyroidism
2. Transient hyperthyroidism
3. Thyrotoxic storm
Thyroid-associated orbitopathy (TAO)
Primary hypothyroidism
(a) Primary hypothyroidism
   •  Adult; diffuse and nodular goiter; iodine 

deficiency
   •  Neonatal congenital (ectopia, agenesis, 

dyshormonogenesis)
(b)  Secondary: hypothalamic-pituitary or central 

hypothyroidism
(c) Dyshormonogenetic congenital goiter
(d)  Generalized and peripheral resistance to thyroid 

hormones
1. Subclinical hypothyroidism
2. Transient hypothyroidism
3. Hypothyroid coma
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Among tumors, FCC exhibits an excellent 
correlation between histotype, genotype, and 
behavior. FCC may undergo multidirectional dif-
ferentiation or progress to dedifferentiation, this 
resulting in phenotypes with mixed patterns: 
however, when the criteria in use differ, once 
again, classification is impeded. In the WHO 
classification, follicular cell carcinomas fall into 
three major groups according to the degree of 
phenotypic differentiation: well-differentiated 
thyroid carcinoma (WDTC), poorly differenti-
ated (PDTC), and undifferentiated (anaplastic) 
carcinoma (ATC) (Table 2).

Well-differentiated carcinomas are in fact the 
majority of follicular cell thyroid carcinomas and 
are broadly categorized as either papillary or fol-
licular carcinomas, which are further subdivided 
into particular variants presenting various histo-
logic appearances and molecular profiles. 
Sometimes it is difficult to classify an individual 
tumor into a particular type (either papillary or 
follicular) since mixed features may be present.

 (a) Papillary thyroid carcinoma (PTC), the pre-
dominant histologic form of thyroid cancer, 
is, as noted above, by far the most common 
malignant neoplasm of the thyroid, which 
accounts for approximately 80% of all cases. 
The reported increasing incidence of thyroid 
cancer worldwide over the last four decades 
[18, 19] is in fact due in part to the improved 
detection of papillary thyroid carcinoma. 
Defining its frequency depends heavily on 
the diagnostic criteria performed, which 
show a large degree of inconsistency, leading 
to significant interobserver variation.

PTC derives its name from its distinctive 
arborizing papillary structure which was 
once utilized for the purposes of diagnosis. 
This is no longer the case, the diagnosis 
today mainly relying on distinctive nuclear 
morphology, including enlargement of the 
nuclei, optical clearing, overlapping, and 
membrane alterations such as grooves and 
pseudoinclusions (“papillary carcinoma 

Table 2 WHO histological classification of thyroid tumors (2004)

Primary
1. Epithelial
  (a) Follicular cell origin
    • Benign
     – Follicular adenoma
     Conventional type
     Oncocytic type
    • Uncertain malignant potential
     – Hyalinizing trabecular tumor
    • Malignant
     – Papillary carcinoma
     – Follicular carcinoma
     Conventional type
     Oncocytic type
     – Poorly differentiated carcinoma
     – Anaplastic (undifferentiated carcinoma
  (b) C-cell origin
    – Medullary carcinoma
  (c) Mixed follicular and C-cell origin
    – Mixed medullary and papillary carcinoma
    – Mixed medullary and follicular carcinoma
  (d) Epithelial tumors of different or uncertain cell origin
    – Mucoepidermoid carcinoma
    – Sclerosing mucoepidermoid carcinoma with eosinophilia
    – Squamous cell carcinoma
    – Mucinous carcinoma
    – Spindle cell tumor with thymus-like differentiation (SETTLE)
    – Carcinoma showing thymus-like differentiation (CASTLE)
    – Ectopic thymoma

2. Nonepithelial
  (a) Primary lymphoma/plasmacytoma
  (b) Angiosarcoma
  (c) Teratoma
  (d) Smooth muscle tumors
  (e) Peripheral nerve sheath tumors
  (f) Paraganglioma
  (g) Solitary fibrous tumor
  (h) Follicular dendritic tumors
  (i) Langerhans cell histiocytosis
  (j) Rosai-Dorfman disease
    Secondary (metastatic)
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nuclei”). Thus, the diagnosis of PTC has 
become a cytological evaluation. This new 
diagnostic approach has had two important 
outcomes. First, it is partly responsible for 
the dramatic increase in detection of papil-
lary thyroid carcinoma and therefore for 
establishing this tumor type as being pre-
dominant over all other types of thyroid can-
cer. Second, it has contributed to follicular 
thyroid carcinoma having become a rela-
tively rare entity, since many follicular-pat-
terned lesions previously diagnosed as 
follicular neoplasms, i.e., either carcinomas 
or even adenomas, are now designated as a 
follicular variant of papillary carcinoma 
(FVPTC) [20].

 (b) Follicular carcinoma (FTC) itself represents 
a follicular-patterned lesion without the 
 presence of PTC nuclei and demonstrates by 
definition some features of invasion, exhibit-
ing either a widely invasive periphery (widely 
invasive FTC) or peripheral encapsulation 
with some degree of invasion (minimally 
invasive FTC). Angioinvasion is a significant 
criterion for malignancy and is suggested by 
some authors as being crucial for a definitive 
diagnosis of FTC. Follicular tumors without 
demonstrable signs of invasive growth are 
designated as adenomas and are expected to 
behave in a benign fashion. Since the diagno-
sis of malignancy is based on such a “micro-
staging system,” the definition and degree of 
invasive behavior are of extreme importance 
in follicular neoplasms [21]. Once again, it is 
important to note the significant interobserver 
variability in evaluating signs of invasion, the 
many controversies that exist among thyroid 
experts, and the inconsistency of invasion as a 
major criterion of malignancy. Therefore, for 
all follicular tumors exhibiting a questionable 
capsular invasion, the term “follicular tumor 
of uncertain malignant potential” (FT UMP) 
has been introduced [22].

The majority of reported FTCs are encap-
sulated and are minimally invasive, with 
slight tumor capsular invasion alone without 
simultaneous vascular invasion. Such mini-
mally invasive carcinomas have an appear-

ance similar to that of follicular adenomas 
and rarely cause distant metastases. Widely 
invasive follicular carcinomas are much less 
common; however, 80% of these tumors 
cause distant metastases leading to a high 
mortality rate of around 20%.

 (c) Poorly differentiated thyroid carcinoma 
(PDTC). The term “poorly differentiated car-
cinoma” (PDC) was first introduced in 1983 
by Sakamoto [23], while later Rosai named it 
“insular carcinoma” [24]. Representing a 
variant of a very heterogeneous group of 
neoplasms, it was initially defined as an epi-
thelial cell neoplasm exhibiting some evi-
dence of follicular cell differentiation, lying 
morphologically and behaviorally between 
the indolent well-differentiated thyroid carci-
noma, either of the papillary or the follicular 
type, and the highly aggressive anaplastic 
carcinoma.

PDTC was classified as a separate entity 
in the current histological classification 
(WHO 2004), without universally estab-
lished diagnostic criteria, this resulting in a 
controversial diagnosis, with significant 
interobserver variability among pathologists. 
Since it includes different phenotypes of 
variable aggressiveness and variable iodine 
accumulation (with to date conflicting 
reported data), the treatment strategies have 
not as yet been standardized.

At an international consensus conference 
held in Turin in 2006, uniform histologic 
diagnostic criteria for PDC were defined (the 
“Turin proposal”) [25]. This conference also 
confirmed the presence of geographical dif-
ferences among reported classical PDTC 
forms. However, there is still an ongoing 
debate as to the nature, the diagnostic crite-
ria, the clinical significance, and the optimal 
therapeutic approach of PDC [26].

 (d) Anaplastic thyroid carcinoma (ATC). While 
differentiated thyroid carcinoma usually car-
ries an excellent prognosis, in sharp contrast 
to this, undifferentiated (anaplastic) carci-
noma is an extremely aggressive tumor, hav-
ing by definition lost any evidence of 
phenotypic follicular cell differentiation and 
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exhibiting 100% disease-specific mortality 
and a median survival from diagnosis of 
around 6  months. ATC is a severe, locally 
invasive disease, infiltrating the neck struc-
tures and causing extensive necroses and 
hemorrhage, and is characterized by absolute 
refractoriness to radioiodine treatment. Most 
anaplastic carcinomas arise after dedifferen-
tiation of longstanding differentiated carci-
nomas within a context of tumor progression. 
Therefore, the presence of differentiated ele-
ments in an otherwise anaplastic carcinoma 
is common, as are also anaplastic areas in 
differentiated tumors.

Approximately 10% of patients with well-dif-
ferentiated carcinomas suffer recurrences, and 
some cases progress to highly aggressive PDC or, 
still worse, to lethal anaplastic Ca. Identification 
of this subset of tumors is essential because of 
their variable response to therapy, leading to sig-
nificant morbidity and mortality. Selecting these 
high-risk patients with what are known as “real 
thyroid carcinomas” is the most important chal-
lenge for the therapeutic algorithm [27]. Besides 
clinicopathological adverse factors, such as age 
>45 years, large tumor size, extrathyroidal inva-
sion, clinical lymph node metastasis, vascular 
invasion, and distant metastases, the so-called 
aggressive histology of well-differentiated carci-
noma plays an important role in risk stratifica-
tion. Unlike other human cancers, no grading 
system has so far been widely accepted for dif-
ferentiated thyroid carcinoma, and subtyping into 
particular tumor variants seems more accurate. 
Follicular carcinomas are as already mentioned 
subtyped according to their invasiveness. 
Specifically concerning papillary carcinomas, the 
latter are subdivided into several subtypes, these 
based on tumor periphery (encapsulation vs. 
invasive borders), growth pattern (follicular, 
macrofollicular, cribriform-morular, solid), and 
cell morphology and cohesiveness (tall cell, 
oncocytic, clear cell, columnar cell, hobnail cell) 
or a combination creating specific morphology 
(diffuse sclerosing variant, Warthin-like variant) 
(Table  3). Some variants present a particularly 
difficult diagnostic challenge for the pathologist 

or else may require clinical investigation into a 
possible accompanying condition. For example, 
the cribriform-morular variant is mostly a heredi-
tary disease caused by mutations of the oncosup-
pressor APC gene frequently associated with 
familial colonic polyposis (FAP) or colon carci-
noma. The variant exhibits multicentricity and a 
generally excellent outcome.

The most frequent subtypes of PTC are the 
conventional type, the follicular cell variant, and 
the tall cell variant. Some variants (e.g., tall cell, 
diffuse sclerosing, columnar cell, and hobnail 
cell variant) are considered to be more aggres-
sive. They are reported to be associated with fre-
quent extrathyroidal extension, multifocality or 
multidissemination, increased rates of lymph 
node and distant metastases, recurrences, resis-
tance to radioiodine therapy, and tumor-related 
mortality [28–35].

However, there is a general lack of consensus 
regarding the issue of what diagnostic criteria 
should be applied along with the impact of the 
specific diagnosis, as well as the matter of the 
presence of simply an aggressive component in 
the clinical course [36]. Α large multicenter study 
has demonstrated the differential prognostic risks 
of the three major variants (TCV-Common-FV), 
providing clinical implications for the specific 
variant-based individualized management [37].

Sometimes a tumor will include more than 
one variant, making the usefulness of subtyping 
debatable. For example, the tall cell variant may 
exhibit extensive tumor areas with hobnail cell 
morphology indicating loss of cohesiveness. 
Even more frequent is the presence of large areas 
with “squamoid” cells (large polyhedral cells 
containing abundant eosinophilic or pale cyto-

Table 3 Classification of follicular cell Ca (FCC) (WHO 
2004)

• Papillary Ca (PTC)
    – Conventional type
    – Variants
• Follicular Ca (FTC) (conventional or oncocytic)
    –  Minimally invasive (encapsulated without 

angioinvasion or with angioinvasion)
    – Widely invasive Ca
• Poorly differentiated Ca (PDTC)
• Anaplastic Ca (ATC)
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plasm) in PTC of tall cells, these mostly recorded 
as “squamous metaplasia” having no correlation 
with the adverse outcome of the highly aggres-
sive squamous carcinoma [14]. However, in our 
large series the presence of such squamoid areas 
was mainly correlated with aggressive tumors 
with extrathyroidal extension or with tumor 
recurrences (unpublished data) (Fig. 1).

The follicular variant of PTC includes two dif-
ferent entities, namely, the demarcated/encapsu-
lated and the diffuse/invasive nonencapsulated 
(“infiltrative”) variant (Table  4). The encapsu-
lated variant tends to be, phenotypically and 
molecularly, a hybrid neoplasm possessing many 
similarities to follicular carcinoma, including the 
follicular pattern and frequent RAS mutations 

(“RAS-like genotype”) [38]. It may show some 
degree of capsular invasion (“invasive RAS-like 
genotype”) or no evident invasion (“noninvasive 
RAS-like genotype”). The diagnosis relies on the 
nuclear features of PTC, and, in cases without 
any signs of invasive potential, the encapsulated 
follicular variant remains a debatable entity, 
especially due to incomplete nuclear features. 
Biologically it is associated with very low to bor-
derline malignancy, especially when there is 
absence of invasion of the tumor capsule (“nonin-
vasive encapsulated follicular variant”). The 
increased number of PTC cases has mainly been 
attributed to the RAS-mutated follicular variant 
of PTC, suggesting the possible role of environ-
mental factors [39].

The infiltrative follicular variant exhibits 
irregular borders and may display BRAF muta-
tions (“BRAF-like genotype”) [40]. From the 
biological point of view, it behaves like the con-
ventional type of PTC, being a low-grade malig-
nant tumor.

The encapsulated noninvasive follicular variant 
of PTC is at present the hottest topic in thyroid 
pathology. This is mainly due to the high interob-
server variability among pathologists in interpret-
ing the nuclear morphology, their determination of 
the “threshold” varying. Inevitably, the uneven use 

Fig. 1 Papillary Ca tall 
cell variant with areas of 
large, polyhedral, 
“squamoid” cells. This 
type of tumor mainly 
has an adverse outcome

Table 4 Subtyping of papillary carcinoma

1. Conventional (common) type
2. Variants
  (a) Follicular
  (b) Solid
  (c) Oncocytic
  (d) Warthin-like
  (e) Cribriform-morular
  (f) Tall cell
  (g) Diffuse sclerosing
  (h) Columnar cell
  (i) Hobnail cell
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of the criteria (either too liberally or too strictly) 
results in inconsistent histological diagnoses. 
Moreover, this variant has dramatically increased 
over the past two to three decades, today constitut-
ing 10–20% of all thyroid cancers diagnosed in 
Europe and North America [41]. Different follow-
up studies have attributed this increase to an 
overtly liberal and subjective assessment of the 
variants in question, since the crucial issues of how 
many nuclear features and to what extent they 
should be present are not as yet established. As a 
result tumors not fulfilling the major nuclear crite-
ria are overdiagnosed as papillary carcinoma.

To overcome these difficulties in classifying 
questionable cases demonstrating minor or focal 
nuclear features and not justifying a diagnosis of 
malignancy, Williams et  al. have proposed the 
term “well-differentiated tumor of uncertain 
malignant potential” (WDT UMP) [22]. However, 
this terminology, while highly convenient for 
pathologists, does nothing to aid clinicians in 
their choice of therapy and follow-up. Recently, 
Nikiforov et  al. [41] introduced the term “non-
invasive follicular thyroid neoplasm with PTC 
nuclei” (NIFTP) to classify all follicular-pat-
terned lesions (with <1% papillary structures) 
exhibiting nuclei with features of PTC nuclei of 
varying degrees and extent, lacking any sign of 
invasion [42]. Lying morphologically and molec-
ularly “between” benign and malignant lesions, 
this entity may represent a precursor lesion to an 
invasive tumor. It includes all cases previously 
termed WDT-UMP together with cases of encap-
sulated follicular variants of PTV without any 
invasion of the tumor capsule. Both entities share 
the same excellent prognosis, and, since they 
have minimal risk for adverse outcome, no fur-
ther treatment seems to be necessary. Furthermore, 
the use of this terminology for the cases of nonin-
vasive encapsulated follicular variant of PTC 
reduces the psychological consequences associ-
ated with a diagnosis of cancer [41]. It is obvious 
that since the detection of invasive foci is crucial 
for the diagnosis of malignancy, the reliability of 
such a diagnosis depends largely on the patholo-
gist’s experience and on the thoroughness in sam-
pling and slides evaluation as does the diagnosis 
of malignancy in follicular tumors.

Among thyroid experts there is disagreement 
about the usefulness of subtyping vs. grading for 
prognostic stratification. Akslen and Livolsi [43] 
reported that subclassification of PTC had only a 
minor prognostic impact, whereas histological 
grade, based on nuclear atypia, tumor necrosis 
and vascular invasion, was a strong independent 
prognostic marker. The so-called high-grade fea-
tures (such as nuclear atypia-polymorphism, 
mitoses, necroses) have also recently been 
reported to be indicative of aggressive tumor 
behavior similar to that of poorly differentiated 
Ca [42–44]. Peripheral invasiveness has likewise 
been reported to be more relevant to the progno-
sis than growth pattern or cell morphology [45]. 
The manner of growth (invasive versus encapsu-
lated) is obviously indicative of the aggressive-
ness of a neoplasm against the host parenchyma 
and might be relevant for a classification scheme. 
However, both the presence of high-grade fea-
tures as well as the invasiveness of a tumor are as 
yet not fully taken into account and therefore not 
included in the WHO (2004) classification.

Extrathyroidal extension beyond the thyroid 
and extensive vascular invasion are significantly 
correlated with an adverse outcome [46]. 
Encapsulated follicular cell carcinomas (papil-
lary, follicular, or Hurthle cell) are generally 
regarded as low-grade tumors, especially in the 
absence of any vascular invasion [47].

The placing of oncocytic tumors in the WHO 
(2004) Classification is still a debatable issue. No 
thyroid neoplasm has created more confusion or 
debate than oncocytic neoplasms. Some consider 
all of them as malignant, but most cite 80% or 
more as benign [48, 49]. The WHO (2004) clas-
sification defines oncocytic Ca as a variant of 
PTC or of FTC and not as a separate group. 
However, this may change in the future. See 
Addendum Section with the most recent 
classification.

Another limitation of the WHO (2004) 
Classification is the lack of a group with “border-
line” morphology between benign and malignant 
(a tumor with uncertain malignant potential) as 
well as a noninvasive carcinoma, this constitut-
ing a missing link. These entities are essential 
in our perception of the multistep process of 
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carcinogenesis from normal-looking tissue to 
clear-cut malignant tissue. See Addendum 
Section with the most recent classification.

Despite the increased number of efforts, clas-
sifications have not significantly improved over 
the past decade or so, and a pathologic reclassifi-
cation of follicular-patterned thyroid lesions is 
most evidently justified. In an effort to overcome 
some limitations as well as the difficulties in clas-
sifying follicular cell thyroid carcinomas consist-
ing of more than one phenotypic component, 
Kakudo et al. [50, 51] have made a new classifi-
cation proposal (Table  5), replacing the tradi-
tional terms “papillary” and “follicular” with the 
term “adenocarcinoma” of some degree of 
 differentiation, as is standard in other organs. 
Furthermore, they have attempted to define the 
entities included in each group in order to stratify 
the tumors according to the prognosis (Table 6). 
Recently, the authors made an effort to stratify 
tumor aggressiveness of follicular cell tumors by 
applying the Ki-67 labeling index, a marker for 
cell proliferation reported to be significant for the 
prognosis of thyroid carcinomas as is the case in 
other human tumors [45, 52].

The major challenge that the pathological clas-
sification must address in the near future is the 
establishment of criteria leading to a reliable, 
observer-independent stratification of thyroid can-
cer for a more rational planning of disease man-
agement. Still lacking are widely accepted 
diagnostic and prognostic histological markers, 
with the result that morphology remains the gold 
standard for the classification of thyroid carci-
noma. However, phenotypic differences between 
the tumors according to differences in signaling 
are obvious, while the genetic diversity of differ-
entiated follicular cell-derived Ca is likely to 
reflect the complex histology of these tumors and 
the inconsistency of histological classification. In 
this context, it is evident that the implementation 
of molecular techniques will enable us to deepen 
our understanding of the impact of the diverse 
phenotypes and eventually to develop a combined 
molecular-pathological classification [53, 54].

Studies conducted in multiple research labs as 
well as genomic sequencing data from The Cancer 
Genome Atlas (TCGA) for PTC have resulted in 
the identification of genetic alterations in more 
than 90% of cases, making PTC one of the geneti-
cally best characterized of human cancers [55–64]. 
The above developments together with multiplat-
form molecular data provided in large sample sizes 
from a wide array of institutions today present us 
with the opportunity to refine the classification of 
PTC by differentiating it into molecular subtypes 
and to associate them with clinically relevant 
parameters [65, 66]. For example, PTC is a MAP 
kinase-driven cancer that has two mutually exclu-
sive drivers with different signaling consequences: 
BRAF v600 with high MAPK signaling [67, 68] 
and mutated RAS with lower MAPK signaling. 
The expression of genes responsible for iodine 
uptake and metabolism is greatly reduced in BRAF 
v600-driven carcinomas, whereas it is largely pre-
served in RAS-mutated tumors [69]. A subdivision 
into BRAF-mutated and RAS-mutated tumors 
could very possibly show a good correlation with 
the outcome. It seems clear that the implementa-
tion of molecular techniques will result in enrich-
ment of our knowledge on the impact of the diverse 
phenotypes and eventually provide a combined 
molecular-pathological classification [41, 42].

Table 5 Types of the follicular variant of PTC (FVPTC)

1. Invasive type
  (a) BRAF mutation frequent
  (b) Biological behavior of low aggressiveness
  (c) Safe histological diagnosis
2. Encapsulated (“hybrid neoplasm”)-EnFvPTC
  (a) RAS mutations frequent
  (b) Βorderline biological behavior
  (c)  Inconsistent histological diagnosis based on the 

PTC nuclei

Table 6 Classification proposal [51]

FA Follicular adenoma (benign)
WDTUB Well-differentiated tumor of uncertain 

behavior (borderline)
WDA Well-differentiated adenocarcinoma (low 

risk)
MDA Moderately differentiated 

adenocarcinoma (moderate risk)
PDC Poorly differentiated carcinoma (high 

risk)
UC Undifferentiated carcinoma (lethal)
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 (e) Medullary carcinoma, a malignant neuroendo-
crine tumor, also occurs in the thyroid differen-
tiating toward the parafollicular (C) cells and 
expressing calcitonin, the common neuroendo-
crine marker, and several polypeptides. 
According to its genetic background, it is clas-
sified as nonhereditary (sporadic) or less fre-
quently as hereditary (familial) (Table 7) The 
latter may occur in isolation (familial medul-
lary Ca) [70] or be part of an autosomal domi-
nantly inherited cancer syndrome in 
coexistence with pheochromocytoma and 
hyperparathyroidism designated as multiple 
endocrine neoplasia type II [71, 72]. Ninety 
percent of cases concern MEN IIa. MEN IIb is 
an aggressive variant of MTC in coexistence 
with a marfanoid habitus and multiple 
ganglioneuromas.

 (f) The phenotype of MTC may exhibit diverse 
morphological features; however, subtyping 
does not significantly affect the prognosis. 
The genetic background of hereditary MTC 
includes several possible germline mutations 
in the RET proto-oncogene with variable 
impact on the behavior of the tumor. 
According to current data, a significant geno-
type-phenotype correlation might lead to a 
possible classification on the basis of the 
genotype, allowing a more individualized 
therapeutic approach [73].

 Addendum

The WHO Classification of thyroid tumors was 
revised while the present chapter was in press. 
The revised classification is as follows.

Revised WHO Classification of thyroid tumors 
(2017) 

Follicular adenoma
Hyalinizing trabecular tumour
Other encapsulated follicular patterned thyroid 
tumours
    Follicular tumour of uncertain malignant potential
    Well differentiated tumour of uncertain malignant 
potential
    Non-invasive follicular thyroid neoplasm with 
papillary-like nuclear features
Papillary thyroid carcinoma (PTC)
    Papillary carcinoma
    Follicular variant of PTC
    Papillary microcarcinoma
    Columnar cell  variant of PTC
    Oncocytic variant of PTC
Follicular thyroid carcinoma (FTC), NOS
    FTC, minimally invasive
    FTC, encapsulated angioinvasive
    FTC, widely invasive
Huerthle (oncocytic)cell tumours
    Huerthle cell adenoma
    Huerthle cell carcinoma
Poorly differentiated thyroid carcinoma
Anaplastic thyroid carcinoma
Squamous cell carcinoma
Medullary thyroid carcinoma
Mixed medullary and follicular thyroid carcinoma
Mucoepidermoid carcinoma
Sclerosing mucoepidermoid carcinoma with 
eosinophilia
Mucinous carcinoma
Ectopic thymoma
Spindle epithelial tumour with thyrmus-like 
differentiation
Intrathyroid carcinoma
Paraganglioma and mesenchymal/stromal tumours
    Paraganglioma
    Peripheral nerve sheath tumours (PNSTs)
        Schwannoma
        Malignant PNST
    Benign vascular tumours
        Hemangioma
        Cavernous hemangioma
        Lymphangioma
    Angiosarcoma
    Smooth muscle tumors
        Leiomyoma
        Leiomyosarcoma
    Solitary fibrous tumour
Hematolymphoid tumours

Table 7 Kakudo et al. classification

WDT-UB “UMP”-tumors, EnFvPTC, micro-Ca
WDA Common type PTC and FTC minimally 

invasive with <4 foci angioinvasion
MDA Aggressive PTC variants, FTC with >4 

foci of angioinvasion and encapsulated Ca 
with high-grade features

PDC PDC of WHO, tumors with minor 
anaplastic transformation and tumors with 
distant metastases at presentation
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    Langerhans cell histiocytosis
    Rosai Dorfman disease
    Follicular dendritic cell sarcoma
    Primary thyroid lymphoma
Germ cell tumours
    Benign teratoma (grade 0 or 1)
    Immature teratoma (grade 2)
    Malignant teratoma (grade3)
Secondary tumours
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Iodine Deficiency

Michael Bruce Zimmermann

 Assessment and Epidemiology 
of Iodine Deficiency

Iodine deficiency (ID) impairs thyroid hormone 
production and has many adverse effects in 
humans collectively termed the iodine deficiency 
disorders (IDD) [1, 2]. The most serious effect of 
iodine deficiency is cognitive impairment; a 
recent WHO review concluded that providing 
iodized salt to populations resulted in a signifi-
cant 72–76% reduction in risk for low intelli-
gence (defined as IQ<70) and an 8.2–10.5 point 
overall increase in IQ [3]. The WHO has recom-
mended nutrient intakes for iodine (Table 1) [2]. 
Iodine status of populations can be assessed by 
using a biomarker of exposure, urinary iodine 
concentration (UIC), and biomarkers of function, 
goiter and thyroid function tests [4]. In popula-
tions, UIC is the recommended biomarker and 
reflects recent iodine intake, because the kidney 
excretes >90% of dietary iodine in the subse-
quent 24–48  h [4]. The WHO recommends the 
use of the median UIC to classify population 
iodine status, expressed as μg/L (Table 2) [2]: a 
median <20  μg/L suggests severe iodine defi-
ciency, 20–49 μg/L moderate iodine deficiency, 
50–99 μg/L mild iodine deficiency, 100–299 μg/L 

optimal iodine intake, and >300 μg/L excessive 
intake [2]. These criteria are used in this chapter. 
Although it does not directly assess thyroid func-
tion, a deficient median UIC in a population pre-
dicts a higher risk of developing thyroid disorders. 
ID, unlike most micronutrient deficiencies, is not 
limited to developing countries with poor diets. 
Iodine-deficient soils are responsible for the his-
toric “goiter belts” of Midwestern North America, 
southern Australia, the Alps and Apennines in 
Europe, and inland areas of England and Wales 
[5]. Diets will be deficient in iodine in these areas 
unless iodine enters the food chain through addi-
tion of iodine to foods or dietary diversification 
introduces foods produced in iodine-sufficient 
regions. Based on the median UIC, in 2017, 
iodine intake is adequate in 111 countries, defi-
cient in 19 countries, and excessive in 10 coun-
tries (54 countries have no data) [6]. Large 
populous countries that remain iodine deficient 
include developing countries (e.g., Mozambique, 
Morocco) and middle-income countries (e.g., 
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Table 1 Recommendations for iodine intake (μg/day) by 
age or population group (data from [2])

Age or population 
group

Recommended nutrient intake 
(WHO)

Children 0–5 years 90
Children 6–12 years 120
Adults >12 years 150
Pregnancy 250
Lactation 250
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Russia, Ukraine) and industrialized countries 
(e.g., Italy, Denmark) [6]. In the USA and 
Australia, iodine intakes have fallen in recent 
decades [5].

 Thyroid Adaptation to Iodine 
Deficiency

The relationship between iodine intake and thy-
roid disorders in populations is U-shaped: both 
deficient and excessive iodine intakes may impair 
thyroid function. If dietary iodine intakes are low, 
the thyroid increases clearance of circulating 
iodine. Deficient iodine intake increases TSH 
secretion from the pituitary and increases the 
expression of sodium/iodide symporter (NIS) to 
maximize the thyroidal iodine uptake [7]. The 
thyroid accrues a larger percentage of ingested 
iodine, reuses the iodine from the turnover of thy-
roid hormones more efficiently, and reduces renal 
iodine clearance. In mild to moderate ID, overall 
serum thyroglobulin (Tg) and thyroid size usu-

ally increase, while serum TSH, T3, and T4 often 
remain in the normal range [8–10]. There are 
typically no, or weak, associations between UIC 
and thyroid hormones, but UIC correlates with 
Tg and thyroid size [9]. Tg is higher in adults 
with moderate ID compared to those with mild 
ID [10]. In a population with mild ID, many will 
develop simple goiter, and some will develop 
nodules [11]. Mean TSH is usually not elevated 
in populations with mild ID, so the etiology of 
diffuse goiter in mild ID remains uncertain.

Populations with mild to moderate ID may 
have lower mean TSH than sufficient populations 
because of an increase in thyroid nodularity and 
multinodular toxic goiter (MNTG), particularly in 
older adults, and the higher frequency of MNTG 
lowers overall TSH [12]. There appears to be a 
U-shaped relationship between UIC and TSH, 
with the lowest TSH in the UIC range of 250–
350 μg/L [13]. In moderate to severe ID, there is a 
modest increase in TSH, while T4 remains in the 
normal range, and many people develop subclini-
cal hypothyroidism [14, 15]. As ID becomes more 
severe, TSH increases further, while T3 increases 
or remains unchanged, and T4 decreases due to 
preferential thyroidal secretion of T3 [16]; this 
conserves iodine because the activity of T3 is four 
times that of T4, but T3 contains only 75% as 
much iodine for its synthesis [7]. TSH is usually 
inversely correlated with T4 but not with T3, sug-
gesting tighter control of TSH secretion by T4 
than by T3 [17, 18]. In chronic severe ID, most 
individuals have increased TSH concentrations, 
and nearly all develop goiter [19]. Finally, when 
thyroidal iodine is exhausted, T4 and T3 fall, TSH 
sharply increases, and there is an increase in overt 
hypothyroidism [20].

 Goiter and Nodules

The relationship between iodine and risk for dif-
fuse goiter shows a U-shaped curve, with higher 
rates at deficient and excess intakes, while risk 
for nodular goiter is increased only at deficient 
intakes. In a 5-year, prospective study in three 
populations with mild ID, more-than-adequate 
iodine intake, or excessive iodine intake (median 

Table 2 Epidemiological criteria for assessing iodine 
nutrition based on median urinary iodine concentrations 
of school-age (6–12-year-old) children and adults, as well 
as pregnant and lactating women

Iodine intake Iodine nutrition
School-age children and adults

<20 μg/L Insufficient Severe iodine deficiency

20–49 μg/L Insufficient Moderate iodine 
deficiency

50–99 μg/L Insufficient Mild iodine deficiency

100–
299 μg/L

Adequate Optimal

>300 μg/L Excessive Risk of iodine-induced 
hyperthyroidism, 
autoimmune thyroid 
disease

Pregnant women

<150 μg/L Insufficient

150–
249 μg/L

Adequate

250–
499 μg/L

More than 
adequate

≥500 μg/L Excessive

Lactating women

<100 μg/L Insufficient

≥100 μg/L Adequate

Adapted from [2]
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UICs of 88, 214, and 634 μg/L, respectively) in 
China, the cumulative incidence of diffuse and 
nodular goiter was 7.1, 4.4, and 6.9% and 5.0, 
2.4, and 0.8%, respectively [21]. Another study in 
China found those consuming uniodized salt had 
a 25–36% higher risk of thyroid nodules com-
pared to those consuming iodized salt [22]. In a 
Danish study, among older women in an area 
where iodine intake was moderately low, 33% 
had an enlarged thyroid, 24% had palpable goiter, 
and 6% had undergone goiter surgery [23]. After 
4  years of salt iodization in Denmark, in two 
regions with mild and moderate ID, thyroid size 
decreased in all age groups with the greatest 
decrease in the area with moderate ID [24, 25]. In 
cross-sectional surveys in Italy before and after 
introduction of iodized salt, goiter rate was lower 
after iodization due mainly to less diffuse goiter 
(10.3% vs. 34.0%), while nodular goiter fell in 
individuals aged 35 years or younger (3.8% vs. 
11.3%) but was not changed at older ages [26].

 Hyperthyroidism

Populations with mild to moderate ID typically 
have higher rates of hyperthyroidism and lower 
TSH compared to populations with sufficient 
intakes. Danish adults with deficient iodine 
intakes (≈40–70 μg iodine/day) had a 2.3 higher 
lifetime risk for hyperthyroidism compared to 
Icelanders with excessive intakes (≈400 μg/day): 
in Denmark the most common cause was MNTG 
in older adults, while in Iceland most cases were 
Graves’ disease in younger adults [27]. MNTG 
develops in areas of ID because ID promotes 
growth and mutagenesis of autonomous thyro-
cytes that produce high amounts of thyroid hor-
mone [28]. Comparing Danish adults with mild 
versus moderate ID before iodization, there was 
more hyperthyroidism in those with moderate ID 
(96.7 vs. 60.0 per 100, 000 person-years) mainly 
due to an 87% higher rate of MNTG in those with 
moderate ID, while the incidence of Graves’ dis-
ease was comparable [29]. In populations with 
moderate ID, there are higher incidences of soli-
tary toxic adenoma [30] and amiodarone-associ-
ated hyperthyroidism [31].

Increasing iodine intakes in populations with 
ID typically increases the incidence of hyperthy-
roidism, particularly if the level of iodine fortifi-
cation is high and the ID was severe [32, 33]. 
Older adults with nodular thyroid disease are at 
greatest risk; although most are euthyroid pre-
iodization, they may have radioactive iodine 
uptakes that are not suppressible and low serum 
TSH which does not respond to thyrotropin-
releasing hormone [34]. However, the increase in 
hyperthyroidism after introduction of iodine is 
transient because iodine sufficiency lowers the 
future risk of developing autonomous thyroid 
nodules. In Switzerland, in the first 2 years after 
the iodine content of salt was raised from 7.5 to 
15  ppm, the incidence of toxic nodular goiter 
rose by 12% but then fell to a stable level of only 
25% of the initial incidence [35]. A Danish study 
compared hyperthyroidism before and 4  years 
after salt iodization and reported 50% lower rates 
of subclinical hyperthyroidism post-iodization 
and a trend toward lower rates of overt hyperthy-
roidism [36].

 Hypothyroidism

The prevalence of hypothyroidism is higher in 
areas with severe ID than in areas of optimal 
iodine intake. In contrast, in mild to moderate ID, 
prevalence of subclinical and overt hypothyroid-
ism is typically lower than in areas of sufficient 
iodine intake [27]. In two regions of Denmark 
with mild versus moderate ID before salt iodiza-
tion, the incidence of autoimmune hypothyroid-
ism was ≈50% lower in moderate ID [23]. In the 
5-year prospective Chinese study described 
above in cohorts with deficient, sufficient, and 
excessive iodine intake, the cumulative incidence 
of overt hypothyroidism did not differ (0.2, 0.5, 
and 0.3%), but there was an increase in subclini-
cal hypothyroidism with sufficient and excessive 
intakes (0.2, 2.6, and 2.9%) [37]. In Danish adults 
before and 4  years after iodized salt was intro-
duced in two regions with previous mild and 
moderate ID, TSH was 16% higher in both 
regions across all ages post-iodization, and there 
was a modest overall increase in overt hypothy-
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roidism only in the region with previous mild ID 
[38]. Over the first 7 years after introduction of 
salt iodization in Denmark, there was an increase 
from 38.3 to 47.2/100,000/year in the incidence 
rate of hypothyroidism, mainly in young and 
middle-aged adults [39]. It is uncertain if the 
higher TSH in populations with excessive iodine 
intake is explained by an increase in TSH only in 
people with some degree of thyroid autoimmu-
nity (see next section) or if it is a more general 
phenomenon of iodine-impaired thyroid function 
[40]. Although individuals with autoimmune thy-
roiditis may develop hypothyroidism when 
exposed to iodine [41], many individuals living 
in sufficient iodine intake areas with increased 
TSH do not have thyroid antibodies [42].

 Thyroid Autoimmunity

Cross-sectional studies have shown that thyroid 
autoimmunity is higher in populations with defi-
cient iodine intakes [43, 44] possibly because indi-
viduals with nodular goiter, which is more 
common in ID, often have circulating thyroid anti-
bodies. However, an increase in iodine intake may 
also increase thyroid autoimmunity [45, 46] pos-
sibly through increasing antigenicity of Tg [47]. In 
Danish adults before (median UIC 61 μg/L) and 
4–5  years after salt iodization (median UIC 
101 μg/L), the rate of TPO antibodies > 30 U/mL 
increased from 14 to 24%, and the rate of Tg anti-
bodies>20 U/mL increased from 14 to 20%; the 
strongest increase was in young women and at low 
titers [48]. In the 5 year prospective Chinese study 
described above that compared cohorts with defi-
cient, moderate, and excessive iodine intake, the 
cumulative incidence of autoimmune thyroiditis 
was 0.2, 1.0, and 1.3%; however, there was no sig-
nificant difference in the incidence of TPO anti-
bodies or in Graves’ disease [37, 49].

 Thyroid Cancer

The overall incidence of thyroid cancer in popu-
lations does not appear to be influenced by the 
usual range of iodine intakes from dietary sources 

[50]. Recent systematic reviews have found no 
association of dietary iodine intake with thyroid 
cancer [50, 51]. Although ecological studies have 
suggested an increase in papillary cancer after 
the introduction of iodized salt to populations 
[50], there are many confounding factors that 
could account for this association, including 
increasing diagnostic intensity and other environ-
mental factors [50]. Differences in iodine intake 
between regions may affect the distribution of 
thyroid cancer subtypes: in areas of optimal 
iodine intake, there appear to be fewer follicular 
thyroid cancers (FTC) but more papillary thyroid 
cancers (PTC) [52–54]. A review reported the 
ratio of PTC to FTC was 3.4:1–6.5:1 in areas of 
sufficient iodine intake versus 0.19:1–1.7:1 in ID 
[54]. Chronic severe ID is a risk factor for follicu-
lar thyroid cancer and anaplastic thyroid cancer 
[55]. This may be explained by the fact that goi-
ter and nodules are major risk factors for thyroid 
cancer in both men and women [56]: a pooled 
analysis found a relative risk of 5.9 (95% CI 4.2–
8.1) in individuals with a history of goiter [57].

 Conclusions

In populations, as iodine intakes increase from 
severe ID to mild ID and then to iodine suffi-
ciency, there is a shift from excess hypothyroid-
ism to excess hyperthyroidism, which is transient, 
and then a small shift back toward excess mild 
hypothyroidism. In severe ID there is more hypo-
thyroidism because, despite an increase in thy-
roid activity to maximize iodine uptake and 
recycling, there is not enough iodine available to 
maintain thyroid hormone synthesis. In mild to 
moderate ID, the thyroid gland is able to 
 compensate for the low iodine intake by increas-
ing thyroid activity, and this maintains euthyroid-
ism but at a price: in some individuals, chronic 
thyroid stimulation will lead to thyroid nodular-
ity and autonomy. This increase in nodularity 
subsequently increases risk of hyperthyroidism if 
iodine intakes increase. However, this is tran-
sient, and when iodine sufficiency normalizes 
thyroid activity, this results, in the long term, in 
reduced nodularity and autonomy. The modest 
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increase in mild hypothyroidism that occurs with 
sufficient iodine intakes may be due to thyroid 
autoimmunity and may also be transient, but 
more studies are needed.

 Research Needs

Future research needs include (1) prospective 
cohort studies of population iodine intake and 
long-term risk of thyroid disorders, (2) a better 
definition of the ranges of deficient iodine intakes 
that increase risk of thyroid disease in popula-
tions, and (3) the potential modifying role of 
genetic and environmental factors (pollutants, 
other micronutrient deficiencies).
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Selenium Deficiency and Thyroid 
Disease

Margaret P. Rayman and Leonidas H. Duntas

 Introduction

Selenium (Se) is an essential nutrient for human 
health [1]. As selenocysteine (Sec), in humans it 
is incorporated into 25 selenoproteins that have a 
wide range of functions, ranging from antioxi-
dant and anti-inflammatory agents to the produc-
tion of active thyroid hormone [1, 2]. An 
indication of the importance of Se to the thyroid 
is the fact that it contains the highest concentra-
tion of Se in the human body and is able to retain 
that level of Se under conditions of severe defi-
ciency which cause its depletion from many other 
tissues [3].

 Selenoproteins in the Thyroid

A number of selenoproteins are expressed in thy-
rocytes, e.g. the deiodinase isozymes (DIO1, 
DIO2, though not DIO3), members of the gluta-
thione peroxidase family (GPX1, GPX3, GPX4), 

the thioredoxin reductases (TXNRD1 and 
TXNRD2), SEP15, selenoprotein P (SELENOP) 
and selenoproteins M and S [4]. The selenopro-
teins listed below play particularly important 
roles.

The deiodinases: DIO1 and DIO2 can activate 
thyroxine (T4) by transforming it into tri-iodo-
thyronine (T3) through removal of the 5′-iodine, 
while DIO1 and DIO3 are able to prevent T4 
from being activated by converting it to inactive, 
reverse T3 [5] (Fig. 1). DIO3 can also inactivate 
T3 by 5-deiodination to thyronamines (T2). 
Outside the thyroid, DIO1 is predominantly 
expressed in the liver, kidney and pituitary, while 
DIO2 is expressed in the central nervous system, 
pituitary, heart, bone and brown adipose tissue 
and is largely responsible for local conversion of 
T4 to T3 in target tissues [2]. DIO3 is not present 
in the thyroid but is found in foetal tissue and in 
the placenta and central nervous system in adults; 
it protects sensitive cells from thyrotoxic concen-
trations of active T3 [2, 6].

It is of interest that a common genetic varia-
tion in DIO1 is associated with serum concentra-
tion of free T4, though the effect is modest [7, 8]. 
Of greater relevance to clinicians is the rs225014 
polymorphism in DIO2. The rarer CC genotype 
of this polymorphism, present in 16% of the 
Weston Area T4 T3 Study (WATTS) population, 
was associated with worse baseline general 
health questionnaire scores in patients on T4 (CC 
vs. TT genotype, 14.1 vs. 12.8, P  =  0.03) [9]. 
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Furthermore, patients with this genotype showed 
greater improvement on combined T4/T3 than on 
T4 therapy. The lack of effect on serum thyroid 
hormone levels implies that this is a local effect 
in the brain.

The glutathione peroxidases: GPX3 is 
secreted at the apical side of the thyrocyte mem-
brane where it degrades excess hydrogen perox-
ide (H2O2) that has not been used by thyroid 
peroxidase (TPO) for the iodination of tyrosyl 
residues of thyroglobulin or for iodotyrosine 
coupling [10] (Fig. 2). GPX1 protects the intra-
cellular compartment from excessive H2O2 that 
may diffuse into the thyrocytes, while GPX4 can 

deal with lipid hydroperoxides in the mitochon-
dria [6, 10]. Low expression and genetic vari-
ance in GPX3 have been linked to differentiated 
thyroid cancer [4, 11], as discussed in more 
detail below.

The thioredoxin reductases: TXNRD1 and 
TXNRD2 help with intracellular redox control 
and antioxidant defence within the thyrocyte 
[10]. Recent data also suggest a potential role for 
TXNRD1 in increasing TSH-dependent sodium-
iodide symporter (NIS) expression, which may 
be particularly important during recovery from 
iodide excess [12, 13].

Selenoprotein S (SELENOS): SELENOS is 
among a number of selenoproteins located in the 
endoplasmic reticulum (ER); it is involved in the 
control of the inflammatory response in the ER 
[14]. It protects against transcription of several 
genes encoding pro-inflammatory cytokines that 
are involved in the pathogenesis of Hashimoto’s 
thyroiditis [14]. A polymorphism in SELENOS 
that affects the risk of Hashimoto’s thyroiditis 
will be briefly discussed in the relevant section 
below.

Thyroxine, T4, pro-hormone
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Fig. 1 Major pathways of thyroid hormone deiodination [5]

2H+ + 2e (from glutathione)

glutathione peroxidase
(ionised at biological pH)

E-Se- + H2O2 [E-SeO]- + H2O

Fig. 2 GPXs catalyse the removal of H2O2 (and lipid 
hydroperoxides) converting it to harmless water, thus pro-
tecting the thyroid from excessive exposure to H2O2

M. P. Rayman and L. H. Duntas



111

 Effects of Se (Selenoprotein) 
Deficiency

Deficiency of Se (or selenoproteins) has a num-
ber of adverse effects on the thyroid, as shown in 
Table 1. Each of these thyroid conditions will be 
discussed separately, but we will start with a 
recent study that illustrates the effect of Se defi-
ciency on multiple thyroid conditions 
simultaneously.

 Higher Prevalence of a Number 
of Thyroid Diseases Associated 
with Low Population Se Status

Se status in China varies from high to low with a 
band of Se deficiency ranging from the north-east 
to the south-west of the country [15]. However, 
remarkably, areas of very different Se content in 
soil and foodstuffs coexist in Shaanxi Province, 
Western China, to the extent that both Se defi-
ciency diseases and selenosis have been observed 
[16]. Ziyang county is an area of high-soil-Se 
concentration, while by contrast, Ningshan 
county is a low-soil-Se area, these differences 
being reflected in the Se content of crops. As 
these populations had high genetic, environmen-
tal and lifestyle similarities and comparable 
iodine status, a large-scale, population-based, 
cross-sectional investigation was carried out in 

these two counties to investigate the effect of Se 
status on thyroid disease [16]. Ziyang county was 
defined as “adequate Se” and Ningshan county as 
“low Se”, in line with earlier findings on Se status 
in different locations within Shaanxi province.

A total of 6152 participants from the ade-
quate- and low-Se counties were recruited to the 
study. They completed demographic and dietary 
questionnaires and underwent physical and thy-
roid ultrasound examinations. Serum samples 
were analysed for thyroid function parameters 
and Se concentration. Serum Se was compared 
between different demographic, dietary and life-
style categories in the two counties. The relation-
ship between Se status, dietary factors and 
pathological thyroid conditions was explored by 
logistic regression adjusted for potential con-
founders, i.e. occupation, education, sex, age, 
smoking and alcohol intake.

Complete data sets were available from 3038 
adequate-Se and 3114 low-Se participants in 
whom median (IQR) Se concentrations differed 
almost two-fold [103.6 (79.7, 135.9) vs. 57.4 
(39.4, 82.1) μg/L; P = 0.001]. The prevalence of 
pathological thyroid conditions was significantly 
lower in the adequate-Se than in the low-Se 
county (18.0% vs. 30.5%; P  <  0.001). Higher 
serum Se was associated with lower odds [OR 
(95% CI)] of enlarged thyroid [0.75 (0.59, 0.97)], 
hypothyroidism [0.75 (0.63, 0.90)], subclinical 
hypothyroidism [0.68 (0.58, 0.93)] and autoim-
mune thyroiditis [0.47 (0.35, 0.65) (raised thy-
roid peroxidase antibodies, TPO-Abs)] [16].

Readers may be surprised by the high level of 
pathological thyroid conditions in this study. 
However, it should be noted that 69% of the par-
ticipants were female and that the iodine status 
was “more-than-adequate” [17] in both counties 
(urinary iodine concentration in urban residents 
of both counties was 224  μg/L, while in rural 
residents it was 271 μg/L in Ziyang and 240 μg/L 
in Ningshan) [16]. More-than-adequate iodine 
status has been associated in previous studies 
with a higher risk of autoimmune thyroiditis, 
hypothyroidism and goitre [18, 19].

This study clearly shows an association 
between low-Se status and increased risk of a 
number of different thyroid pathologies, most 

Table 1 Effects of Se (selenoprotein) deficiency

Thyroid condition/s
Numbered 
references

Multiple conditions: enlarged 
thyroid, hypothyroidism, subclinical 
hypothyroidism, autoimmune 
thyroiditis

[15, 16, 18, 19]

Myxoedematous cretinism [2, 10, 20]
Effects of selenoprotein deficiency 
resulting from SECIS-binding 
protein 2 (SBP2) mutations

[21–28]

Enlarged thyroid/goitre [30–39]
Autoimmune thyroid disease/
Graves’ disease

[40–54]

Autoimmune thyroid disease/
Hashimoto’s thyroiditis

[40, 42, 55–62, 
66–70]

Thyroid cancer [4, 11, 71–75, 
78–81]
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notably autoimmune thyroiditis, where the risk 
was more than double in the low-Se than in the 
adequate-Se county. It also suggests that having 
an adequate-Se status possibly protects the thy-
roid in a situation of more-than-adequate iodine 
intake. Increasing Se intake may have the poten-
tial to reduce risk in other areas of low-Se status 
which exist not only in China but in many other 
parts of the world.

 Myxoedematous Cretinism

The myxoedematous form of cretinism, which 
presents with severe hypothyroidism, mental 
retardation, developmental retardation and myxo-
edema, was first characterised in Northern Zaïre 
(now the Democratic Republic of Congo) [2]. 
Numerous studies have shown that combined 
iodine and Se deficiencies in conjunction with 
exposure to goitrogens precipitate this condition 
in which an inadequate intake of iodine and 
reduced thyroid hormone biosynthesis lead to 
enhanced thyroid stimulation by TSH [10]. 
Enhanced thyroid-stimulating (TSH) receptor 
activation stimulates the production of H2O2 by 
the dual oxidases (Duox) [10]. In the absence of 
adequate iodide for thyroid hormone synthesis, 
H2O2 accumulates, causing damage to thyrocytes 
and necrosis and fibrosis of thyroid tissue [10]. 
The severe deficiency of Se in this region means 
that GPX activity is low, inhibiting the degrada-
tion of excess H2O2, which results in inadequate 
protection of thyrocytes and follicular structure 
[10]. Simultaneous goitrogen exposure may well 
exacerbate this situation by (1) inhibiting iodide 
uptake via the NIS (in the case of thiocyanate 
from improperly prepared cassava, a staple in this 
region) and/or (2) reducing TPO activity via fla-
vonoids present in soy and millet [20].

Though this is an extreme example of severe 
deficiency of both iodine and Se and is unlikely 
to be encountered in clinical practice outside 
Africa, there is a lesson here that is relevant to 
any situation of iodine deficiency, i.e. that an ade-
quate intake of Se is needed to protect an iodine-
deficient thyroid from excessive levels of reactive 
oxygen species.

 Mutations in the SECIS-Binding 
Protein 2 (SBP2)

Mutations in selenocysteine-binding protein 2 
(SBP2), though rather rare, interfere with the 
synthesis of the selenoproteins, leading to adverse 
health effects as described below. SBP2 is a 
trans-acting factor crucial for the insertion of Se, 
as Sec, at the active centre of the 25 selenopro-
teins [21]. Cis-acting sequences in the mRNA 
and novel trans-acting factors exclusive to Sec 
incorporation are required for the translation of 
selenoprotein mRNAs [22]. Selenoprotein syn-
thesis is highly dependent on Se availability, and 
selenoprotein expression obeys a strict hierarchy, 
particularly when Se intake is limited. Sec incor-
poration necessitates UGA codons in selenopro-
tein mRNAs being decoded as Sec; however, the 
decoding of UGA as Sec involves the reprogram-
ming of translation, since UGA is normally read 
as a stop codon. By contrast, the Sec insertion 
machinery depends on additional factors, such as 
nuclear genome-encoded transfer RNA 
(tRNA[Ser]Sec), cis-acting sequences in the 
mRNA of each selenoprotein and, among several 
other proteins, ribosomal protein L30 and soluble 
liver antigen protein [22].

The human SBP2 gene, which is located on 
chromosome 9, contains 17 exons, encodes 854 
amino acids and plays a crucial role in selenopro-
tein synthesis [23]. Deficiency of SBP2 results in 
decreased concentrations of selenoenzymes, 
including antioxidant selenoenzymes and 
SELENOP, causing increased reactive oxygen 
species (ROS) in peripheral blood cells and 
immune deficits. In patients with global seleno-
protein deficiency due to defective SBP2, many 
features, among them photosensitivity and age-
dependent hearing changes, are attributed to 
ROS-mediated damage following the loss of anti-
oxidant defence [24]. A reduction in selenopro-
teins in peripheral blood cells is associated with 
abnormal mononuclear cell cytokine secretion, 
T-lymphocyte proliferation and telomere short-
ening. Of note, however, is the observation made 
in mice lacking the antioxidant selenoenzyme 
GPX1 that elevated ROS led to enhanced sys-
temic and cellular insulin sensitivity [25].
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Inherited defects in humans have been identi-
fied in six families having mutations in SBP2, with 
three boys of the first three families, ranging in age 
from 6 to 14.5 years, presenting characteristics of 
growth retardation and thyroid dysfunction with 
low serum T3, elevated T4 and marginally higher 
levels of TSH [1, 25]. The picture of SBP2 gene 
mutations among these identified families is vari-
able, with a 12-year-old girl of the fourth family 
presenting with delayed maturation, congenital 
myopathy and bilateral sensorineural loss, while a 
2-year-old child of the fifth family had global 
development delay together with multiple gastroin-
testinal symptoms, such as eosinophilic colitis, 
fasting non-ketotic hypoglycemia with low insulin 
levels, muscle weakness and slight bilateral high-
frequency hearing loss [26]. The proband of the 
sixth family, aged 35 years, presented with primary 
infertility, skin photosensitivity, fatigue, muscle 
weakness, severe Raynaud’s disease (digital vaso-
spasm), impaired hearing and rotatory vertigo.

Hence we see that mutations of SBP2 result in 
a multisystem disorder with impaired biosynthe-
sis of various selenoproteins, while the different 
manifestations of symptoms, even among mem-
bers of the same family harbouring the same 
mutation, highlight the hierarchical regulation in 
individual selenoprotein synthesis and expres-
sion that is differentially affected by the cellular 
Se content [25, 27] (Table 2).

Se supplementation in either an organic or an 
inorganic Se form was conducted in SBP2 defi-
cient subjects of the same family, three affected 
and two unaffected siblings, for the period of 
1 month. It was observed that Se-rich yeast ele-
vated serum Se concentrations in all subjects 
regardless of genotype; however, while sodium 
selenite clearly raised SELENOP concentrations 
in the unaffected subjects, this occurred to a 
lesser extent among the affected subjects. 
Notably, in the SBP2-deficient individuals, nei-
ther of these two Se forms was able to elevate 
GPX activity nor to rectify abnormalities in thy-
roid function. The latter result suggests that there 
was no positive impact on impaired deiodinase 
expression and that when there is a regular ade-
quate daily Se intake, Se is not a limiting factor in 
SBP2-deficient individuals [28].

Recently, a human tRNA[Ser] Sec mutation 
was identified in a proband presenting with low 
plasma Se concentration and a variety of symp-
toms, including abdominal pain, fatigue and 
muscle weakness [29]. The mutation, mediated 
by reduced expression and diminished 
2′-O-methylribosylation at uridine 34 in mutant 
tRNA[Ser]Sec, caused a marked reduction in 
expression of stress-related selenoproteins, but 
not of the antioxidant selenoenzymes. The study 
of this mutation underscores the importance of 
tRNA modification for the synthesis of seleno-
proteins and indicates that a human selenocyste-
ine tRNA defect selectively disrupts selenoprotein 
synthesis; it moreover identifies tRNA[Ser]Sec 
as a potential therapeutic target in these cases 
[29].

 Selenium and Goitre

Chronic iodine deficiency (ID) constitutes the 
main environmental factor in the aetiology of 
goitre, since it causes a compensatory increase 
of TSH following the decreased production of 
T4 and T3, which results in thyroid gland 
enlargement. By contrast, the pathogenesis of 
nodular goitre is linked to a large number of 
 environmental non-iodine-related factors, in 
conjunction with genetics [30]. Among the envi-

Table 2 Typical laboratory and clinical findings caused 
by mutations in the SBP2 gene affecting selenoprotein 
synthesis in humans and mice

Selenoprotein Peripheral tissues
DIO T4 ↑, T3 ↓, rT3 ↑, TSH n (↑)
SELENON Muscular dystrophy
GPX Increased cellular ROS generation
TXNRD Reduced redox activities
SELENOP Reduced transport and availability 

of selenium
SELENOF Protein folding and endoplasmic 

reticulum stressSELENOM
SELENOS
SectRNA ([Ser]
Sec)

SELENOP ↓, Se ↓
Glutathione s-transferase ↓
Hepatocellular necrosis

The adapted selenoprotein gene nomenclature is accord-
ing to Gladyshev et al. [99]
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ronmental factors associated with incidence of 
goitre, Se deficiency is prominent, as it has been 
strongly implicated in the genesis of the disease 
because of its exacerbation of iodide toxicity [2]. 
The associations between serum Se and thyroid 
volume as well as the association between serum 
Se concentration and risk for goitre have been 
analysed in participants of two cross-sectional 
studies carried out before (n  =  405) and after 
(n = 400) the introduction of iodine fortification 
in Denmark [31]. Se was found to be signifi-
cantly negatively associated with thyroid volume 
(P = 0.006), while a low-Se status significantly 
heightened the risk for thyroid enlargement 
(P  =  0.007) and was also likely to elevate the 
potential for development of multiple nodules 
(P = 0.087) [31].

A clinical study in Africa (Uganda) revealed 
that Se deficiency, despite extensive iodised salt 
coverage of about 95%, was associated with goi-
tre persistence [32]. Serum Se concentration was 
significantly higher in non-goitrous controls than 
in goitrous patients, and serum Se greater than 
102.8 μg/L had a statistically significant protec-
tive effect against goitre.

In Isfahan, Iran, urinary iodine concentration 
(UIC) and plasma Se were measured in 2331 
schoolchildren [33]. Overall, 32.9% of the chil-
dren had goitre. Children who were goitrous had 
lower plasma Se than non-goitrous children 
(mean ± SD, 66.86 ± 21.82 and 76.67 ± 23.33 μg/L, 
respectively, P  =  0.006). This may be linked to 
decreased defence mechanisms due to reduced or 
inactivated antioxidant enzyme expression, aggra-
vated oxidative stress and inflammation, which, 
when coinciding with severe iodine deficiency, 
lead to necrosis. The latter has been corroborated 
by other studies showing no association of serum 
Se with goitre in borderline iodine-sufficient areas. 
Meanwhile, the fact that in one iodine-sufficient 
area, there was no association between serum Se 
and either thyroid volume or goitre [34, 35] further 
underlines the predominant role of iodine defi-
ciency in goitrogenesis and the important role that 
Se status may have in various parts of the world in 
states of iodine deficiency and excess.

In an experimental study in rats, it was dem-
onstrated that when both iodine and Se are defi-

cient, iodine overload exerts diffuse toxicity in 
the thyroid gland with necrosis or inflammatory 
reaction. In iodine-deficient, Se-adequate thy-
roids, the tissue resumed its normal appearance, 
while in Se deficiency, the inflammation evolved 
to fibrotic tissue: 15 days after the toxic iodine 
overload, the connective tissue volume was twice 
the control value [36]. These results imply that Se 
deficiency combined with iodine deficiency may 
increase necrosis, induce fibrosis and impede 
restorative mechanisms. Furthermore, while in 
Se-deficient and control groups, epithelial cells 
and fibroblast-proliferation indices were compa-
rable [37], in Se-deficient thyroids the inflamma-
tory reaction was more prominent and was 
induced by macrophages in which transforming 
growth factor beta (TGF-β) immunostaining was 
strongly positive.

A lack of iodine induces oxidative stress 
which, depending on duration and intensity, can 
result in DNA damage and mutagenesis, thereby 
providing a platform for the frequent nodular 
transformation of endemic goitre [38]. Se inad-
equacy aggravates oxidative stress and limits 
H2O2 degradation, since it reduces the concentra-
tion of the enzyme that degrades excessive H2O2 
during thyroid hormone synthesis, i.e. GPX3 
[39]. Though some H2O2 is essential for T4 syn-
thesis, uncontrolled generation of H2O2 may 
result in its being released into the thyrocytes, 
leading to destruction of the parenchyma and 
necrosis [39] (Fig. 3). However, it has been pos-
tulated that Se, in the form of GPX, is capable of 
breaking down H2O2 excess and, as TXNRD, is 
able to prevent cell damage and necrosis of 
thyrocytes.

 Selenium and Autoimmune Thyroid 
Disease (AITD)

Se and iodine are essential cofactors in the devel-
opment of autoimmune thyroiditis (AIT), a path-
ological condition that includes Graves’ disease 
(GD), Graves’ ophthalmopathy (GO), 
Hashimoto’s thyroiditis (HT) and post-partum 
and painless thyroiditis [40, 41]. GD, which is 
characterised by autoantibodies directed against 
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the TSH receptor (TRAb), is the most common 
form of hyperthyroidism in younger patients.

 Selenium and Graves’ Disease
It has been suggested that the mechanism by 
which Se deficiency leads to the exacerbation 
of GD might be linked to a lack of selenopro-
tein antioxidant-defence mechanisms, in par-
ticular those of the GPXs and TXNRDs, which, 
in Se sufficiency, protect the thyroid gland 
from the deleterious effect of peroxides pro-
duced during the synthesis of thyroid hormones 
[42]. There is evidence that Se supplementa-
tion in GD, which is characterised by consider-
able oxidative stress, decreases that stress 
owing to the ability of GPX to remove hydro-
gen peroxide and lipid hydroperoxides. It is of 
special note that TXNRD1 has been reported 
increased in GD, revealing its involvement in 
the pathogenesis of the disease [43]. Based on 
the above observations, a study was conducted 
in New Zealand with the aim of investigating 
the effects of excess iodine intake, as iodate, 
on thyroid function and Se status [44]. The 
results showed that excess iodate induced 
hypothyroidism in a number of participants 

and hyperthyroidism in several others for about 
4  weeks. Furthermore, while excess iodate 
reduced whole-blood GPX (WBGPX) activity, 
Se supplementation increased plasma Se and 
slightly elevated WBGPX [44].

Serum Se was found to be lower in patients 
with newly diagnosed GD than in controls 
(mean ±  SD: GD, 89·9 ±  18·4  μg/L; controls, 
98·8  ±  19·7  μg/L; P  <  0·01); this was subse-
quently confirmed in a multivariate logistic 
regression analysis model [45]. By contrast, in a 
linear model, Se was similar in patients with 
autoimmune hypothyroidism (AIH) and controls 
(P = 0·86). It is moreover noteworthy that in the 
multivariate analysis, Se was marginally 
decreased in patients with AIH compared to con-
trols [45]. Concomitantly, in 47 patients with GD 
and GO, markers of oxidative stress, such as 
H2O2, lipid hydroperoxides (ROOH), thiobarbi-
turic acid-reacting substances (TBARS) and 
ceruloplasmin (CP), superoxide dismutase 
(SOD) and catalase (CAT), were found to be 
increased, whereas GPX and glutathione reduc-
tase activities were decreased [46]. These  findings 
clearly point to the presence of oxidative metabo-
lism and excessive ROS generation in both GD 

TSH

T4

H2O2

H2O2

H2O2

H2O2

Selenium
deficiency

Selenoproteins
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Iodine
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Fig. 3 Iodine deficiency results in lower T4 and T3 and 
increased TSH, which stimulates hydrogen peroxide 
(H2O2) generation, the substrate for the synthesis of thy-
roxine. In the state of selenium deficiency, depending also 

on the degree of deficiency, levels of selenoproteins, e.g. 
GPX1 and GPX3, gradually decrease, followed by massive 
diffusion of H2O2 into the thyroid parenchyma, inflamma-
tion and consequently its destruction (see also [39])
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and GO and are supported by other studies show-
ing that superoxide radical production stimulates 
proliferation of orbital fibroblasts and promotes 
the synthesis of glycosaminoglycans which, by 
attracting water, induce periorbital edema [47]. 
Importantly, Se deficiency increases oxidative 
stress, which may cause DNA damage (Fig. 4).

Smoking has been strongly associated with 
GO, which, by increasing the production of ROS, 
induces oxidative stress and is thus substantially 
involved, along with other factors, in occurrence 
and maintenance of the disease. In a retrospective 
analysis to determine the impact of disease sever-
ity on Se status in 84 consecutive GO patients, Se 
and SELENOP concentrations were measured 
before treatment commencement and were com-
pared with a clinical activity score (CAS), the 
severity of eye changes (NOSPECS) status and 
the concentrations of TRAb [48]. Serum Se and 
SELENOP levels did not differ between GO 
patients with active versus inactive or mild versus 
severe disease activity, indicating that, despite Se 
status being relatively low, disease severity or 
activity did not seem to directly affect Se or 
SELENOP concentrations. Se supplementation 
decreases the formation of pro-inflammatory 

cytokines; while acting in synergy with antithy-
roid drugs, it contributes to stabilising the auto-
immune process in GD and alleviating the 
symptoms in GO [49]. Better disease control has 
been reported by administering a combination 
treatment of antithyroid drugs with a fixed com-
bination of antioxidants in GD patients [50]. 
Recently, a small prospective study performed in 
China in 41 recurrent GD patients documented a 
positive effect of Se supplementation combined 
with methimazole (MMI) treatment for 6 months 
in terms of rate of remission and TRAb decrease 
[51]. By contrast, in another study carried out in 
Italy in 30 GD patients over a period of 3 months, 
no effect of co-adjuvant administration of Se 
with MMI was observed [52].

More importantly, encouraging results were 
obtained from a recent large, multicentre, ran-
domised, placebo-controlled clinical trial in 
patients with mild GO. This clearly demonstrated 
the beneficial effects of Se supplementation, in 
the form of selenite, on the patients’ quality of 
life and overall ophthalmic involvement, while 
progression to more severe forms of GO was 
diminished [53].

In an effort to elucidate which cellular mecha-
nisms may be affected by Se in GO, cultured 
orbital fibroblasts from GO patients were treated 
with H2O2 to induce oxidative stress, following 
pre-incubation with selenomethylselenocysteine 
(SeMCys) [54]. Incubation with SeMeCys 
reduced hyaluronic acid (HA) production and led 
to inhibition of the increase in endogenous cyto-
kines, namely, tumour necrosis factor-alpha 
(TNFα), interleukin-1 beta (ΙL1β) and interferon 
gamma (ΙFNγ), all of which rise with oxidative 
stress and are implicated in the pathogenesis of 
GO [54]. Thus there is evidence suggesting that 
Se supplementation may be beneficial in GD, 
especially in cases of mild-moderate GO, owing 
to its associated antioxidant and anti-inflamma-
tory effects.

 Selenium and Hashimoto’s Thyroiditis 
(HT)
AITD, including its most common form HT, is on 
the increase worldwide. It is considered to be 
caused by multiple environmental factors trigger-

Selenium
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Antioxidant
activity
(GPXs)
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(H2O2, . O2)
generation
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Fig. 4 Selenium deficiency decreases antioxidant activity 
of glutathione peroxidases (GPXs), facilitating the gener-
ation of reactive oxygen species (ROS) that may induce 
DNA damage
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ing autoimmune response in genetically suscep-
tible individuals, though the exact mechanisms 
are as yet not well characterised [55, 56]. 
Meanwhile, it has been determined that at least 
seven genes are involved in the aetiology of 
AITD [56]; the first AITD gene discovered, 
HLA-DR3, is associated with both GD and 
HT.  Nevertheless, there is mounting evidence 
that nutritional factors and environmental pollu-
tion by metals and chemicals (e.g. organochlo-
rines, pesticides) could be important factors in 
the disturbing increase in this disease.

In the context of nutritional factors and HT, 
apart from iodine, Se is the most important for 
several reasons: (a) selenoenzymes are indis-
pensable for thyroid hormone metabolism, (b) 
the redox and antioxidant properties of the sele-
noproteins protect the thyroid gland from toxic 
derivatives of intrathyroid hormone metabolism 
and, (c) it possesses extensive anti-inflammatory 
effects through the selenoproteins, notably 
SELENOS which is involved in the control of 
the inflammatory response in the ER [57]. In a 
Portuguese study, the SELENOS −105G/A pro-
moter polymorphism (rs28665122) was strongly 
associated with circulating levels of cytokines, 
such as IL-1β, IL-6 and TNF-α [14], that are 
known to be involved in HT pathogenesis. 
A-allele carriers of this polymorphism were 
more than twice as likely as GG-homozygotes to 
have HT; in male carriers, the risk was fourfold 
higher [14].

This awareness of the importance of Se has 
resulted in studies being carried out in numerous 
countries over the last 15  years supplementing 
Se, combined or not with LT4, in patients with 
HT (for reviews, see [58, 59]). The results are, 
however, inconclusive and several questions 
remain unresolved. In particular, one meta-analy-
sis concluded that Se supplementation is associ-
ated with a significant decrease in TPOAb titres 
at 3 months, that it improves mood and/or general 
well-being and that the different patterns of 
response that have been observed in the various 
studies on Se supplementation in HT might be 
linked to baseline TPOAb titres [60]. By contrast, 
another meta-analysis observed that though the 
changes from baseline were statistically signifi-

cant in several studies, the studies were at high 
risk of bias; hence the evidence for or against the 
efficacy of Se supplementation in patients with 
HT remains incomplete [61]. In a more recent 
meta-analysis of an HT population, though statis-
tically significant reduction of serum TPOAb lev-
els after 3, 6 and 12 months in the LT4-treated 
group and after 3  months in the untreated HT 
group was detected, there was no correlation with 
clinical measures [62].

These discrepancies in results could be 
attributed to the inhomogeneity of the studies 
as regards form and dose of Se applied, base-
line serum Se status, unknown iodine status in 
many areas, the latter possibly being of cardi-
nal importance, and single nuclear polymor-
phisms (SNPs) of selenoproteins, which, to our 
knowledge, have not thus far been addressed in 
any study.

The presence of thyroid autoantibodies is rela-
tively high in women of childbearing age [63]. 
One notable RCT has been carried out in pregnant 
women positive for TPOAbs. Up to 50% of such 
women develop post-partum thyroiditis of whom 
20–40% subsequently become hypothyroid [64]. 
In an Italian study, 151 TPO-Ab-positive women 
were randomly assigned to supplementation with 
200  μg (microgrammes) Se/d (as selenomethio-
nine) or placebo during pregnancy and the post-
partum period [65]. TPOAb titre fell significantly 
during gestation in both groups but the reduction 
was significantly greater in the selenium-supple-
mented group (P = 0.01) and remained so in the 
post-partum period (P  =  0.01) (see Fig.  5). 
Compared to women on placebo, those on sele-
nium had a significantly lower incidence of post-
partum thyroid disease (28.6% vs. 48.6%; 
P < 0.01) and permanent hypothyroidism (11.7% 
vs. 20.3%; P < 0.01). In contrast to women on pla-
cebo, ultra-sound echogenicity did not fall in those 
supplemented with selenium. At the end of the 
post-partum period, grade 2–3 thyroiditis had 
developed in 44.3% of women on placebo but only 
in 27.3% of women on selenium (P < 0.01) (105).

Though there is clear evidence that Se is 
involved in the pathogenesis of AIT and that Se 
supplementation may affect the natural course of 
the disease [66], the mechanisms are not yet well 
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defined. Experimental studies using a NOD.H-
2(h4) mouse model to induce iodine AIT demon-
strated reduced Treg cells and Foxp3 mRNA 
expression in splenocytes in the AIT group than 
in the controls (P  <  0.01) [67]. Moreover, Se 
administration, as sodium selenite, significantly 
increased the number of Treg cells and the 
expression of Foxp3 mRNA compared to the 
untreated AIT group (P < 0.05), decreased serum 
thyroglobulin antibody (TgAb) titres and reduced 
lymphocytic infiltration into the thyroid. It was 
therefore postulated that Se supplementation may 
restore normal levels of CD4(+)CD25(+) T cells 
by upregulating the expression of Foxp3 mRNA 
in mice with AIT [67].

In another experimental study using Lewis 
AIT rats with adequate iodine intake to investi-
gate the effects of different Se doses on the 
expression of Fas/FasL, an apoptosis protein, it 
was shown that high Se intake decreased the 
expression of Fas on thyrocytes and impeded the 
development of AIT [68].

Se plays an important role in thyroid pathol-
ogy, including AIT, it having firmly been estab-
lished over the past couple of decades that in 
areas with severe, and even mild, Se deficiency, 
an elevated incidence of thyroid disease is 
observed. This is due to reduced activity of 
Se-dependent GPX activity within thyroid cells, 
with Se-dependent enzymes also exerting modu-
lating effects on the immune system [69]. This 
fact has once more been confirmed in a recent 
large cross-sectional observational study in China 

described in the section “Higher Prevalence of a 
Number of Thyroid Diseases Associated with 
Low Population Se Status” [16]. A large number 
of studies presently exist demonstrating that the 
supplementation of this key trace element can 
have a significant effect on inflammatory activity 
in thyroid-specific autoimmune disease.

The above report and numerous others, as well 
as the apparent efficacy of Se administration in 
many cases of autoimmune thyroiditis, whether 
hypo- or hyper-, is reflected in a recent survey 
conducted by the Italian Associazione Medici 
Endocrinologi [70] regarding the clinical use in 
medical practice of Se. However, there is a caveat, 
since the results of the survey showed that while 
Se supplementation is often considered and used 
for clinical conditions, it is also sometimes pre-
scribed for conditions that may be beyond the 
recommendations of evidence-based medicine. It 
is therefore clear that more evidence from well-
organised studies and clinical trials is urgently 
required to determine precisely what role Se can 
play in the treatment of thyroid disease and par-
ticularly of AIT.

 Selenium and Thyroid Cancer

Though higher Se status has been associated with 
lower cancer risk and Se supplementation has 
reduced cancer incidence in some, but not all, 
studies [1, 71], the association of Se intake with 
thyroid cancer (TC) is uncertain, despite a strong 
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rationale for its effect. In a recent meta-analysis 
including eight eligible articles involving 1291 
subjects, patients with TC exhibited lower serum 
Se and magnesium concentrations but higher lev-
els of copper than the healthy controls [72]. 
Moreover, in a subgroup analysis, trans-regional 
differences of low Se in TC patients were detected 
in Norway and Austria but not in Poland, sug-
gesting that racial and other local factors might 
be involved in the development of TC [72]. On 
the other hand, in another study in Poland, Se and 
zinc levels were lower, whereas copper/Se and 
zinc/Se ratios were found to be higher in the tis-
sue of patients with TC than in patients with other 
thyroid diseases [73]. In addition, high levels of 
copper and zinc as well as of copper/Se and zinc/
Se ratios in the blood of those with TC may 
reflect tumour progression [73]. These results 
remain to be confirmed, while investigations are 
required to determine conclusively whether Se 
and/or zinc are implicated in carcinogenesis but 
also if they can be biomarkers of proliferation of 
disease.

The associations between Se concentrations 
and the diagnosis of TC were explored in an area 
of Se adequacy in the USA [74]. Sixty-five euthy-
roid patients were identified who were scheduled 
for thyroidectomy because of TC or suspicion of 
TC nodular disease. Se concentrations were not 
significantly lower in those with TC; however, 
serum Se concentration was inversely correlated 
with disease stage (p  =  0.011), suggesting a 
potential association. In a large prospective 
cohort of 566,398 men and women aged 
50–71 years in the National Institutes of Health-
American Association of Retired Persons Diet 
and Health Study, no association was found 
between dietary intake of Se and TC risk nor was 
there any evidence of an association between 
quintile of selenium intake and TC [75].

In relation to the above studies, it must be 
mentioned that finding a correlation of low Se 
with disease or disease stage is only to be 
expected as plasma Se will fall in inflammatory 
conditions owing to a reduction in SELENOP 
expression [76, 77].

There are a number of mechanisms by which 
Se could affect TC. Antioxidant selenoenzymes 

in the thyroid may protect thyrocytes from oxida-
tive damage from H2O2 generated there. The anti-
oxidant selenoenzyme, GPX3, appears to be 
particularly important in thyroid cancer. GPX3 
mRNA is highly expressed in thyrocytes, and its 
expression was found to be downregulated in five 
of six thyroid cancer samples but only in one of 
six matched normal controls [4]. Three SNPs in 
GPX3 were significantly associated with the risk 
of differentiated thyroid cancer in a study of 268 
cases and 378 controls from the Chinese popula-
tion in Taiwan [11].

Se, through the selenoproteins, may also be 
implicated as an antimutagenic agent in the pre-
vention of DNA damage and the malignant trans-
formation of normal cells by upregulating the 
activity of repair enzymes such as DNA glycosyl-
ases [78]. This has been observed in cultured 
cells and clinical studies, where Se supplementa-
tion reduces the frequency of DNA adducts and 
chromosome breaks and thereby likely decreases 
the occurrence of detrimental mutations that ulti-
mately contribute to carcinogenesis. Se can act 
via the selenoproteins, such as GPX and TXNRD, 
which play crucial roles in antioxidant defence 
and in maintaining the cellular reducing environ-
ment. Enhanced TNXRD activity could have a 
beneficial impact on oxidative stress, although 
possible adverse effects must be taken into 
account. Other functions of TXNRD may be rel-
evant to cell signalling pathways. However, the 
functional status of the TXNRD system during 
in vivo chemoprevention with Se needs to be bet-
ter defined, since in  vitro studies have shown 
inhibitory effects of Se on the TNXRD system 
correlated with growth inhibition by Se [79].

The first report showing that Se induced inhi-
bition of TC cell growth was reported in a study 
with follicular cell lines (FRO) [80]. FRO cells 
were treated with 150 μM seleno-l-methionine 
(SeMet) to assess viability over 3 days and exam-
ined for effects on the cell cycle. The treated cells 
exhibited an overexpression of growth arrest and 
DNA damage-inducible GADD34 and GADD153 
gene expression which was confirmed with 
RT-PCR and Western blot. It is therefore apparent 
that SeMet inhibits thyroid cancer-cell prolifera-
tion through a time-dependent upregulation of 
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the GADD family of genes and induces arrest in 
the S and G2/M phases of the cell cycle. Hence 
interventions with Se may have the potential to 
reduce the risk of TC incidence and mortality, 
particularly in patients with inadequate-Se status 
[81].

 Se Intake and Status Around 
the World

The intake of Se shows tremendous variability 
from one part of the world to another ranging 
from deficient (7 μg/d) to toxic (4990 μg/d) levels 
[1]. Thus, intake of Se is high in Venezuela, 
Canada, the USA and Japan, and much lower in 
Europe, particularly in Eastern Europe. China 
has areas of both selenium deficiency and excess. 
New Zealand intake, formerly recognised as low, 
has improved as a result of greater importation of 
higher-Se Australian wheat [1].

This geographical variability in intake and sta-
tus relates not only to the Se content of the soil on 
which crops and fodder are grown but to many 
other factors that determine the availability of Se to 
the food chain such as Se speciation, soil pH and 
organic matter content. Mean intake is some 
40 μg/d in Europe and 93 (F) to 134 (M) μg/d in the 
USA [1]. Supplements of Se contribute to intake 
and are quite commonly consumed, particularly in 
the USA, where some 50% of the population take 
dietary supplements [82]. Though recommended 
Se intake varies by authority and averages 60 μg/d 
for men and 53 μg/d for women [82], single Se 
supplements generally contain much more Se than 
that, i.e. 100 μg per tablet or, more often, 200 μg.

 Food Sources of Se

In terms of concentration  in foods, Brazil nuts 
are the richest Se source though they are gener-
ally not a commonly eaten food, and in any case, 
the content is very variable, ranging from 0·03 to 
512  mg/kg fresh weight [83]. After Brazil nuts 
come organ meats and seafoods, followed by 
muscle meats, cereals and grains [1]. However 

the Se content of cereals and grains varies widely, 
ranging from extremely low (mean values of 
0·025–0·033 mg/kg dry weight in the UK) to as 
much as 30 mg/kg in high-Se areas of the USA 
[83]. Thus, in the USA, grains such as wheat are 
excellent Se sources and provide some 37% of 
dietary Se [84] but only provide 26% of UK 
intake [85].

 Measurement of Se Status

 Methods of Measuring Se Status

Measurement of Se in blood plasma or serum is 
the commonest way of measuring Se status [86]. 
Most often nowadays the measurement is carried 
out by inductively coupled plasma mass spec-
trometry (ICP-MS). These measures reflect recent 
Se intake, i.e. over the last few days. Typical val-
ues in the Europe are from 70 to 100 μg/L and in 
the USA, from 120 to 150 μg/L [1].

Whole-blood Se is a longer-term measure of 
Se status as erythrocyte Se is included, and eryth-
rocyte turnover is around 120 days. The value is 
some 25% higher than that of plasma Se [87].

However, it needs to be appreciated that the 
concentration of Se in plasma or serum falls inde-
pendently of selenium status in the presence of a 
systemic inflammatory response [86], thus mea-
surement of Se in plasma/serum or even in whole 
blood can give a false picture of Se status.

Erythrocyte selenium can be measured by 
ICP-MS and is unaffected by the systemic inflam-
matory response [86]. It can be used to assess 
selenium status across a wide range of selenium 
intakes, but there are few other published data for 
comparison.

Toenail Se (less subject to contamination than 
fingernail Se) is an excellent way of measuring 
Se status and is an even longer-term measure-
ment as clippings from all ten toes are laid down 
over a period of months. Furthermore, it is a way 
of measuring Se status at an earlier time point as 
toenails are clipped up to 1 year from when they 
were laid down [88]. Measurement is often car-
ried out by neutron activation analysis.
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Functional measures of Se status measure 
concentrations or activities of selenoenzymes 
such as GPX (plasma, erythrocyte, platelet), 
SELENOP or TXNRD are also used, though 
there can be analytical problems [86] and the val-
ues obtained often vary from laboratory to 
laboratory.

 Relevance of These Measurements 
of Se Status to Production of Thyroid 
Hormones

Comparison with other organs shows that the 
thyroid gland is at the very top of the hierarchi-
cal Se supply; hence Se status is not a factor that 
normally determines thyroid hormone concen-
tration [6]. This means that in healthy people, 
mild Se deficiency will not alter the serum con-
centration of thyroid hormones, nor is there any 
evidence of an impaired or altered activity level 
of the deiodinases in regions with moderate or 
low Se intake [10]. This conclusion is reinforced 
by the finding in a number of studies of a mini-
mal effect of Se supplementation on thyroid hor-
mone concentrations or the T3:T4 ratio or in 
critical-care patients [6, 89]. Only severely or 
chronically reduced Se availability is likely to 
impair deiodinase expression with resultant 
adverse effects on function [10]. However, as 
pointed out by Schomburg, “the extent to which 
Se modulates peripheral thyroid hormone action 
is not yet known” and, importantly, low Se sup-
ply may limit local thyroid hormone activation 
[6] resulting in adverse effects. Clinicians need 
to bear in mind the possible lack of relationship 
between local tissue Se concentrations and Se 
status measurements in circulating blood 
components.

 Relevance of These Measurements 
of Se Status to Thyroid Protection

Though there is little evidence of low Se status 
affecting thyroid hormone production through 
the deiodinases, the same is not true of the gluta-

thione peroxidases. In particular, GPX1 and 
GPX3 function largely as stress-related seleno-
proteins [90], meaning that they are not high in 
the selenoprotein hierarchy and their synthesis is 
sensitive to the Se supply. Hence in a state of 
low-Se status (as normally measured, see section 
“Methods of Measuring Se Status”), these sele-
noproteins that can protect an oxidatively stressed 
thyroid by removing excessive amounts of H2O2 
(and lipid hydroperoxides) will not be formed in 
adequate amounts.

 Under What Circumstances Does 
the Thyroid Particularly Need 
Protection by Se/Selenoenzymes?

The thyroid is dependent on protection by seleno-
enzymes under two main sets of circumstances:

 1. Iodine deficiency: As explained in section 
“Myxoedematous Cretinism”, this leads to 
excessive accumulation of H2O2 that needs to 
be removed by GPXs. Deficiency can be exac-
erbated by goitrogen exposure which inhibits 
iodine uptake [20]. Examples of goitrogens 
are:

 (a) Thiocyanate formed from glucosinolates in 
cruciferous vegetables

 (b) Thiocyanate formed from cyanogenic gluco-
sides from cassava, lima beans, linseed, sor-
ghum, sweet potato

 (c) Thiocyanate from cigarette smoking
 (d) Perchlorate ingested from food or water [91]
 (e) Nitrate from high-nitrate drinking water or 

other sources [92, 93]

 2. Iodine excess: As explained in section “Higher 
Prevalence of a Number of Thyroid Diseases 
Associated with Low Population Se Status”, 
excessive intake of iodine causes oxidative 
stress in the thyroid that can be ameliorated by 
adequate-Se intake. Chronic high nutritional 
intake of iodine (> 500 μg/day) or more-than-
adequate iodine intake is associated with a 
higher risk of autoimmune thyroiditis, hypothy-
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roidism and goitre [10, 18, 19]. Not only long-
term iodine excess but the introduction of a 
universal salt iodisation programme can have 
a deleterious effect—at least in the short 
term—on a thyroid that has adapted to iodine 
deficiency [10, 94]. An enhanced Se supply 
ensures that the thyrocytes and colloidal 
lumen will have adequate amounts of GPX, 
TXNRD, SELENOS and other relevant sele-
noproteins to protect them from excessive 
H2O2, other reactive oxygen species or inflam-
mation resulting from increased iodising 
activity [10].

 Recommendations

As explained above, Se requirements may vary 
according to the iodine status of the region. 
Deciding on whether additional intake of Se is 
needed in a particular patient requires taking 
into account a number of factors. Ideally, you 
would measure your patient’s plasma/serum Se. 
If it is 120 μg/L or above (though see section 
“Methods of Measuring Se Status” for caveats 
relating to the inflammatory response), the 
patient should be adequately well protected and 
may have adverse effects if exposed to addi-
tional Se. Without measuring Se status, consid-
eration of the following factors should help you 
decide.

Location [1]: People living in the UK, Europe, 
especially Eastern Europe, and parts of China 
may well be Se deficient, while those in N 
America and Japan are Se replete. Those living in 
Venezuela may already be ingesting toxic levels. 
The Australian situation is mixed, but New 
Zealand Se intakes are on the low side despite 
recently increased imports of Se-rich wheat. 
Only consider recommending a Se supplement in 
a low-Se-status country.

Diet [1]: Enquire into the dietary habits of 
your patient, and see if he/she is eating the Se-rich 
foods mentioned in section “Food Sources of 
Se”. If there appear to be few, or no, Se-rich 
sources, suggest a dietary modification (taking 
into account your location) or a low-dose supple-
ment (say 50–100 μg Se/d).

Age: The elderly are more likely to need extra 
Se as they may have more evidence of oxidative 
stress and inflammation [95].

Sex: Women are at greater risk of thyroid dis-
orders so may benefit more from additional Se. 
This is particularly the case in pregnancy where 
women positive for TPO antibodies who were 
supplemented with 200  μg Se/d had a reduced 
risk of post-partum thyroid disease and perma-
nent hypothyroidism [65].

State of health: If your patient has subclinical 
hypothyroidism or thyroid antibody positivity, 
you should consider whether to increase his/her 
Se status to reduce the risk of developing autoim-
mune thyroiditis.

Polymorphisms in selenoproteins: It is unlikely 
that you will have your patients genotyped, but if 
you do, there are two polymorphisms that may 
affect your treatment. Hypothyroid patients with 
the rarer CC genotype of the rs225014 Dio2 poly-
morphism showed greater improvement on com-
bined T4/T3 than on T4 therapy so you might see if 
this is the case for your patient. Patients carrying 
the A allele of the SEPS1 −105G/A promoter poly-
morphism (rs28665122) are at significantly greater 
risk of Hashimoto’s thyroiditis, particularly if male 
[14]. In both cases, these patients may benefit from 
an increased Se intake, unless their dietary intake is 
already adequate to good, i.e. 75–100 μg Se/d.

Supplement dose: If recommending a supple-
ment, in general, do not recommend one with 
more than 100 μg Se/d; women will be fine with 
50 μg Se/d, a dose that can be found in multivita-
min/mineral tablets. A dose of 100 μg Se/d (as Se 
yeast) given to someone in the UK will raise 
plasma Se to around 140 μg/L which is more than 
enough to optimise the synthesis of all the sele-
noproteins [89].

Supplement form: Either Se yeast (which 
behaves in the body like wheat-Se) or sodium 
 selenite (the latter is not non-specifically incor-
porated into body proteins in place of methio-
nine) is fine [83].

Risk of Se toxicity: Bear in mind that though 
Se is essential, excessive intake of Se is toxic, 
and supplements of Se of 200  μg/d, generally 
considered to be quite safe, had toxic effects (alo-
pecia, dermatitis, squamous cell carcinoma, 
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type-2 diabetes) in North American men [96–98], 
though these men had a higher Se status than 
European men. As for many nutrients, there is a 
U-shaped relationship between Se status and dis-
ease risk (Fig. 6), so you should aim for an ade-
quate, safe intake [1].
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Laboratory Testing in Thyroid 
Disorders

Stefan K. G. Grebe

 Introduction

Laboratory testing is an indispensable part of the 
diagnosis of functional and structural thyroid dis-
eases, assessment of disease severity, and of 
response to therapy. In this chapter we will review 
tests of thyroid function and discuss thyroid 
tumor marker assays and testing for thyroid auto-
antibodies. We will cover (1) the physiological 
basis of thyroid function testing, (2) available 
thyroid tests including their technology and their 
strength and weaknesses, (3) how to determine 
whether test results are normal or abnormal or 
whether they have changed significantly over 
time, and (4) how to select tests for different clin-
ical applications and interpret the results.

 Physiological Basis of Thyroid 
Laboratory Testing

The hypothalamic-pituitary-thyroid feedback 
axis forms the basis of clinical thyroid function 
testing, facilitating diagnostic categorization of 
thyroid hormone test results (Fig. 1).

At the level of the thyroid gland, thyrotropin 
(TSH) regulates cellular activity, stimulating thy-

rocytes to express proteins necessary for thyroid 
hormone production and to increase thyroid hor-
mone synthesis and secretion. Under normal 
metabolic conditions, the gland secretes ~90% 
thyroxine (T4), ~8–10% triiodothyronine (T3), 
and <2% reverse T3 (rT3) [2, 3]. During intense 
TSH receptor (TSHR) stimulation, or in case of 
iodine deficiency, the proportion of T3 formation 
might increase [4] (Fig. 2).

Upon secretion, transport of the hydrophobic 
thyroid hormones in blood is facilitated by the 
thyroxine transport proteins, thyroxine-binding 
globulin (TBG), transthyretin (TTR), and albu-
min (ALB) (Table 1). These proteins collectively 
have exceedingly high binding capacity (>99.7% 
of T4 and T3 are protein bound), but show sig-
nificant differences in binding affinity, and con-
sequently on and off rates of thyroid hormone in 
the capillary vasculature (from a few seconds to 
over half a minute) [2, 6–8]. This facilitates 
nuanced delivery of hormone to target tissues, 
even if demand exceeds the circulating free thy-
roid hormone pool. Transport into target cells is 
also highly regulated, via expression and activity 
of specific thyroid hormone transporters and pro-
miscuous organic amino acid transporters [9].

Within cells, there is yet another layer of reg-
ulation through expression and activity of deio-
dinases that convert the much less active T4 into 
either T3 (type II), which has 10–30 times 
higher affinity for the thyroid hormone receptor 
(THR) than T4 [10, 11], or into inactive rT3 
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(type III). However, most circulating T3 and rT3 
are derived from membrane-bound type I deio-
dinase, which can generate either T3 or rT3 and 
which is primarily expressed in liver and kidney 
[12–15].

The final level of regulation occurs at the gene 
transcription level. Of the hundreds to thousands 
of genes that are regulated by thyroid hormone, 
only a subset, determined by tissue context and 
metabolic state of the tissue, will be accessible for 
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thyroid hormone-induced gene expression regula-
tion. On the level of the thyroid hormone receptor, 
the relative expression levels of the four thyroid 
hormone receptor isoforms, the availability of the 

RxR co-receptor and its ligand 9-cis- retinoic acid, 
and the availability of various other cofactors will 
further modify a cell’s response to thyroid hor-
mone [11].

In addition to follicular cells, the thyroid also 
contains nests of parafollicular neuroendocrine 
cells, C-cells. These cells, like parathyroid cells, 
sense serum calcium levels and secrete calcito-
nin, a peptide hormone that lowers serum cal-
cium by inhibiting bone resorption. Its calcium 
homeostatic role in humans is minor compared to 
parathyroid hormone or the vitamin D-related 
hormones. In addition to calcitonin, C-cells pro-
duce small quantities of various other neuropep-
tides and biogenic amines [16–18].

 Thyroid Laboratory Tests

 Basic Assay Performance Parameters

A brief review of basic assay performance termi-
nology, definition, and parameters is useful, 
before discussing individual thyroid tests in this 
section (Box 1).

Table 1 Serum thyroid hormone-binding/transport 
proteins

TBG TTR Albumin
Serum concentration 
(g/L)

~0.01–
0.03a

~0.2–
0.4

~35–
50

Half-life (days) ~5b ~2 ~20
Kd (M)
T4
T3

10−10

10−9

10−8

10−6

10−6

10−5

Percent serum T4/T3 
protein-boundc

T4
T3

~40–75
~40–75

~20–
40
<5

~5–30
~20–
40

Total across all binding 
proteins (T4/T3)

99.9/99.7

aMay rise 2–5-fold in pregnancy (peak: ~weeks 24–34) 
and also in other high estrogen states
bProlonged in high estrogen states
cVaries with method used for measurement. Thyroxine- 
binding protein electrophoresis gives lower values for 
TBG T4/T3 binding than other methods

Box 1 Assay Performance Parameters

 1. Accuracy (aka bias): Deviation  from the “true” value expressed as a fraction or percentage 
deviation from “true.” “True” is the expected value when spiking a defined amount of refer-
ence grade material into a blank sample and measuring it with the best established methodol-
ogy. Comparing results of a large number of patient samples with a lab that uses reference 
methodology is also often used.

 2. Imprecision (aka precision; aka repeatability): range of results obtained upon repeat testing 
of the same sample (usually ≥20 replicates). Expressed as percentage coefficient of variation 
(SD/Mean × 100). Intra-assay: replicates all run in the same assay on a single run. Inter-
assay: run with the same assay over several runs.

 3. Limit of blank (LOB; aka upper limit of blank, ULOB; aka critical limit): the upper boundary 
of the central +/−2SD of the signal distribution (a normal distribution is assumed or data are 
transformed to fit a normal distribution) that is obtained upon replicate measurement of 
samples that contain no analyte (usually ≥20 replicates).

LOB = Meanblank + unidirectional Z-score for 95% probability  (=1.645) × SDblank

 4. Limit of detection (LOD; aka lower limit of detection, LLOD; aka “analytical sensitivity”): 
The lowest concentration that can be distinguished from the LOB with ≥95% certainty (a 
normal distribution is assumed or data are transformed to fit a normal distribution). It is 
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obtained by replicate testing (usually ≥20 replicates) of a sample with a known low concen-
tration that is >LOB. The experiment might have to be repeated if the chosen concentration 
was too high or too low.

LOD = LOB + unidirectional Z-score for 95% probability  (=1.645) × SDlow-sample

 5. Limit of quantitation (LOQ; aka lower limit of quantitation, LLOQ; aka “functional sensitiv-
ity”): lowest concentration that can be reliably measured based on predefined goals of inter-
assay accuracy (bias) and inter-assay repeatability (precision/imprecision). These goals 
should ideally be selected based on the anticipated ability to maintain them in day-to-day 
testing. In addition, one should take into account the clinical impact that these bias and 
imprecision thresholds would have. However, in endocrine testing, these goals are com-
monly arbitrarily defined as bias and imprecision of <20% each. Recommendations are that 
at least 20 different runs should be evaluated to generate the accuracy and precision data.

The LOQ is usually the lowest concentration that is reported for a given test. It cannot be 
lower than the LOD.

 6. Linear measurement range (aka dynamic range; aka analytical measurement range): the 
range of values between lowest and highest analyte concentration, which falls on the linear 
portion of the assay’s calibration curve.

 7. Dilution linearity: ability to perform sample dilution and obtain the result that would have 
been predicted based on the analyte concentration that was present in the undiluted sample. 
Tolerated deviations from the expected result are generally ±10–20%. Laboratories have to 
establish dilution linearity if they wish to report results of dilution testing of samples that 
contain analyte concentrations above the upper limit of the linear measurement range.

 8. Cross-reactivity: interference in the measurement process by compounds that are not the 
analyte, but are sufficiently similar to it, to be mistaken for analyte during the measurement 
process. Expressed as fraction or percentage of signal generated by the cross-reacting sub-
stance compared to an equal concentration of analyte (i.e., 5% cross-reactivity means that 1 
unit of cross-reacting substance produces 5% of the signal of the 1 unit of the target 
analyte).

 9. Interferences: anything that can impair the accuracy or repeatability of the measurement 
process. Cross-reactivity can be seen as one form of interference.

Other interferences include substances that interfere with the detection process. Since nearly all 
immunoassays (IAs), except gamma-counting radioimmunoassays, use light detection, opti-
cally active substances such as hemoglobin or bilirubin fall into this category. Interferences 
that affect antigen-antibody immune-complex capture, such as biotin that prevents the bind-
ing of biotin-labeled antigen-antibody complexes to streptavidin, also fall into this category. 
All interferences in this group lead to low assay signal, which in a competitive IAs results in 
false high results, while immunometric IAs give false low results.

The next big group of IA interferences are substances, such as high concentrations of lipids or 
immunoglobulins, which might disrupt the antigen-antibody reaction. Mostly, but not always, 
a low assay signal is produced.

Finally, interferences by autoantibodies, directed against the analyte, and by heterophile anti-
bodies, directed against assay antibodies, can result in false high or false low results (see 
Figs. 11 and 12).
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 Core Thyroid Function Tests

 Assays Used for Core Thyroid Function 
Testing
The core thyroid function tests are TSH and T4. 
For the latter, mostly the free fraction, free T4 
(FT4), is measured. T3 is also frequently mea-
sured, again mostly in its free form (FT3).

TSH is usually the starting point for testing, 
because the exponential response of TSH secre-
tion to changes in peripheral thyroid hormone 
levels allows earlier and more confident detection 
of disturbances of thyroid function than measure-
ment of peripheral thyroid hormones, at least if 
the hypothalamic-pituitary-thyroid feedback 
loop is intact (Fig.  3). However, this profound 

response of TSH makes it a suboptimal measure 
of severity of thyroid dysfunction, and in most 
cases, FT4 or FT3 are also tested.

 Performance Characteristics 
of the Assays Used
The vast majority of core thyroid function tests are 
performed by IAs, mostly on automated platforms. 
The IAs for T4, FT4, T3, and FT3 are competitive 
IAs (Fig. 4), because the small size of T4 and T3 
precludes the use of sandwich immunometric IAs. 
By contrast, TSH assays are almost without excep-
tion sandwich immunometric IAs (Fig.  4). This 
assay format offers advantages over competitive 
IAs with regard to reduced cross-reactivity, better 
detection sensitivity, and a wider dynamic range of 
measurement (Table 2), and all modern TSH assays 
have essentially no cross-reactivity with LH, FSH, 
or hCG, detection sensitivities of <0.02 mIU/L, and 
a > 4 Log10 dynamic range. By contrast, competi-
tive thyroid hormone assays continue to be occa-
sionally plagued by cross-reactivities, rT3 
immunoassays might cross-react with T4 [20], 
while the dynamic range limitations force manu-
facturers to design their assays to be either very 
accurate at low concentrations or at high concentra-
tions; to achieve both is impossible (Fig.  5). For 
total T4 and T3 assays, this can be easily addressed 
by sample dilution. However, because of the vast 
binding capacity of thyroid hormone-binding pro-
teins, free thyroid hormone assays do not give reli-
able results upon sample dilution.

A reference, or at least candidate reference, 
technology is available for T4, FT4, T3, and FT3 
assays in the form of liquid chromatography, tan-
dem mass spectrometry (LC-MS/MS, Fig.  6). 
LC-MS/MS largely avoids the inherent shortcom-
ings of competitive IAs (Table 2); in the case of 
the free hormone measurements, LC-MS/MS is 
coupled with physicochemical separation of free 
hormones from protein-bound hormones, either 
by equilibrium dialysis or by centrifugal filtration 
(Fig. 7). LC-MS/MS allows highly accurate hor-
mone measurements, because T4 and T3 can be 
purchased as chemicals of defined and certified 
purity. LC-MS/MS can therefore be used to check, 
and possibly adjust, the calibration and the accu-
racy of T4, FT4, T3, and FT3 immunoassays.
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Fig. 3 Schematic depiction of the exponential response 
of serum thyrotropin (TSH) to changing peripheral thy-
roid hormone levels. In this example, a halving or dou-
bling of serum free thyroxine (FT4) concentrations leads 
to a ~60-fold upward or downward change, respectively, 
in serum TSH concentration. The magnitude of this 
response varies between individuals, and for changes that 
do not exceed the FT4 normal reference range, the 
response is more muted [19]. From Grebe 2012 [1] with 
permission from publisher
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By contrast, there is no reference—nor a can-
didate reference—methodology for TSH mea-
surement. Moreover, the current international 
standard for TSH (WHO 81/565), as all previous 
preparations, is pituitary sourced, and its exact 
composition, purity, and isoform mix have not 
been defined. The units were assigned based on 
consensus immunoassay and bioassay results. 
The data of the validation of this standard mate-

rial showed the possibility of gross errors in assay 
performance, and geometric means had to be 
used to assign values to the international stan-
dard. Even then, geometric coefficients of varia-
tion of 10–20% were observed in the measured 
values [21]. This is not surprising, as different 
assays might recognize different variants of natu-
ral TSH [22]. Based on high-resolution mass 
spectrometry studies of bovine pituitary TSH 
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Fig. 4 Cartoon of the assay configurations of competitive 
(top panel) and immunometric (bottom panel) immunoas-
says (IAs). In a competitive IA, analyte in a patient sample 
competes with added labeled analyte for binding to a lim-
ited number of assay antibodies (left of upper panel). The 
more labeled analyte is bound, the higher the generated 
signal. The dose-response curve is inversely proportional 
to the concentration of analyte present in the patient sam-
ple (right of upper panel). Since the assay antibody con-
centration has to be smaller than the sum of patient analyte 
and added labeled analyte, the dynamic range of this type 
of assay is narrow, with the example dose-response curve 
being only linear between ~10 and ~95 arbitrary units. In 

an immunometric IA, analyte is typically sandwiched 
between two assay antibodies (at least one of which is 
labeled), which are directed against different analyte epit-
opes (left of lower panel). The more analyte is present, the 
higher the signal. The dose-response curve is directly pro-
portional to the concentration of analyte present in the 
patient sample (right of lower panel). The dynamic range 
is only limited by the amount of assay antibodies in the 
assay, with the example dose-response curve being linear 
between ~10 and ~900. Immunometric IAs only work for 
analytes that are large enough to allow simultaneous bind-
ing of two antibodies (>1500–3000 Da)
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preparations, prepared in a similar fashion, one 
can expect that the current international standard 
preparations also contain dozens of other pro-
teins, including other pituitary hormones, albu-
min, hemoglobin, and various tissue proteins 
[23]. Consistent with this scenario is that parallel 
testing of a reference recombinant human TSH 
showed substantial deviation of measurements 
from expected values, when run as unknown 
against the WHO 81/565 International Standard 
[21]. Until this situation is resolved, most likely 
with a move to recombinant TSH standard mate-
rial, standardization or harmonization of TSH 
assays remains difficult.

However, the peripheral thyroid hormone 
assays do not fare much better. Total T4 is the 
only peripheral thyroid hormone that shows 
acceptable agreement between different IAs 

Table 2 Performance characteristics of thyroid-relevant assay methodologies

Competitive immunoassay
Immunometric immuno 
assay LC-MS/MSa

Thyroid relevant analytes TT4, TT3, FT4, FT3, rT3, 
TPO-AB, TgAB, TRAB

TSH, TBG, TTY, Alb, 
TPO-AB, TgAB, Tg

TT4, TT3, FT4, 
FT3, rT3, Tg

Candidate reference methodology No No Yes
Analytical characteristics
Limit of detection
Dynamic range
General accuracy
High concentration accuracy
Imprecision
Turnaround time

Medium to lowb

Narrow (≤2 log10)
Average
Poor to averageb

Medium (CV 5–15%)
Slow(≥3 days to quick 
(same day)

Lowest
Wide (≥3 log10)
Poor to high
Poor to averagec

Low (CV 3–10%)
Quick

Low
Widest (≥4 log10)
High
High
Medium (CV 
5–15%)
Slow to medium 
(1–3 days)

Analytical interferences
Cross-reactivity
Autoantibodies
Heterophile ABs
Other reagent-related interferences

Low to modest
Modestly affected
Rarely affected
Rarely to modestly affected

Low
Highly affected
Highly affected
Rarely to modestly 
affected

Lowest
Not affected
Not affected
Not affected

Comparability between different 
assays for the same analyte

Poor to average Poor to average Average to good

Skill level required for testing Low to high Low Medium to high
Cost of testing Low to high Low to medium Low to high

aWith equilibrium dialysis or centrifugal filtration for free hormones
bThe limited dynamic range forces assay designers to configure the assay either for low or for high concentrations
cAt very high analyte concentrations, the assay antibodies of immunometric assays all become occupied with analyte. 
In a two-step assay, where excess antigen is washed off after capture, this leads to detection of signal plateau. In a one- 
step assay, the analyte capture and detection antibodies are mostly individually occupied by analyte, with few sand-
wiches being formed. The detection “hooks” downward (falls off proportionally with the amount of excessive antigen), 
in extreme cases down to “normal” levels or below
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Fig. 5 Example of an actual dose-response curve of a 
competitive IA for FT4. The signal response is linear from 
~0.2 to ~1.5 ng/mL. With data transformation (typically 
log-logit) that can be extended to ~4 ng/dL, but any higher 
concentrations of FT4 cannot be distinguished from each 
other. This particular assay would therefore not be well 
suited for monitoring patients with very high FT4 levels
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(defined as results being within about +/−20% of 
each other for the same sample), and despite 
some improvement over time, results of thyroid 
hormone testing continue to differ between plat-
forms [24–28], as shown in Fig. 8. In addition, 
some combinations of different FT4 (or FT3) 
assays might display relatively poor correlation 
with each other (correlation coefficients of 
between ~0.2 and ~0.8) [25].

The measurement of free thyroid hormones 
also continues to be problematic with regard to 
its accuracy and its validity in some patient 
groups. As mentioned above, physicochemical 
separation of free hormones from protein-bound 
hormones before measurement is considered the 
gold standard for FT4 and FT3 testing. However, 
the vast majority of free thyroid hormone assays 
are performed by competitive IAs. The available 
IAs use three strategies (two of which are con-
ceptually related to each other) to selectively 
measure just the small free fraction of T4 or T3 
(Fig. 9). However, at best, these approaches come 
close to reference methodology when used in 

normal individuals [27], but at worst, they fail in 
a significant subgroup of patients with disturbed 
thyroid function, in particular those with very 
high or very low binding protein concentrations, 
many patients with abnormal binding proteins, 
and those with very high or very low FT4 or FT3 
levels [29]. If one, again, uses +/−20% deviation 
from the reference methodology as the yardstick 
and looks at different commercial FT4 and FT3 
assays, this can be predicted to result in inaccu-
rate measurements in 10–20% of outpatients and 
probably a larger proportion of inpatients [30]. 
When one holds clinical diagnostic sensitivity 
constant at 100%, the clinical impact of these 
inaccuracies for the diagnosis of hyperthyroidism 
or hypothyroidism ranges from a mild drop in 
specificity to 97–99% in some assays to a marked 
decrement to 80–90% specificity in others [25]. 
Notably, the optimal thresholds for diagnoses in 
these cases, derived by receiver operator curve 
analysis, are not necessarily identical to the upper 
or lower reference limits of these tests, suggest-
ing real-life performance might be worse.
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Fig. 6 Simplified diagram of a liquid chromatography, 
tandem mass spectrometry (LC-MS/MS, aka LC triple 
quadrupole MS) measurement system. A HPLC system 
(leftmost display item) separates the sample into different 
components based on their physicochemical properties 
(e.g., hydrophilic versus hydrophobic). The HPLC efflu-
ent is continuously injected into the near vacuum of the 
mass spectrometer, where its constituent molecules are 
ionized and then accelerated toward the detector. They 
pass into the first quadrupole mass filter (Q1), which in 
this example is set to only let pass through ionized mole-
cules of a specific mass-to-charge ratio (M/Z; for low 

molecular weight compounds, this is usually equal to their 
molecular weight). The selected molecular ions then enter 
Q2, where they collide with nitrogen gas, fragmenting 
them into smaller parts, which then enter another mass 
filter (Q3), again set to only allow passage of fragment 
ions of a specific M/Z. These in turn hit an impact detec-
tor, which generates an ion chromatogram (HPLC time on 
x-axis, signal strength on y-axis). In this example, a repre-
sentative chromatogram of FT4 detection in dialysate buf-
fer is shown. A nonradioactive isotopic T4 internal 
standard has been included, to correct for analytical 
mishaps
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Unfortunately, the physicochemical reference 
methods also have some problems, notably 
higher complexity of testing, slower turn-around 
time, higher cost, and imprecision that is almost 
twice that of automated IAs (Table  2). Due to 
their core reliance on a physical separation step, 
the physicochemical methods also suffer from a 
higher rate of measurement failures than auto-
mated immunoassays, mostly due to faults 
(holes) in dialysis membranes or filtration 
devices.

All methods for free hormone measurements 
are vulnerable to false high results in patients 
who are receiving heparins (including low molec-
ular weight heparins). These anticoagulants lib-
erate free fatty acids in vivo and in vitro, which in 
turn displace thyroid hormones from binding 
proteins. This leads to false high measurements 

in all free thyroid hormone assays, but because of 
the long duration of equilibrium dialysis, the 
effects might be more marked when this method 
is used.

Total T4 and total T3 measurements are typi-
cally more accurate than FT4 and FT3 measure-
ments, when results are compared to LC-MS/
MS.  Their lack of current popularity is largely 
due to the fact that females of reproductive age, 
as well as all individuals, who are taking estro-
gen preparations, have high levels of thyroid 
hormone- binding proteins, in particular 
TBG.  Moreover, TBG levels vary during the 
menstrual cycle, resulting in fluctuating total 
thyroid hormone levels. In addition, in extremely 
high estrogen states, such as pregnancy or during 
fertility treatments, total T4 and total T3 assays 
might give erroneously low results, due to 

Equilibrium Dialysis Centrifugal Ultrafiltration

Direct
Equilibrium

Dialysis

T4

Binding protein

Measure T4
(IA or LC-MS/MS)

Indirect
Equilibrium

Dialysis

T4

Labeled T4

Measure T4 and/or
labeled T4

(IA or LC-MS/MS)

Semi-permeable
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Centrifugation

Free T4

Binding protein-T4

Measure T4
(IA or LC-MS/MS)

Fig. 7 Schematic depiction of the two gold standard 
methods used for free thyroid hormone measurement, 
equilibrium dialysis, and centrifugal ultrafiltration. In 
equilibrium dialysis, a patient serum sample is dialyzed 
against an isotonic buffer solution. Free thyroid hormone 
(in this example T4) can cross the semipermeable mem-
brane between sample and buffer freely, but thyroid hor-
mone bound to binding proteins can’t. Over a period of 
8–12 h, the concentration of free thyroid hormone in the 
sample and in the buffer reaches equilibrium. Measurement 
of T4 or T3 in the buffer then allows back-calculation of 
the FT4 or FT3 concentration in the sample, based on the 
total volume of patient sample and buffer. The measure-
ment can either be a direct measurement of T4 or T3 in the 

buffer, or an indirect measurement (labeled T4 or T3 that 
was added at the beginning of dialysis is measured), or a 
combination of the two (in this case, the labeled fraction 
can be used to normalize results and correct for testing 
mishaps). In centrifugal filtration, the high G-forces push 
liquid and low molecular weight compounds, such as free 
thyroid hormones, through a small pore filter membrane 
into a separate compartment, while protein-bound thyroid 
hormone remains behind. The separation is performed so 
rapidly that there is no time for the binding equilibrium 
forces to pull significant amounts of thyroid hormone off 
the binding proteins. T4 or T3 are then measured in the 
filtrate
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incomplete displacement of thyroid hormones 
from the binding proteins during the assay pro-
cedure (Fig.  10). While these diagnostic chal-
lenges are somewhat addressed by free thyroid 
hormone assays, a case can be made that in many 
patients total thyroid hormone assays are not sig-
nificantly inferior to the free hormone assays in 
diagnostic accuracy (with the exceptions noted 
above). Moreover, total T4 assays are the best 
harmonized of all the thyroid hormone assays, 
and in situations where patients undergo repeated 
testing and this testing cannot be, or is not, per-
formed with the same assay throughout, total T4 
assays might be preferable to FT4 assays.

 Assay Interferences
Most IAs can be affected by so-called “matrix- 
related” interferences, namely, hemolysis and 
hyperbilirubinemia, hyperlipidemia, and hyper-
proteinemia, as well as potential interferences by 

autoantibodies, heterophile antibodies, and 
assorted other interferences directed against 
assay reagents (e.g., biotin interference in assays 
that utilize streptavidin-biotin interactions for 
assay antibody anchoring or capture) (Box 1, 
Table  2, Figs.  11 and 12) [32–37]. As a rule, 
LC-MS/MS assays are not affected by any of 
these interferences.

 Noncore Thyroid Function Tests

 Assays Used for Noncore Thyroid 
Function Testing
Reverse T3 and thyroid hormone-binding proteins 
(TBG, transthyretin, albumin) are sometimes 
measured, when core thyroid function tests give 
inconclusive or confusing results. The various 
patterns of T4, T3, FT4, FT3, and TSH that are 
seen in these situations are discussed in more 
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Fig. 8 Result agreement of different immunoassays sys-
tems for the measurement of free and total T3 andT4 and 
of TSH. The results of mandatory US proficiency testing 
for thyroid hormones for the year 2015 are plotted. 
Individual challenges typically cover low, medium, and 
high concentrations over the period of a year. Each method 
is used by at least 20 different laboratories (most by sev-
eral hundred laboratories). The results of all challenges 

and methods for each analyte (FT3, FT4, total T3, total 
T4, and TSH, respectively) have been normalized to their 
respective all-methods, all-challenges mean. The individ-
ual results have been plotted as percentage deviation of 
their respective all-methods, all-challenges mean. If all 
assays were in perfect agreement, then all data points 
would lie on the dotted line that runs through 0% 
deviation
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detail in this chapter’s final section. The underly-
ing conditions include (1) non-thyroidal illness, 
where measurement of rT3 and thyroid hormone- 
binding protein analysis might be indicated [38–
40]; (2) suspected primary or acquired thyroid 
hormone transport protein abnormalities, which is 

investigated with thyroid hormone-binding pro-
tein analysis [7, 8]; and (3) suspected deiodinase 
anomalies, including primary genetic deiodinase 
defects and consumptive hypothyroidism due to 
tumors expressing high levels of type 3 deiodin-
ase, which benefit from rT3 testing [15, 41–43].

Binding proteinT4

Labeled T4

Solid-phase anti-T4

TWO-STEP

LABELED
ANTIBODY

Labeled anti-T4

Solid-phase T4

ONE-STEP
ANALOGUE

Binding proteinT4

Solid-phase anti-T4

Labeled T4 analogue

Fig. 9 Schematic depiction of the three commonly used 
immunoassay methods for free thyroid hormone measure-
ments, using FT4 as the example. The two-step method 
relies on a very short and precisely timed incubation of 
assay reagents with patient serum. This favors binding of 
just the free T4 or T3 fraction to the assay antibodies. 
There is not enough time for significant amounts of 
protein- bound T4 or T3 to dissociate from the binding pro-
teins and bind to the assay’s anti-T4 or anti-T3 antibodies. 
Next there is a vigorous washing step to remove all thyroid 
hormone-binding proteins. This is followed by addition of 
labeled T4 or T3 and measurement of the signal. In prac-
tice, it has proven impossible to achieve a perfect washing 
step. The labeled antibody approach is a recent variation 
on the two-step method. Labeled T4 or T3 antibodies bind 
to either solid phase-bound T4/T3 or to the free T4/T3 in 

the patient serum. Following a short incubation, binding 
proteins and antibodies that have bound patient T4 or T3 
are washed off, and the signal is measured. These assays 
have shown themselves more robust than the original two-
step assays, but, again, their theoretical advantages have 
not been entirely translated into practice. The one-step 
analogue approach takes a completely different tack. These 
assays use an artificial T4 or T3 analogue that has been 
designed to have equal affinity as T4 or T3 to the assay 
antibodies, but negligible affinity to thyroid hormone-
binding proteins. This should result in a perfectly accurate 
FT4 or FT3 measurement without the need for fickle incu-
bation times or extremely vigorous washing steps. In real-
ity, the creation of such a perfect competitor is, of course, 
impossible, and these “analogue” FT4 and FT3 measure 
something in between free and total T4
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 Performance Characteristics 
of the Assays Used
Reverse T3 is mostly measured by competitive 
immunoassays, although LC-MS/MS assays are 
also used and provide a candidate reference meth-
odology. All available assays are either research 
kits or laboratory-developed assays. There are, to 
my knowledge, no published studies comparing 
multiple rT3 IAs with each other. There has been 
a recent study comparing a radioimmunoassay 
(RIA) rT3 kit (RIAZEN reverse T3, ZenTech, 
Anleur, Belgium) with a rT3 LC-MS/MS method. 
This comparison showed a reasonable correlation 

(r  =  0.928), but a substantial regression slope, 
with the RIA measuring about 2.5 times higher 
than the LC-MS/MS method, suggesting either 
different calibration or cross-reactivity of the 
RIA, most likely with T4, as has been previously 
reported [20, 44]. Therefore, rigorously estab-
lished assay-specific reference intervals are man-
datory for rT3 testing, and the same assay should 
always be used for serial testing.

Thyroid hormone transport proteins are either 
measured individually, almost always with immu-
nometric IAs, or they are electrophoretically sep-
arated from each other after incubation with 
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Fig. 10 Measurement bias of two different total T4 immu-
noassays against LC-MS/MS measurement for samples 
from women in the first and second trimester of pregnancy. 
The LC-MS/MS method completely denatures all binding 
proteins before measurement and should represent the most 
accurate T4 result. The results of the immunoassays are 
plotted against LC-MS/MS. The gray lines represent hypo-
thetical identity of measurements. Immunoassay 1 (IA1) 
shows a constant (high) and a proportional (low) bias 
against LC-MS/MS.  The latter is dramatically worsened 
when second trimester samples are measured. Immunoassay 

2 (IA2) displays the same pattern, but both constant and 
proportional bias are much smaller than what is seen with 
IA1. Total T3 and total T4 assays have to dissociate thyrox-
ine from its binding proteins before measurement. Unlike 
older manual immunoassays, which used protein denatur-
ation, or pH manipulation, followed by adsorption of T3 or 
T4 to charcoal or resins before the actual competitive IA 
was performed, modern total T3 and T4 assays use dis-
placement reagents. These displacement methods work fine 
in most situations, but when TBG concentrations are 
extremely high, as during pregnancy, they might fail

S. K. G. Grebe



141

radiolabeled T4 (thyroxine-binding protein elec-
trophoresis, TBPE). The two approaches are com-
plimentary. The former allows quantitation of the 
binding proteins, while the latter assesses their 
ability to bind T4, which is important, because 
some inherited or acquired binding protein abnor-
malities do not reduce serum-binding protein con-
centrations but lead to abnormal binding proteins 
or displacement of thyroid hormone from the 
binding proteins because of endogenous or exog-
enous competitors. In addition, TBPE can detect 
anti-T4 autoantibodies, which might occur in a 
significant minority of patients with autoimmune 
thyroid disease. In most of these cases, there are 
very high total T4 concentrations and, in instances 
when the autoantibodies have relatively low avid-
ity, also very high FT4 levels. The TSH is typi-
cally normal; the autoantibody-bound T4 is not 
bioactive. In the TBPE assay, these autoantibodies 
are detected by high T4 concentrations at the ori-
gin of the gel, where immunoglobulins largely 
remain during the electrophoresis. Of the binding 
protein measurements, serum ALB is fairly well 
standardized, while TTR and TBG are poorly 
standardized, with all the consequences for assay-
to-assay comparability discussed before. TBPE is 
very reproducible, provided similar amounts of 
patient serum, similar doses of labeled T4, and 
comparable electrophoretic conditions are used.

 Assay Limitations and Interferences
The assay strengths/weaknesses and interference 
discussed before apply to all the noncore thyroid 
function testing IAs.

 Tumor Marker Testing in Thyroid 
Disease

 Tumor Marker Assays Used in Thyroid 
Disease
Thyroglobulin (Tg), calcitonin (Ct), and carcino-
embryonic antigen (CEA) are three soluble tumor 
markers frequently used in thyroid disease, 
mainly in follow-up.

Tg is highly specific for thyroid follicular 
cells. It is therefore extremely well suited for 
follow-up of thyroid cancer patients who have 
undergone complete ablation of all thyroid tissue 
(total thyroidectomy with or without radioactive 
iodine remnant ablation). In successfully treated 
patients, serum Tg levels should be extremely 
low or undetectable. Tg is less useful for diagno-
sis of thyroid cancer, despite the fact that many 
thyroid cancer patients at diagnosis will have 
higher than average serum Tg levels; the overlap 
with the normal population is too large [31].

Ct is fairly specific to thyroid C-cells, albeit 
not quite to the same degree as Tg is for follicu-

Capture AB

Detection AB

Auto ABs

Auto ABs

Capture AB

Detection AB

No detection interference, but
prolonged half-life:

False +

Detection interference, but
normal  (or shortened) half-life:

False -
or

Fig. 11 Example of autoantibody interferences in immu-
noassay. The left panel shows a case where the antibodies 
do not interfere with analyte detection by IA. However, in 
many of these situations, autoantibodies will increase the 
half-life of their antigenic target. Since this is usually ren-
dered biologically inert by the bound antibodies, this 

results in an analytically and biologically false high result. 
The right panel shows autoantibodies that interfere with 
analyte detection by IA.  In this case, the measurement 
result will be false low. Modified from Grebe 2009 [31] 
with permission by publisher
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lar cells; some Ct might be produced by non- 
thyroidal tumors, in particular those containing 
neuroendocrine components, some hemato- 
lymphatic malignancies, during systemic 
inflammatory conditions, including severe 
infections, during pregnancy and lactation, and 
during the first few weeks of life. Nonetheless, 
Ct is the key tumor marker used for medullary 
thyroid carcinoma, based on the same rationale 
as outlined above for Tg. However, unlike Tg, 

circulating serum Ct levels in patients with 
intact thyroid glands are very low (with the 
exception of some of the scenarios outlined 
above), and serum Ct measurement is therefore 
also widely used for diagnosis of medullary thy-
roid carcinoma [45, 46].

CEA is a malignancy-associated, rather than 
organ-specific, tumor marker. It is elevated in a 
subset of medullary thyroid carcinomas, in par-
ticular those that are poorly differentiated. If it is 
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elevated at diagnosis in a patient, it can be used in 
parallel with Ct for subsequent disease monitor-
ing or, instead of it, if Ct is negative, as is some-
times observed in poorly differentiated tumors. 
By token of its linkage to less well-differentiated 
tumors, CEA is also a prognostic marker 
[47–49].

 Performance Characteristics of Thyroid 
Tumor Marker Assays
The assays used for Tg, Ct, and CEA are mostly 
immunometric IAs, although use of mass spec-
trometry is increasing for Tg measurements, and 
some RIAs continue to be used for Tg and Ct. 
International standard preparations are available 
for all three analytes. The combination of this 
fact with the oncology-focused use of these ana-
lytes has, over time, led to much lesser result dif-
ference between assays from different 
manufacturers than what is observed in thyroid 
hormone and TSH testing. For example, most of 
today’s commercial Tg assays correlate with 
each other with r values >0.95 in patient samples 
and display systematic biases to each other of 
<20%. Tg LC-MS/MS assays agree equally well 
with each other and also quite well with Tg IAs, 
at least in patients without detectable TgAB in 
their serum (see below) [50, 51]. Nonetheless, 
because of the critical nature of comparable 
results in tumor follow-up, use of the same assay 
over time for a given patient is still recommended, 
in particular if tumor marker doubling (or halv-
ing) times are calculated, as has become popular 
for Ct and, more recently, Tg [48, 52, 53].

A low limit of quantification is crucial for all 
Tg assays. Ideally, it should be ≤0.1 ng/mL. Less 
than 1% of patients with serum Tg levels below 
this threshold will have persistent or recurrent 
disease, even if the measurement is performed 
without any stimulation [53, 54]. Some Tg immu-
nometric IAs achieve this cutoff, some come 
close (0.2–0.3  ng/mL), but several other Tg 
assays have higher lower limits of quantitation, 
including some of the current immunometric IAs 
(≥0.9 ng/mL), as well as the available competi-
tive IAs and Tg-MS assays (both ≥0.5  ng/mL; 
although some Tg-MS assays now achieve 0.1 
ng/mL). For several of these assays, stimulation 
testing might still be necessary in some patients, 

either through T4 withdrawal or by means of 
recombinant human TSH injection. Finally, while 
Tg is primarily used as a tumor marker, its mea-
surement might also assist in diagnosing nonneo-
plastic thyroid tissue destruction. In particular, 
subacute thyroiditis, silent thyroiditis, and post-
partum thyroiditis often show substantial serum 
Tg elevations due to follicular destruction.

 Assay Limitations and Interferences
The IAs for Tg, Ct, and CEA are all subject to the 
well-known interferences that can affect immuno-
metric or competitive IAs (Table  2). However, it 
should be noted that hooking of immunometric IAs 
is more commonly encountered in tumor marker 
testing than in other applications, because patients 
with a large tumor burden might occasionally have 
astronomically high tumor marker levels.

Another important point of note is that auto-
antibody assay interferences are particularly 
common in Tg assays. Between 15% and 30% of 
thyroid cancer patients have detectable anti-Tg 
autoantibodies (TgAB), a rate at least twice that 
of the general population. Interference with Tg 
measurements by IAs is a possibility in each of 
these cases [31, 55]. In immunometric IAs, such 
interference results in a false low measurement 
bias, whereas competitive IAs (mostly RIAs) 
usually show the opposite (false high). Finally, 
some RIAs might give false high results in 
TgAB- positive samples with low Tg concentra-
tions (≤1 ng/mL) but false low results, if Tg con-
centrations in the sample are higher (≥25  ng/
mL) [50]. Since TgAB interferences can occur 
even at very low TgAB concentrations, well 
below of what is considered diagnostic for auto-
immune thyroid disease, this represents a sub-
stantial problem. LC-MS/MS assays have been 
developed to overcome this problem. Tryptic 
digestion of patient serum cleaves all serum pro-
teins, including TgAB and Tg, into predictable 
fragments, which can then be measured by MS, 
in theory overcoming the TgAB interference 
problem (Fig.  13). Indeed, in TgAB-positive 
cases, Tg-MS detects higher serum concentra-
tions of Tg than immunometric IAs; by contrast, 
in TgAB-negative patients, immunometric IAs 
and Tg-MS assays agree much closer with each 
other [50]. In addition, Tg-MS detects Tg in a 
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significant subset of patients with TgAB, who 
have no measurable circulating Tg by immuno-
metric IA [50, 56]. However, the current Tg-MS 
assays are not infallible. In patients with con-
firmed clinical disease, who are TgAB-positive 
and Tg-negative by IA, about 40% have no 
detectable Tg by LC-MS/MS.  It remains to be 
determined, whether this is due to low levels of 
circulating Tg, which most of the current Tg-MS 

assays cannot detect due to their ~5-fold higher 
detection limit compared to the latest generation 
Tg IAs, or absence of Tg secretion by the tumor, 
or secretion of Tg with an altered amino acid 
sequence, which causes it being missed by the 
current Tg-MS assays.

Ct and CEA have not been reported to have 
high rates of autoantibody interferences. However, 
Ct measurements are sometimes compromised by 
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Fig. 13 Workflow diagram for thyroglobulin measure-
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of Tg proteotypic peptides are necessary to achieve 

acceptable detection sensitivity. Interference by Tg auto-
antibodies is eliminated, due to the trypsin digestion step, 
which destroys these antibodies (along with all other pro-
teins in the sample)
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the poor stability of this analyte. Like many pep-
tide hormones, it is readily cleaved by serum- and 
cellular peptidases. Delays in  sample processing 
and freezing of samples can lead to false low 
results. Another issue is interference from Ct frag-
ments and abnormal isoforms, which can result in 
nonlinear assay responses. This is seen primarily 
in tumor patients with elevated Ct levels. Serial 
dilution of the sample might allow determination 
of the true result, but in some instances, no valid 
answer can be given. Based on these limitations, 
we and others have investigated procalcitonin 
(PCT), calcitonin’s precursor, which is clinically 
used a sepsis marker, as an alternative analyte. 
PCT shows similar clinical performance as Ct 
when used as a medullary thyroid carcinoma 
tumor marker, while being free of the stability and 
fragment problems that affect Ct [57, 58]. 
Unfortunately, in case of systemic inflammation 
or infection, PCT is similarly unreliable as a thy-
roid tumor marker as Ct.

 Thyroid Autoantibody Testing

 Autoantibody Assays Used in Thyroid 
Disease
The majority of cases of hypo- and hyperthyroid-
ism in developed countries are due to autoim-
mune disease. Detection of autoantibodies 
against thyroid antigens is frequently helpful in 
(1) confirming or ruling out an autoimmune etiol-
ogy, (2) estimating the risk of progression of sub-
clinical disease to clinical disease, (3) monitoring 
ongoing autoimmune disease activity, and (4) 
predicting disease relapse.

The widely available thyroid autoantibody 
tests are TgAB, antithyroid peroxidase autoanti-
bodies (TPO-AB), and anti-TSH receptor auto-
antibodies (TSHR-AB). All these assays are 
quantitative assays.

 Performance Characteristics of Thyroid 
Autoantibody Assays
Modern TgAB and TPO-AB assays are either 
competitive IAs or immunometric IAs (Fig. 14). 
TSHR-ABs are also frequently measured by con-
ventional competitive autoantibody assays, in 

which the TSHR-ABs in patient serum compete 
either with labeled TSH or labeled standardized 
TSHR-AB preparations for binding to intact (or 
partial) TSHRs. These assays are commonly 
called thyrotropin receptor-binding antibody 
(TRAB) assays or thyrotropin-binding inhibitory 
immunoglobulin (TBII) assays. Alternatively, or 
in addition, functional assays can be used, which 
are typically denoted as thyroid-stimulating 
immunoglobulin (TSI) assays or as thyroid- 
stimulating autoantibody (TSAb) assays. These 
assays measure the ability of patient serum, com-
pared to reference serum, to stimulate cAMP 
production in cells that express the TSHR. Most 
commonly, Chinese hamster ovary (CHO) cells 
are used, which have been double transfected 
with a (sometimes modified) human TSHR and 
with a luciferase construct, the expression of 
which is driven by a cAMP-dependent promoter. 
Cells are lysed after incubation, substrate is 
added, and glow chemiluminescence is mea-
sured, with the signal being directly proportional 
to the amount of intracellular cAMP that was 
generated during incubation. The advantage of 
the TSI/TSAb assay over TRAB/TBII assays is 
that the stimulating (or not) nature of TSHR-ABs 
can be unequivocally determined and that it has 
better detection sensitivity for stimulating 
TSHR-AB (Fig. 15) [59, 60]. The disadvantages 
are greater assay variability and more labor- 
intensive, costly and slower, workflows. In addi-
tion, at extremely high concentrations of 
stimulating TSHR-AB concentrations, TSI/
TSAb assays might show hooking. The TSH 
receptor, like many G-protein receptors other 
than adrenergic receptors, multimerizes for sig-
naling [61]. At very high concentrations of stimu-
lating TSHR-AB, all the receptors at the cell 
surface are individually occupied by TSHR-AB, 
with little opportunity to multimerization and, 
hence, diminished downstream cAMP produc-
tion, resulting in low luciferase transcription and 
low chemiluminescent signal (Fig. 15).

Different TPO-AB assays compare poorly 
with each other. The same is true for TgAB 
assays. The relationship between measurements 
by different assays is only linear when data are 
log-transformed. Even then slopes of greater than 
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1.5× log10 (15-fold) are not uncommon, and up 
to 10× log10 (100-fold) are observed for some 
combinations of assays. Moreover, correlation 
coefficients rarely exceed 0.9 and might be lower 
than 0.7 in many cases (Fig. 16) [62]. The main 
reasons for this are (1) that the reference materi-
als used (NIBSC preparations 66/387—TPO-AB 
and 65/93—TgAB) are pooled serum prepara-
tions that are more than 40 years old and (2) that 
Tg and TPO are both large molecules, which 
makes it likely that different assays use different 
portions of these molecules as the antigen. 
Therefore, while manufacturers might succeed in 
creating pooled serum calibrators that agree rea-

sonably well with the pooled standard prepara-
tions, an individual patient’s range of 
autoantibodies might not. For serial measure-
ments, as opposed to diagnosis-only applications, 
the same assay must always be used, or when the 
assay is changed, re-baselining should be 
performed.

The situation is slightly better for TSHR-AB 
assays. A human monoclonal autoantibody ref-
erence material is used, which allows highly 
reproducible calibration. Almost all TRAB/TBII 
assays now report in international units (IUs). 
There is modest agreement between different 
TRAB/TBII assays, with mostly acceptable 
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Fig. 14 Cartoon of competitive and immunometric anti-
body assays. These assays are very similar to ordinary 
competitive and immunometric IAs, except that they use 
defined amounts of antigen to capture auto-ABs present in 
patient serum, either in competition with labeled assay- 
ABs against the antigen (top panel, left) or in an immuno-

metric design (bottom panel, left), by detecting auto-AB 
that have bound to the antigenic target by using labeled 
anti-human IgG ABs (generally generated in mice or rab-
bits). The dose-response curves (right side of both panels) 
are analogous to those in ordinary competitive and immu-
nometric IAs, respectively
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slopes and correlation coefficients >0.9. 
However, some assay combinations continue to 
show poor agreement [63], and the numerical 
agreement between TRAB/TBII assays and the 
functional TSI/TSAb assays is also mediocre 
(after log transformation of data r values of 
~0.7). TSI/TSAb assays at the moment still 
report the ratios (or percentage) of stimulatory 
activity in patient samples compared to a refer-
ence, rather than in IUs.

 Assay Limitations and Interferences
Heterophile interferences can occasionally affect 
immunometric autoantibody IAs, leading to false 
high results (Fig. 12). Biotin interference should 
also be mentioned, as the market-leading TRAB 
assay (Roche Diagnostics) is streptavidin-biotin 
capture based.
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international standard material for thyroid-stimulating 
immunoglobulins (human monoclonal TSHR antibody 
preparation). The squares/solid line represent the dose- 
response curve for a commercial TSHR-AB bioassay (TSI), 
while the circles/dashed line shows the dose- response curve 
of an automated competitive TSHR-AB binding assay 
(TRAB). The x-axis lists the IS-90/672 concentration. The 
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(to convert into percent multiply by 100). The right y-axis 
shows the percentage of inhibition of TSH binding in the 
TRAB assay. The response curves are parallel but shifted to 
relative each other. It is apparent that the TSI assay is several 
orders of magnitude more sensitive to stimulating TSHR-AB 
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Fig. 16 Example of an assay comparison of two thyro-
globulin autoantibody (TgAB) assays. Data had to be log- 
transformed to achieve reasonable correlation of results, 
but even then, it is apparent that assay agreement is poor, 
with a substantial slope and mediocre correlation
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 Determining Whether Test Results 
Are Abnormal or Different 
from Previous Results

Understanding the assays used for thyroid-
related blood testing is one prerequisite for 
optimal test selection and result interpretation. 
The second important foundation is how to 
classify test results in an optimal fashion into 
“normal” or “abnormal” results and how to 
determine whether a measured analyte concen-
tration has truly changed significantly upon 
repeat testing. The concepts used for these pur-
poses are “reference ranges” and “minimal sig-
nificant change.”

 Reference Ranges

Reference ranges, or more precisely healthy pop-
ulation reference intervals, are used throughout 
nearly all of laboratory testing in order to classify 
test result in patients as “normal” or “abnormal.” 
Reference intervals typically reflect the central 
95% of the result distribution that is seen in 
healthy subject for a given laboratory test. 
However, for a significant minority of laboratory 
tests, either only low or only high values of labo-
ratory test will denote possible pathology. In these 
cases, reference ranges are “asymmetrical,” show-
ing either a high or a low cutoff, but not both.

In some instances, when there are data, or 
strongly held medical beliefs, which suggest that 
a healthy population-based approach is subopti-
mal for identifying individuals at risk of disease, 
medical decision intervals are used instead. An 
example are the periodically updated lipid guide-
lines, which set upper cutoffs at levels that are 
deemed to reflect a low disease risk, rather than 
the 97.5th percentile of the population.

A healthy population is also not necessarily 
the best reference point for tumor marker refer-
ence ranges. Tumor marker measurements are 
primarily used for follow-up, and should be as 
low as possible in case of successfully treated 
neoplasia, in particular if one is dealing with 
organ-specific markers (e.g., Tg or Ct). In this 
case, the lower limit of quantitation of the assay 

might become the upper limit of the reference 
interval.

However, most laboratory tests in thyroidol-
ogy use healthy population-based reference inter-
vals. As it turns out, this is problematic. TSH, 
total T4, free T4, total T3, and free T3 all display 
low indices of individuality (<0.5), with the low-
est being observed for TSH [64–69]. The index of 
individuality is calculated by dividing the within- 
subject variation upon repeat testing by the 
between-subject variability. A low index of vari-
ability therefore means that an analyte shows 
marked individuality, with a given individual’s 
range of results being narrower than the popula-
tion reference range, and, consequently, disease 
might be detected at a much later stage than opti-
mal (Fig. 17). In an ideal world, patients would 
have their thyroid function tests always per-
formed with the same assay, in the same labora-
tory, to minimize between-assay and 
between-laboratory imprecision (see below), and 
the serial results would be compared with each 
other, rather than to a population reference range, 
with flagging of potentially abnormal results 
based on a predetermined likelihood threshold 
that disease is present (for calculation of this 
threshold, see below).

Unfortunately, this individualized approach 
continues to be used sparsely, for a variety of rea-
sons (see below). The focus in the thyroid field has 
therefore been on refining population-based refer-
ence ranges. The strategies used have centered on 
(1) studying larger populations, allowing improved 
coverage of different age groups across both gen-
ders, (2) performing studies in different popula-
tions or countries, and (3) performing studies in 
populations screened in more detail for the absence 
of thyroid disease (e.g., extensive screening ques-
tionnaire, ultrasound of thyroid gland, measure-
ment of various antithyroid autoantibodies, etc.) 
[70–77]. Most of the studies have focused on TSH, 
because of its largely undisputed role as the front-
line marker of thyroid function. These studies have 
shown little difference in the lower TSH end of the 
TSH reference range but ethnic and regional dif-
ferences in the upper cutoff (between ~3.5 mIU/L 
and > 5 mIU/L). There is also some evidence that 
the elderly might have a higher upper TSH limit 
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(>5 mIU/L) than younger individuals, while chil-
dren have very high TSH levels during the first 
year of life (at birth up to ~15 mIU/L at 1 year still 
~8 mIU/L). The upper limit of the TSH reference 
range in children does not reach adult levels until 
~10 years of age. It was also found that popula-
tions, which were extensively screened for the 
absence of thyroid disease or risk factors of thy-
roid disease, often, but not always, have lower 
upper limits of their TSH reference range 
(≤2.5 mIU/L) than members of the same popula-
tion that had not been prescreened to the same 
extent. Within each study, such observed trends 
are likely real. However, comparison of different 
reference range studies is problematic, and  clinical 
guidelines that list fixed cutoff levels for either 
upper of lower reference ranges are probably mis-
guided. The reason for this is that significant dif-
ferences in TSH results remain between different 
assays and that none of the studies undertook any 
harmonization efforts that might have mitigated 

the impact of these assay discrepancies. For the 
time being, TSH population-based reference 
ranges remain method specific, and age-, gender-, 
or ethnicity-specific cutoffs may not be transfer-
able from one method to another. Similar consid-
erations apply to peripheral thyroid hormone 
population-based reference ranges.

 Minimal Significant Change

Minimal significant change, also known as criti-
cal difference or reference change value, is an 
important concept in serial laboratory testing. It 
is based on combining inter-assay variability and 
biological variability to arrive at thresholds for 
significant changes. A normal distribution of ana-
lytical and biological variability is usually 
assumed, and for each standard deviation score 
(Z-score, Table 3), corresponding to a probability 
that the change is not due to chance, the critical 

A
n

al
yt

e 
C

o
n

ce
n

tr
at

io
n

s

A
n

al
yt

e 
C

o
n

ce
n

tr
at

io
n

s
Multiple results of individual patients Multiple results of individual patients

Difference in individual patients’ results distribution
within the normal range (gray area)

Analyte with high index of individuality
(small difference in result range between patients)

Analyte with low index of individuality
(large difference in result range between patients)

12

11

10

9

8

7

6

5

4

3

2

1
0

Pt.1 Pt.2 Pt.3 Pt.4 Pt.5 Pt.6 Pt.7 Pt.8 Pt.9 Pt.10

12

11

10

9

8

7

6

5

4

3

2

1
0

Pt.1 Pt.2 Pt.3 Pt.4 Pt.5 Pt.6 Pt.7 Pt.8 Pt.9 Pt.10

Fig. 17 Example of two hypothetical analytes with high 
(left) and low (right) indices of individuality. Ten hypo-
thetical subjects are depicted who underwent repeated test-
ing for two hypothetical analytes, one with a high and one 
with a low index of individuality. The error bars display 
mean and range of results from repeated testing over time. 
The gray backgrounds represent the healthy population 
reference intervals. For the hypothetical analyte with a 
high index of individuality, there are only small differences 
in the range of results that are obtained for each subject, 

and the results of all subjects span almost the entire healthy 
population reference range. Serum iron measurement in 
male subjects would be an example of a real analyte fol-
lowing this pattern. For the hypothetical analyte with a low 
index of individuality, there are large differences in the 
range of results that are obtained for each subject, and the 
results of none of the subjects come even close to covering 
the entire healthy population reference range. Measurement 
of any of the thyroid hormones would be an example of 
real analytes following this pattern
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difference between two test results obtained  
from the same subject can be calculated: 

2 2 2  Z CV CVA IB , where CVA and CVIB are 
the coefficients of variation of analytical variabil-
ity and intra-subject biological variability, respec-
tively. For example, if we have decided that we 
want to be 95% certain that two serial results with 
CVA and CVIB of 10% each are different from 
each other, and we use the bidirectional Z-score 
for a 95% probability, which is 1.96, we get 
1.41 × 1.96 × 14.14 = 39.1%. Any change larger 
than that will have a > 95% likelihood of being 
“real.”

As shown in this example, the required change 
is often larger than most clinicians would intui-
tively expect. However, for many laboratory 
tests, including most thyroid-related tests, this 
change is much smaller than what would be 
required for the result to fall outside the popula-
tion reference range (see above). In addition, in a 
monitoring situation, one is often primarily inter-
ested in unidirectional changes, e.g., a fall in FT4 
concentrations following treatment of Graves’ 
disease or a rise in thyroglobulin values in a 
patient suspected of suffering a thyroid cancer 
recurrence. In this case, a unidirectional Z-score 
can be used (Table 3), which for the above exam-
ple would result in a critical difference of 32.9%, 
rather than 39.1%. Depending on the perceived 
importance to flag small changes, one can also 
select Z-scores that correspond to lower probabil-
ities than 95% for a change to be not due to 
chance, accepting that this might lead to more 

false-positives. If, for example, we were to apply 
unidirectional and bidirectional Z-scores for an 
80% probability (Table  3) in our example, the 
critical differences would shrink to 16.7% and 
25.5%, respectively.

A significant hindrance to the widespread use 
of the minimal significant change concept is that 
the biological variability for a specific analyte in 
a specific patient is usually unknown. However, 
there are published intra-subject biological vari-
ability data for most thyroid-relevant tests [64–
69, 78–80]. Substituting these values for the 
unknown ones in a specific patient is still likely to 
allow earlier detection of significant changes 
than the use of population reference intervals and 
is likely to be more reliable than a physician’s 
hunch. Furthermore, once a large number of 
serial measurements are available for a patient, a 
variety of statistical tests can be used (time series 
analysis, ANOVA for repeated measures with 
post hoc T-tests, Tukey Cramer multi- comparison 
T-test with connecting letter report, etc.), to dis-
cern significant changes, assuming that the 
assay(s) used is/are not changed and that the 
patient is not exposed to drugs or diseases that 
are likely to affect the biological variability of the 
analyte(s) in question. Finally, as point of patient 
testing increases and becomes less invasive, or 
noninvasive, we can anticipate that increasing 
proportions of the population will actually have 
data on their own biological variability for sev-
eral common analytes, including some thyroid 
function tests.

Despite all its advantages, the critical differ-
ence approach is currently sparsely used. 
Doubling time of serial tumor marker measure-
ments is a minimalistic example of its real-life 
application that has gained traction, including in 
thyroid cancer follow-up, but there is little use 
beyond this in a formal way. Laboratories are 
failing the clinicians by not providing these data. 
In part this failure is due to laboratory testing 
being increasingly decoupled from clinical prac-
tice and fragmented across many providers, mak-
ing it difficult to match patients and results in a 
serial fashion. In addition, there is little control 
about what assay is used to test a specific patient, 
and not infrequently patients are tested for a 

Table 3 Z-scores for probabilities from 0.99 to 0.5

Probability Unidirectional Z-score
Bidirectional 
Z-score

0.99 2.33 2.58
0.95 1.65 1.96
0.90 1.28 1.64
0.85 1.04 1.42
0.80 0.84 1.28
0.75 0.68 1.11
0.70 0.52 0.99
0.65 0.39 0.87
0.60 0.25 0.76
0.55 0.13 0.65
0.50 0 (mean) 0 (mean)
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given analyte by different assays over time. Due 
to the persistent lack of harmonization between 
different assays, this effectively precludes the use 
of the minimal significant change approach in 
such patients.

 Testing Approach and Result 
Interpretation

 Thyroid Function Assessment

 Initial Diagnosis
As mentioned before, TSH is the best single ini-
tial test. However, unless testing is performed 
solely for the purpose of screening of 
 asymptomatic individuals, it is preferable to also 
measure peripheral thyroid hormones. FT4 is 
usually the analyte of choice. In adult outpatients, 
who are relatively well, FT4 immunoassays are 
the most convenient and cost-effective choice. In 
very young children (<2 years of age), in multi- 
morbid patients on multiple medications, in preg-
nant women, and in seriously ill inpatients, 
consideration should be given to use a FT4 assay 
that is based on dialysis or centrifugal filtration, 
unless an urgent result is required.

Total T4 is a valid, and perhaps superior, alter-
native to FT4 in adult male patients, prepubertal 
children over the age of 2, and postmenopausal 
women who are not on female hormone 
replacements.

Measuring total T3 or FT3 for initial diagnosis 
is only indicated if there is a high index of suspi-
cion that the patient has early Graves’ disease or 
an autonomous adenoma.

If only borderline abnormalities are observed, 
or if TSH and FT4 results are incongruent, mea-
suring total T3 or FT3 is indicated. Alternatively, 
testing can be repeated after a few weeks.

 Result Patterns and Their 
Interpretation
Once a definitive result pattern has been estab-
lished, further testing should proceed based on 
the differential diagnoses suggested by the result 
patterns. The following result patterns might be 
observed:

 I. Normal TSH and normal FT4 and normal 
FT3

These patients are most likely euthyroid. 
Further testing is usually not indicated. 
However, depending on the clinical presen-
tation, transient thyroiditis in the transition 
phase from thyrotoxic to hypothyroid phase 
is a possibility. Finding a significantly ele-
vated Tg (as judged by population refer-
ences intervals for individuals with an intact 
thyroid gland) might point into this 
direction.

Additional considerations apply to 
patients with known, and treated, primary 
hypothyroidism. Some individuals will 
have biochemical euthyroidism, as judged 
by population reference intervals, but 
might be mildly under- or over-treated 
based on their individual reference ranges 
(see above). If historical data are available, 
these individual ranges can be taken into 
account to adjust T4 dosing. Adding T3 
has also been advocated if such individuals 
suffer from hypothyroid symptoms, based 
on the assumption that patients with ongo-
ing symptoms on T4 treatment might have 
polymorphisms in their type II deiodinase 
gene, resulting in diminished T4 to T3 con-
version. Type II deiodinase genotypes 
indeed correlate with thyroid hormone 
parameters [15, 42]. Reverse T3 measure-
ment is therefore advocated by proponents 
of this theory in order to identify individu-
als that might benefit from T3 treatment in 
addition to T4, with high rT3 levels been 
viewed as evidence of inadequate T4 to T3 
conversion. However, based on the basic 
physiology of autoregulation of T4 to T3 
conversion [14], one would expect that 
adding T3 to T4 treatment would simply 
downregulate peripheral T4 to T3 conver-
sion at the expense of creating additional 
rT3, i.e., an infinite treatment-test-treat-
ment cycle is initiated. For T3 replacement 
to work as intended, the patients’ treatment 
might have to consist entirely of T3, or T3 
might have to be added to T4  in a novel 
way.
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Another biochemically euthyroid group 
are patients (T4 treated or not), who have a 
past history of Graves’ disease and have 
received thyroid ablative therapy (radioiodine 
or surgery). These individuals might still have 
active thyroid auto-immunity, which puts 
them at risk of worsening extrathyroidal man-
ifestations of Graves’ disease, such as oph-
thalmopathy [81, 82]. Pregnant females that 
fall into this category might also pass TSRH-
ABs to their fetus. In the case of pregnant 
women with a past history of Graves’ disease, 
TRAB or TSI measurement in the first tri-
mester is therefore considered standard of 
care. If results are within the reference range, 
further testing is  unnecessary, while an ele-
vated TRAB or TSI should prompt repeat 
testing and, in case of >3.5-fold elevations, 
referral to high-risk obstetric care [83–85].

 II. Low TSH (<0.1 mIU/L) and elevated FT4 
or FT3

This constellation is typical for primary 
hyperthyroidism, and the majority of patients 
with this result pattern will fall into this cat-
egory. The key to management is to deter-
mine the cause of thyrotoxicosis, with the 
chief contenders in order of likelihood being 
Graves’s disease, toxic nodular thyroid dis-
ease (single or multiple nodules), and the 
thyrotoxic phase of transient thyroiditis. Less 
common causes include exposure to large 
amounts of iodine on the background of a 
large nodular goiter, ectopic thyroid tissue 
(e.g., struma ovarii), and, extremely rarely, 
activating germline mutations of the TSHR.

In addition, this pattern can occur when 
there is no primary thyroid disorder. 
Uncommon, but not rare, examples of this 
include T4 or T3 overdoses, amiodarone 
treatment, and gestational thyrotoxicosis, 
usually on a background of hyperemesis 
gravidarum or molar pregnancy (extremely 
high concentrations of abnormally glyco-
sylated isoforms of hCG cross-react with 
the TSHR) [86, 87]) or extremely rarely due 
to familial gestational thyrotoxicosis (germ-
line mutant TSHR with increased cross- 
reactivity with hCG) [88].

The most common differential diagnos-
tic problems are between Graves’ disease 
and (1) toxic nodular goiter (in particular if 
the patient has no extrathyroidal stigmata 
of Graves’ disease and a somewhat nodular 
goiter), (2) transient thyroiditis, and (3) 
gestational thyrotoxicosis (which has a 
similar prevalence as first trimester onset 
Graves’ disease: 0.1–0.4% of pregnancies) 
[87, 89]. TSHR-AB measurement is the 
key test to distinguish between these pos-
sibilities. Elevated TSHR-AB, detected by 
TRAB or TSI assay, are highly sensitive 
and specific (>95%) for recent onset 
Graves’ disease [1] and can confirm or 
exclude the diagnosis.

One should also consider the possibility 
of a laboratory error or artifact, in particular 
if clinical symptoms and signs are at odds 
with the laboratory results. While this con-
stellation of laboratory results is not usually 
seen with antibody interferences in IAs, it 
can be observed due to high biotin intake by 
the patient. At least half of all IAs used in 
thyroid function testing rely on streptavidin- 
biotin interactions to capture assay antibod-
ies. Biotin, which is not infrequently taken 
by patients for a variety of unproven indica-
tions at doses of 300–2000-fold excess of 
the recommend daily intake [33, 37], will 
prevent this interaction, thus leading to low 
assay signals. In an immunometric IA, i.e., 
TSH, this leads to a false low result, while 
in competitive IAs, i.e., total T4, FT4, total 
T3, FT3, and TRAB/TBII, it will lead to a 
false high result, thus mimicking Graves’ 
disease result pattern perfectly. However, 
neither TSI/TSAb bioassays nor FT4 assays 
by dialysis/centrifugal filtration and 
LC-MS/MS will be affected, thus providing 
an important clue to this interference. 
Similarly, repeating thyroid function testing 
with assays that do not use biotin-streptavi-
din interaction will give correct results. 
Alternatively, testing can be repeated a few 
days after discontinuing biotin, because 
biotin is a water-soluble vitamin with a 
short half-life.
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 III. Low TSH (usually >0.1 mIU/L but <lower 
limit reference range) and normal FT4 and 
FT3

The most common causes of this set of 
results are subclinical hyperthyroidism and 
mild thyroid hormone overtreatment, fol-
lowed by abnormalities in thyroid hormone 
binding to transport proteins and metabo-
lism of thyroid hormone. The latter two are 
usually due to non-thyroidal illness or a 
variety of drugs. Reverse T3 is often ele-
vated in this situation, but simply repeating 
thyroid function tests after some time might 
also suffice.

 IV. Normal or low (usually <0.1 mIU/L) TSH 
and low FT4 or FT3

This pattern is more often seen in non- 
thyroidal illness than the one described 
above, but it is also common during, or 
immediately after, treatment of hyperthy-
roidism. TSH can remain suppressed for 
several weeks in this situation, even when 
peripheral thyroid hormone levels have 
fallen below the reference range.

This pattern is also not infrequently seen 
in malnourished patients, and it can some-
times be seen with a variety of medical 
drugs (e.g., many antiepileptic medications) 
[90, 91].

Finally, secondary hypothyroidism, i.e., 
pituitary or hypothalamic disease, needs to 
be considered in this scenario.

 V. Elevated TSH (usually >10 mIU/L) and low 
FT4 or low FT4 and low FT3

This is the classical pattern seen in full- 
blown primary hypothyroidism. T4/FT4 is 
always low, albeit sometimes only margin-
ally. However, T3/FT3 is only low in severe 
hypothyroidism, because peripheral conver-
sion of T4 to T3 is upregulated in this situa-
tion, while rT3 production is downregulated. 
Patients with significantly low T3/FT3 are 
at risk of myxedema coma if this state has 
persisted for a prolonged period of time. 
Other markers of severity of hypothyroid-
ism include serum cholesterol, creatine 
kinase, and corticosteroid-binding globulin, 
which might be substantially elevated in 

full-blown hypothyroidism, while sex 
hormone- binding globulin levels might be 
low.

The most common reason for primary 
hypothyroidism is chronic autoimmune thy-
roiditis, followed by iatrogenic causes, in 
rough order of frequency radioactive iodine 
treatment, thyroidectomy, antithyroid drug 
treatment, other drugs (Table 4) [92], iodine 
deficiency, external beam neck irradiation, 
environmental goitrogens, infiltrative disor-
ders [e.g., amyloidosis, sarcoidosis, Riedel’s 
thyroiditis], thyroid developmental abnor-
malities (thyroid absent), and thyroid hor-
mone dysgenesis (thyroid present, inborn 
errors of thyroid cell function).

The medical history and thyroid autoan-
tibody testing are the cornerstones of the 
initial diagnosis of the etiology of primary 
hypothyroidism. For the rare genetic disor-
ders, genetic testing provides the answer for 
known disorders and, through whole exome 
sequencing, increasingly for unknown 
genetic causes.

 VI. Elevated TSH (> upper limit of reference 
range but <10 mIU/L in most cases) and 
normal FT4 and FT3

Table 4 Some drugs other than antithyrotoxic drugs that 
might cause hypothyroidisma

Mechanism of induction of 
hypothyroidism Drugs
Interference with thyroid 
hormone synthesis or 
release

Iodine
Iodine-containing drugs
  Various contrast 

reagents
  Amiodarone
  Kelp tablets
  Some expectorants
Perchlorate
Aminoglutethimide
Thalidomide
Lithium

Immune dysregulation/
thyroiditis

Interferon-alpha
Interleukin-2
Amiodarone
Various tyrosine kinase 
inhibitors

aSome of these drugs, most notably amiodarone, might 
also cause hyperthyroidism
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This is the typical picture in subclini-
cal hypothyroidism. This entity is often, 
more or less arbitrarily, further subdi-
vided into patients with TSH values above 
the upper limit of the population refer-
ence interval, but below 10 mIU/L (≥80% 
of cases), and those with TSH values 
above 10 mIU/L (≤20% of cases). While 
the latter group is generally considered to 
be in need of thyroid hormone replace-
ment therapy, there is no consensus as to 
the former [93, 94].

At least 30% in the former group have an 
autoimmune etiology, which can often be 
confirmed by thyroid autoantibody testing. 
In the >10 mIU/L group, the majority have 
an autoimmune etiology.

Other causes for this pattern include 
intermittent T4 therapy for hypothyroidism 
and the recovery phase of non-thyroidal 
illness.

Heterophile antibody interference in 
immunometric IAs should also be consid-
ered as a cause of a false high TSH in this 
group of patients. In this case, patients are 
actually euthyroid.

 VII.  Normal or elevated TSH (usually <10 
mIU/L) and elevated FT4 or FT3
This is a rare pattern with a relatively lim-
ited number of causes.
T4 or T3 autoantibodies with or without 
coexisting hypothyroidism is a possibil-
ity. Usually other thyroid autoantibodies 
are also detectable in these patients. T4 
antibodies can be confirmed by TBPE 
assay.
Familial dysalbuminemic hyperthyroxin-
emia can also present this way. Many FT4 
and FT3 IAs will give false high results in 
these patients (although less elevated than 
total T4 or T3 assays) [95], but retesting 
FT4 or FT3 by dialysis or centrifugal filtra-
tion followed by LC-MS/MS nearly always 
gives correct results in this situation. If the 
TSH is elevated, then there is usually coex-
isting hypothyroidism.
Amiodarone can also cause this result pat-
tern. In this case, the TSH result is the most 

reliable indicator of the patient’s thyroid 
function status.
Finally, thyroid hormone resistance and 
TSH- secreting pituitary tumors (or, even 
rarer, other neuroendocrine tumors that 
secrete TSH) have to be considered once 
the other possibilities are excluded. Finding 
a significant molar excess of the common 
alpha subunit of pituitary glycoprotein hor-
mones (LH, FSH, TSH, hCG), αPGH, is 
considered helpful [96]. However, the use-
fulness and reliability of this αPGH/TSH 
ratio have to be questioned. There is no 
assay standardization/harmonization, there 
are virtually no published data comparing 
different αPGH assays, and clinical valida-
tion is scarce. Pituitary imaging will usually 
have to be performed, as well as genetic 
testing for thyroid hormone receptor muta-
tions, deiodinase defects, and thyroid hor-
mone transporter mutations.

 Follow-Up Testing/Monitoring
Long-term treatment for hypothyroidism is a sta-
ble follow-up situation. Once an optimal thyrox-
ine dose has been established, TSH testing every 
6–12 months should suffice, unless there is inter-
vening illness, significant change in body weight, 
or recurrent symptoms, when more frequent test-
ing might be necessary, and FT4 might also have 
to be measured.

For most other situations, TSH plus FT4 (or 
FT3) testing is usually indicated, and the time 
intervals vary with the clinical situation. Given 
the T4’s half-life (5–8 days), test intervals should 
be >1 week. T3 with its half-life of about 1 day 
allows more frequent testing, but its usefulness in 
monitoring is limited, except in recurrence of 
Graves’ disease, where T3/FT3 might become 
elevated slightly before T4/FT4, or in patients 
who are taking a mixture of T4 and T3 or just T3. 
Result patterns in patients on mixed replacement, 
or on T3-only replacement, can be difficult to 
interpret, because T3 has a more rapid effect on 
serum TSH levels than T4, and in pure T3 
replacement, no T4 would be detectable. Timing 
of blood draws needs to be standardized, with 
medication to be taken after the draw.
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In patients with Graves’ disease, who are 
undergoing treatment, TSH might remain sup-
pressed for prolonged periods of time, and there 
is little point monitoring it more often than fort-
nightly. FT4 testing is the mainstay of monitoring 
in this situation.

As to monitoring thyroid autoantibody levels, 
TSHR-AB monitoring might be useful for assess-
ing ongoing thyroid autoimmune activity. 
However, it remains uncertain, whether its pre-
dictive value is sufficient to guide treatment 
decisions.

 Tumor Marker Testing

 Thyroglobulin
Tg testing at regular intervals is a key part of thy-
roid cancer follow-up. The 2015 ATA manage-
ment guidelines for adult patient with thyroid 
nodules and differentiated thyroid cancer do not 
recommend preoperative Tg or TgAB measure-
ments, because their predictive value is unproven. 
The ATA guidelines recommend performing the 
first post-op Tg measurement 3–4  weeks post- 
thyroidectomy, which should be adequate with or 
without knowledge of pre-op Tg levels (Tg serum 
half-life is ~30 h [97]). The testing can be per-
formed on thyroxine, if a highly sensitive Tg 
assay (lower limit of quantitation ≤0.1 ng/mL) is 
used. A Tg on thyroxine of ≤0.2 ng/mL is associ-
ated with ~1% risk of persistent or recurrent dis-
ease [31, 53, 54]. Stimulated Tg measurements 
(thyroid hormone withdrawal or rhTSH stimula-
tion) are optional, with a rise of serum Tg to 
<1  ng/mL being considered consistent with the 
absence of active disease [53].

If patients are TgAB-positive, using the TgAB 
assay’s limit of quantitation as the cutoff, a Tg 
result by IA is not trustworthy. Remeasurement 
by a Tg-MS assay addresses this problem in part, 
but as discussed before, while this gives an accu-
rate result for patients above the lower limit of 
quantitation of the MS assay (usually 0.5  ng/
mL), only 60% of the TgAB-positive cases with 
undetectable Tg by IA (<0.1 ng/mL) and recur-
rent/residual disease will be detected with current 
Tg-MS assays [50, 56].

Depending on whether the patient is deemed 
to fall into the low-risk, intermediate-risk, or 
high-risk category, based on clinical _presenta-
tion, imaging, and histopathology, Tg is remea-
sured at 6–24-month intervals, again, unstimulated 
or stimulated. TgABs should always be measured 
alongside and will become undetectable over time 
in many cured patients [53].

The concept of doubling times of Tg is consid-
ered in the guidelines and is matched to three 
tiers of recurrence risk: >3 years low, 1–3 years 
intermediate, and <1 year high; a rise of ≥0.3 ng/
mL per year is endorsed as an alternative to iden-
tify an increased risk of recurrence [52, 53].

While the guidelines acknowledge the impor-
tance of the differences between different Tg 
assays, they don’t seem to consider the role of 
consistency of assay performance over time for 
judging changes in Tg levels. The minimal sig-
nificant change concept, if it incorporates the 
inter-assay imprecision over multiple reagent lots 
and time periods of ≥1 year, would be eminently 
applicable in this scenario and would likely 
deliver much improved diagnostic accuracy and 
earlier detection of recurrence.

Finally, for all post-op Tg testing, the recom-
mendations in the ATA document assume the 
patient has undergone total thyroidectomy +/− 
radioiodine remnant ablation. Remnant thyroid 
tissue produces serum Tg levels of 0.5–1 ng/mL 
per gram tissue, depending on serum TSH levels 
[98, 99]. Consequently the recommendations on 
how to handle Tg testing in these patients are lim-
ited to the statement that “… rising Tg values 
over time are suspicious for growing thyroid tis-
sue or cancer,” which as a recommendation has 
essentially no value. Again, the minimal signifi-
cant change concept might help here, although 
TSH fluctuations might have to be factored in.

 Calcitonin and CEA
Considerations for calcitonin and CEA are very 
similar as those listed for Tg. A difference is that 
Ct is also frequently used diagnostically, with lev-
els above 50  pg/mL considered as suspicious, 
while serum concentrations within the reference 
range make MTC very unlikely. For levels above 
the reference range, but below 50 pg/mL, penta-
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gastrin or calcium infusion might be used to stim-
ulate Ct secretion. A stimulation >50  pg/mL is 
considered suspicious of C-cell hyperplasia, and 
>  100  pg/ml denotes a likely MTC.  There are 
numerous variations of stimulation protocols that 
are used, and, of course, Ct assay standardization 
is not perfect, so these cutoffs should be treated as 
recommendations, rather than gospel [46, 100].

Throughout Ct testing, the potential pitfalls of 
assay interferences, which have been discussed 
before, need to be considered.

Preoperative Ct levels are correlated with 
tumor size and therefore indirectly with the risk 
or persistent disease, which rises from 2% for 
patients with <50 pg/mL to 37% for those with 
levels of >500 pg/mL [48, 100].

In follow-up, biochemical cure is considered 
when Ct levels are at or below the lower limit of 
quantitation of the assay used. Levels within the 
reference interval are considered suspicious, and 
those above it strongly suggest persistent or 
recurrent disease. In doubtful cases, stimulation 
testing might be used, with the same criteria as 
for initial diagnosis. The concept of Ct doubling 
time is firmly established in MTC follow-up, and 
a doubling time of <2 years is associated with a 
higher risk of bad outcomes [47, 48].

CEA as a tumor-specific rather than organ- 
specific marker can be used diagnostically, but it will 
not be specific for medullary thyroid carcinoma. As 
indicated before, it might be positive in some 
Ct-negative cases and often denotes a more aggres-
sive tumor. Doubling time is used in follow- up, and 
for tumors that express both Ct and CEA, both 
should be measured. If the doubling time of one is 
<2 years, this denotes a worse prognosis, even if the 
other maker has a longer doubling time [47]. Again 
for both CEA and Ct, the concept of minimal signifi-
cant change might offer improved detection accu-
racy of recurrence and should be considered.
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 Basic Ultrasound Principles

Ultrasounds (US) are acoustic waves that are char-
acterized by a greater than 20 kHz frequency and 
propagate through physical media by means of a 
sequence of compressions and rarefactions. These 
pressure waves move longitudinally through the 
tissues at a velocity that is influenced by the elastic 
and density properties of the medium [1]. The fre-
quency (defined as the number of pressure peaks 
per second) and the wavelength (defined as the 
distance between pressure peaks) of these US 
waves may widely change according to the charac-
teristics of the emitting US probe [2, 3].

The energy of the US pulses and of the reflected 
echoes is decreased (“attenuated”) during their 
propagation through the tissue. US attenuation 
increases with the distance of the target from the 
transducer and the frequency of the US wave. 
Thus, US examination of close targets, as the 
superficial structures of the neck, may be per-
formed with high-frequency probes (range, 
10–15 MHz) that provide an elevated “axial reso-
lution” (the capacity to distinguish two adjacent 

small-sized structures from an apparently single 
greater entity) for the optimal imaging of thyroid 
gland and cervical lymph nodes [2, 3].

When, inside the medium, the US waves col-
lide with structures with a different elastic quality, 
part of their energy is reflected toward the emitting 
probe. The intensity of the echoes that are gener-
ated by this interaction is determined by the differ-
ence of acoustic impedance between contiguous 
tissues. Negligible US echoes are generated by the 
interface of tissues with similar impedance, while 
the whole wave energy is reflected in case of adja-
cent structures with marked difference of acoustic 
impedance. Usually, the interface between differ-
ent tissues generates low-intensity echoes. In case 
of calcifications, however, all US waves are 
reflected with a nearly complete absence of imag-
ing behind the interface (“acoustic shadowing”). 
In contrast, the almost complete transmission of 
US waves through fluid collections is followed by 
a stronger signal behind the cyst (“acoustic 
enhancement”) [4].

At B-mode (bidimensional) examination, the 
speckled signals that provide the texture of the 
thyroid gland and lymph nodes are due to the 
interference between multiple scattered echoes. 
The intensity and type of these reflected signals 
depend on the abovementioned parameters and 
also on the ratio between the size of the interface 
and the wavelength. Echoes reflected from a 
large area of interface, such as the border between 
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the liver and diaphragm, are “specular” (the 
echoes travel directly back toward the transducer). 
Intermediate-sized interfaces “diffract” the US 
beam, while small-sized structures, such as 
erythrocytes, “scatter” the acoustic waves in 
several directions [1–3]. A frequent artifact 
caused by US reverberation is the “comet tail 
sign.” Solid colloid crystals within the fluid 
content of a cyst may shake under the stimulus of 
US waves and produce additional echoes that go 
back to the transducer after the first reflected 
signal. This usually benign finding should be 
carefully distinguished from the tiny echoes 
reflected from intranodular microcalcifications of 
papillary thyroid carcinoma [4].

US wave attenuation is due not only to the 
reflection and scattering but also to the friction-
like losses due to the oscillatory motion induced 
by the pulse progression within the tissue. This 
energy loss, due to the conversion of mechanical 
energy into heat, is defined as “absorption” and 
represents the most relevant component of US 
attenuation [1–3]. During diagnostic examination, 
the US waves are generated by an emitting 
transducer (or US probe). The US probe is an 
electronic device that converts electric energy 
into the mechanical energy of US waves by 
means of piezoelectric elements [5]. The 
activation of these rods of lead zirconate titanate 
ceramic, placed in epoxy matrix, results in their 
vibration and in the generation of US waves. 
Subsequently, when the reflected sound waves 
get in touch with the crystals of the receiving 
probe, the same piezoelectric elements convert 
the vibration in electric signals [6].

Neck US examination is usually performed 
with linear array transducers that sequentially 
stimulate the thin lines of piezoelectric elements 
with the emission of perpendicular US pulses [6]. 
The echo signals detected by the transducer are 
preamplified, and the similarly reflective 
structures are displayed in the B-mode image 
with the same brightness, regardless of their 
depth. The difference in the amplitude of reflected 
echoes generates a gray-scale image, while the 
different timing of their detection provides the 
information about the depth from which the 
echoes are reverberating. The real-time fusion of 

a consecutive sequence of one-dimensional 
images (A-mode) permits their organization in a 
two-dimensional picture on the US display [4, 6].

Rapidly moving targets, such as blood eryth-
rocytes, generate very low-intensity echoes that 
are not displayed in gray-scale US images. 
However, the Doppler US signal processing may 
demonstrate the echoes of moving small-sized 
targets because they change in frequency and 
amplitude according to the velocity and direction 
of their movement [7, 8]. Movements toward the 
transducer generate positive frequency shifts, 
while movements away from the transducer 
produce a negative frequency shift. So, color 
Doppler (CD) imaging provides a graphic 
representation, with different colors, of the 
direction and speed of blood flow within the 
body. A different signal processing, defined as 
power Doppler (PW) imaging, is employed for 
the detection of low-velocity blood flow within 
small-sized vessels [9]. The assigned color 
represents the total amount of flow, irrespective 
of its velocity and direction, with a high sensitivity 
for the slow flows that are inadequately imaged 
by conventional CD. This fine detailing of small 
and irregular vessels may depict thyroid tissue 
vascularization and may provide additional 
information about the risk of malignancy of 
thyroid nodules and lymph nodes [10].

 How to Perform Thyroid Ultrasound 
Examination

Thyroid US examination is performed on patients 
in the supine position and with their neck in 
hyperextension over a pillow [11]. The US 
machine is generally placed on the right side of 
the examining bed, while the operator, if right-
handed, is on the left side (on the right side of the 
patient). Thyroid gland is preliminarily scanned 
along the longitudinal and transverse planes for a 
general evaluation. Subsequently, the entire 
region is systematically explored in the 
longitudinal plane starting from the midline to 
explore thyroid isthmus and then laterally on 
each side to view the medial, central, and lateral 
aspects of each lobe and of the adjacent cervical 
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region. Each longitudinal scan is performed from 
the sternal notch toward the hyoid bone region 
[12]. The vascular landmarks of the lateral 
borders of the thyroid gland are the common 
carotid artery and the jugular vein. US 
examination should be extended cranially beyond 
the thyroid cartilage to assess the presence of the 
pyramidal lobe, thyroglossal duct cysts, or 
masses of different origin. Subsequently, the 
whole thyroid should be carefully evaluated 
along transverse planes of the upper, middle, and 
lower part of each lobe [4, 12]. In the presence of 
thyroid or cervical lesions, the detected nodules 
or lymph nodes should be examined in several 
planes by carefully rotating the probe over the 
area of interest [4].

 Thyroid US Findings

Sonographic data that may be of use for the clin-
ical management of diffuse or focal thyroid dis-
ease should be carefully assessed [12]. The 
normal thyroid gland is composed by two pear-
shaped lobes connected by a central isthmus. 
Usually, the thyroid gland size is 20 mm or less 
in both the transverse and anteroposterior diam-
eter and is 55  mm or less in its longitudinal 
diameter [4]. Thyroid volume may be estimated 
with the ellipsoid formula (see below) or with a 
dedicated tridimensional software. At B-mode 
US examination, thyroid echo-texture appears 
fairly homogeneous with a slight ground-glass 
appearance [4, 12].

In Hashimoto’s thyroiditis and in Graves’ dis-
ease, the lymphocytic infiltration and the damage 
of tissue architecture result in a variable decrease 
of thyroid gland echogenicity, the loss of the nor-
mal ground-glass pattern of thyroid tissue, and 
the formation of several hypoechoic pseudo-nod-
ules. These areas of deep lymphocytic infiltration 
may be encircled by hyperechoic bands of fibro-
sis and are usually incompletely demarcated [13]. 
The use of color or power Doppler imaging dem-
onstrates a striking and diffuse increase in blood 
flow in Graves’ disease, while in Hashimoto’s 
thyroiditis tissue vascularization may be either 
moderately increased or nearly completely absent 

[14]. The heterogeneous texture of Hashimoto’s 
thyroiditis should be carefully assessed because 
the presence of small-sized neoplastic foci might 
be concealed. Finally, the less frequent De 
Quervain’s granulomatous thyroiditis is charac-
terized by multiple ill-defined hypoechoic areas 
that may change in shape and position during the 
evolution of the disease [12, 14].

Besides the US volume and appearance of 
the thyroid gland, attention should be dedicated 
to the presence of thyroid nodules due to their 
elevated prevalence and their non-negligible 
risk of malignancy. B-mode, color Doppler, and 
sonoelastographic features are reported to have 
varying abilities to predict the risk of thyroid 
carcinoma [15–18]. The predictive value of US 
assessment of thyroid nodules is partly 
decreased by the overlap of the US features of 
benign and malignant thyroid lesions. However, 
a few well-defined US prognostic patterns are 
presently recognized [19, 20] and may be sum-
marized as follows:

 (a) US findings suggestive of a benign lesion:

• Simple cyst (fluid collection with thin regular 
margins)

• Spongiform nodule (isoechoic appearance 
with microcystic spaces comprising >50% of 
the nodule)

• Mostly cystic (>80%) nodule containing col-
loid fluid (comet tail signs) with regular mar-
gins devoid of vascular signals

 (b) US findings suggestive of a malignant lesion:

• Marked hypoechogenicity (in comparison 
with pre-thyroid muscles)

• Marginal abnormalities (lobulated, irregular, 
or spiculated margins)

• Taller-than-wide shape (AP  >  TR diameter 
when imaged in the transverse plane)

• Intranodular microcalcifications (hyperechoic 
foci <2 mm with no posterior shadowing)

• Broken calcified rim with extension of 
hypoechoic tissue beyond the calcified 
margin
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• Evidence of aggressive growth (extension of 
the lesion beyond the thyroid capsule, inva-
sion of the strap muscles, or infiltration of the 
tracheal cartilage)

• Presence of suspicious cervical lymphadenop-
athy (see paragraph 6)

• Of note [19, 20]:
 – Follicular neoplasms (either follicular ade-

noma or follicular carcinoma) may be visu-
alized as isoechoic or mildly hypoechoic 
nodules with intranodular (“spokes and 
hub”) vascularization and well-defined, but 
usually irregular, peripheral halo.

 – Medullary thyroid carcinomas may present 
with variable shape and echogenicity but 
most of them are hypoechoic and lobulated. 
Intranodular globular calcifications are 
specific but inconstant features of this 
thyroid tumor.

 – The coexistence of two or more suspicious 
US criteria greatly increases the risk of 
thyroid cancer.

 (c) Borderline US findings that are inconstantly 
associated with thyroid malignancy:

• Mild hypoechogenicity (in comparison with 
the surrounding thyroid tissue)

• Intranodular macrocalcifications (hyperechoic 
foci >2 mm that are associated with posterior 
shadowing)

• Indeterminate hyperechoic spots (images that 
are suspicious for but cannot be clearly defined 
as microcalcifications)

• Centrally predominant or chaotic vascularity
• Elevated stiffness at sonoelastography

The diagnostic accuracy for malignancy of 
suspicious findings is partially blunted by their 
low sensitivity and by the relevant interobserver 
variation [21]. Thus, in most thyroid nodules, US 
signs are not clearly predictive of a malignant 
lesion, whereas the absence of clearly suspicious 
features is not fully diagnostic for a benign 
nodule [22, 23].

A more comprehensive evaluation of the 
major US patterns of thyroid nodules is treated in 
the following paragraphs.

 Size and Number

The size of a thyroid lesion is not a predictive 
factor for malignancy [24, 25]. Thus, a large size 
nodule is of interest not because of the risk of 
carcinoma but because differentiated thyroid 
carcinomas greater than 4 cm may be associated 
with a more advanced disease [26].

Follow-up of thyroid nodules is usually based 
on the assessment of their volume and US fea-
tures [19, 20]. The increase in size is not predic-
tive for malignancy because hyperplastic nodules 
frequently show a slow but progressive growth 
[27, 28], whereas papillary carcinomas may be 
rather steady over time [29]. The infrequent 
aggressive tumors (mostly poorly differentiated 
or anaplastic carcinoma and thyroid lymphoma) 
show a rapid growth but are clearly characterized 
by major US features of malignancy [20, 30]. Due 
to the sonographic interobserver variability, quan-
tified in about 20% for any nodule diameter [31], 
nodule volume should be calculated with the 
ellipsoid formula (longitudinal diameter x trans-
verse (or left to right) diameter × anteroposterior 
diameter × p/6) [17]. A 50% volume increase is 
usually considered as the threshold for a definite 
assessment of nodule growth [20].

The presence of either solitary or multiple thy-
roid nodules has a low influence on the risk of 
malignancy, at least in areas of borderline iodine 
deficiency [16, 24]. In goiters with several 
sonographically similar nodules and in diffuse 
thyroid hyperplasia with multiple anechoic or 
mixed lesions, the number of nodules is of limited 
clinical usefulness.

 Echogenicity and Structure

The vast majority of thyroid carcinomas show a 
hypoechoic appearance, but many benign thy-
roid nodules are hypoechoic as well. Thus, mild 
hypoechogenicity represents a sensitive but 
poorly specific predictor of malignancy [17, 18, 
32]. Conversely, marked hypoechogenicity (a 
sonographic appearance that is darker than that 
of pre-thyroid muscles) is associated with a rel-
evant risk of malignancy with a positive predic-
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tive value up to 94% [15, 32]. The accurate 
assessment of nodule echogenicity may be par-
tially hampered by the interobserver variability 
or by the coexistence of chronic autoimmune 
thyroiditis [33].

Nodules with a predominant cystic compo-
nent only rarely represent a thyroid carcinoma. 
Yet, thyroid malignancy cannot be completely 
ruled out because a prevalence from 4 to 6% of 
cystic (mostly papillary) carcinomas is reported 
in a few surgically controlled series of thyroid 
lesions [34, 35]. The risk of malignancy increases 
with the amount of the solid component and the 
coexistence of suspicious US signs [34]. Thus 
partially cystic thyroid lesions with a <80% fluid 
component and irregular or eccentric solid areas 
should be carefully evaluated.

The isoechoic thyroid nodules that are charac-
terized by the aggregation of multiple tiny fluid 
areas that involve more than 50% of the volume 
(defined as “spongiform nodules”) are associated 
with an elevated probability of benign nature [20, 
34].

 Margins and Shape

The majority of benign nodules show a round to 
oval shape [23, 36] with a <1 ratio between their 
anteroposterior and transverse diameters when 
measured in a transverse plane. Thus, a more 
tall-than-wide shape, defined as a ratio ≥1, is 
suspicious for malignancy because of its expres-
sion of a centrifugal modality of growth [18]. 
This feature is highly specific for malignancy 
but, unfortunately, is characterized by a low sen-
sitivity [19].

Ill-defined margins, due to the absence of a 
clear differentiation of the nodule perimeter from 
the surrounding thyroid tissue, may be associated 
with malignancy [16]. Conversely, the presence 
of irregular margins, either spiculated or lobu-
lated, is highly suspicious for carcinoma [15, 16].

A hypoechoic halo associated with a regular 
smooth profile is a typical feature of benign 
hyperplastic nodules and is due to the peripheral 
arrangement of nodular vessels, as demonstrated 
by the vascular signals at color or power Doppler 

imaging [4]. A peripheral halo may be revealed in 
a minority of papillary thyroid carcinomas and in 
part of follicular carcinomas, as well. In these 
cases, however, the hypoechoic halo is generally 
thick and irregular due to peripheral fibrosis and 
degenerative changes [37, 38].

 Calcifications

Three types of calcifications may be distin-
guished: microcalcifications, macrocalcifica-
tions, and peripheral (or “rim”) calcifications 
[39, 40].

Microcalcifications are defined as tiny 
(<2 mm) intranodular hyperechoic spots that are 
devoid of posterior shadowing unless densely 
crowded [41]. These bright echoes are generated 
by psammoma bodies and are highly suggestive 
of papillary thyroid carcinoma [16, 18]. Their 
specificity for malignancy is high, but their 
sensitivity is rather low [24]. Microcalcifications 
should be differentiated from the hyperechoic 
spots defined as “comet tail” signs [4, 42]. These 
last US findings are due either to solid drops of 
colloid or to the interfaces present in complex 
lesions and are usually associated with a benign 
nodule [4]. When the intranodular hyperechoic 
spots cannot be recognized with certainty as 
microcalcifications, these uncertain US findings 
should be reported as “indeterminate hyperechoic 
spots” in order to prevent an overdiagnosis of 
papillary thyroid carcinoma [43].

The majority of macrocalcifications are due to 
degenerative changes and may be demonstrated in 
long-standing benign nodular goiters. The pres-
ence of macrocalcifications in solitary nodules, 
however, should be considered as a potential sign 
of malignancy, especially if associated with 
necrotic changes. The peculiar globular calcifica-
tions are a frequent US feature in medullary thy-
roid carcinoma [42–44]. Macrocalcifications in 
nodules previously treated by percutaneous etha-
nol injection or laser ablation do not correspond 
to worrisome findings [45].

Peripheral rim calcifications are sometimes 
observed in long-standing benign nodules. 
However, a focal discontinuity of the eggshell 
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rim associated with the extrusive growth of 
hypoechoic tissue should be considered as 
suspicious for malignancy [20, 46].

 Vascular Signals

Color and power Doppler examination offer a 
clear demonstration of the vascular architecture of 
the thyroid gland and of its focal lesions [12]. 
Three patterns of vascular signals may be demon-
strated with Doppler evaluation [12, 47, 48]:

• Peripheral signals. Vascular signals are 
detected along the periphery of the nodule. 
Intranodular vascular images are absent or 
scarce.

• Intranodular pattern. A marked vascularity is 
revealed in the central part of the nodule and is 
more relevant than in the surrounding thyroid 
gland.

• Absence of vascularization. No blood flow is 
demonstrated in either the peripheral or central 
part of the lesion.

The predictive value for malignancy of nodule 
vascularization is hampered by the lack of unam-
biguous differences between benign nodules and 
carcinomas [36]. Many carcinomas (specifically 
follicular and Hürthle cell thyroid carcinomas) 
show a dominant intranodular vascularization, but 
this finding may be observed in benign lesions as 
well (particularly in follicular adenomas and in 
hyperfunctioning hyperplastic nodules) [49–51]. 
A sparse vascularity is frequently associated with 
benign nodules, but small-sized papillary carcino-
mas may show a complete absence of vascular sig-
nals, as well [36]. Thus, color and power Doppler 
examination provide only complementary data for 
the risk of malignancy of thyroid nodules [19, 20].

Of note, the abovementioned suspicious US 
signs are established on the basis of the 
sonographic features of papillary thyroid 
carcinoma, the most frequent thyroid tumor [16]. 
These findings, however, may be different in the 
less common follicular and Hürthle cell tumors 
and in medullary thyroid carcinoma. In follicular 
thyroid carcinomas, hypoechogenicity is 

observed in a minority of tumors, while a halo is 
present in the majority of these tumors [49–51]. 
Additionally, microcalcifications are rare in 
follicular neoplasms, while macrocalcifications 
are more frequent. These features are present in 
benign and malignant follicular neoplasms, but 
the irregular thickness of the peripheral halo, the 
inhomogeneous solid content, and the large size 
are in favor of a follicular carcinoma [49–51]. 
The US features of medullary thyroid carcinoma 
are quite variable and may be ambiguous. The 
sonographic findings of the majority of these 
tumors are similar to those of papillary 
carcinomas and are classified as suspicious at US 
examination, but part of medullary carcinomas 
may demonstrate an indeterminate or even a 
deceitful benign appearance [52, 53].

 Elastographic Pattern

Elastography evaluates the nodule stiffness with 
the appliance of an external force that is generated 
by the US probe. The grade of tissue displacement 
is analyzed and represented on a color scale in 
comparison with the stiffness of perinodular tissue 
[54]. The sensitivity for malignancy of elastogra-
phy is reported as high with a remarkable negative 
predictive value [54, 55]. In a multicenter series of 
thyroid nodules, the presence of one suspicious 
US sign (hypoechogenicity, microcalcifications, 
irregular margins, intranodular vascular signals, 
and taller-than-wide shape) had an 85% sensitivity 
and 91% NPV. When elastography was combined 
with B-mode sonographic features, the sensitivity 
for malignancy increased up to 97% and the NPV 
to 97% [56]. As these results were substantially 
confirmed by subsequent studies and by a meta-
analysis [57], the combined use of elastography 
with B-mode US and color Doppler evaluation 
seems to be a reliable approach for the selection of 
those nodules that do not deserve fine needle cyto-
logic assessment [58]. Real-time elastography, 
however, is markedly operator-dependent, and a 
consistent methodology for data reporting is still 
missing [57]. Nodules with a large fluid compo-
nent or with macrocalcifications are not appropri-
ate for elastographic evaluation, and multinodular 

E. Papini et al.



167

goiters with coalescent nodules or chronic thyroid-
itis are not effectively assessed [56].

Quantitative elastographic techniques, such as 
the determination of strain index, the acoustic 
radiation force impulse [59], and the supersonic 
shear wave [60, 61], demonstrated an 
improvement in the diagnostic performance, in 
the applicability to lesions in areas difficult to 
scan, and in case of coexistent chronic thyroiditis. 
Thus, in selected cases which are ambiguous at 
gray-scale examination, the sensitivity and the 
negative predictive value for malignancy of 
B-mode US features may be improved with the 
complementary use of elastographic examination.

 Ultrasound Classification Systems 
for Thyroid Nodules

Data obtained from US evaluation of thyroid nod-
ules may be organized in a standardized reporting 
system to provide a stratified risk of malignancy, 
similar to the imaging reporting system developed 
for breast lesions [62]. This approach could better 
differentiate the nodules that should be evaluated 
with FNA from those that need only a low-inten-
sity clinical surveillance [63]. Standardized US 
reporting systems may improve communication 
between clinicians and pathologists and the audit 
procedures for the management of thyroid nod-
ules. In general, the accuracy of these categoriza-
tions parallels their complexity. TIRADS, the first 
of these classification systems, offers a rating of 
the risk of malignancy that increases with the pres-
ence of suspicious US features and the absence of 
benign findings. The TIRADS scheme is based on 
ten US patterns combined into categories with 
increasing risk of malignancy and demonstrates a 
good correlation with cytologic findings. [64]. The 
BTA system classifies the thyroid US features in 
five categories at increasing risk of malignancy, 
from U1 (normal thyroid gland) to U5 (very suspi-
cious lesion) [43]. The ATA system is based, with 
some differences, on a five-class categorization, as 
well, that is associated with an increasing risk of 
malignancy [20]. On the basis of US findings, nod-
ules are rated from the class 1 (benign) to the class 
5 (high suspicion) (Table  1). Finally, the recent 

AACE-ACE-AME system is based on a less artic-
ulated three-class rating of the US features, with a 
risk of malignancy that ranges from <1% for the 
US class 1 to >50–70% for the US class 3 [19] 
(Table 2).

Each of these US classification systems, and 
others as well [36, 65], permits a rapid and 
reliable communication of the expected risk of 
cancer and guides the decision for FNA [58]. In 
our opinion, the TIRADS, BTA, and ATA systems 
are best suited for thyroid referral centers for the 
analysis and comparison of clinical data, while 
the simple AACE-ACE-AME three-class US 
rating system may be more practical for the use 
in routine clinical assistance. The US images 
representative of the different risk categories of 
this last classification are summarized in Figs. 1, 
2, and 3.

Table 1 American Thyroid Association Thyroid Nodule 
and Cancer Guidelines

Benign (risk <1%)
   Purely cystic nodules (no solid component)
Very low suspicion (risk<3%)
    Spongiform or partially cystic nodules without 

any of the US features described in low, 
intermediate, or high suspicion patterns

Low suspicion (risk 5–10%)
    Isoechoic or hyperechoic solid nodule or partially 

cystic nodule with eccentric solid area without
   • Microcalcifications
   • Irregular margin
   • Extrathyroidal extension
   • Taller-than-wide shape
Intermediate suspicion (risk 10–20%)
    Hypoechoic solid nodule with smooth margins 

without
   • Microcalcifications
   • Extrathyroidal extension
   • Or taller-than-wide shape
High suspicion (risk>70–90%)
    Solid hypoechoic nodule or solid hypoechoic 

component of partially cystic nodule with one or 
more of the following features

   • Irregular margins (infiltrative, microlobulated)
   • Microcalcifications
   • Taller-than-wide shape
   •  Rim calcifications with small extrusive soft 

tissue component
   • Evidence of extrathyroidal extension

Sonographic patterns and estimated risk of malignancy 
[20]
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 Cervical Lymph Node Topography

The topography of neck lymph nodes is defined 
according to the scheme originally proposed by 
the American Joint Committee on Cancer and the 
American Academy of Otolaryngology—Head 
and Neck Surgery [66–68], currently included in 
the pTNM classification of thyroid cancer [69, 
70]. This classification identifies a central neck 
compartment and two (right and left) lateral com-
partments [66–69, 71, 72]. The central neck com-
partment includes levels VI–VII and extends 
craniocaudally from the hyoid bone to the hori-
zontal plane of the innominate artery, with the 
carotid arteries and the trachea as its lateral and 
medial limits, respectively. Instead, the lateral 
neck compartments, which comprise levels II–V, 
are limited medially by the carotid arteries and 
laterally by the anterior margin of the trapezius 
muscle [66–68, 71, 72] (Fig. 4).

At US evaluation, the lymph nodes of the lat-
eral neck compartments (levels II–V) may be 
detected in the triangular area covered anteriorly 
by the sternocleidomastoid muscle, while the 

Table 2 AACE, ACE, AME 2016 clinical practice 
guidelines

US class 1. Low-risk ultrasound features
• Thyroid cyst
• Mostly cystic nodule with reverberating artifacts
• Spongiform nodule
► The expected risk of malignancy is about 1%
US class 2. Intermediate-risk ultrasound features
• Isoechoic or slightly hypoechoic nodule
• Complex nodule without suspicious features
May be present:
  • Central vascularity
  • Macrocalcifications
  • Indeterminate hyperechoic spots
  • Elevated stiffness at elastography
►The expected risk of malignancy is from 5 to 15%
US class 3. High-risk ultrasound features
Nodules with at least one of the following suspicious 
features:
• Marked hypoechogenicity
• Spiculated or microlobulated margins
• Microcalcifications
• Taller-than-wide shape
• Extrathyroid growth or pathologic adenopathy

► The expected risk of malignancy is from 50 to 90% 
in accordance with the presence of one or more 
suspicious findings

Thyroid ultrasound features and risk of malignancy [19]

a

c

b

Fig. 1 (a) US low-risk lesion: pure cyst; (b) US low-risk 
lesion: mostly cystic nodule with reverberating artifacts 
and no suspicious content; (c) US low-risk lesion: 

isoechoic spongiform nodule (2016 AACE/ACE/AME 
classification of US Risk Categories)
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a b

c d

Fig. 2 (a) US intermediate-risk lesion, slightly 
hypoechoic nodule with regular margins 2016 AACE/
ACE/AME classification; (b) US intermediate-risk lesion, 
isoechoic nodule, ovoid shape, regular rim calcification 
2016 AACE/ACE/AME classification; (c) US 

intermediate-risk lesion, intranodular vascularization 
2016 AACE/ACE/AME classification; (d) US 
intermediate-risk lesion: elevated stiffness at elastography 
(blue color)

a b

Fig. 3 (a) US high-risk lesion, marked hypoechogenicity 
2016 AACE/ACE/AME classification; (b) US high-risk 
lesion, more tall-than-wide shape. Irregular margins are 
also present 2016 AACE/ACE/AME classification; (c) US 
high-risk lesion, intranodular microcalcifications 

(posterior shadowing due to cluster arrangement) 2016 
AACE/ACE/AME classification; (d) US high-risk lesion: 
extrathyroidal growth and coexistent suspicious 
adenopathy 2016 AACE/ACE/AME classification
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lymph nodes of the central neck compartment 
(levels VI–VII) are contiguous to the thyroid 
gland, the trachea, and the esophagus [67, 73]. 
Level VI is limited by the carotid arteries later-
ally, the hyoid bone superiorly, and the supra-
sternal notch inferiorly, while level VII 
corresponds to the upper portion of the anterosu-
perior mediastinum, above the innominate artery 
[66–68, 71, 72].

Within the lateral neck compartments, level II 
encompasses the area from the base of the skull 
to the hyoid bone, having the stylohyoid muscle 
and the posterior margin of the sternocleidomas-
toid muscle as the anterior and posterior limits, 
respectively [66–68, 71, 72]. The lymph nodes in 
this area may be involved by metastases from 
carcinomas either located in the upper third of 
the thyroid gland lobes or arising from the oral 
and nasal cavity, pharynx, larynx, and parotid 

glands. Levels III and IV extend from the hyoid 
bone to the cricoid cartilage and from the cricoid 
to the clavicle, respectively, with the sternohyoid 
and the sternocleidomastoid muscles as their 
anterior and posterior limits [66–72]. Level III 
and IV lymph nodes are the most frequently 
affected by thyroid cancer metastasis spreading 
to the lateral compartments [74–82]; yet, they 
may as well harbor metastasis from tumors orig-
inating in the oral cavity, pharynx, larynx, and 
esophagus [83]. Level V, defined anteriorly by 
the posterior margin of the sternocleidomastoid 
muscle, posteriorly by the trapezius muscle, and 
inferiorly by the clavicle, is more rarely involved 
by metastasis from thyroid carcinoma [84, 85]. 
Level I stretches from the mandible to the ante-
rior belly of the digastric muscle and is quite 
exceptionally affected by thyroid cancer metas-
tases [84–86].

Fig. 3 (continued)

c

d
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 Neck Lymph Node US Findings

Cervical lymph node evaluation is centered on 
the assessment of their dimension, shape, echo-
texture, vascularization, and presence of hilum. 
Unfortunately, in analogy with thyroid nodules, 
no single finding is both highly sensitive and 
highly specific. Thus, the risk of malignancy 
should be established on the basis of a compre-
hensive evaluation of multiple US features [67, 
83, 87–94].

Sonographic anatomy of benign lymph nodes 
is characterized by oval shape, regular margins, 
homogeneous hypoechoic texture, and the pres-
ence of a hyperechoic hilum [95] (Fig. 5). The 
size of lymph nodes is a frequently deceitful fea-
ture; although malignant lymph nodes are fre-
quently increased in volume, also benign 
inflammatory lymph nodes (particularly in 
young patients and in the lateral cervical com-
partments) may be conspicuously enlarged [87–
93, 95]. Conversely, small (e.g., <1 cm diameter) 
metastatic lymph nodes are frequently detected 
in the central neck compartment (Fig. 6). If the 
longest diameter of lymph nodes cannot be con-
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submandibular
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Fig. 4 Topographic classification of neck lymph nodes. 
From: Som PM, Curtin HD, Mancuso AA. Imaging-based 
nodal classification for evaluation of neck metastatic 
adenopathy. Am J Roentgenol. 2000;174:837–44

a b

Fig. 5 (a and b) Representative appearance of a benign 
lymph node in the lateral neck compartment. (a) The 
shape of the lymph node is oval and elongated and its 
hilum is well distinct as a central linear hyperechoic zone; 

(b) power Doppler examination confirms the presence of 
the hilum with a central, “branch of a treelike” vascular 
architecture
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sidered per se a reliable index of malignancy, the 
short axis (i.e., the minimum diameter) may pro-
vide a more consistent clue for predicting malig-
nancy [87–93]. A short axis greater than 7 mm 
for lymph nodes in level II and greater than 
6 mm in the other cervical areas was described 
as an important risk factor (88.5% accuracy) 
[89] for malignant involvement. These data were 
confirmed in a large series of patients with thy-
roid carcinoma submitted to lymph node resec-
tion [90].

Changes in the lymph node shape, with a 
rounded instead of elongated profile, are usually 
regarded as a suspicious US sign (Fig.  7). For 
practical purposes, a shortest to longest (S:L) 
axis ratio ≥0.5 (or a longitudinal to transverse 
diameter ratio≤2  L:T) is considered a reliable 
index of malignancy [83, 87–93]. Nevertheless, 
the diagnostic accuracy of this parameter varies 
across the different neck compartments. In a 
series of 94 patients undergoing surgery for PTC, 
the specificity and PPV of the “round shape” 
were 90.2% and 66.7%, for lymph nodes of lev-
els II–V, and 11.3% and 30.9% for level VI lymph 
nodes, respectively [96]. The lower diagnostic 
accuracy of this shape change in the central cer-
vical compartment is due to the coexistence of 
inflammatory conditions and, most frequently, to 
the presence of chronic autoimmune thyroiditis 

[88, 97]. So, lymph node location is a relevant 
factor in the assessment of a potential malig-
nancy. In patients with thyroid carcinoma, the 
majority of metastatic lymph nodes are detected 
in the mid to low jugular area (defined as levels 
III–IV), while the lymph nodes detected at levels 
I–II are more likely to be benign [75–81, 
96–101].

A clearly detectable hilum is as a reliable 
sign of benignity (Fig. 4); yet, its absence has 

a b

Fig. 6 (a and b) Former total thyroidectomy for papillary 
thyroid carcinoma. Persistence of disease in the central 
neck compartment at neck US examination. (a) A level VI 
suspicious lymph node is revealed as 5-mm hypoechoic 
lesion with fairly irregular margins between the right 

carotid artery and the trachea wall. (b) US examination of 
the left thyroid bed reveals a small round-shaped 
hypoechoic lesion close to the trachea and just above the 
esophageal wall

Fig. 7 Former total thyroidectomy for medullary carci-
noma. Small lymph node metastasis in the left lateral 
neck. At US examination the lesion appears solid and with 
a round-shaped, “bumpy” appearance. Notably, the hilum 
image is absent
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been reported in up to 40% of benign lymph 
nodes [90]. Furthermore, the absence of lymph 
node hilum represents a more predictive sign of 
malignancy in the lateral than in the central 
neck compartment [96] (Figs. 8 and 9). In uncer-
tain cases, color Doppler evaluation may dem-
onstrate a vascular hilum that is not visible in 
B-mode images [102]. Thus, according to some 
evidence, the positive predictive value of the 
true absence of the lymph node hilum may be as 
high as 92% [89].

Lymph nodes with hyperechoic, “thyroid-
like” texture may be observed in patients with 
metastatic disease from differentiated thyroid 
cancer, prevalently in the lateral neck compart-
ment (Fig. 10, panel A) [90, 93, 103].

Intranodal microcalcifications, appearing as 
hyperechoic spots without (or less frequently 
with) posterior shadowing, have an elevated pre-
dictive value for malignancy but are detected in a 
small fraction of metastatic lymph nodes. Thus, 
as for thyroid nodules, this finding has a high 
specificity but a low sensitivity for malignancy 
[90, 93, 103].

Lymph nodes characterized by a fluid compo-
nent or by a cystic appearance are highly suspi-
cious for metastatic disease and may be the only 
US evidence of a clinically occult papillary 

microcarcinoma [104–110] (Fig.  10). Cystic 
changes are predictive of metastatic lymph nodes 
from thyroid carcinoma with a 95% specificity, 

a b

Fig. 8 (a and b) Former total thyroidectomy for papillary 
thyroid carcinoma. Persistence of disease in the lateral neck 
compartment at neck US examination. A large lymph node 

metastasis is located posteriorly to the carotid artery. This 
hypoechoic lesion shows well-depicted hyperechoic mar-
gins and compresses without infiltration the vessel wall

Fig. 9 Medullary thyroid carcinoma. Coexistence of dis-
ease in the lateral neck compartment at neck US examina-
tion. The primary lesion is visible as a large hypoechoic 
mass in the lateral portion of the left thyroid lobe (thick 
arrow); the metastatic lymph node (thin arrow) appears as 
a similarly hypoechoic lesion, with no evidence of hilum 
and ill-defined margins, between the carotid artery and the 
jugular vein
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but a tuberculosis infection should be always 
ruled out in absence of coexistent suspicious thy-
roid nodules [111]. Of note, lymphomatous cer-
vical lymph nodes may assume a pseudocystic, 
balloon appearance, mimicking a cystic metasta-
sis from thyroid cancer [112]. Finally, the evi-
dence of ill-defined borders in metastatic lymph 
nodes may indicate the presence extracapsular 
spread [91].

When the results from gray-scale US exami-
nation are equivocal, color Doppler examination 
may provide useful information [113–115]. The 
majority of normal cervical lymph nodes demon-
strate a well-recognizable vascular architecture, 
with predominant signals at the hilum level 
(Fig. 5) [102, 113, 114]. The vascular hilum may 
appear as a centrally located, longitudinally ori-
ented structure or, alternatively, as a dot-like 

polar vessel, with minor, symmetric radial 
branches [113, 114]. Although vascular mapping 
in benign lymph nodes may be scanty, if not com-
pletely absent, inflammatory lymph nodes some-
times exhibit a quite rich and diffuse vascular 
arborization [93, 113]. Conversely, highly vascu-
larized malignant lymph nodes show a chaotic, 
multifocal vascular pattern, with both peripheral 
and central color flow mapping (Fig.  8) [113–
116]. In particular, peripheral vascularity, seem-
ingly due to neo-angiogenetic events in tumoral 
nests that alter the normal lymph node architec-
ture, has been described as a specific sign of 
malignancy (Fig.  11) [93, 113, 114]. The mea-
surement of Doppler waveform parameters (e.g., 
the resistance and pulsatility indexes) does not 
provide any additional relevant information in 
the clinical practice [93].

a b

Fig. 10 (a, b) Former thyroidectomy for papillary thy-
roid carcinoma. Cystic metastatic lymph nodes. (a) 
Lymph node metastasis in the left lateral neck 
compartment: the lymph node presents as a large (30 mm 
in its major diameter) inhomogeneously hypoechoic, 

“balloon,” cystic lesion. (b) Large lymph node metastasis 
in the right lateral neck compartment. The lesion shows a 
complex structure, with a prevalent anechoic fluid 
component and an irregularly shaped eccentric solid 
portion. Indeterminate hyperechoic spots are present
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The Role of Elastography 
in the Management of Thyroid 
Nodules

Hervé Monpeyssen and Jean Tramalloni

The discovery in a soft tissue area of a stiffer area 
has always been subject to suspicion. Nodules 
that are stiff at palpation often suggest malignancy. 
An increase in tissue stiffness is related to a loss 
of elasticity, meaning its ability to recover its 
initial shape after deformation.

Malignant neoplasms are often characterized 
by the desmoplastic transformation of their 
stroma which is responsible for the presence of 
collagen and myofibroblasts. This tumor stroma 
promotes the proliferation of malignant cells 
(and could even initiate them) [1]. However, 
some benign fibrous tumors such as fibrous 
histiocytomas can nevertheless be very stiff.

By studying the deformability/stiffness cou-
ple, elastography reproduces the palpable feeling 
of stiffness.

The concept of stiffness measurement was 
first reported in 1980 by a French researcher 
named Eisencher. The TM mode was the first 
modality, and he named his technique “echo-sis-
mography,” also designated “rhythmed ultrasonic 
palpation” (speech in Congress) [2].

Two years later, Dickinson published a paper 
on the measurement of soft tissue motion using a 
combination with A-Scan [3].

In 1987, Krouskop used a pulsed Doppler 
ultrasonic system to carry out noninvasive 

measurements of the mechanical properties of 
soft tissues in order to adjust a prosthesis for the 
management of amputation stump rigidity [4].

However, the term “elastography” was first 
introduced by Johnathan Ophir et al. in 1991 [5] 
to describe a quantitative method for the assess-
ment of the elasticity of biological tissues. In 
1993, his team published the preliminary results 
of in vivo elasticity imaging: “Elasticity imaging 
using ultrasound with application to muscle and 
breast” [6].

 Elastography: Technical Approach

Numerous ultrasound elastographic methods are 
currently available, all of them measuring tissue 
displacement. The deformation may be repre-
sented in an elasticity image (elastogram) or as a 
local measurement using three techniques: [7]

• Direct measurement (acoustic radiation force 
impulse—ARFI)

• Calculation of the tissue strain
• Record of the propagation of the shear waves

 Quasi-static Elastography (QSE): 
Strain Imaging

The first technique developed uses external com-
pression, i.e., decompression cycles applied by 
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the transducer, and is called quasi-static elastog-
raphy (or strain elastography—SE). It is mostly a 
qualitative technique utilized when the deforma-
tion of the tissue of interest is assumed to be 
uniform.

It depends on Young’s modulus of stiffness/
elasticity, which reflects the relationship between 
the deformation of a solid structure and the 
constraint applied to it. This force was first 
induced by the ultrasound transducer and later by 
the arterial pulsations [8]. This vibration is so 
slow that it is considered quasi-static. The 
transducer will collect data in real time, thus 
enabling identification of the nodule and normal 
tissue deformation. Color (or gray-scale) 
encoding allows differentiation between tissues 
based upon their intrinsic deformation and, 
hence, information on their stiffness (inverse of 
the deformation). The viscoelasticity of the tissue 
remains a problem [9] (Fig. 1).

Strain elastography is widely available from 
many US manufacturers.

Because the colorimetric analysis is not 
always easy, to avoid the subjectivity of this 
analysis, studies using quantification of the map 
color were conducted, with inconstant results 
(Fig. 2).

Semiquantitative analysis provides numerical 
values that correspond to the deformation ratios. 
The machine calculates a ratio between the 
regions of interest (ROI) localized by the operator 
on the nodule and the healthy tissue. The 
calculation can thus be made using the rates of 
deformation of the structure (strain rate) (Fig. 3).

The appearance of a nodule according to color 
mapping must be compared with the appearance 
of normal surrounding tissue. In some cases, this 
comparison is not possible due to a lack of 
available normal tissue.

• Huge nodule
• Nodule in empty thyroid bed
• Abnormal neighboring tissue (autoimmune 

disease)

Fig. 1 Strain 
elastography: schema of 
compression/relaxation 
and stiffness calculated 
by Young’s modulus. 
Elastogram of a stiff 
nodule (papillary 
cancer) (Hitachi)
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Without semiquantitative analysis, the com-
parison of map color is frequently subjective.

 Dynamic Methods

The probe creates a focused ultrasonic beam 
(cone beam) with a finite duration. The energy of 

the beam is converted into a force, namely, acous-
tic radiation force impulse (ARFI). It generates a 
brief localized displacement characterizing the 
viscoelastic property of the tissue. A shear wave 
(SW) (or transverse wave) is created, perpendicu-
lar to the wave propagation direction. It spreads 
parallel to the skin plan. The speed of the shear 
waves increases in accordance with tissue stiff-

Fig. 2 Strain elastography map color quantification. Benign nodule with intermediate ratio (Esaote)

benign

Average relative strain rate of variation
across compression and relaxation cycles

0.0
Parameters from 2 ROI (nodule and adjacent gland):
- calculated from 3 consecutive compression-decompression cycles
- time vs strain curve, max strain during compression/ relaxation phase
- rate of strain variation across compression and relaxation cycles

0.5ra
tio

A
cc

1.0

cancer cysts normal thyroiditis

Fig. 3 Strain elastography with semiquantitative analysis. Two ROIs are localized on the strain image. Calculation of 
stiffness index is realized with Q-Lab software using the strain rate (Philips)
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ness, and the elasticity measurement can be 
expressed in m/sec or converted into kilopascals 
(ARFI-shear wave velocity (ARFI-SWV)) (shear 
modulus and then Young’s modulus). In the case 
of a stiff nodule, the velocity increases and thereby 
the stiff value (in kilopascal-kPa) [10, 11].

 Shear Wave Speed Measurement
 1. Transient elastography (TE) allows quantita-

tive evaluation of tissue stiffness based upon 
the measurement of the shear wave velocities 
propagating perpendicular to the US beam 
direction. It provides a single point measure-
ment without imaging capabilities and has 
been validated for the diagnosis of liver fibro-
sis (Fibroscan®, Echosens, Paris, France).

 2. Point shear wave elastography (pSWE)—
ARFI quantification. The measurement is per-
formed in a single small region of interest 
(ROI) less than 1 cm3 that can be moved upon 
an anatomical B-mode image (point quantifi-
cation) (Siemens. Philips).

 Shear Wave Speed Imaging (SWE)
Shear velocity information, which is quantitative 
and is displayed for imaging, provides a real-time 
map of elasticity. The elastogram is overlaid with the 
B-mode image or with side-by-side modality. As in 
semiquantitative QSE, the ROIs are positioned in the 
nodule and in the surrounding healthy tissue. The 
screen is refreshed each second (SuperSonic 
Imagine, Aix-en-Provence, France; Toshiba MS, 
Nasu, Japan; General Electric Healthcare).

Supersonic Imaging (Aixplorer): This device 
is able to monitor shear wave propagation at 
frame rates above 10,000 Hz (due to an ultrafast 
beam former) and to keep the dynamics of the 
acquisition thanks to UltraFast imaging process-
ing. It eliminates many of the limitations of con-
ventional shear wave elasticity imaging techniques 
by avoiding the repetition of successive shear 
wave tracking sequences and tracking in real time 
the propagation of the shear waves in a single 
ultrafast acquisition (Fig. 4). Multiple ROIs with 
variable shapes can be positioned upon the area of 
interest. For each ROI, the software instantly cal-
culates the mean, minimum, and maximum stiff-
ness as well as the standard deviation (the latter 

increases with increasing tissue elasticity hetero-
geneity). It also provides an elasticity ratio 
between the two ROIs (Fig. 5).

Toshiba (Applio Platinium): The acquisition 
modality is different, using a “line-by-line” 
emission technique. The shear wave propagation 
is displayed, enabling the choice of the best frame 
for calculation of the stiff value (Fig. 6).

General Electric (LogisE9 XDclear): The 
system uses the same technique as that of Toshiba.

Siemens (ACUSON S3000): The new device 
provides a 2D SWE image with Virtual Touch™ 
Quantification (VTq) (Fig. 7). The VTIQ image 
is a color-coded display of shear wave velocity 
within the ROIs. The shear wave speed may be 
quantified in these ROIs.

 Reproducibility

It is suitable for quasi-static elastography, with a 
correlation coefficient ranging from 0.73 to 0.79 
for inter-operator reproducibility and 0.73 to 0.84 
for intra-operator reproducibility [11, 12].

Regarding shear wave, all the studies attest of 
the high level of reproducibility [13–15].

 Elastography of the Thyroid

Elastography was first used in thyroid imaging in 
2005.

Andreas Lyshchik et al., in an in vitro study, 
[16] described the “Elastic moduli of thyroid tis-
sues under compression.” He found a very sig-
nificant difference between papillary cancers and 
healthy tissue (Table 1).

A few months later he published the first 
in vivo study, “Thyroid gland tumor diagnosis at 
ultrasound elastography” [17].

 Practical Examination [18]

One must however bear in mind that, while elas-
tography can provide useful additional informa-
tion for nodule characterization, it should not be 
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considered as a substitute for conventional ultra-
sound examination [19].

In routine clinical practice, each nodule must 
be stratified according to a TIRADS score 
(Table 2) and accurately located within the gland 
based on a highly sensitive color map. At least 
two elastographic acquisitions are used for each 
nodule. The examination is painless; the patient 
may be asked to hold his breath for a very short 
period. The ultrasound probe is positioned in 
front of the nodule (sterile water can be used as 
connecting gel if FNAC is provided in the same 
procedure). Regions of interest are determined 
after each screenshot, but postprocessing studies 
are often carried out. Although the acquisition 
does not take long, it increases the total duration 

of the US examination (that do not exceed 10 min 
in routine practice). The stiff score noted in the 
report for each nodule has the potential to modify 
the basic TIRADS score [20].

 Quasi-static Elastography
The carotid beats generate a sufficient deforma-
tion to create a quantitative map image on which 
the regions of interest are located. The difference 
in color encoding between the nodule and the 
surrounding tissue is analyzed, the score classifi-
cation having been established by Rago et  al. 
[21], Tranquart et al. [22], and Asteria et al. [23]. 
The nodules that show low stiffness with a homo-
geneous or predominantly homogeneous pattern 
are consistent with benign lesions. On the other 

Fig. 4 Shear wave 
elastography. 
Discontinued egg-shell 
nodule generates an 
anterior artifact. 
Nevertheless, the 
stiffness analysis is 
possible. The ratio 
between nodule and 
surrounding healthy 
tissue is normal. The 
elastographic scale and 
the ROI location are 
correct (Supersonic 
Imagine)
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hand, stiff nodules are considered malignant 
(Fig. 8).

The best approach is to add a semiquantitative 
analysis to the colorimetric study providing a 
good level of reproducibility, as mentioned in 
some preliminary studies.

 Shear Wave Elastography
The ultrasound pulse is generated by the probe. 
The pressure on the patient’s skin must be very 

light (because of the risk of creating a “push” 
effect artifact). The dual screen displays 
(B-mode and B-mode with elastogram) precise 
the location of the ROIs. It is important to move 
the first (small) ROI in the nodule; once the area 
with the higher signal is found, the diameter of 
the ROI should be magnified until the standard 
deviation remains low (analysis of a homoge-
nous sample). Ideally, the second ROI must be 
located at the same first deep level. The stiffness 

Fig. 5 Shear wave 
elastography. Papillary 
thyroid cancer. The 
nodule is very stiff 
(maximum 162 kPa), 
heterogeneous due to 
necrotic areas (standard 
deviation = 34) with a 
very high stiffness ratio 
(6.6)

Fig. 6 Shear wave elastography: real-time map of elasticity and shear wave propagation. Benign nodule with normal 
stiff ratio (Toshiba)
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value with its strain ratio appears automatically 
in the Q-Box.

Some studies have proposed thresholds 
beyond which cancer should be suspected [15].

• 35–90 kPa for maximum stiffness
• 3.7 for maximum ratio

Other publications using the ARFI system 
have produced the same results.

Setting principles for the Aixplorer (no major 
difference from the Applio-Toshiba setting):

• The thyroid presetting is too high (180 kPa); 
thus the stiffness measurement of a nodule 
will be wrong due to the mislocation of the 
ROI. The maximum value of the elastography 
scale must definitely be lowered, to around 
80  kPa. If the tumor exhibits a very high 

stiffness value, this value will be increased. 
The value recorded in numerous publications 
has been reduced due to the conservation of 
the original presetting (Fig. 9).

• The intensity of the signal must be sufficient 
to conduct the examination. In the event of a 
weak signal, the deep area should be colorless 
or uniformly low. Next, the “pen” presetting 
must be used for penetration, or the probe 
must be replaced by a linear probe with lower 
frequency (SL10).

• The gain can be increased until the elasto-
graphic sound appears.

• Artifacts must be avoided: due to excess pres-
sure with the probe (“push” effect) and in the 
deep area due to stiffer organs—the trachea 
and carotid. This explains the difficulties for 
the analysis of an isthmic nodule. In this case, 
the coronal approach is useful.

 Summary of the Literature

The preliminary report of Lyshchik in 2005 was 
followed by numerous papers on quasi-static 
elastography with manual compression of the 
thyroid or carotid shear stress. They all showed a 
high rate of malignancy associated with stiff 
nodules, whereas benign nodules were soft in 
most cases.

Rago et al. reported in 2007 the clinical appli-
cation of thyroid elastography using a five-point 
scale. Using this criterion, Rago’s study includes 
92 consecutive patients with a single nodule. The 
sensitivity was calculated to be 97% and the 
specificity 100% [21].

Asteria et al. described a classification using a 
four-point scale: in 86 nodules, sensitivity and 
specificity were calculated at 94.1% and 81%, 
respectively [23].

Fig. 7 ARFI system: Virtual TouchTM Quantification 
(VTq). The focused push pulse generates shear waves. 
The tracking beams detect SW peak, and shear velocity is 
computed using linear regression (Siemens)

Histology Stiffness / normal

x 1.7 – 2.4

x 5

x 17

x 1

Colloid adenoma

Papillary cancer (mild compression)

Papillary cancer (heavy compression)

Folliculary cancer

Table 1 Rigidity of 
different thyroid tissues 
compared with normal 
tissue: in vitro 
measurement [16]
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In 2010, the meta-analysis carried out by 
Bojunga et al. concerned 8 studies with surgery 
as the gold standard and 639 studied nodules 
[24]. Quasi-static elastography has a sensibility 
of 92% and a specificity of 90% for the diagnosis 
of thyroid cancer. However, there was an 
important selection bias, since the prevalence of 
cancer was 24%, which is very different from 
that of a normal ultrasound report.

Concerning semiquantitative QSE, three stud-
ies confirmed the good results of colorimetric 
analysis.

The first used is Q-Lab software (Philips US, 
Bothell, WA, USA) [25]. The calculation of the 
deformation slope ratio between the nodule and 
healthy tissue shows significant differences 
depending on the nature of the lesion (Fig). 
Cantisani et  al.’s study included 97 patients 
referred for thyroid surgery [26]. An elasticity 
ratio greater than 2 made it possible to obtain the 
following results: sensitivity of 97.3, specificity 
of 91%, PPV of 87.8%, and NPV of 98.2%. 
Elastography was more sensitive and specific 
than all the other ultrasound data. Vorlander’s 
study, involving a large number of patients (309), 
found a NPV of 100% for a ratio of 3.2 and a 
PPV of 42% for a ratio of 6.7 [27].

Regarding quasi-static elastography, a number 
of publications question the value of the technique 
[28, 29]. This could possibly be due to the 
absence of semi-quantification and the lack of 

reproducibility during the learning curve with/
due to compression by the probe (devices without 
indication of stress level).

SWE was first reported for diagnosing thyroid 
nodules in 2010 by Sebag et al. [13]. The author 
shows that the combination of B-mode US and 
SWE provides enhanced sensibility and specific-
ity. The emphasis was on certain specificities of 
the technique: quantitative, operator-independent, 
and reproducible. These results were confirmed 
2 years later by the same team, with a threshold 
stiffness value of 65 kPa [30].

In 2013, the first SWE meta-analysis by Zhang 
et  al. concerned 5 publications and 698 nodules 
[15]. The author concluded that SWE is a highly 
reproductive procedure, applicable to all type of 
nodules. The heterogeneity for the specificity and 
positive LR is principally due to the lower results 
of one of the studies [31]. The explanation is prob-
ably the wrong setting of the machine (the maxi-
mum value of the elastography scale was 180 kPa 
on the figures included in the publication). The 
same problem appeared in Szczepanek-Parulska 
et  al.’s publication and Tian’s meta-analysis [32, 
33] and probably accounts for the disappointing 
result of SWE in comparison with QSE.

Liu’s meta-analysis shows the high sensitivity 
and specificity of ARFI for differential diagnosis 
between benign and malignant nodules while 
also confirming the current interest in the combi-
nation with conventional ultrasound [34].

1

TI-RADS SCORE

2

3

4A

4B

5

NORMAL EXAMINATION

MEANING

BENIGN

VERY PROBABLY BENIGN

LOW SUSPICION

HIGH SUSPICION

PRACTICALLY CERTAINLY MALIGNANT

Table 2 French 
TIRADS classification 
(Courtesy G. RUSS) 
[20]
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Moreover, Park et  al. in 2015 showed that 
quantitative parameters of SWE are an indepen-
dent predictor of thyroid malignancy [35].

In 2013, the European Federation of Societies 
for Ultrasound in Medicine and Biology 
published EFSUMB guidelines and 
recommendations on the clinical use of ultrasound 
elastography [36]. With regard to the thyroid, two 
of the recommendations were:

• Elastography is an additional tool for thyroid 
lesion differentiation.

• Based on expert opinion, elastography may be 
used to guide the follow-up of lesions negative 
for malignancy at FNA.

Some recent developments are not preconized 
by these recommendations: the authors of a 
recent meta-analysis propose the omission of 

a

Score 1 Score 2 Score 3 Score 4

Score 1 Score 2 Score 3 Score 4

Score 5

b

Fig. 8 Qualitative assessment of strain elastography. Scores by Rago (a) [21] and Asteria (b) [23]. Homogenous green 
pattern indicates soft nodule and homogenous blue pattern indicates stiff nodule
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FNA cytology in the case of a completely soft 
nodule (Asteria score 1) [37].

The World Federation for Ultrasound in 
Medicine and Biology (WFUMB) recently pub-
lished the WFUMB Guidelines and 
Recommendations on the Clinical Use of 
Ultrasound Elastography: Part 4. Thyroid [38]. 
The 25 recommendations are issued on the level 
of evidence of the published literature and on 
expert group consensus. They compared strain 
and SWE elastography.

A recent meta-analysis (Hu) points to better 
specificity of strain elastography [39]. The He 
et al. study shows an equality of efficacy between 
the Aixplorer and Applio-Toshiba systems [40].

 Thyroid Pathology: Information/Data 
Provided by Elastography

 Nodular Analysis
According to most of the reported series, elastog-
raphy enables enhancement of the positive predic-
tive value (PPV) and the negative predictive value 

(NPV) [41, 42] of malignancy obtained via con-
ventional ultrasound studies. It is therefore pre-
dicted to become the eighth parameter for thyroid 
nodule characterization. It was included in the 
French TIRADS classification. This point was rec-
ommended by domestic society (French Endocrine 
Society) [43] and ultrasound international societ-
ies (Fig. 10) [44]. The recent EU-TIRADS score 
does not confirm this proposition [45].

It is however of note that the above observed 
improvement in PPV and NPV in nodule 
characterization seems to be closely related to 
operator experience and skill. When the two 
scores are high, information obtained from 
elastography provides less benefit than that of the 
conventional US. This probably accounts for the 
disappointment felt among certain expert 
colleagues possessing great expertise in thyroid 
ultrasound analysis [29].

Notably, elastography is useful for the loca-
tion of cystic nodules (Fig. 11) with viscous com-
ponent (resembling hypoechoic solid nodules) 
and pseudonodules. In these cases, it is a time-
saving application.

Fig. 9 Shear wave 
elastography: wrong 
setting of the machine. 
High maximum value of 
elastography scale in 
case of soft nodule 
(Supersonic Imagine)
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 Other Thyroid Diseases
Shear wave elastography enables objective tissue 
stiffness quantification by providing a numerical 
value varying between 10 and 40 kPa for healthy 
tissue with some studies proposing the use of 
SWE for the characterization of non-nodular thy-
roid disease.

• Autoimmune thyroiditis (AIT). In the event of 
nodule(s) occurring during AIT, the stiffness 
ratio will likely be artificially low and thus 
falsely reassuring. The numerical stiffness 
value therefore needs to be considered [46, 
47]. On the other hand, SWE was recently 
proposed to select patients with a higher 

Fig. 10 Improvement of TIRADS by QSE elastography: two nodules TIRADS 3. Top image, the nodule is probably 
soft; bottom image, suspicious of malignancy (TIRADS 4b)
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stiffness value requiring biological investiga-
tions [48, 49].

• Riedel’s thyroiditis. This rare form of thyroid-
itis due to IgG4 exhibits a very high stiffness 
value, and SWE is a good method to unmask 
the possibility of this diagnosis (Fig. 12) [50].

• Thyroid bed after surgery. In the case of thy-
roidectomy for cancer, the emphasis of solid 
hypoechoic vascularized tissue in the thyroid 
bed is suspicious for recurrence. The possibility 
of parathyroid adenoma is not rare, but its ultra-
sound data are the same as those for cancer 
recurrence. SWE may provide the solution.

 Other Cervical Diseases
• Lymph nodes. Elastography can also be useful 

to investigate cervical lymph nodes. In QSE, 
metastatic thyroid adenopathy has a very 
different appearance compared with normal 
lymph node. Without any surrounding healthy 
tissue, the comparison is impossible. In this 
case, SWE seems to be easier to select lymph 
nodes for fine needle aspiration cytology [51]. 
In addition, the detection of cystic component 
(lack of SWE signal) is an important sign of 
malignancy (Fig. 13).

• Parathyroid. A recent study described the high 
sensitivity and specificity of SWE (ARFI) to 
differentiate parathyroid adenoma from 
benign and malignant thyroid nodules (espe-
cially in case of posterior nodule(s)) [52].

Fig. 11 Nodule with important fluid component the dark 
blue color of the cystic area corresponds with lack of 
shear wave propagation in fluid

Fig. 12 Riedel’s thyroiditis. Hypoechoic nodule, with very high maximum stiffness value and ratio (Supersonic 
Imagine)
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image.A

Image B

Image C

Iamge D

Fig. 13 Lymph node elastography. Normal lymph node. QSE (image a) SWE (image b) Lymph node metastasis: QSE: 
Cystic (image c) and stiff (image d)

Fig. 14 Shear wave 
elastography with power 
Doppler encoding 
(Supersonic Imagine)
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 Thyroid Elastography: Today 
and Tomorrow

 Such an Important Technique Is Always 
in Research and Development (R&D)
• In the case of a deep nodule, the problem of 

the loss of signal is now resolved, thanks to 
new adapted probes.

• Some hyper-vascularized nodules may behave 
like stiff nodules. Supersonic imaging is used 
to develop a new application incorporating 
SWE and Doppler on the same screen (Fig. 14).

• The future may be twin procedures (shear 
wave elastography + contrast-enhanced ultra-
sound (CEUS)).

 So Today, What Does Elastography 
Bring to the Thyroidologist?
The elastographic score is the eighth data compo-
nent of TIRADS (Table 2), providing as it does 
an enhancement of ultrasound nodule character-
ization together with an increase in PPV and 
NPV and an improvement of TIRADS (nega-
tively correlated with the expertise of the opera-
tor). It thus represents a reduction in the number 
of cytologies [53] and probably of surgeries. It 
cuts down the time for the examination of multi-
nodular goiter, cystic nodules, and pseudonod-
ules of thyroiditis (Fig. 15).

 But What Additional Information Do 
We Need to Obtain?
Indeterminate cytologies (15% of samples) 
remain a major problem for thyroidologists. 
According to the Bethesda score [54], type 3 
(AUS) and type 4 (follicular neoplasm) 
characterize, respectively, 10% and 25% of 
follicular cancers. Could elastography shed more 
light on these ambiguous cases (Table 3)?

The results of publications reporting on QSE 
devices are not unanimous [55–58].

SWE alone seems to be a valuable tool for 
determination of the preoperative malignancy 
risk of follicular-pattern nodules [59, 60]. The 
first part of the French SWEETMAC study has 
not, meanwhile, confirmed these results [61]. It is 
one of several ongoing studies, coupled with 
other investigations, using SWE (e.g., molecular 
biology, miRNA).

Concerning the nodules with non-diagnostic 
cytologies, Capelli’s study [57], confirming Rago 
et al.’s study [62], shows that QSE alone is able 
(after two FNAC Bethesda one) to diagnose 
12/15 cancers and all the cancers in association 
with conventional sonographic features.

 What Information Will We (Probably) 
Never Obtain?
Elastography will never be substituted for histol-
ogy. We know that tissue stiffness increases with 
stroma proportion and numerous malignant tumor 
cancers are devoid of stroma (follicular cancers, 
follicular variant of papillary cancers, poorly dif-
ferentiated cancers). The aim of elastography is 
not to explain why a particular cancer is soft and 
why some benign lesions are stiff.

 Conclusions in the Form 
of Reflections

Thanks to the relatively recent development of 
elastography, we have had the privilege of living 
a particularly exciting page of scientific history, 
whose progressive advances are typical in the 
field of innovative technology.

Thirteen years after the first description of the 
technique, endocrinologists discovered its 
application to the thyroid. While the very first 
response was one of simple curiosity about this 
discovery, more enterprising colleagues quickly 
realized its considerable potential and proceeded 
to serious studies and investigations. It was the 
age of pioneers.

Their publications produced a period of ever-
increasing interest and enthusiasm in the medical 
community and numerous teams set about using 
QS elastography, reporting their finds in a lot of 
papers, the first meta-analysis being published in 
2010. SWE confirmed the QSE studies, and, 
today, elastography is on its way to becoming 
fully established in technical procedures.

On the other hand, some eminent voices have 
raised doubts about the true significance of the 
technique. In fact, during this period, the value of 
nodule characterization was considerably 
enhanced while OR though meanwhile TIRADS 
has revolutionized our practices, with or without 
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elastography. Thus, a period of loss of confidence 
has come about. This however has not stemmed 
the flow of papers on the subject (280 between 

2012 and 2016), though it has generated the pres-
ent time of reflection in correlation with the huge 
technical developments brought about by R&D.

Fig. 15 Pseudonodular appearance during autoimmune thyroiditis: lesion without precise shapes in gray scale, without 
ring vessels in color Doppler, without stiffness ratio in strain elastography
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The next step will probably be the age of rea-
son, in other words, the realization that elastogra-
phy constitutes an essential element of nodule 
analysis in conjunction with—and not in place 
of—classical ultrasound characterization [63], 
also incorporating CEUS, scintigraphy, molecu-
lar biology, and miRNA in the event of difficult 
cases.

Until the advent of a new technique……???

Glossary

AIT Autoimmune thyroiditis
ARFI Acoustic radiation force impulse
AUS Atypia of undetermined significance
CEUS Contrast-enhanced ultrasound
ETA European Thyroid Association
EFSUMB European Federation of Societies 

for Ultrasound in Medicine and Biology
FNA Fine needle aspiration cytology
IgG4 Immunoglobulin G4
kPa Kilopascal
miRNA Micro-RNA
NPV Negative predicting value
PPV Positive predicting value
QSE Quasi-static elastography
RD Research and development
ROI Region of interest
SE Strain elastography
SWE Shear wave elastography
TE Transient elastography
TIRADS  Thyroid imaging reporting and data 

system
TM Time motion
VTq Virtual touch quantification
2D Two dimensional = B-mode = Gray scale
US Ultrasound
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 124I PET/CT

124I is a positron emitter with a half-life of 
4.2 days, a positron yield of about 22% with rela-
tively high energies, and a complicated decay 
scheme with high-energy gamma and X-rays [1]. 
Even though this tracer has been used since the 
early 1960s for thyroid imaging, the clinical 
application of this tracer is limited, mainly due to 
availability and cost. Therefore, most published 
studies using 124I PET or PET/CT are of retro-
spective nature with only a small number of 
patients. However, some centers use 124I PET/CT 
routinely in high-risk DTC patients as well as in 

clinical trials, and the increasing number of pub-
lications in the last decade underlines the impor-
tance of this tracer in thyroid cancer imaging. It 
has been shown convincingly that 124I PET/CT is 
more sensitive in detecting metastatic thyroid 
cancer than gamma camera imaging with 131I [2, 
3]. For instance, in a study in 25 patients, 124I PET 
identified 50% more sites of disease than the pre-
treatment (“diagnostic”) scan with 131I [3]. 
Besides higher sensitivity of the PET scanner, the 
main strength of 124I PET/CT is a precise quanti-
fication of lesion doses, the so-called lesion 
dosimetry. The main goal of a clinically applied 
124I PET/CT dosimetry protocol is not only to 
quantify lesion doses but also to calculate the 
blood dose as a surrogate parameter for radiation-
associated bone marrow toxicity (Fig.  1). The 
results derived from this dosimetry approach 
enable the physicians to calculate an individual 
activity to treat the target lesions without over-
coming the threshold for bone marrow toxicity 
[4, 5]. Particularly for high-risk DTC patients 
with repeated 131I treatments (RAI), this approach 
becomes crucial. For instance, in a retrospective 
study of 34 patients, 124I PET allowed for reliable 
volume estimation (>0.80 mL) in 59 lesions in 17 
patients [2]. In another study, 124I PET lesional 
dosimetry was used to calculate the amount of 
RAI needed to achieve doses of ≥ 100 Gy to all 
metastases without exceeding dose of 2 Gy to the 
blood; 124I PET led to a change in management in 
25% of patients [6]. In another study, 15 of 30 
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patients with known metastatic disease showed 
no 124I uptake on serial scans (4, 24, 48, and 72 h), 
despite sufficiently high TSH levels, suggesting 
that these lesions would also be refractory to 131I 
treatment [7]. A smaller study in 12 patients dis-
agreed with this conclusion and suggested that 
124I PET should not be used in isolation to prevent 
treatment with 131I [8]. However, it should be 
realized that uptake of 131I alone on posttreatment 
scans is not sufficient for response as proposed in 
this study, unless the local dose from accumu-
lated iodine is tumoricidal. A recently published 
study showed a high level of agreement of pre-
therapeutic 124I PET and intra-therapeutic 131I 
SPECT lesion detection [9].

Despite the debate about the role of 124I PET or 
PET/CT in the clinical setting of DTC treatment, 
its role is crucial in the evolving field of rediffer-
entiation treatment of radioiodine refractory 
(RAIR) thyroid cancer through inhibition of 
MAPK signaling. Ho et  al. nicely showed that 
inhibition of MEK1/MEK2 in RAIR thyroid can-
cer is effective to increase iodine accumulation in 
tumor lesions significantly [10]. Even though this 
was a pilot study with 22 patients, this approach 

is a change of paradigm in the treatment of RAIR 
thyroid cancer, not only because of the positive 
results but moreover because of understanding 
the underlying mechanism behind this effect 
[11]. To assess the effect of the used MEK inhibi-
tor in this trial, Ho et al. applied a pre- and post-
drug treatment 124I PET/CT (Fig. 2). They defined 
that patients with a lesion dose higher than 20 Gy 
would benefit from an 131I treatment, and their 
results correlated nicely with this assumption, 
showing the predictive value of 124I PET/CT 
dosimetry. There are currently trials ongoing 
with different MAPK inhibitors in which 124I 
PET/CT is included for dosimetry purposes. The 
use of 124I PET/CT in this setting is unavoidable 
since the redifferentiation effect of the investi-
gated drug has to be quantified to select the 
patients carefully for a RAI.  Giving standard 
treatment activities of 131I without knowing the 
calculated lesion dose can result in less radiation 
dose and therefore insufficient treatment of the 
target lesion. In the authors’ view, a careful 
dosimetry approach in this setting is unavoidable, 
and an 124I PET/CT is the preferred tool for this 
purpose.

23 – 25 MBq [124I]Nal (capsule) 

124I-PET/CT images
(24, 96 h)

Whole-body counting
(4, 24, 48, 72, 96 h)

blood samples
(2, 4, 24, 48, 72, 96 h)

lesion
activity/volume

β blood dose ϒ blood dose

recovery correction

LDpA
Estimated absorbed radioiodine dose
to the lesion per GBq of administered
activity of131I

CBA
Estimated maximum131I activity not

delivering >2 Gy to the bone marrow

Determination of131I activity for radioiodine therapy
(Objective: insofar as possible, exceeding 80 Gy to all tumor

lesions without exceeding 2 Gy to the bone marrow)

Fig. 1 This is an 
example for a 124I 
dosimetry protocol. This 
protocol is curently 
applied in an university 
hospital for routine 
patients
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 124I PET/MRI

PET/MRI is an evolving technique not only but 
also for imaging in cancer. Even though it is not 
as successful as PET/CT as it was introduced, 
there is a high number of studies published in the 
last years revealing the role of PET/MRI in can-
cer imaging. Despite the fact that the quantifica-
tion properties of simultaneous PET/MRI scanner 
are currently investigated, there are two major 
reasons why PET/MRI may play a role in the 
future, when it comes to thyroid cancer imaging. 
The first reason is that an 124I PET/MRI has less 
radiation exposure compared to PET/CT, particu-
larly, if the PET/CT includes a full diagnostic CT 

scan. Therefore, 124I PET/CT imaging or dosim-
etry is rarely performed in pediatric patients. A 
PET/MRI may overcome this shortcoming of 
PET/CT.

The second reason has to do with the dosimetry 
itself. To perform a precise dose calculation, the 
volume of the target lesion has to be determined as 
precise as possible. Even though this can be esti-
mated to some extent using the PET images itself, 
for very small lesions (below the resolution of the 
PET scanner), it can’t be done in a reliable manner. 
Due to high soft tissue contrast, MRI detects even 
very small lesions, which has implications to lesion 
dosimetry (example shown in Fig.  3) [12]. 
Unpublished current data also show that the quanti-

Fig. 2 Left panel shows MIPs of two 124I PET scans 
before (left image) and after treatment with selumetinib 
for 4 weeks (right image) and axial sections of selected 
locations from a patient who was treated with selumetinib 
for about 4 weeks. The right panel shows axial images of 

I-PET/CT (upper row) and CT images (lower row) of this 
patient. The CT images represent one target lesion 
3 months after treatment. Lesions which showed a higher 
uptake after redifferentiation treatment with selumetinib 
showed a response to 131I treatment

Fig. 3 Left panel shows a 124I PET-positive lesions of a thyroid cancer patient outside the thyroid bed. The middle panel 
shows the corresponding MRI scan and the right panel the fusion of both scanning devices

Imaging of Differentiated Thyroid Cancer with Iodine-124 and F-18-FDG
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fication properties of a PET/MRI scanner compared 
to a PET/CT scanner (both scanners from one com-
pany) show a high correlation, which enable a reli-
able dosimetry with an 124I PET/MRI.

 18F FDG PET/CT

An inverse relationship between FDG avidity and 
radioiodine uptake (originally described by Feine 
as the “flip-flop phenomenon” [13]) is often seen 
in metastatic thyroid cancer lesions; increased 
FDG uptake is generally associated with decreased 
disease-specific survival [14]. Despite the ongo-
ing debate of this phenomenon, whether, for 
instance, the “flip-flop”  occurs in the same lesion 
(for instance, due to selection of clones with more 
aggressive features after radioiodine treatment), 
it’s widely accepted that thyroid cancer lesions 
with increasing FDG uptake in the course of the 
disease show refractoriness to RAI therapy and 
poorer prognosis (Fig. 4) [15]. A histopathologic 
study also showed that the majority of metastases 
in patients with radioiodine-refractory FDG-

positive metastases were of histologically aggres-
sive subtypes [16]. In another study, Grabellus 
et al. showed that lesions refractory to radioiodine 
(this was correlated with 124I PET/CT) showed a 
higher expression of GLUT-1 and higher FDG 
uptake [17]. The DTCs however in this study did 
not show an upregulation of GLUT-1, suggesting 
that GLUT-1 is a molecular marker for increased 
aggressiveness of thyroid cancer, and their expres-
sion can be monitored in vivo through FDG PET/
CT. Another interesting study by Grabellus et al. 
showed a higher GLUT-1 expression in BRAFV600E-
positive thyroid cancer compared to BRAF wild-
type patients. It’s believed that patients harboring 
a BRAFV600E mutation show a poorer prognosis 
compared to BRAF wild-type patients [18]. Since 
it’s rather impossible to biopsy every tumor lesion 
in patients to identify the BRAF mutation status, a 
FDG PET/CT scan can point to the presence of a 
mutation due to the fact that these lesions show a 
higher FDG uptake [19]. Therefore a FDG PET/
CT scan is useful not only to stratify patients 
based on the risk of recurrence or poorer progno-
sis but also for therapy management. In this line, 

Fig. 4 Upper panel 
shows axial image of a 
lymph node metastasis 
which is negative on 124I 
PET. The same lesion is 
positive on 18F-FDG-
PET scan. Both scans 
were performed within 
1 week on the same 
patient
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a study with 90 consecutively included patients 
showed that in high-risk situation based on FDG 
PET/CT results, the TNM status was changed for 
about 10% and the therapy management for 21% 
of the patients [20].

The prognostic value of FDG PET in advanced 
thyroid cancer was well documented in a classic 
study with 125 patients in whom survival was 
lower among patients with FDG-positive disease 
as compared to patients without FDG avid 
lesions: Patients with a volume of FDG avid 
disease  >125  mL had a significantly shorter 
survival [21]. FDG PET may also help in the 
management of patients with differentiated 
thyroid cancer presenting with elevated Tg levels 
but a negative 131I scan. According to current 
guidelines, a FDG PET/CT scan may therefore 
be useful in radioiodine refractory thyroid cancer 
patients for risk assessment and to verify 
recurrence. However, it is recommended to 
perform a careful patient selection before a FDG 
PET/CT scan to locate tumor recurrence. Since 
the tumor marker Tg is very sensitive, an FDG 
PET/CT scan may be false negative for very low 
Tg levels (due to very low tumor burden). 
Therefore, it is recommended to perform a FDG 
PET/CT scans for patients with a Tg level higher 
than 10  μg/L [22, 23]. Additionally, the 
probability of detection of FDG-positive lesions 
is increased if the PET/CT scan is performed 
under TSH-stimulated condition. There seems to 
be a mechanistic correlation between the 
activation of the TSH receptor and PI3K/AKT/
mTOR pathway upregulation, which leads to a 
higher translocation of GLUT1 to the membrane 
and consecutively to a higher FDG uptake [24]. 
Even though this mechanism is not fully 
understood, many clinical studies show a 
significant higher detection rate of FDG-positive 
tumor lesion, if the FDG PET/CT scan is 
performed under TSH stimulation [25].

 Summary

PET is a powerful tool in thyroid cancer imaging. 
Besides the here discussed two tracers, there are 
many other tracers for imaging of specific 

receptors and intracellular targets, which enables 
PET to visualize tumor biology in real time in 
patients.

124I PET/CT is increasingly used for imaging 
and dosimetry purposes in thyroid cancer and 
will play a major role in the future, particularly 
for treatment evaluation of new drugs for 
redifferentiation of RAIR thyroid cancer patients. 
124I PET/MRI is a new tool with promising appli-
cations in particular settings.

18F-FDG-PET/CT is a useful technique for 
imaging dedifferentiation of metastatic thyroid 
cancer and is also valuable for risk stratification 
and prediction of survival in high-risk thyroid 
cancer patients and has therefor impact in patient 
management.
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Surgery for Benign Goiter

Kerstin Lorenz

 Indication and Extent of Thyroid 
Surgery

Recognition of the pathogenesis involved in mul-
tinodular goiter (MNG) development influenced 
surgical strategy in the way to refrain from safe-
guarded standard bilateral subtotal resections to a 
more selective approach, morphological-func-
tional resection, aiming to resect all autonomous 
or cold nodules, more often resulting in lobec-
tomy than in tissue-preserving resections [1–6]. 
In solitary thyroid nodule surgery is indicated 
when malignancy cannot be excluded otherwise, 
or in functional autonomy at the patient’s prefer-
ence, and after therapeutical alternatives have 
been evaluated and discussed with the patient 
[7–10]. Indication to surgery in multinodular goi-
ter is mainly influenced by the size and extension 
of goiter, objective or subjective compression 
symptoms, and suspected malignancy. Various 
types of resection may be adequate for benign 
euthyroid nodular goiter ranging from enucle-
ation-excision to subtotal thyroidectomy to 
lobectomy, unilaterally or bilaterally [1, 4, 11–
13]. Contrary, in malignancy and in Graves’ dis-
ease, bilateral thyroidectomy without thyroid 
tissue remnants should be sought [8, 10, 13]. 

There is a validated association of progressive 
complication rates with more radical thyroid 
resection [3, 14]. Recurrent laryngeal nerve palsy 
rate and hypoparathyroidism are elevated in 
lobectomy compared to subtotal thyroid resec-
tion [12, 15, 16]. However, modern technical 
adjuncts like magnifying loops, bipolar dia-
thermy, and intraoperative neuromonitoring have 
been added to enhance meticulous surgical 
maneuvers in proximity to the RLN and PG, 
leading to further decrease of unfavorable results 
despite the prevalence of more radical resection, 
resulting in over all very low permanent rates of 
vocal cord palsy and permanent hypoparathy-
roidism in the hands of specialized experienced 
thyroid surgeons [12, 14–23].

 Preoperative Assessment

Routine patient history and physical exam are 
required. Clinical investigation should further 
include specific family history of thyroid disor-
ders, time of development in prevalent symptoms 
or thyroid growth, and actual size. Associated 
typical clinical signs of thyroid disease and 
underlying thyroid functional status referring to 
signs of hyper- or hypothyroid status should be 
recognized.

In preparation for thyroid surgery, a minimum 
of laboratory tests are necessary to assess besides 
routine blood tests. Euthyroid functional status is 
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determined by basal TSH value in the normal 
range; normal serum calcium level excludes 
underlying overt hypercalcemic 
hyperparathyroidism. In autoimmune thyroid 
disease and Graves’ disease, thyroid antibodies 
may be representative for present disease activity. 
Basal calcitonin level may indicate underlying 
c-cell hyperplasia or medullary thyroid carcinoma 
[10, 24].

Thyroid imaging comprises ultrasonography, 
thyroid scintigraphy, and CT or MRI. Sonography 
of the suprasternal thyroid gland evaluates the 
size, nodularity with localization, number and 
quality of nodules, as well as neighboring 
structures and cervical lymph nodes [7, 25–30]. 
Elastography may provide further information 
regarding nature of the lesion [31]. There are a 
number of useful classifications available to 
classify ultrasonographic findings with regard to 
pathology, assisting in guidance of surgery [28, 
32]. Sonography also enables fine needle 
aspiration cytology (FNAC) of suspicious lesions. 
FNAC may provide evidence of malignancy with 
Bethesda classification V and IV; however a 
considerable number of results will not provide 
reliable evidence, especially in the setting of 
multinodular goiter, and in FNAC results of 
follicular neoplasm [32–37].

Thyroid scintigraphy may be performed with 
different tracers and usually aims to assess 
functional status of sonographically detected 
lesions. In autonomous nodules, histopathology 
is predominantly benign, whereas cold nodules 
or 99mTc-MIBI (methoxyisobutylisonitrile)-posi-
tive nodules may harbor malignancy in up to 
10–20% [30, 38].

Sectional studies with CT or MRI help to 
assess extent of large goiters with substernal 
extension into the mediastinum and thorax and 
identify possible ectopic manifestations as well 
as adjacent structures [39–46] (Fig. 1a–d). With 
this information, compromised or difficult airway 
settings and optional surgical approach can be 
adequately anticipated, and necessary preparation 
is ensured. Thus, intubation in severely 
compressed trachea may be only performed in 
the patient awake with endoscopy, and small-
sized tube and potential conversion to sternotomy 

or thoracotomy may be considered and prepared 
for [10, 47].

Direct or indirect laryngoscopy is essential to 
determine the functional status of vocal cords 
preoperatively and is recommended in all cases 
as dysfunctions. RLNP are found in up to 1% 
without previous cervical surgery and may be 
clinically asymptomatic [17–21, 48, 49]. 
Prevalent unilateral RLNP will directly influence 
surgical decision making in reassessment of 
indication to surgery at a certain time, 
reconsideration of the planned extent of resection, 
as well as the surgical strategy with regard to 
definition of the dominant side to start with. 
Application of intraoperative continuous 
neuromonitoring (CIONM) is highly 
recommended for thyroid surgery in patients 
with preexisting contralateral RLNP. Moreover, 
postoperative airway management will be 
optimized when preoperative vocal cord 
dysfunction and intraoperative RLN functional 
assessment are recognized and measures to 
handle expected airway problems can be timely 
initiated [20].

 Surgical Procedure 
of Thyroidectomy

 Surgical Approach

Surgery for benign euthyroid MNG in supraster-
nal extension is traditionally performed by a 
Kocher incision. Minimal access thyroidectomy 
procedures are generally not recommended in 
typically larger-sized bilateral MNG and are not 
described here. In case of substernal extended 
MNG, CT or MRI imaging may be helpful to esti-
mate the chance of a successful transcervical pro-
cedure [11, 50] (Fig.  1b–d). Partial unilateral 
extension below the sternal notch or clavicle in 
primary surgery will rarely require extension of 
the transcervical approach as patient’s positioning 
with adequate reclination will already elevate part 
of the substernal portion of the thyroid. In larger 
proportions of substernal extension, measurement 
of the maximum diameter of the mediastinal or 
intrathoracic goiter and space in the narrowest 
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area of thoracic outlet in the lateral view assist in 
estimation of success of the transcervical option 
[40, 42–44].

In MNG with bilateral multiple nodules, total 
thyroidectomy is recommended to eliminate all 
prevalent nodules as well as to preclude 
recurrence that is reported to be as high as 
20–50% in MNG when subtotal thyroidectomy is 
performed [51, 52].

 Technique of Thyroidectomy

Following induction and intubation, the patient is 
positioned on the table in the operating room with 
slight neck extension and surgical site disinfec-
tion and dressing. Incision for primary surgery 
with a Kocher incision is in length correlated with 
the goiter size and patient’s individual constitu-
tional factors, mostly between 4 and 5 cm, ideally 
placed in a natural neck groove and about 1–2 cm, 

superior to the sternal notch. The platysma is 
divided and subplatysmal preparation performed 
to mobilize the skin-platysma flap, usually extend-
ing cranially up to the larynx and caudally down 
to the sternal notch. Elevation fixation of the flap 
and a retractor installed below provide accessibil-
ity throughout surgery. Incision in the midline in 
full length with careful preservation of the ante-
rior jugular veins whenever possible is performed. 
Retracting the strap muscles, approach to the 
dominant thyroid lobe is gained by careful dissec-
tion between the sternothyroid muscle and the 
thyroid capsule toward the carotid sheath. In 
IONM-guided surgery, identification of the vagus 
nerve (VN) with intermittent IONM or placement 
of an electrode to the VN for CIONM precedes 
further dissection [17–21]. Intact VN ION param-
eters prior to dissection of the ipsilateral thyroid 
lobe confirm intact RLN function and functional 
technique of the ION system in all cases with pre-
operative intact vocal cord function. VN ION 

a c

d

b

Fig. 1 Bilateral recurrent multinodular goiter with intra-
thoracic extension (female; 82  years; previous bilateral 
subtotal resection 37 years earlier) (a) X-ray of bilateral 
recurrent multinodular goiter with intrathoracic extension 
(b) CT of bilateral recurrent multinodular goiter with 

intrathoracic extension (c) CT of bilateral recurrent multi-
nodular goiter with intrathoracic extension (d) CT of 
bilateral recurrent multinodular goiter with intrathoracic 
extension
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parameters represent the reference parameters for 
any ION changes or events throughout the prepa-
ration [22, 23]. The anatomical variation of a non-
recurrent laryngeal nerve (non-RLN) must always 
be expected when first operating on the right side, 
except in a full situs inversus where it may be 
encountered on the left side. Numerous variations 
of non-RLN courses may be found with different 
levels of joining the VN exposing the non-RLN at 
preparative risk in an early phase of the dissection 
(Fig.  2a). In application of ION, this variant 
becomes identifiable very early by the failure to 
retrieve an ION signal at the VN distal to the junc-
tion of the non-RLN with the VN. Thus, on the 
right side, early distal VN stimulation close to the 
thoracic outlet receiving no signal and positive 
VN signal at any level superior to this may be 
helpful to alert the surgeon to look for a non-
RLN.  A non-RLN is always associated with a 
lusorian artery that may be visualized with angio-
CT or angio-MRI [53] (Fig. 2b). Proficient sonog-

raphers may also be able to identify the associated 
vascular variant preoperatively. Retraction of the 
thyroid lobe medially facilitates division of the 
middle thyroid vein, preceding identification of 
the RLN in the central compartment in caudal or 
cranial proximity of the inferior thyroid artery. 
Sometimes division of the inferior or superior 
thyroid pole vessels or even the isthmus may 
become necessary in order to identify and visual-
ize the RLN for dissection in its course within the 
tracheoesophageal groove. It is of note that the 
course of the RLN differs significantly in angula-
tion from the left and right side due to the course 
behind the subclavian artery on the right side and 
longer course behind the aorta on the left. 
Identification of the midline with the trachea 
offers ideal orientation to guide dissection in 
direction from the inferior to the superior pole as 
this will in the majority of cases allow the RLN to 
be visualized and kept unperturbed in its original 
position throughout the dissection. Careful dis-

ba

Fig. 2 Nonrecurrent inferior laryngeal nerve (a) Intraoperative steep course of nonrecurrent inferior laryngeal nerve 
(b) Corresponding angio-MRI of lusorian artery in nonrecurrent inferior laryngeal nerve
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section precluding any bleeding provides identifi-
cation of inferior and superior PG in their typical 
positions and safeguarding their delicate blood 
supply. Optional adjunctive fluorescent PG imag-
ing is presently under investigation to enhance 
identification of PG and its blood supply to 
improve results of intact PG function in thyroid 
surgery [54]. Devascularized PG should be auto-
transplanted. This is best performed immediately 
by dissection of the affected PG whose particles 
are then positioned in a bloodless pocket, e.g. in 
the sternocleidoid muscle. Permanent sutures are 
used to close and mark the autotransplantation 
site. Recognition of thyroid tissue extending 
below the clavicle or sternal notch, possibly asso-
ciated with the thyrothymic ligament, a tubercu-
lum Zuckerkandl, as well as any pyramidal lobe, 
should be taken care of to prevent unnecessary 
sites of recurrence. At the junction of the RLN 
with the inferior thyroid artery, special care is 
taken to identify its course above or below the 
artery. In the presence of a tuberculum 
Zuckerkandl, the course of the RLN is oftentimes 
obscured, and ION with the handheld stimulation 
probe may assist identification of the course prior 
to dissection that is necessary to further visualize 
the RLN here. At this point, identification of the 
superior PG should be taken care of before pro-
ceeding cranially in order to preserve its vascular-
ization that is mostly in close proximity to the 
thyroid gland. At the level of Berry’s ligament, the 
RLN course may be exposed very close to the 
fibers or even in between; thus dissection in this 
area must also be carried out with clear recogni-
tion of the nerve’s course. Prelaryngeal branching 
of the RLN into two or even three fascicles is fre-
quent, and ION will predominantly only be posi-
tive for the anterior fascicle; however, all fascicles 
identified should be preserved as they may be 
important for the posticus muscle innervation 
affecting voice outcome [19, 20, 55] (Fig.  3). 
Division of the superior thyroid vessels in close 
proximity to the gland ensures preservation of the 
superior PG that should be previously identified. 
In this area, the external branch of the superior 
laryngeal nerve (EBSLN), important for voice 
projection, should be identified. Again, visual 
identification of the EBSLN may be assisted by 

ION that enables to find the nerve’s course also 
when it is hidden from visualization within the 
cricothyroid musculature. Whenever the EBSLN 
courses exposed at or in between the superior thy-
roid vessels, dissecting clamps or sealing instru-
ments must be taken care of positioning without 
affecting the EBSLN [56]. In case of preserved 
isthmus, the last step in thyroid lobectomy as 
described is mobilization and resection of the 
pyramidal lobe whenever present and dissection 
of the isthmus in proximity to the contralateral 
lobe. Closure after thyroidectomy is performed by 
readapting the midline of the strap muscles, the 
platysma, and skin and wound dressing.

In planned bilateral thyroid resection, prefer-
ence of en bloc resection of the whole thyroid to 
lobectomy and optional frozen section evaluation 
of the first side resected must be made with regard 
to surgical consequence and underlying disease. In 
IONM-guided thyroid surgery, it is obligatory to 
validate intact VN function by ION or CIONM 
prior to proceeding to the contralateral side. 
Nonusers must be sure that functional integrity of 
the RLN was provided and need to rely on their 
experience in evaluation of RLN functional integ-
rity before continuing to the contralateral side. In 
case of compromised RLN function identified by 
severe events or loss of signal (LOS) in ION or 
CIONM after the first side, it is highly recom-
mended to refrain from operating the contralateral 

Fig. 3 Prelaryngeal bifascicular branching of the recur-
rent laryngeal nerve
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side at this time. LOS and severe event in ION and 
CIONM are strongly associated with postoperative 
vocal cord dysfunction and at least transient RLNP 
[19–23]. In order to prevent potential bilateral 
vocal cord palsy (VCP) that oftentimes necessitates 
tracheostomy, a staged procedure is preferred 
allowing for safe surgery of the contralateral side 
when vocal cord function is fully restored. In case 
of permanent VCP and pressing indication to sur-
gery of the contralateral side, this type of high-risk 
procedure is best planned in expert centers with 
application of CIONM and preparation of the post-
operative phase, expecting possible airway man-
agement problems with reintubation, vocal cord 
lateralization, or tracheostomy [20].

 Surgery for Recurrent Goiter

Surgery for recurrent goiter may be technically 
demanding and is associated with higher morbid-
ity compared with primary surgery [1, 4, 51, 52]. 
Therefore, evaluation should assess indication to 
surgery especially carefully as not all recurrent 
goiters may require surgery. Mainly RLNP rate 
increases in series up to 3.6%, and permanent 
hypoparathyroidism rate increases to 3–10% [15, 
16]. Postoperative hemorrhage and surgical site 
infections may be elevated due to generally pro-
longed duration of surgery in recurrent thyroid 
surgery [50, 57–59]. Essential difference is the 
preferred lateral approach to the thyroid, thereby 
avoiding the scarred plane of the midline approach 
between the sternothyroid muscle and the thyroid 
capsule where the course of the RLN may consid-
erably be altered and obscured. In the lateral 
approach, the medial border of the sternocleidoid 
muscle is identified, and dissection starts here to 
identify the VN with or without ION or CIONM 
and proceeds to dissect toward the central com-
partment with the strap muscles. These are divided 
usually in the middle portion in oblique direction, 
and the thyroid capsule is then exposed. Stepwise 
dissection of the adjacent strap muscles from the 
thyroid capsule is often necessary to access the 
plane in which the RLN courses. ION or CIONM 
may help to identify any RLN running in the scar 
capsule alongside the thyroid lobe or obscured 

within scar tissue objectivizing its identification 
prior to dissective maneuvers. This may be 
enhanced by elevation of stimulation intensity up 
to 2  mA while looking for the RLN.  Once the 
RLN is identified and visualized, return to stimu-
lation with 1 mA is generally advised and suffi-
cient. Identification of PG in recurrent thyroid 
surgery may also be challenging and sometimes 
be negative. In these cases, early postoperative 
determination of serum calcium and parathyroid 
hormone (PTH) enables timely and adequate sub-
stitution to prevent hypocalcemic symptoms.

 Surgery for Hyperthyroid Thyroid 
Disease

Treatment of choice for hyperthyroidism is pre-
dominantly conservative. However, when medi-
cal treatment fails or hyperthyroidism needs to be 
corrected timely, surgery may become necessary. 
Mainly two forms of hyperthyroidism are referred 
to surgery, Graves’ disease and autonomously 
functioning thyroid tissue without immunologic 
origin. While Graves’s disease may be responsive 
to antithyroid drug (ATD) treatment and antibody 
production can be self-limited in the course, 
autonomously functioning follicular thyroid tis-
sue is refractory, i.e., ATD is not curative, and 
may only serve to transiently convert a patient 
perioperatively into a euthyroid stage [38, 60, 
61]. In autonomous follicular thyroid tissue, 
radioiodine therapy or surgery remains the cura-
tive treatment options. Generally, both forms of 
hyperthyroidism may present subclinical, defined 
by suppressed TSH, possibly elevated peripheral 
thyroid hormones, and without clinical signs of 
hyperthyroidism, or they may transform into 
overt hyperthyroidism revealing clinical symp-
toms like tachycardia, arrhythmia, tremor, ner-
vousness, and hyperthermia besides the 
hyperthyroid laboratory. Degrees of severity may 
transform progressively from subclinical stage to 
thyrotoxicosis up to thyrotoxic crisis in which 
patients are vitally endangered and require inten-
sive care treatment. Accordingly, therapeutic 
options are tailored alongside the urgency of 
elimination of the hyperthyroid state, with the 
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lightest stages of hyperthyroidism being treated 
mostly conservatively with ATD, to radioiodine 
ablation up to thyroidectomy, and ultimatively 
emergency thyroidectomy in case of thyrotoxic 
crisis.

Today, most surgical society’s guidelines rec-
ommend total thyroidectomy as the preferred 
procedure to safely eliminate all hyperfunctioning 
thyroid tissue in multifocal autonomous follicular 
hyperthyroidism and to reliably eliminate all 
antibody triggering thyroid tissue in Graves’ 
disease [5, 8–10]. Contrary, in case of localized 
areas of autonomous follicular hyperthyroidism, 
selective excision may be curative [51].

Although surgery in the euthyroid state is 
preferable, this may in instances not be achievable 
in a certain time frame, and surgery must then be 
performed in (overt) hyperthyroidism. The 
technique of thyroidectomy does not differ from 
the above detailed. However, complication rates 
of thyroid surgery for hyperthyroidism are 
reportedly elevated compared to procedures in 
euthyroid benign goiter. Pronouncedly permanent 
hypoparathyroidism in Graves’ disease prevails 
at about 1.2–6% and 1–3.5% in autoimmune 
follicular hyperthyroidism when total 
thyroidectomy is performed. Permanent RLNP 
rates are reported to lie between 0.6 and 3.4%, 
while rates of postoperative hemorrhage are 
comparable with surgery for benign goiter [3, 16, 
50, 57–59, 61].

 Surgery for Thyroiditis

Various inflammatory thyroid diseases are inte-
grated in the collective entity. Irrespective of the 
specific type of thyroiditis, surgery is infre-
quently indicated. These are most often develop-
ment of thyroid nodules in underlying 
Hashimoto’s thyroiditis for exclusion of 
malignancy and abscess formation in subacute de 
Quervain’s thyroiditis or Riedel’s thyroiditis [62, 
63]. In active thyroiditis, thyroid tissue is mainly 
very firm, adjacent tissue may barely be separable, 
and planes may be obscured, posing patients 
potentially at an elevated surgical risk. In 
Hashimoto’s thyroiditis, the number and 

distribution of suspective nodules determine the 
extent of surgery, ranging from selective nodule 
excision to total thyroidectomy. In subacute de 
Quervain’s thyroiditis, surgery may only be 
indicated in abscess formation that is often 
associated with prior anti-inflammatory medical 
treatment and/or fine needle aspiration cytology 
[56] (Fig. 4a, b).

In case conservative treatment fails, open 
drainage of the abscess without aiming at 
extended thyroid tissue resection will be sufficient 
[62]. Surgery for Riedel’s thyroiditis is only 
exceptionally indicated when conservative 

b

a

Fig. 4 Abscess in de Quervain’s thyroiditis following 
corticoid medication and fine needle aspiration cytology 
(a) Clinical presentation of abscess in de Quervain’s 
thyroiditis (b) Purulent finding at surgery of abscess in de 
Quervain’s thyroiditis
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treatment fails as it may impose the highest 
technical demand to a thyroid surgeon due to the 
multiple infiltrations and growth irrespective of 
neighboring structures or planes and with the 
highest risk of surgical complications. Moreover, 
even radical surgical treatment cannot reliably 
exclude local recurrence with bothersome scarce 
reserve of treatment options. However, in very 
experienced and specialized centers, successful 
surgical treatment may be achieved for Riedel’s 
thyroiditis [63].

 Surgery for Retrosternal Goiter

In addition to the above-stated aspects of assess-
ment and planning of surgery in retrosternal goi-
ter, there are some differences in strategic and 
technical aspects of thyroidectomy. In case the 
retrosternal extension of the goiter is not 
considerably compensated with patient 
positioning and a transcervical approach is 
estimated feasible, dissection should begin with 
the upper pole. The aim is to fully liberate the 
upper pole in order to pull up the retrosternal 
portion into the cervical region without having to 
extend the access [42, 44–46]. Dissection of the 
upper pole vessels with identification and 
preservation of the superior PG, and potentially 
the EBSLN, is followed by identification of the 
RLN at its entrance point into the larynx and/or 
the junction with the inferior thyroid artery. This 
is important as the course of the RLN may be 
endangered when pulling the retrosternal part of 
the goiter at the upper pole into the cervical 
region as this may stretch the RLN when it 
courses across or medially, while lateral RLN 
course rarely exposes the nerve to traction or 
stretching. This is crucial in recurrent goiter with 
retrosternal extension as the course of the RLN 
may be further altered by scarring or become 
fixed to the scarred tissue. In these cases, pulling 
may not be tolerated, and extension of the 
approach to partial or full sternotomy may 
become necessary [41, 43]. Again, this scenario 
of an altered nerve course is superiorly identified 
by CIONM when repetitive events as there are a 
decreasing of amplitude and increase in latency 

are observed. Whenever transcervical approach is 
unsuccessful or appears to be compromising 
RLN integrity, partial or full sternotomy is 
performed. Finalized cervical dissection 
performed prior to the sternal split allows for 
limited exposure time of the mediastinum during 
sternotomy and transsternal dissection time. 
Partial sternotomy may be sufficient to mobilize 
goiters that require more space in the narrowest 
space between the sternal notch and the trachea 
and is performed with an oscillating saw in close 
communication with the anesthesiologist to 
momentarily retain the lung and pause ventilation. 
Full-length sternotomy may be necessary for 
intrathoracic and mediastinal MNG with broader 
extension. Closure after sternotomy may be 
facilitated with firm resorbable sutures or metal. 
Thoracic drainage is obligatory whenever the 
pleura is opened in the procedure.

 Surgical Complications 
of Thyroidectomy and Follow-Up

General surgical complications involve hemor-
rhage, wound infection, and thrombosis or embo-
lism. Specifically postoperative hemorrhage after 
thyroid surgery is a high urgency event necessi-
tating immediate surgical revision because of the 
imposing airway problem. Trained personnel and 
clear procedural instructions are essential in the 
postoperative observation. Hemorrhage after thy-
roidectomy occurs in the majority of cases within 
4–6 h postoperatively; however, it may occur as 
late as 72  h postoperatively [64]. Surgical site 
infection after thyroidectomy is infrequent; how-
ever, conservative treatment with antibiotics may 
not be sufficient, and surgical revision with 
optional open wound treatment preceding sec-
ondary closure may be necessary. Thrombosis 
and embolism in association with thyroid surgery 
are rare events. Patients at risk need to be identi-
fied and prophylaxis initiated accordingly. 
Procedure-specific complications in surgery for 
benign MNG are RLNP and hypoparathyroid-
ism. Both are clearly associated with the extent of 
resection; however, permanent rates of RLNP 
and hypoparathyroidism are low in the hands of 
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experienced specialized thyroid surgeons. Recent 
data from a major health-care insurance in 
Germany covering a broad spectrum of 
departments performing thyroid surgery reported 
permanent rates of RLNP of 1–3%, and 10–12% 
of hypoparathyroidism. RLN damage during 
thyroid surgery may be caused by direct injury 
with nerve transection, clamping, suture 
placement or clips, or thermal lesion, whereas 
indirect injury is mainly caused by traction of the 
nerve during mobilization of the thyroid lobe or 
thyroid mass. In expert hands, direct RLN injury 
is a rare event and indirect traction lesions 
dominate. In postoperative RLN dysfunction and 
anatomically preserved nerve integrity, potential 
of full recovery within 6 months up to 1 year is 
high. Permanent RLNP is defined when vocal 
cord dysfunction persists beyond 6  months, 
although exceptionally late recovery over 
12 months or more postoperatively was reported. 
Besides various degrees of voice alteration, 
unilateral RLNP may also be coupled with 
swallowing dysfunction and symptomatic or 
silent aspiration [3, 15, 16, 50]. Laryngological 
evaluation of indication to specific therapy should 
be offered in these cases. In permanent RLNP, a 
variety of conservative, interventional, and 
surgical therapeutic measures are available in 
order to improve voice or respiration.

In postoperative hypoparathyroidism, severity 
of hypocalcaemia and of clinical symptoms may 
require prolonged hospitalization with intrave-
nous calcium substitution or can be managed by 
oral calcium and/or vitamin D intake [15, 16]. In 
all cases, follow-up with control of calcium and 
PTH blood levels is recommended to enable 
weaning off substitution in time and to prevent 
overtreatment with risk of hypercalcemia as well 
as documenting the persisting need for substitu-
tion. Any hypoparathyroidism requiring calcium 
and/or vitamin D medication beyond 6  months 
postoperatively is defined as permanent, and per-
spective of potential functional PG restitution 
declines with the duration of treatment required.

Besides the potential complications, follow-
up after thyroid surgery assesses remaining thy-
roid function or adequacy of thyroid substitution. 
In case less than total thyroidectomy was per-

formed, recurrent goiter or remedial specific thy-
roid disease may also need to be included in 
follow-up assessment [51, 52].
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 Background

Congenital hypothyroidism (CH) is the most fre-
quent inborn defect of the endocrine system 
occurring in approx. 1 in 3000 newborns. In 90% 
the affected children suffer from developmental 
defects that lead either to the complete absence 
of the thyroid gland, to an ectopic gland some-
where between the normal position in front of 
the trachea and the origin at the base of the 
tongue, or to a hypoplastic thyroid tissue. In the 
other 10%, inborn defects of thyroid hormone 
synthesis and metabolism result in CH despite 
the presence of a morphologically normal gland. 
In all cases of primary congenital hypothyroid-
ism, the lack of appropriate functional thyroid 
tissue leads to fetal and neonatal hypothyroidism 
that results in severe elevation of TSH, which is 
nowadays diagnosed within the first days of life 
by neonatal screening programs [1, 2]. Of utmost 
importance is the successful treatability of CH 
with L-thyroxine that started already in the 
1880 – at that time with thyroid extracts – and 
was optimized since the 1970s by the introduc-
tion of newborn screening programs based on 
the description of better outcome in patients 

treated early after birth [3]. The implementation 
of TSH screening in 1974 [4] enabled a normal 
cognitive and somatic development and quality 
of life [5]. During the last three decades, the 
efforts to understand the pathogenesis of CH 
resulted mainly in the discovery of genetic 
defects only in the smaller group of patients suf-
fering from thyroid hormone synthesis defects. 
Here, mutations in genes that are important for 
iodine transport, organification, storage, and 
recycling were described and allow now in 10% 
of patients with a genetic diagnosis that most 
recently can be done based on disease gene panel 
approaches [6]. At the same time, although the 
basic mechanisms of thyroid development were 
discovered, the molecular causes of the larger 
group of children with thyroid developmental 
defects remained elusive. Mutations in the TSH 
receptor (TSHR) [7–9] and subsequently in three 
different transcription factors, e.g., PAX8 [10], 
FOXE1 [11], and NKX2.1 gene [12, 13], that 
coordinate the complex steps of thyroid develop-
ment were found in thyroid hypoplasia, athyro-
sis, and ectopy. Only in 5% of patients with 
thyroid dysgenesis mutations in these genes can 
be detected [14]. Due to the very particular find-
ing of almost complete discordance of thyroid 
dysgenesis in monocygotic twins [15], it is 
expected that rather epigenetic then genetic 
defects represent the major molecular mecha-
nism in thyroid dysgenesis, which need to be 
confirmed.
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One rare variant of CH is the central isolated 
absence of TSH, which in turn can be the result 
of a mutation in the TSH-beta gene itself or of a 
defect in normal pituitary development [16, 17]. 
While those very rare cases (app. 1 in 25,000) of 
central congenital hypothyroidism compromise 
the normal development of the affected newborn 
in the same way as the primary CH cases, their 
fate is in most cases depended on an early clini-
cal diagnosis, because the lack of TSH is not 
detected in most newborn screening programs 
[18]. Severe hypothyroidism and the apparent 
lack of functional thyroid tissues in some 
patients with TSH-beta gene mutations, how-
ever, reflect the important role of TSH for the 
proper development and function of the human 
thyroid.

 The Evolution of the Thyroid Gland

In evolution, the appearance of the first thyroid-
like features goes back to the very first cells that 
reach the capability to incorporate and organify 
iodine. One of these still living species are the 
brown algal kelps that are very efficient to accu-
mulate iodine from seawater and to store iodine 
in a tyrosine-bound simple structure, the 
monoiodotyrosine, MIT, and diiodotyrosine 
DIT [19, 20]. Still it is not entirely clear what 
physiological role iodinated tyrosines play in 
these algae. However, in the course of further 
evolution, thyroid hormones can be generated 
already in phyloplankton, and these iodinated 
tyrosines gain function as exogenous hormones 
that act on the metamorphosis of echinoderm 
species like sea urchins, which already express a 
functional receptor that interacts with thyroid 
hormones (TH) [21]. At this level of thyroid 
evolution, we can observe the transformation of 
an exogenous iodinated substrate into a hor-
mone that fits into a receptor molecule that 
coevolved in parallel.

Besides this coevolution of TH and their 
receptor, the first obvious morphological exam-
ple of thyroid precursor tissue is the so-called 

endostyle in the chordate species amphioxus and 
Ciona intestinalis [22] (Fig.  1). The endostyle 
represents just a group of cells in the endodermal 
inflow tract of these fascinating prevertebrate 
species. Here, we can already observe the main 
features of thyroid function: iodine accumulation 
by a transporter, organification by peroxidase, 
and transcriptional organization of this process 
by those genes that are known to play a pivotal 
role in thyroid cells through all animal species, 
pax and nkx genes [22]. One important function 
of TH in those species with an endostyle is – as 
also later in evolution in amphibians – the regula-
tion of the maturation during metamorphosis 
(Fig. 1).

While the cells in the endostyle still accumu-
late iodine and perform the organification in the 
cell body, the next step during thyroid evolution 
was the development of thyroid follicles with the 
follicular lumen as the extracellular space for 
iodine storage and organification. One early 
example is the thyroid equivalent in the Agnatha 
species “sea lamprey” with the particular finding 
that before metamorphosis of this early verte-
brate, an endostyle is built that changes after 
metamorphosis into a true thyroid follicle. All 
later fish species are living with single thyroid 
follicles lined along the anterior arteries as the 
anatomic equivalent of the thyroid in the pre-
mammal phyla (Fig. 1). The thyroid as a gland 
developed late in evolution of tetrapods and can 
be found now in, e.g., frogs. The final step of 
positioning of the thyroid gland in the anterior 
neck occurred only in the mammalian develop-
ment since in all pre-mammalian animals like 
the echidna or also birds the thyroid is positioned 
in the mediastinum close to the heart outflow 
tract [22]. Nevertheless, in all species with dif-
ferent levels of cellular organization of TH syn-
thesis, the hormone itself and its biosynthesis 
with iodine accumulation via the sodium/iodide 
transporter (NIS) and peroxidase activity at tyro-
sine residues of the thyroglobulin matrix protein 
remained the same as well as the transcriptional 
regulation of thyroid cell development and func-
tion by pax and nkx transcription factors.
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Ciona

Early chordate species with
single thyroid hormone
producing cells in the so
called „endostyle“, an organ
in the anterior inflow tract of
the primitive gut organ;
intracellular T4 production

Lamprey

Early jawless fish species
with single thyroid hormone
producing cells at the
beginning of maturation and
with single thyroid follicles
after metamorphosis

Zebrafish

Teleost fishes with thyroid
thyroid follicles that are
located along the anterior
artery that resembles the
anterior outflow tract of
later species

Tetrapods

Amphibians, birds and
premamalia do have a
thyroid gland with many
follicles that is located at the
outflow tract of the heart in
the mediastinum

Mammals

All mamalia do have a
thyroid gland which in most
cases is two-lobed and
located in the anterior neck
in front of the trachea

4. GW

First single
thyroid cells
appear at
the pharynx
endoderm;
not yet
producing T4

8.-9. GW

thyroid cells
organize into
thyroid
follicles
No T4

10. GW

thyroid
follicles
Organoze
along the
Carotid
artery

11. GW

thyroid
follicles
begin to
produce T4

12. GW

Thyroid
gland
lobes
In final
position in
anterior neck

Phylogenesis Thyroid structure Human

Fig. 1 Overview of thyroid development during evolution 
and human organogenesis. The different steps of thyroid 
development are shown in schematic drawings beginning 
with the single thyroid hormone producing cells in Ciona 
intestinalis via the occurrence of thyroid follicles in lam-
prey, thyroid follicles in fish, and the final thyroid gland in 

tetrapods and mammals. On the left side, the correspond-
ing steps of human thyroid development during embryo-
genesis are depicted. However, the two processes are not 
completely in parallel but the major steps are the same. 
For more details and references, see main text
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 The Coevolution of TSH 
and the TSHR

In vertebrates the three glycoprotein hormones 
(GPH) FSH, LH, and TSH and their respective 
receptors are remarkably conserved. Their 
 evolutional origin dates back to the first pair of 
 glycoprotein hormone and its receptors in dro-
sophila and continued via several rounds of gene 
duplication and gene losses. Today the living 
jawed vertebrates separated from a jawless verte-
brate ancestor already 550 million years ago and 
the study of the GPHs in the jawless, agnathan 
species living still today, the sea lamprey and the 
hagfish, show that already in these species a pitu-
itary GPH is present. However, this GPH is par-
ticular in that it contains an ancestral alpha subunit, 
the GPA2 ortholog of the mammal thyrostimulin 
A2 subunit. Together with the finding that in lam-
prey already two different GPH receptors are pres-
ent, one with homology to the LH/FSH receptor 
and the other with homology to the TSHR, it 
seems possible that already in the jawless verte-
brate precursor species an overlapping pituitary-
gonadal and pituitary-thyroid axis existed [23]. 
Obviously, because in more distant vertebrates no 
pituitary equivalent is present, the lamprey is the 
first example of a functional interplay of a pitu-
itary that is activated by brain releasing factors and 
transmits the brain signal into the body. Here the 
lamprey GPA2-GPHB heterodimeric pituitary 
GPH can in principal already act on a TSHR pre-
cursor on thyroid follicular cells and therefore rep-
resent the first active pituitary-thyroid axis [24].

Now, with the development of a TSH-like reg-
ulatory hormone, thyroid function could be inte-
grated via the central nervous system (CNS) into 
higher physiological organization. In amphibians 
TSH is essential to regulate metamorphosis 
which is induced by, e.g., external seasonal sig-
nals that are recognized in the CNS. The two key 
developmental features of many species, the 
metamorphosis and reproductive maturation, are 
both controlled by thyroid hormones that are trig-
gered by TSH [25]. Thus, TSH-regulated thyroid 
function gained already very early during evolu-
tion a central role for the main functions of 
survival.

While thyroid cells are active in many species 
without the stimulatory effect of TSH, later dur-
ing evolution, thyroid function became more and 
more dependent on TSH action. Mice with a com-
plete loss-of-function mutation in the TSHR are 
extremely hypothyroid and cannot survive [26], 
and human patients who are born without func-
tional TSH due to a TSH-beta subunit mutation 
suffer from a severe form of hypothyroidism [16].

Interestingly, the appearance of a TSH-like 
molecule in jawless fishes coincides not only with 
the regulated function of the thyroid but in addi-
tion also with the appearance of the follicular 
structure of thyroid cells. For example, in lamprey 
a follicular structure of the thyroid cells is first 
seen only after metamorphosis. This structure is 
typical for all following species during evolution. 
In all more ancestral species, thyroid cells are not 
organized in follicles  – and no pituitary-thyroid 
axis with a TSH-like GPH is present. Therefore, 
one can speculate that the TSH signal is one 
important prerequisite for the formation of thy-
roid follicles. This hypothesis of a key function of 
TSH for thyroid follicle development is under-
lined by recent findings in stem cell-based experi-
ments. Several groups succeeded in triggering 
thyroid development from embryonic stem cells 
by the use of different growth factors or by 
expressing thyroid-specific transcription factors 
in stem cells. However, only the substitution of 
TSH into the cell media allows the formation of 
functional follicular structures [27, 28].

 Development of the Human Thyroid 
Gland, TSH/TSHR System, and T4

During human embryogenesis, the development 
of the thyroid remarkably resembles the different 
steps of thyroid evolution. Like the endostyle of 
the early vertebrate Ciona intestinalis, the very 
first precursor cells of the human embryo occur at 
the anterior endoderm of the pharynx as a bud-
ding of endodermal cells. This first thyroid pre-
cursor develops already in the 4th week of 
gestation during gastrulation (Fig.  1). While in 
Ciona intestinalis thyroid development stops in 
that stage and these single endodermal cells of 
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the endostyle start to produce T4, in human 
development several weeks of additional organo-
genesis are following. From the 4th to 7th week 
of gestation, the thyroid precursor cells divide 
and aggregate in two lobes that are located to the 
final position in the anterior neck in front of the 
trachea. During these steps of early development, 
the transcription factors PAX8 and NKX2.1 are 
already expressed [29]. However, the thyroid pre-
cursor cells are still single cells that are not orga-
nized in follicular structures at these first weeks 
of organogenesis. In the final position which is 
reached in week 7, genes for thyroid hormone 
synthesis are already expressed like the peroxi-
dase (TPO) and thyroglobulin (TG)-mRNA as 
well as the TSHR [30]. In accordance with the 
detailed work of Szinnai et al. [30], it seems to be 
the later expression of the sodium/iodide trans-
porter (NIS) gene that enables the thyroid around 
week 11 to start with T4 production. At this time 
histological studies reveal the presence of thyroid 
follicles that express the TPO and TG at their 
luminal membranes [30]. It can be speculated 
that these rather late follicle developments coin-
cide with rising TSH levels that are expressed 
and secreted around the same time from the fetal 
pituitary.

Fetal TSH and T4 values were measured in 
cord blood from 12th week of gestation. 
Interestingly already in the 12th week, TSH lev-
els reached concentration of 4  mU/mL that is 
higher compared to the respective maternal val-
ues. Fetal TSH levels increase constantly until 
birth and reach the known higher levels of new-
borns compared to adults. T4 is at the beginning 
of week 12 which is still very low and develops 
with a time shift compared to TSH until birth. 
Together, the histological findings of Szinnai 
et  al. [30] and the cord blood measurements of 
free and total T4 as well as free and total T3 by 
Thorpe-Beeston et  al. [31] are consistent in the 
finding that after reaching its final position in the 
anterior neck in week 7, the increasing TSH is 
stimulating a follicular functional structure at 
week 11 that subsequently starts to produce T4 
after week 12. Therefore, it seems obvious that 
during embryogenesis until week 12, the fetus 
development is influenced by very low T4 levels 

that are supplied by the maternal circulation 
(Figs.  1 and 2). Only after week 12 T4 levels 
increase significantly and are measurable in the 
cord blood [31] and those only from this time 
point on, an influence of the fetal T4 itself on the 
further development can be expected (Fig. 2).

Concerning further morphological thyroid 
maturation, fetal ultrasound data are available 
[32] that demonstrate the growth from gestational 
weeks 20–36. At week 20, when the overall his-
tological structure, gene expression, and T4 pro-
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Fig. 2 Functional and structural fetal development of 
human thyroid. The human thyroid gland reaches its final 
organ structure and position already after the first trimes-
ter at the end of the 12th week of gestation. Thereafter T4 
synthesis increases continuously in parallel with the 
increased TSH secretion from the pituitary and a constant 
increase of the thyroid volume. For more details and refer-
ences, see main text
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duction are already mature [30], the thyroid 
volume is still very small with only 0.08  mL 
(Fig. 2). Until birth the thyroid increases by a fac-
tor of 10 with the most significant increase in the 
last weeks of gestation to reach a newborn vol-
ume of 0.8 mL on average. The two data sets of 
fetal thyroid volume and fetal thyroid function 
very nicely correlate in that this documented 
increase of thyroid volume by Ho et al. [32] is in 
parallel with the increase of T4 production as 
shown by Thorpe-Beeston et al. [31].

However, after birth this parallel development 
does not pursue, and despite a further ten times 
increase of thyroid volume until adulthood, the 
T4 values decline after birth and are then kept 
constant until adulthood (Fig.  2). The postnatal 
development of TSH is particular because deliv-
ery leads to a sharp increase for 2  days up to 
50  mU/L [33] (Fig.  2), and thereafter TSH 
declines to the normal levels of childhood which 
are still higher compared to adults with an upper 
normal value of 4.5–5.0  mU/L.  These higher 
TSH normal values need to be kept in mind when 
interpreting thyroid function in childhood. 
Together these findings suggest that during fetal 
life thyroid function increases in parallel with 
thyroid volume but that after birth thyroid func-
tion in terms of serum T4 and T3 levels is regu-
lated in a constant, individual range that is 
independent of thyroid volume and is most likely 
regulated by the TSH/TSHR system (Fig.  2). 
However, to reach the constant T4 and T3 con-
centration in the blood, the thyroid has to increase 
the daily secretion according to the increasing 
blood volume of the growing child.

 Inherited Defects of T4 Synthesis 
(Dyshormonogenesis)

Following the first descriptions of “sporadic cre-
tinism” by Osler in the late 1880s [34], it took 
more than 100 years until the molecular cause of 
the first patients with congenital hypothyroidism 
(CH) was discovered. Already in the nineteenth 
century, Osler included in a review several CH 
cases with severe goiter. In those children with an 
enlarged thyroid, researchers already expected a 

defect of thyroid hormone synthesis based on the 
biochemical studies of thyroid goitrous tissue in 
those patients who had surgery because of their 
goiter. After sequencing the human TG gene and 
TPO gene in the beginning of the 1990s [35, 36], 
it was in 1991 that in a goitrous CH patient a first 
mutation in TG was discovered [36] (Fig.  3). 
Here the familial occurrence of a goitrous CH in 
a consanguineous family was very suggestive for 
a recessive Mendelian inheritance of thyroid dys-
hormonogenesis. The availability of goitrous tis-
sue in one family member enabled the 
investigation of the TG mRNA that led to the 
finding of a splice defect that causes the loss of 
exon 4 and subsequently to the discovery of a 
genomic C to G mutation affecting the exon 4 3′ 
splice site [36]. Only 1 year later, the same group 
reported about the first mutation in the human 
TPO that resulted in severe goitrous congenital 
hypothyroidism [35] (Fig. 3). Again this break-
through was based on goitrous thyroid tissue 
from a CH patient after thyroidectomy in that 
biochemical studies strongly suggested a TPO 
defect and sequencing of the tissue-derived TPO 
mRNA revealed a homozygous frameshift muta-
tion in exon 8 [35].

In the following 15 years, all further genetic 
defects of thyroid hormone synthesis known so 
far were discovered (Fig. 3): the defect of iodine 
transport in terms of the NIS gene (or SLC5A5) 
(three groups in 1997 [37–39]) and pendrin gene 
(or SLC26A4) mutations [40], defects of hydro-
gen peroxide generation [41] and DUOXA2 [42], 
and the defect of iodine recycling by the iodoty-
rosine deiodinase (IYD) (or DEHAL1) [43] 
(Fig. 3). While the complete loss of TPO or TG 
function in homozygous patients results in severe 
CH, the phenotype of the other defects of T4 syn-
thesis is more variable and can be even transient 
in the case of DUOX2, DUOXA2, and IYD 
mutations. Due to the variable phenotypes of 
dyshormonogenesis and the low predictability 
which gene might be affected, more recently the 
molecular diagnosis is based on next-generation 
sequencing techniques that allow the parallel 
sequencing of all known candidate genes for 
CH.  As demonstrated most recently by those 
“gene panel” diagnostic studies, up to 60% of CH 
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patients with a normal or goitrous gland can be 
diagnosed in terms of a clear genetic defect [44]. 
In another 20% a likely but not proven defect can 
be diagnosed. Most mutations are present in the 
TG and TPO genes with some variations in the 
mutation rate depending on the genetic back-
ground [45]. The search for a causative mutation 
in CH cases with a thyroid gland in place is rec-
ommended by the most current guidelines [46] 
because the likely recurrence of another case in 
the affected families should guide the obligatory 
diagnostic procedure to detect early after birth a 
hypothyroid state especially in regions where a 
routine screening program is not available.

Nevertheless, it remains challenging to 
improve the genetic diagnostics of the presently 
unsolved 20% of cases of CH patients with a 
gland in place but no conclusive genetic defect. 
In those cases only one coding sequencing muta-
tion or even no mutation was found so far. Given 
the likely genetic cause of CH in this patient 
group, genome sequencing strategies will detect 
noncoding sequence alterations in the TPO or TG 
gene as likely additional defects.

 Defects of Thyroid Development 
(Thyroid Dysgenesis)

In contrast to the smaller group of CH patients 
with a thyroid in place – either goitrous or with a 
normal volume – the majority of 80–90% of CH 
newborns are diagnosed with alterations of thy-
roid morphology in terms of complete absence, 
hypoplastic or ectopic glands [14]. In those 

patients with “thyroid dysgenesis” (TD), very 
particular epidemiological features argue against 
a classical Mendelian inheritance: First, large 
cohort studies revealed sporadic occurrence in 
that only very few familial cases of TD (3–5%) 
were identified [47]. Second, the search for an 
environmental impact on the rate of TD – either 
geographical or climate or infectious disease fac-
tors – failed despite a very good epidemiological 
coverage in newborn screening programs [48]. 
And third, and most striking, the meta-analysis of 
available twin data revealed a complete discor-
dance of TD in monocygotic twins in that only 
one child is affected, despite the same genome 
and the same maternal “environment” of both 
twins [49]. Together these data argue for a non-
Mendelian and rather epigenetic than genetic 
defect in the majority of TD cases. So far, such an 
epigenetic molecular defect, either on the level of 
DNA methylation or chromatin modification, 
was not discovered yet.

Nevertheless, in a few children with CH due to 
TD, mutations could be identified on the basis of 
candidate gene approaches. In these studies tran-
scription factor genes were investigated that were 
initially identified in mice to be expressed in the 
thyroid and be involved in the normal organogen-
esis of the thyroid gland. Consistent findings with 
an obvious phenotype of TD were diagnosed so 
far in three of those “thyroid transcription fac-
tors”: NKX2.1, PAX 8, and FOXE1; remarkably 
all three defects were discovered in the same 
year, 1998 [10–12].

Patients with mutations in these three thyroid 
transcription factors are frequently affected by 
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additional symptoms and other malformations 
due to fact that the mutated transcription factors 
are not only relevant for the thyroid but also for 
other organ development, like the brain, the lung, 
and the kidney. Those more complex and severe 
phenotypes make the genetic diagnosis of this 
transcription factor mutations in terms of genetic 
counselling most relevant.

The NKX2.1 gene was already discovered in 
1990 [50], and knockout mouse studies had 
revealed severe defects of the thyroid, lung, and 
brain morphology in the absence of the gene 
product [50]. The first mutation affecting a thy-
roid transcription factor was reported in April 
1998 as a deletion in the gene locus of the 
NKX2.1 gene (former names TTF1 and TITF1) 
[12]. Four years later, the first missense mutation 
in Nkx2.1 was reported [13]. Accordingly, in 
patients with a heterozygous NKX2.1 deletions 
[51], severe pulmonary problems can be present 
after birth with only mild thyroid dysfunction 
and later on developmental delay, representing 
alterations of the lung, thyroid, and brain func-
tion, respectively. Further description of a grow-
ing number of affected children [51] depicted the 
detailed phenotype of this new disease: In all 
patients a movement defect is present, starting 
with muscular hypotonia in the first year of life 
and then followed by uncontrolled movements 
(reflecting the central role in the basal ganglia of 
the brain that coordinates movements). In around 
50% a functional  – in some patients only mild 
elevation of TSH – or structural thyroid defect is 
present, and in only 30% also the lung is affected, 
which can be very severe and lethal in the first 
days of life [51]. Therefore, it turned out that the 
NKX2.1 gene that already plays a central role in 
thyroid cell function in the endostyle of the very 
early species Ciona intestinalis – where no brain 
is evolved in evolution yet – turned out to be most 
important for the brain in humans and that the 
heterozygous loss of NKX2.1 function results in 
patients in a mainly neurological disease, rather 
than a thyroid disease.

However, the variable manifestation of hetero-
zygous NKX2.1 loss-of-function mutations such 
as only minor symptoms in affected parents and 
severe phenotype in the offspring hampers an 

appropriate genetic counselling. Genetic diagnosis 
is mandatory in those families with a developmen-
tal delay in CH patients despite an optimal treat-
ment with LT4 since nowadays treatment of CH 
leads to normal motor and mental development 
and a delay should point to a search for unusual 
genetic defects like the NKX2.1 mutations.

The PAX8 gene became a candidate gene for 
TD after its discovery as part of the pax gene 
family involved in the organogenesis of a variety 
of embryonic structures and the thyroid absence 
phenotype in Pax8 knockout mice [52]. The sec-
ond thyroid transcription factor defect in TD 
patients was diagnosed in the PAX8 gene in May 
1998 [52]. Identical to NKX2.1 patients, also in 
PAX8-deficient patients already, the loss of one 
allele leads to a phenotype with mild to severe 
thyroid dysgenesis that can be a lack of only one 
thyroid lobe with still normal thyroid function or 
an almost absence of functional thyroid tissue 
[10, 53, 54]. In a few patients, additional defects 
of the kidney were observed that were always 
unilateral with one still functional kidney and no 
clinical symptoms [55]. Although the PAX8 gene 
is also expressed in the midbrain-hindbrain 
region, so far no neurological symptoms in PAX8 
heterozygous patients were diagnosed yet [54]. 
Therefore, due to the lack of renal and CNS 
symptoms, patients affected by PAX8 mutations 
can expect a normal life given that LT4 is started 
early and with an appropriate dose.

The third molecular defect in TD patients was 
discovered in patients with a syndrome that was 
clinically described already in 1989 by Bamforth 
and Lazarus [56]. Patients with this very rare 
“Bamforth-Lazarus syndrome” are affected by 
TD in association with cleft palate, curiously 
spiky hairs, and severe mental retardation despite 
treatment of CH. After cloning the second “thy-
roid transcription factor” by DiLauros group in 
1997 [57], it turned out that this transcription fac-
tor belongs to the FOX gene group (FOXE1) and 
that knockout mice are affected by a cleft palate 
in addition to thyroid malformations [58]. Based 
on this particular association, the first FOXE1 
mutation in patients with the Bamforth-Lazarus 
syndrome was reported in August 1998 [11], and 
it turned out that all other patients with this par-
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ticular phenotype of TD, cleft palate, mental 
retardation, and spiky hairs harbor complete loss-
of-function mutations in FOXE1 with a recessive 
inheritance [54]. Although the severity of the 
cleft palate phenotype is somehow variable, the 
clinical picture of FOXE1 deficiency is very con-
sistent, and the clinical diagnosis should lead to 
an immediate genetic diagnosis of the FOXE1 
gene. Not all patients with association of TD and 
cleft palate are harboring a FOXE1 mutation 
(personal observation); however, those patients 
had normal hairs.

 TSHR and Its Inherited Defects

Besides the two so far described CH groups of 
“hormonodysgenesis”  – due to mutations in 
genes that are important for T4 synthesis – and 
“thyroid dysgenesis,” due to transcription factor 
mutations, a third group of patients with a defined 
defect in the regulation of thyroid development 
by loss-of-function mutations of the TSHR can 
be separated which are also affected by primary 
CH with elevated TSH and variable degrees of 
thyroid dysgenesis.

Consistent with the relatively late appearance 
of TSH during evolution – as described before in 
the lamprey – several animal studies in zebrafish 
and mice revealed a role for TSH during thyroid 
development rather late in the embryonic stages 
of follicle generation and not during early steps 
of thyroid initiation. The inactivation of the 
TSHR in zebrafish embryos resulted, for exam-
ple, in a reduced number and size of the fish thy-
roid follicles but let the first budding and 
maturation intact [59, 60]. The results were very 
comparable in different mouse models of TSHR 
inactivation, either by the targeted knockout or in 
a spontaneous TSHR mutation mouse line (hyt/
hyt). Detailed studies of thyroid development in 
these models did clearly show an unaltered initial 
organogenesis with a defect of later folliculogen-
esis, like in fish. However, in newborn mice with-
out a functional TSHR, severe hypothyroidism is 
present that is lethal due to sucking weakness if 
the affected mice are not immediately substituted 
with T4 [26].

The first patients with inactivating TSH gene 
mutations were described already in 1995 [9]. 
Most interestingly and surprising in the light of 
the mice data, the phenotype was not CH but just 
an elevation of TSH with normal T4 and T3 [9]. 
The underlying TSHR gene mutations were func-
tionally tested, and it turned out that one allele – 
inherited from the mother  – still exhibited a 
partial function [9], those explaining consistently 
the difference to the more severe phenotype in 
mice without any TSHR function.

The first CH patient with TSHR mutations 
was reported 2 years later in 1997. At that time a 
girl with CH with reduced, but measurable T4 
and a mildly hypoplastic thyroid gland was found 
to inherit two different loss-of-function muta-
tions that were both differently affected in their 
functional capability to induce cAMP generation, 
one with complete loss of function and the other 
one with a 100 times reduced activity [61]. These 
two cases argued for an important role of the 
TSHR in thyroid function also in human physiol-
ogy, but at the same time suggested that at least a 
minimal residual activity of one allele can com-
pensate for a more severe hypothyroid state. A 
more severe thyroid phenotype with low T4 and 
an “apparent” athyreosis – but measurable thyro-
globulin – was then reported in 1998 [62], again 
with two different TSHR mutations that both 
were argued to be functionally inactive due to an 
exon skipping and a frameshift but were not 
tested in vitro. The further more comprehensive 
screening for TSHR mutations in larger cohorts 
of CH patients revealed a very low rate of 
patients, who were mainly affected by thyroid 
hypoplasia or had a normal gland. An overview 
of all published inactivating TSHR mutations can 
be found at http://www.ssfa-gphr.de [63, 64]. The 
most recent mutation screening by next-genera-
tion sequencing in a large cohort of 384 Chinese 
patients with CH and isolated elevated TSH 
detected in 1.6% of CH and 4.2% of elevated 
TSH likely causative TSHR mutations [6], a 
number that is comparable to the mutation fre-
quency in thyroid transcription factor genes in 
CH patients.

However, as already depicted in the Chinese 
study, so far more patients were diagnosed with 
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TSHR mutations that result in an isolated TSH 
elevation (with normal thyroid hormone levels 
and normal morphology) than in CH. Most likely, 
this more frequent “hyperthyrotropinemia” can 
be explained by the observation that in a hetero-
zygous state loss of TSHR function can be com-
pensated by elevated TSH levels with eventually 
normal T4 and T3 levels. More recently a large 
cohort of those individuals with “hyperthyrotro-
pinemia” due to TSHR mutations was reported 
that exhibited over a long follow-up period of 
several years normal and stable T4 and T3 levels 
despite a very high TSH of more than 100 mU/L 
in some patients [65, 66]. Most important in 
terms of clinical relevance, in those individuals 
with a stable elevated TSH and normal T4 and 
T3, the authors argued against a treatment with 
levothyroxine but rather voted for a tight follow-
up with yearly serum controls.

Most likely, the higher mutation frequency is 
related to the also dominant expression of the 
mutations as the Italian cohort has also presented 
patients with only one affected allele [67]. Here 
the phenotype of the patients is explained by a 
dominant-negative effect of the mutated TSHR 
allele on wild-type TSHR function [67].

To estimate the effect of identified mutations 
that cause CH or hyperthyrotropinemia, a general 
view on TSHR function is necessary (Fig. 4). The 
TSHR belongs to the large superfamily of 
G-protein-coupled receptors and to the subfamily 
of glycoprotein hormone receptors. The overall 
structure of the TSHR resembles a typical class A 
GPCR structure with exception of the large extra-
cellular domain. The extracellular domain is 
important for ligand binding and is subdivided in 
different regions (Fig.  4). Thyrotropin binds to 
the extracellular N-terminal “leucine-rich repeat 
domain” (LRRD) constituted by around 250 
amino acids and shows a typical and common 
structural fold for LRRDs [68], which was evi-
denced by solved TSHR LRRD crystal structures 
[69, 70]. In the concave site of the scythe blade-
like-shaped LRRD [71], a complementary pat-
tern of amino acid side-chain properties for 
hormone recognition and binding is provided 
(Fig. 4) [72]. The second extracellular N-terminal 
part is additionally important for hormone bind-

ing and signal transformation to the transmem-
brane serpentine domain (SD) [73]. 
Approximately 130 amino acids, this extracellu-
lar part connects the LRRD and the SD. This so 
far called hinge region can be subdivided into 
subregions according to the occurrence of two 
cysteine-rich fragments which are connected to 
each other by cysteine bridges [74]. These cyste-
ine boxes are localized N- and C-terminally, and 
they are of high structural and functional impor-
tance at all glycoprotein hormone receptors 
(details reviewed in [75]).

The TSHR can activate different G-protein 
subtypes [76–79] and signaling pathways [80–
82], whereby Gαs-induced signaling was long 
time thought to be the major signaling pathway 
[83]. However, recent few hints from pathogenic 
mutations and G-protein deletion studies in mice 
demonstrated that activation of the Gq/11 phos-
pholipase C pathway is also important for thyroid 
growth and thyroid hormone synthesis [65, 
84–86].

To date, more than 30 naturally occurring 
inactivating mutations are known. Despite sev-
eral diverse mechanisms of inactivation, these 
mutations are often characterized by impaired 
basal constitutive signaling which is a key feature 
of the wild-type TSHR [87, 88]. Several struc-
tural regions and amino acids have been reported 
that might influence the level of endogenous 
basal signaling activity in glycoprotein hormone 
receptors. These were mainly identified by design 
and functional characterization of chimeric 
receptors or by testing pathogenic and site-
directed side chain substitutions [74]. Within the 
intracellular loop 2 of the TSHR, mutations have 
been identified at several amino acids that signifi-
cantly decrease the level of basal Gαs-related sig-
naling, such as Phe525, Met527, Leu529, 
Asp530, and Arg531 [89, 90]. These mutations 
probably directly interrupt specific intracellular 
loop 2 interactions with the G-protein molecule. 
This finding of TSHR intracellular loop 2 is of 
special importance, because such a high sensitiv-
ity for regulation of basal activity was not found 
in systematic mutagenesis studies at the intracel-
lular loop 1 or intracellular loop 3 [89, 91]. The 
specific contribution of the intracellular loop 2 
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for coupling of Gαs has been strongly supported 
by the β2-adrenergic receptor structure determi-
nation (ADRB2) in complex with Gαs [92].

Furthermore, a naturally occurring mutation at 
TMH6, Pro639Leu, was recently identified [93]. 
This was the first described inactivating mutation 
at TSHR TMH6. Transmembrane helix 6 of 
TSHR is a hot spot for naturally occurring muta-
tions, but only for such mutations leading to 
TSHR activation (see http://www.ssfa-gphr.de 
[64, 94]). It is well confirmed that the basal state 
of the TSHR is constrained by polar contacts 
between TMHs 2, 3, 6, and 7. Amino acids 
Asp460, Asn674, and Asp633 at these helices 
interacting by hydrophilic contacts to each other 
and several CAMs have been identified by muta-
genesis studies or by naturally occurring muta-
tions at these positions [95, 96].

 Conclusion

In summary, the available data on the genetics of 
CH due to thyroid dysgenesis argue for a role of 
thyroid transcription factor mutations as well as 
of the TSHR gene that could in principle result in 
a wide spectrum of morphological alterations of 
the gland including the complete absence in, e.g., 
FOXE1-deficient patients. However, the fre-
quency of all mutations together does not exceed 
5% ([6] and own data), which leads again to the 
initially mentioned hypothesis that TD is rather 
an epigenetic than a genetic disease given the 
striking discordance of TD in monocygotic twins.

Nevertheless, irrespective of the underlying 
genetic or epigenetic cause, CH is nowadays a 

very efficient treatable disease, and in all 
patients – at least those who are not affected by 
the very rare syndromic variants  – a normal 
development and life can be offered given that 
they are treated already within the first days of 
life and with an appropriate high dose of levo-
thyroxine [46]. In light of the disastrous outcome 
of untreated CH patients  – as documented in 
Osler’s review in 1887 – this favorable outcome 
of CH patients makes clinical research for CH a 
big success story, although so far the molecular 
cause of the majority of patients remains 
elusive.
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Hypothyroidism

Cristiane J.  Gomes-Lima and Kenneth D. Burman

Hypothyroidism is a state of decreased circulat-
ing thyroid hormones. As thyroid function is con-
trolled by the hypothalamic-pituitary-thyroidal 
system, hypothyroidism may occur due to mal-
function at any of these levels [1, 2]. When the 
production and secretion of hormones by the thy-
roid gland is impaired, the condition is primary 
hypothyroidism. When the defect is located on 
hypothalamic neurons or in the pituitary, it is cen-
tral hypothyroidism.

Depending on its severity, hypothyroidism 
can be either subclinical or overt, ranging from 
mild to severe cases. In subclinical hypothyroid-
ism, the serum TSH (thyroid-stimulating hor-
mone) is above the normal reference range, but 
FT4 (free thyroxin) and T3 (triiodothyronine) 
are normal. Overt hypothyroidism is defined as a 
serum FT4/TT4 that is low in conjunction with 
an elevated TSH. The aim of this chapter is the 
discussion of overt hypothyroidism; subclinical 
hypothyroidism is discussed in a separate 
chapter.

 Epidemiology

Hypothyroidism is a common clinical situation in 
endocrine practice. Its prevalence varies among 
different surveys. The most extensive study that 
aimed to evaluate the spectrum of thyroid disease 
in a community was the Whickham Survey, a 
20-year follow-up cohort of 2779 adults of Great 
Britain. In this cohort, the mean incidence of 
spontaneous hypothyroidism in women was 
3.5/1000 survivors/year (2.8–4.5) and in men was 
0.6/1000 survivors/year (0.3–1.2). Risk factors 
for the development of hypothyroidism were 
serum TSH at baseline (TSH >2.0 mIU/L), espe-
cially in the presence of antithyroid antibodies [3, 
4]. A 13-year period cohort in Australia corrobo-
rates these data [5]. In this study individuals with 
serum TSH between 2.5 and 4  mIU/L had an 
increased risk of hypothyroidism. In the presence 
of thyroid peroxidase antibodies (TPOAb), the 
risk was higher in subjects with the highest 
TPOAb titers. In the United States, according to 
the National Health and Nutrition Examination 
Survey (NHANES III), the prevalence of hypo-
thyroidism was 4.6% (0.3% overt and 4.3% sub-
clinical) [6]. This national survey also 
demonstrated that hypothyroidism is more preva-
lent among women, increases with age, and is 
higher in whites and Mexican Americans than in 
blacks [6].
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 Pathophysiology

The thyroid gland is connected to the central ner-
vous system through a feedback control loop [2]. 
Within the hypothalamus and the pituitary, T4 is 
converted to T3, which acts on thyroid hormone 
receptors (TRs), located in the nucleus of the 
cells. In the paraventricular nucleus of the hypo-
thalamus, T3 induces TRH (thyrotropin-releasing 
hormone) gene expression and synthesis of TRH, 
which binds to specific cell membrane receptors 
on the surface of thyrotrophs to stimulate the pro-
duction and secretion of TSH (thyroid- stimulating 
hormone). T3 also induces directly TSH gene 
expression in the pituitary. TSH, in turn, acts via 
TSH receptors (TSHR) on the surface of thyroid 
cells to stimulate thyroid hormone synthesis and 
release.

The hypothalamic-pituitary-thyroidal system 
is complex and under the influence of many neu-
rotransmitters and other hormones. Its main 
objective is to keep thyroid hormones in an opti-
mal range. T4 is also converted to T3 peripherally 
in multiple tissues, including the liver, brain, and 
muscle.

When serum T4/T3 concentration is reduced 
due to a primary thyroid disease, TSH production 
is increased to reestablish the equilibrium; this is 
the basis for the diagnosis of primary hypothy-
roidism. If the hypothalamus or the pituitary is 
not able to respond, thyroid hormones will con-
tinue to be low, along with low or inappropriately 
normal levels of TSH; this condition is known as 
central hypothyroidism. It may occur as a conse-
quence of anatomic or functional disorder of the 
pituitary gland (secondary hypothyroidism) or 
the hypothalamus (tertiary hypothyroidism) [7].

 Etiology

Primary hypothyroidism is responsible for most 
of the cases of hypothyroidism in clinical prac-
tice. In iodine-sufficient geographical areas, the 
main cause of primary hypothyroidism in adults 
is chronic autoimmune thyroiditis (Hashimoto’s 
thyroiditis), which causes progressive autoim-
mune infiltration of the thyroid gland and destruc-

tion of the thyrocytes. Clinically, it correlates 
with the presence of high titers of antiperoxidase 
antibodies (TPOAb) [8].

Post-thyroidectomy and post-ablation therapy 
with radioiodine for the treatment of Graves’ dis-
ease are both common causes of hypothyroidism. 
External irradiation of the head and neck may 
lead to hypothyroidism typically after several 
years.

Iodine deficiency is a global public health 
problem that is being successfully overcome 
with World Health Organization strategies to 
improve iodine intake around the world. The 
recommended minimum dietary intake of 
iodine for adults is 150 μg/d [9]. The most uni-
versally used measure to control iodine defi-
ciency is salt iodization. The overall global 
status of iodine deficiency has improved in the 
last decades, but iodine deficiency is still the 
most common cause of hypothyroidism on a 
global basis [10].

Many medications used for nonthyroidal dis-
eases are known to cause hypothyroidism [11].

Amiodarone, a class III antiarrhythmic drug, 
is a classical example of a drug that impairs thy-
roid function [11, 12]. Its chemical structure is 
similar to thyroid hormones structure, containing 
37% of iodine by weight. Hence, an average daily 
dose of 200 mg provides 74 mg of iodine, mark-
edly higher than the required daily allowances of 
inorganic iodine. Amiodarone is an amphophilic 
drug with a large distribution volume and a half- 
life of at least 40–60 days. Additionally, it inhib-
its type I deiodinase significantly. It can induce 
either hypo- or hyperfunction of the thyroid. In 
iodine-repleted countries, it more commonly 
causes hypothyroidism. Amiodarone-induced 
hypothyroidism is observed in 5–15% of patients 
on the medication.

Lithium, used in the long-term management 
of bipolar disorder, has many effects on thyroid 
physiology, but the underlying molecular mecha-
nisms are not completely understood [13]. 
Lithium is concentrated by the thyroid 3–4 times 
more than in the plasma and may cause hypothy-
roidism due to inhibition of thyroid hormone 
synthesis and secretion. The prevalence of 
lithium- induced hypothyroidism ranges from 3 to 
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52%, depending on the population studied, 
 duration of lithium therapy, and the laboratory 
evaluation [13].

The increasing use of tyrosine kinase inhibi-
tors (TKI) for the treatment of malignant dis-
eases has drawn attention to their effect on 
thyroid function [11, 14]. Since the first reports 
of hypothyroidism during sunitinib treatment, in 
2006 [15], many cohort studies with different 
TKIs have been conducted. Sunitinib appears to 
induce hypothyroidism more frequently than 
other TKIs, probably because it targets a broad 
spectrum of tyrosine kinases; this action theo-
retically may induce thyroid ischemia via capil-
lary regression and constriction. In addition, 
sunitinib and other TKIs may increase the 
metabolism of levothyroxine via an increased 
activity of type 3 deiodinase in peripheral tis-
sue; additional mechanisms are also proposed. 
Consequently, patients receiving exogenous 
thyroid hormone replacement may need adjust-
ments of levothyroxine dosages when using 
TKIs [14]. ANOTHER PARAGRAPH: Immune 
checkpoint-blocking antibodies are a promising 
class of drugs for cancer treatments. These 
drugs increase antitumor immunity by blocking 
intrinsic down-regulators of immunity, such as 
cytotoxic T-lymphocyte antigen 4 (CTLA-4), 
programmed cell death 1 (PD-1) and pro-
grammed cell death ligand 1 (PD- L1). However, 
they have been associated with several immune-
related adverse events. In the endocrine system 
both hypothyroidism and hyperthyroidism have 
been reported, as well as other endocrinopa-
thies, and these abnormalities may be perma-
nent, or last at least as long as the patient is 
taking the medication. The underlying mecha-
nisms are still unknown, but may include 
increased T-cell activity against antigens pres-
ent in tumors and healthy tissues, increased lev-
els of preexisting antibodies, increased levels of 
inflammatory cytokines, and enhanced 
complement- mediated inflammation. Examples 
of these agents include ipilimumab, nivolumab, 
pembrolizumab, atezolizumab, avelumab, dur-
valumab  (PLEASE ADD  A NEW CITATION 
HERE: Postow MA, Sidlow R, Hellmann 
MD.  Immune-Related Adverse Events 

Associated with Immune Checkpoint Blockade. 
New England Journal of Medicine. 2018 Jan 
11;378(2):158-68). 

Interferon α (IFNα) and other cytokines may 
cause thyroid dysfunction through their effect on 
the immune system, such as the development of 
Hashimoto’s thyroiditis, or the production of thy-
roid autoantibodies [16]. However, there are also 
non-autoimmune mechanisms that can lead to 
destructive thyroiditis and hypothyroidism.

Other causes are listed on Table 1.
Central hypothyroidism is characterized by a 

defect of thyroid hormone production due to insuf-
ficient stimulation of an otherwise normal thyroid 
gland [7]. Classically, this condition can be subdi-
vided into secondary, due to pituitary diseases that 
affect the production or secretion of thyroid-stim-
ulating hormone (TSH), or tertiary, due to pre-
sumed reduced release of thyrotropin- releasing 
hormone (TRH) from the hypothalamus. In prac-

Table 1 Causes of hypothyroidism

Primary
Chronic autoimmune thyroiditis (Hashimoto’s 
thyroiditis)
Surgical excision of the thyroid gland
Radioiodine ablation
External irradiation of head and neck
Iodine deficiency (endemic goiter)
Drugs (amiodarone, lithium, tyrosine kinase inhibitors, 
immune checkpoint-blocking antibodies)
Interferons and cytokines
Thyroid infiltration (amyloidosis, hemochromatosis, 
sarcoidosis, Riedel struma)
Congenital causes
Central
Invasive or compressive lesions (pituitary 
macroadenomas, craniopharyngiomas)
Iatrogenic factors (cranial surgery or irradiation)
Injuries (head trauma, traumatic delivery)
Vascular accidents (pituitary apoplexy, postpartum 
pituitary necrosis)
Autoimmune diseases (lymphocytic hypophysitis, 
poliglandular autoimmune diseases)
Infiltrative lesions (hemochromatosis, sarcoidosis, 
histiocytosis X)
Inherited diseases (pituitary transcription factors 
defects, TSHβ or TRHR mutations)
Infected diseases (tuberculosis, mycosis, syphilis)
Resistance to thyroid hormone
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tice, however, the result is a reduction in the release 
of biological active TSH. Central hypothyroidism 
is a rare clinical condition, accounting for only 
0.1% of the cases of hypothyroid patients. 
Although isolated deficiency of TSH can occur, 
more often the patient will present other pituitary 
hormone deficiencies. The main causes are listed 
in Table 1, in order of frequency [7].

Resistance to thyroid hormone was first 
described in 1967 [17] and is characterized by 
reduced responsiveness of target tissues to thy-
roid hormone. In fact, it is not a state of decreased 
circulating thyroid hormones; serum T4 andT3 
are usually normal or elevated, but the T3 recep-
tor does not function normally [18]. A variety of 
molecular mechanisms are involved to explain 
the phenotypes already identified [19–21]. A 
new classification and nomenclature was pro-
posed for inherited defects of thyroid hormone 
action, cell transport, and metabolism [22]. 
Resistance to thyroid hormone is in the differen-
tial diagnosis of inconsistent clinical and labora-
torial findings.

 Clinical Presentation

The clinical presentation of hypothyroidism is 
broad and reflects the lack of thyroid hormones at 
the tissue level. The natural history of the pro-
gression from euthyroidism to overt autoimmune 
hypothyroidism is a process that may take several 
years.

The magnitude of the symptoms depends on 
the pace that the hypothyroidism was established 
and the degree of biochemical hypothyroidism. 
After total thyroidectomy, a patient is generally 
more symptomatic than a patient that had been 
evolving with a chronic thyroiditis over years. 
Moreover, there is significant individual varia-
tion, so that some patients present few symptoms 
in spite of low levels of thyroid hormones, while 
others are highly symptomatic with less pro-
nounced laboratory findings.

Hypothyroidism affects different organs in a 
variable manner. The clinical manifestation at 
each body system depends upon the level of thy-
roid hormone deficiency [23].

 General and Psychological Symptoms

Fatigue, general weakness, and somnolence are 
nonspecific symptoms not readily recognizable 
as hypothyroidism [23]. Impairment of memory 
and attention worsens as thyroid hormone levels 
decrease. In moderate to severe deficiency, cog-
nitive tests reveal recent memory loss and diffi-
culties in performing calculations as well as 
reduced attention and slow reaction time [24]. 
Depression is frequently associated to hypothy-
roidism [25], but acute mania episodes have also 
been described [26].

 Nervous System

Headache and paresthesias are common symp-
toms, especially in hypothyroidism after surgery 
[27]. In this case it is important to distinguish 
paresthesia due to hypocalcemia. Deafness is a 
very characteristic symptom, as well as vertigo.

An interesting sign of hypothyroidism is the 
delay in the relaxation phase of deep tendon 
reflexes, such as the ankle reflex [28]. It is eas-
ily performed during physical examination and 
correlates well with the degree of 
hypothyroidism.

 Nutrition and Metabolism

In hypothyroidism, there is a slowing down of 
body metabolism, which can explain many symp-
toms and signs of this disease. Reduced thermo-
genesis and low metabolic rate correlates with 
cold intolerance. Appetite is decreased, but 
patients may observe a modest weight gain due to 
water and salt retention; obesity, however, is not 
caused by hypothyroidism. The turnover of pro-
tein, biosynthesis of fatty acids, and lipolysis is 
reduced [23]. Since thyroid hormone regulates 
cholesterol synthesis and degradation, total and 
LDL-cholesterol levels are increased, while HDL 
and triglycerides are normal or slightly increased 
[29]. There are usually no clinically relevant 
changes on fasting plasma glucose and fasting 
insulin levels.
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 Skin and Appendages

There is accumulation of glycosaminoglycans and 
proteins in the subcutaneous tissue that leads to 
non-pitting edema, so-called myxedema [27]. 
Eyelids are often edematous, and the eyebrows are 
sparse, especially in the lateral margin. The tongue 
is large and the lips are thick. Taken together, these 
signs, which are observed in severe hypothyroid-
ism, were described as myxedematous facies.

The skin is thick, dry, and pale. The hair is dry 
and sparse, lacks shine, and grows slowly. The 
nails are thickened and brittle. Sweating is 
reduced [27].

 Cardiovascular System

There is a vast list of cardiovascular manifesta-
tions of the hypothyroidism [23]. Pulse rate and 
cardiac output are decreased. Peripheral resistance 
is increased, leading to diastolic hypertension. In 
severe cases, congestive heart failure and cardiac 
hypertrophy may occur, as well as pleural and 
pericardial infusions. These abnormalities result in 
increased heart shadow and electrocardiographic 
changes, such as low voltage with conduction dis-
turbances. Overall, there is decreased exercise tol-
erance. Angina may occur before or after thyroid 
hormone  replacement therapy, and is related to 
structural lesion in the coronary arteries [30].

 Respiratory System

Dyspnea is a frequent but nonspecific complaint 
in hypothyroid patients. Hypoventilation and 
hypercapnia are observed only in severe cases of 
hypothyroidism. Obstructive sleep apnea may 
coexist and be worsened by hypothyroidism due 
to soft tissue infiltration of the pharynx and altered 
regulatory control of pharyngeal muscles [31].

 Gastrointestinal System

Constipation is the most common gastrointestinal 
symptom. Patients often complain of dyspepsia, 

gaseous distention, and nonspecific abdominal 
pain as a result of reduced gastrointestinal 
motility.

Hepatic metabolism is decreased and liver 
function tests are mildly deranged. Gallbladder 
motility is reduced, as well as bilirubin excretion, 
accounting for an increased risk of gallstones [32].

 Renal Function

Serum creatinine levels are increased in about 
half of patients with hypothyroidism as a conse-
quence of decreased renal plasma flow and 
decreased glomerular filtration rate. There is 
impaired renal excretion of water, increased total 
body water, and, occasionally, hyponatremia 
[33]. Renal manifestations, when observed, may 
be reversible with the treatment of 
hypothyroidism.

 Musculoskeletal System

Muscle weakness, myalgia, and cramps are com-
mon features of hypothyroidism [27]. In adults, 
frequently there is no impact on bone health. In 
children, however, hypothyroidism leads to a 
characteristic epiphyseal dysgenesis, delayed lin-
ear bone growth, and short stature [23].

Arthralgias and joint stiffness may be present. 
Hypothyroidism must be ruled out in patients 
with carpal tunnel syndrome.

 Hematopoietic System

Normocytic normochromic anemia often occurs 
in the setting of hypothyroidism [27]. Conversely, 
anemia is an important differential diagnosis of 
hypothyroidism because of fatigue and general 
weakness complaints.

 Reproductive System

Hypothyroidism affects significantly the sper-
matogenesis, mainly the morphological parame-
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ters [34]. Some men present with erectile 
dysfunction that is restored with the treatment of 
hypothyroidism [35].

In women, hypothyroidism is associated with 
different patterns of menstrual disorders that vary 
from oligo-amenorrhea to hypermenorrhea- 
menorrhagia, with reduced fertility [36]. When 
spontaneous pregnancy occurs, there is high risk 
of abortion and gestational complications.

In severe hypothyroidism, hyperprolactinemia 
may occur due to chronic TRH stimulation [23]. 
The resultant galactorrhea-amenorrhea syndrome 
contributes to further menstrual and fertile 
disorders.

In both genders, libido is reduced during 
hypothyroidism.

 Endocrine System

In severe hypothyroidism, the adrenal cortex 
function is substantially compromised. The 
hypothalamic-pituitary-adrenal axis is impaired. 
Adrenal glands are often atrophic [37].

Primary autoimmune adrenal insufficiency 
may be found in association with primary auto-
immune hypothyroidism, as part of polyglandu-
lar autoimmune syndromes.

 Diagnosis

The diagnosis of hypothyroidism relies strongly 
on thyroid function tests that corroborate the 
symptoms and signs observed. On physical 
examination the thyroid may be normal, atrophic, 
or enlarged.

The single best test for the diagnosis of hypo-
thyroidism is the TSH assay [38]. Combined with 
the clinical picture, this test defines the diagnosis 
and guides other complementary tests.

In primary hypothyroidism, the response of 
the hypothalamic-pituitary-thyroid axis is an 
increase in TSH secretion in order to stimulate 
thyroid function. In overt hypothyroidism TSH 
levels are elevated, usually over 10 mIU/L [39]. 
A simultaneous free T4 (FT4) test is decreased 
and further supports the diagnosis.

Healthcare providers must be aware of some 
pitfalls in the interpretation of TSH assays. There 
is a diurnal variation of up to 40% on specimens 
performed during the same time of the day [40]. 
This is not usually an issue as the TSH rise occurs 
mainly during the evening or night time hours. 
During the recovery phase from nonthyroidal ill-
ness, TSH levels may increase up to 20 mIU/L 
[41]. Heterophilic or interfering antibodies can 
falsely elevate serum TSH values [42].

In hypothyroidism, thyroid hormones are 
below the normal reference range or in its lower 
portion. Both T4 and T3 circulate bound to spe-
cific proteins in serum, mainly thyroxin-binding 
globulin (TBG). Many physiological, pathologi-
cal, and pharmacological conditions alter T4 and 
T3 binding in serum. To avoid the interference of 
these factors, the assessment of FT4 has largely 
replaced the use of total hormones. The mea-
surement of T3, either total or free, is less accu-
rate for the diagnosis of hypothyroidism because 
of compensating mechanisms in peripheral tis-
sues [43].

Anti-thyroglobulin antibodies (TgAb) and 
antiperoxidase antibodies (TPOAb) help to define 
the etiology. Higher TPOAb concentrations show 
higher risk of progression to overt hypothyroid-
ism [5].

 Special Situations

 Pregnancy

During pregnancy, the signs and symptoms of 
hypothyroidism may be confusing. Some patients 
are asymptomatic or attribute their symptoms to 
normal pregnancy. According to a retrospective 
US cohort, hypothyroidism, especially following 
postsurgical excision or post-radioiodine abla-
tion, is associated with obstetrical, labor, and 
delivery complications [44].

In the first half of gestation, overt hypothy-
roidism is associated with increased fetal loss, 
low birth weight, and congenital circulatory 
 system and musculoskeletal malformations 
[45]. Severe maternal hypothyroidism, espe-
cially in the third trimester of pregnancy, may 

C. J. Gomes-Lima and K. D. Burman



241

be associated with intellectual impairment in 
the offspring [46]. Further studies are 
warranted.

 Depression

Hypothyroidism must be ruled out in patients 
with depression. With the widespread use of TSH 
measurements, patients are treated while in the 
subclinical stage, but eventually overt hypothy-
roidism may develop. If unrecognized, hypothy-
roidism will complicate the course of depression 
and the efficacy of the specific treatment.

The treatment of hypothyroidism in depressed 
patients is essentially the same, with levothyrox-
ine (LT4) replacement. However, recent studies 
have suggested that some patients may utilize 
combined T4/T3 therapy in order to restore mood 
and to achieve psychological well-being [47, 48]. 
This area is controversial and further studies are 
needed to clarify this subject.

 Elderly

The prevalence of hypothyroidism increases with 
age [6]. In the elderly age group, the symptoms 
of hypothyroidism may be more subtle and con-
founded by the presence of comorbidities. 
Elderly individuals are more prone to myxede-
matous coma, a major complication of severe 
hypothyroidism [49].

The diagnosis of primary hypothyroidism 
relies on elevated TSH levels, but one must con-
sider normal age related changes in hypothalamic- 
pituitary function, mainly for individuals over 
80 years old. For every 10-year age increase after 
30–39 years, the 97.5th centile of TSH increases 
by 0.3 mIU/L [50]. This means that some disease- 
free population may present TSH levels above 
the normal reference range derived from a 
younger population. It is important to recognize 
and to avoid mistreating this subpopulation.

Treatment, when appropriate, should begin 
with small doses of levothyroxine, adjusted grad-
ually. Elderly are more susceptible to the adverse 
effects of thyroid hormone excess, such as atrial 

fibrillation and osteoporotic fractures. Although 
controversial at present, the target serum TSH 
should be between 4-6 mIU/L in persons greater 
than age 70-80 years [51].
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Central Hypothyroidism
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 Introduction

A defect in thyroid hormone secretion due to an 
insufficient stimulation by thyrotropin (TSH) of a 
normal thyroid gland leads to the so-called cen-
tral hypothyroidism (CH). This rare and hetero-
geneous disease is caused by anatomical and/or 
functional abnormalities of either pituitary gland 
(secondary hypothyroidism) or hypothalamus 
(tertiary hypothyroidism), and it may be congeni-
tal or acquired. The hypothyroid state is usually 
mild and diagnosis is made on the basis of the 
coexistence of defective thyroid hormone circu-
lating levels and low/normal TSH levels. 
Similarly to what occurs in patient with primary 
hypothyroidism, CH treatment is based on l-thy-
roxine (l-T4) supplementation. Since TSH secre-
tion is suppressed even during low-dose l-T4 
treatment, circulating free thyroxine (FT4) levels 

should be measured to evaluate the adequacy of 
l-T4 treatment. This chapter will analyze our 
current understanding of the causes of CH as well 
as highlighting pitfalls in treatment and 
diagnosis.

 Epidemiology

CH accounts for no more than 1 of 1000 hypo-
thyroid patients, its prevalence being estimated 
to range from 1:20,000 to 1:80,000 in the gen-
eral population (Prince et al. 2001). It can affect 
patients of all ages with no female prevalence, 
an observation in contrast to what is observed in 
primary hypothyroidism. As far as congenital 
CH is concerned, its prevalence depends on the 
screening strategy. In fact, TSH-based protocol 
used by most neonatal CH screening programs 
is effective in diagnosing only the primary 
hypothyroidism since CH is usually associated 
with inappropriately normal/low TSH in the 
presence of low FT4 circulating levels. When 
neonatal screening program for congenital 
hypothyroidism is based on the contemporary 
measurement of TSH and FT4, the prevalence is 
1:160,000 [1, 2].

Finally, a study from the Netherlands demon-
strated that a screening algorithm based on com-
bined measurement of TSH, T4, and 
thyroxine-binding globulin results in a diagnosis 
of congenital CH in 1 in 16,000 newborns [3].
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 Pathogenesis

CH is caused by anatomical and/or functional 
abnormalities of either pituitary gland (secondary 
hypothyroidism) or hypothalamus (tertiary hypo-
thyroidism) though, in many instances, both pitu-
itary and hypothalamus may be concomitantly 
affected. Moreover, CH may be congenital or 
acquired (Table 1). Defects in TSH secretion may 
be quantitative and/or qualitative according to the 
cause of the disease. For example, in patients 
with mutations of TSH beta gene, CH is caused 
by “abnormal” TSH molecules that lack part of 
the C-terminal amino acid sequence. Some of 
these TSH beta mutants are unable to heterodi-
merize with the alpha subunit and are therefore 
inactive [4]. Other mutations may form an incom-
plete heterodimer with preserved immunoreac-
tivity in some TSH measurement methods but are 
completely devoid of normal bioactivity [5]. 
Conversely, in the majority of the acquired CH 
forms, TSH deficiency is related to a combined 
reduction in TSH-secreting cell number and an 
impaired secretion of bioactive TSH [6]. In this 
setting, immunoreactive TSH circulating levels 
may be normal or even slightly increased [7]. It is 
worth noting that the secretion of bioinactive 
TSH is often related to CH associate to an impair-
ment of hypothalamic function (i.e., tertiary 
hypothyroidism). Indeed, previous studies from 
our laboratory showed that changes in TSH car-
bohydrate structures support the view that glyco-
sylation modulates the expression of TSH 
biological activity [8, 9].

 Congenital CH

Congenital CH may be classified as isolated or 
combined. The isolated CH is characterized by 
mutations affecting genes coding for TSH beta, 
TRH receptor, or immunoglobulin superfamily 
member 1 (IGSF1) [10].

In the majority of patients, congenital CH is 
associated to different pituitary hormone defi-
ciencies, and some additional syndromic features 
may be present according to the genes coding for 
pituitary transcription factors, such as HESX1, 

LHX3, LHX4, SOX3, OTX2, PROP1, and 
POU1F1 [11] (Tables 1 and 2).

 Acquired

Neoplasia affecting the hypothalamus-pituitary 
region as well as therapeutic interventions on sel-
lar and extrasellar tumor masses (i.e., surgery and 
radiotherapy) represents the most frequent cause 
of acquired CH. In particular, pituitary macroad-
enomas may induce hypopituitarism by affecting 
either pituitary cells or pituitary stalk. In this 
respect, nonfunctioning pituitary adenomas, 
PRL-secreting pituitary adenomas, and 
GH-secreting pituitary adenomas are the tumors 
more frequently involved. It has been demon-
strated that at presentation, isolated or multiple 
pituitary deficits are diagnosed in 62% of patients 
with pituitary nonfunctioning macroadenomas, 
CH being found in 27% of them [12, 13]. 
Craniopharyngiomas are in general slowly grow-
ing extrasellar tumors, and the most common 
presenting clinical symptoms are visual field 
deficits and hypopituitarism. At presentation, GH 
deficiency is the most common pituitary deficit 

Table 1 Causes of central hypothyroidism

Acquired
Invasive Pituitary macroadenomas, 

craniopharyngiomas, meningiomas, 
gliomas, metastases, carotid 
aneurysms

Iatrogenic Cranial surgery or irradiation, drugs 
(e.g., bexarotene)

Injury Head traumas, traumatic delivery
Immunologic 
lesions

Lymphocytic hypophysitis

Infarction Postpartum necrosis (Sheehan), 
pituitary apoplexy

Infiltrative 
lesions

Sarcoidosis, hemochromatosis, 
histiocytosis X

Infective 
lesions

Tuberculosis, syphilis, mycoses

Congenital
Isolated TSHB, TRHR, IGSF1
Combined HESX1, LHX3, LHX4, SOX3, 

OTX2, PROP1, POU1F1

TSHB thyroid stimulating hormone β-subunit, TRHR thy-
rotropin-releasing hormone receptor, IGSF1 immuno-
globulin superfamily member 1 gene
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diagnosed (up to 100% of patients), followed by 
TSH (up to 25% of patients) deficiency in chil-
dren. In adults, growth hormone deficiency is 
reported in 80–90% of cases, and gonadotropin 
deficiency is present in 70% of patients, followed 
by TSH and ACTH deficiency (40% of patients 
each) [14–16]. According to published series, 
postsurgical hypopituitarism is diagnosed in the 
majority of patients with craniopharyngiomas, 
CH being reported in 40–95% of cases [15, 16].

Hypopituitarism can also result from direct 
and indirect irradiation of the hypothalamic-
pituitary axis, the risk of the development of CH 
being related to both the biological effective 
dose given to the area and the total radiation 
dose delivered [17, 18]. Radiation-induced CH 
occurs in patients who undergo radiotherapy for 
pituitary tumors and craniopharyngiomas, but 
also in 10–50% of patients irradiated for naso-
pharyngeal or paranasal sinus tumors [19, 20] 
and in 12–65% of patients irradiated for brain 
tumors [21, 22]. Data on the long-term effect on 
pituitary function of newer methods of delivery 
of radiation (e.g., proton beam therapy, Leksell 
gamma knife, and stereotactic linear accelerator) 
are still scarce. However, recent findings suggest 
that hypopituitarism (including CH) occurs even 
after these new irradiation methods, the preva-
lence of this complication being possibly 
reduced [23].

Traumatic brain injuries represent another 
cause of hypopituitarism, the prevalence of 
anterior pituitary dysfunction ranging from 15 
to 68% [24]. Interestingly, in this setting CH is 
diagnosed in up to 29% of patients [24]. 
Hypopituitarism may be also a rare conse-
quence of cerebrovascular accidents (i.e., sub-
arachnoid hemorrhage or infarcts) that have 
been found to be associated to CH in less than 
2% of cases [25].

Granulomatous diseases (i.e., sarcoidosis, 
tuberculosis, and histiocytosis X) can induce CH 
by directly acting on the pituitary stalk. 
Hypopituitarism and CH are described also in all 
iron overload states (i.e., hemochromatosis, 
patients with β-thalassemia who need several 
blood transfusions) [26, 27].

Hypophysitis is a condition that is character-
ized by lymphocytic infiltration of the pituitary 
gland. On the basis of the histopathological pic-
ture, it can be classified as lymphocytic or granu-
lomatous hypophysitis, xanthomatous, 
IgG4-related, and necrotizing hypophysitis being 
considered as rare variants [28]. Hypopituitarism 
is the most prevalent symptom of lymphocytic 
hypophysitis, CH being the pituitary hormone 
deficiency most frequently diagnosed after cen-
tral hypoadrenalism [28]. The increasing use of 
anti-CTLA-4 antibody treatment (i.e., ipilim-
umab and tremelimumab) has resulted in a sig-

Table 2 Clinical presentation of congenital forms of CH

Gene 
mutated Pituitary hormone deficiencies Other clinical features Pituitary at MRI
TSHB TSH None Enlarged/normal
TRHR TSH, PRL None Normal
IGSF1 TSH, GH Macroorchidism, increased body 

weight, hypoprolactinemia, and 
transient growth hormone deficiency

Normal

POUF1 GH, TSH, PRL None Variable hypoplasia
PROP1 GH, TSH, LH, FSH; ACTH 

(late)
None Enlarged/normal/hypoplasia

HESX1 GH; TSH, LH/FSH, ACTH 
(late)

Septo-optic dysplasia Hypoplasia

LHX3 GH, TSH, LH, FSH, PRL Limited neck rotation, short cervical 
spine, sensorineural deafness

Enlarged/normal/hypoplasia

LHX4 GH, TSH, ACTH; LH/FSH 
(variable)

Cerebellar abnormalities Hypoplasia

SOX3 GH, TSH, ACTH, LH, FSH Mental retardation Hypoplasia
OTX2 GH, TSH, ACTH, LH, FSH Anophthalmy, retinal abnormalities Normal/hypoplasia
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nificant increase in hypophysitis, reaching 10% 
of patients with cancer [29].

Finally, CH has been found in adult patients 
characterized by the development of GH, PRL, 
and TSH deficiencies and the presence of detect-
able circulating anti-PIT-1 antibodies, the so-
called anti-PIT-1 antibody syndrome [30].

 Clinical and Biochemical 
Presentation

The clinical features of acquired CH are usually 
milder than that observed in primary hypothy-
roidism, this discrepancy being mainly due to 
both the presence of a residual TSH pituitary 
reserve and the physiological constitutive activity 
of TSH receptor [31, 32]. Moreover, clinical 
manifestations of acquired CH are often masked 
by other coexistent pituitary deficiencies.

In congenital CH, various syndromic clinical 
features may be present depending on the gene 
involved (Table  2) [11]. Patients with loss-of-
function TSH beta mutations are characterized 
by a severe central hypothyroidism, clinically 
undetectable at birth, biochemically associated 
with elevated glycoprotein hormone alpha sub-
unit and an impaired TSH response to TRH 
administration. The prolactin secretion is normal 
and is fully responsive to TRH test [5]. 
Inactivating TRH receptor mutations lead to a 
CH characterized by the complete absence of 
TSH and PRL responses to TRH [33–35]. In first 
reported cases with biallelic TRHR mutations, 
associated clinical manifestations were mild 
(growth retardation, delayed bone age) despite 
biochemical evidence of CCH, with T4 levels 
ranging from 40 to 88% of the lower limit of nor-
mal. Some bioactive TSH was produced, and 
there was apparently no attributable neurological 
deficit despite the late treatment initiation, sug-
gesting sufficient childhood thyroid hormone 
production to prevent severe developmental 
delay. However, T4 replacement did improve 
growth and quality of life in these individuals 
[33, 34]. Although TRHR is expressed on lacto-
trophs and mediates prolactin secretion in 
response to exogenous TRH, a female homozy-

gote for p.R17* TRHR underwent two pregnan-
cies and lactated normally, suggesting that TRHR 
is not obligatory for these functions in humans 
[33]. IGSF1 was recently identified as an 
X-linked cause of CH deficiency syndrome char-
acterized by central hypothyroidism, increased 
body weight, macroorchidism, and in some cases, 
hypoprolactinemia and/or transient growth hor-
mone (GH) deficiency [10, 36]. A subset of 
female carriers (about 18%) also exhibits CH. A 
delayed adrenarche, as a consequence of PRL 
deficiency, seems to be part of the clinical pheno-
type of patients with IGSF1 deficiency [37]. 
Adult male patients with IGSF1 deficiency 
exhibit mild deficits in attentional control on for-
mal testing [38].

Biochemically, the diagnosis of CH is based 
on the finding of low FT4 in the presence of low/
normal/slightly elevated TSH circulating levels 
[39], provided that factors interfering in the mea-
surement methods have been ruled out (i.e., thy-
roid autoantibodies or abnormal binding 
proteins) [40]. Interestingly, a slight increase in 
immunoreactive TSH may be observed in 
patients with hypothalamic CH, this condition 
possibly misdiagnosing a condition of primary 
subclinical hypothyroidism [40]. The lack of a 
nocturnal TSH rise related to the presence of 
abnormalities in circadian TSH secretion may 
confirm the diagnosis of CH, though this evalua-
tion can be performed in hospitalized patients 
only [41]. TRH testing may be useful to differen-
tiate pituitary from hypothalamic CH, the first 
being characterized by an exaggerated/delayed 
and/or prolonged TSH response that is blunted in 
the latter [39]. However, since in acquired CH 
both pituitary and hypothalamus may be 
involved, the practical utility of TRH test is lim-
ited. However, an absent or impaired FT4 and 
FT3 responses, as measured at 120 and 180 min 
after TRH injection, indirectly indicate the secre-
tion of TSH bioinactive. Since in normal sub-
jects FT4 levels are characterized by a 10% 
variation over time, it has been  suggested that a 
decrease in circulating FT4 larger than 20% is 
suggestive for CH in patients followed for pitu-
itary diseases, even if FT4 concentrations still 
remain into the normal range [42].
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Once that the biochemical diagnosis has been 
confirmed, a family history of CH, a suggestive 
clinical history (e.g., head trauma, subarachnoi-
deal hemorrhage, previous brain irradiation, or 
surgery), or specific symptoms (e.g., headaches 
or visual field defects) should lead to the execu-
tion of a pituitary MRI and to a further evaluation 
of the other hypothalamic-pituitary axes.

Nonthyroidal illness is a relatively common 
finding following any acute or chronic illness 
(e.g., poor nutrition/starvation, sepsis, burns, 
malignancy, myocardial infarction, post-surgery, 
chronic liver, and renal disease) that leads to a 
condition biochemically similar to CH. This con-
dition seems to be related to downregulation of 
TRH neurons in the paraventricular nucleus, to a 
reduction in TSH secretion, and to modifications 
in thyroid hormone metabolism in several target 
tissues [40]. It is important to be aware of this 
transient phenomenon and to correlate biochemi-
cal data to the clinical status of each patient in 
order to avoid inappropriate treatment.

 Treatment and Follow-Up

Similarly to what occurs in patients with primary 
hypothyroidism, CH treatment should lead to the 
restoration and maintenance of euthyroidism. In 
this respect, standard l-thyroxine (l-T4) therapy 
is used in the majority of patients with CH since 
no evidences support the superiority of a com-
bined treatment with l-T4 plus triiodothyronine 
in both adults and children [43–46].

Unlike for primary hypothyroidism, serum 
TSH levels cannot be used in the monitoring l-T4 
therapy. In fact, it has been demonstrated that 
TSH secretion is suppressed even during low-
dose l-T4 treatment, this finding being possibly 
related to the negative feedback of circulating 
hormones on the few residual thyrotropes [47, 
48]. Interestingly, Ferretti et al. demonstrated that 
in 80% of CH patients, TSH is suppressed during 
LT4 treatment even though serum FT4 levels were 
still in the hypothyroid range, thus suggesting that 
the finding of normal serum TSH levels during 
LT4 treatment suggests a possible CH under treat-
ment. Subsequently, it was clearly demonstrated 

that TSH levels above 1.0 mU/L might be consid-
ered as a sign of insufficient replacement in CH 
patients [48]. Nonetheless, several recent papers 
dealing with substitutive l-T4 therapy in patients 
with CH have underlined the pitfalls in achieving 
optimal replacement [49]. Koulouri and collabo-
rators have approached the problem by using their 
Department’s clinical information system to iden-
tify all patients with hypothalamic-pituitary 
lesions and divided them into high risk and low 
risk of CH [50]. They then compared FT4 values 
in these groups of patients with patients with pri-
mary hypothyroidism adequately treated with l-
T4, i.e., those with normal levels of circulating 
TSH during replacement therapy. These authors 
concluded that CH patients are generally under-
treated. Moreover, they suggest that levels of FT4 
around 16  pmol/L (their laboratory reference 
range being 9–25  pmol/L) might represent an 
appropriate target in treated CH patients. 
Interestingly enough, this conclusion is quite sim-
ilar to the one we reached in the past, i.e., to target 
FT4 values at the middle of the laboratory range 
of normal values.

In CH, free thyroid hormones should be mea-
sured to evaluate the adequacy of l-T4 treatment, 
low FT4 values suggesting undertreatment, and 
high FT3 levels possibly indicating a condition of 
overtreatment. Attention should be payed during 
the follow-up that blood for FT4/FT3 measure-
ment is withdrawn before ingestion of daily l-T4 
tablets. Serum FT4 levels laying in the middle-
upper part of the normal range might represent an 
appropriate target in l-T4-treated CH patients 
[45, 47, 50, 51]. In this respect, it has been sug-
gested that in the majority of treated CH patients, 
circulating levels of FT4 within the normal range 
are reached with a mean LT4 daily dose of 
1.5  ±  0.3 and 1.6  ±  0.5 μg/kg bw, these doses 
being similar to those reported for primary hypo-
thyroidism [42, 47]. Finally, the usefulness of 
biochemical indexes of thyroid hormone action at 
the tissue level (e.g., SHBG, cholesterol, Gla pro-
tein, BGP, and carboxyterminal telopeptide of 
type 1 collagen) in monitoring LT4 treatment in 
CH is limited by the fact that these parameters 
may be affected by alterations in adrenal, somato-
trope, gonadal, or adrenal functions [42].
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In adults l-T4 treatment should be started at 
low daily dosage and then gradually increased by 
25  μg every 2–3  weeks in order to reach full 
replacement dose, the majority of patients reach-
ing normal FT4 and FT3 levels with l-T4 daily 
dose ranging from 1.5 to 1.6 μg/kg bw, i.e., doses 
similar to those used in the treatment of primary 
hypothyroidism [39]. As commonly done in the 
presence of primary hypothyroidism, children 
with CH require l-T4 doses that are higher than 
those used in adults, progressively lower doses 
being required according to age (Table 3). It is 
worth noting that treatment should be started as 
early as possible and at full replacement doses in 
order to prevent serious damage of brain system.

In CH patients, concomitant estrogens or GH 
replacement therapies may require a significant 
increase in LT-4 doses to reach normal FT4 circu-
lating levels [39]. The increase in l-T4 require-
ment observed during estrogen therapy [52] is 
possibly related to the transient increase of thy-
roxine-binding globulin levels that induces a 
reduction in FT4 bioavailability [53]. 
Subsequently, it is advisable to evaluate FT4 and 
FT3 circulating levels 6–8 weeks after the initia-
tion of estrogen replacement therapy [52].

It has been demonstrated that GH deficiency 
per se may mask subclinical forms of CH that are 
diagnosable once rhGH has been initiated [54–
58]. GH administration has been shown to 
enhance peripheral deiodination of T4 to T3 [59], 
and this effect on T4 metabolism is biologically 
relevant only in patients with combined pituitary 
hormone deficiencies and a partial impairment of 
thyrotrope function [55, 56, 58].

Finally, it is mandatory to exclude a concomi-
tant condition of central adrenal insufficiency 
prior to l-T4 therapy initiation. In fact, euthy-
roidism restoration might precipitate an adrenal 

crisis in unrecognized central hypoadrenalism by 
increasing cortisol metabolism and glucocorti-
coid requirement. If adrenal function cannot be 
evaluated prior to l-T4 start, a prophylactic treat-
ment with steroids (i.e., hydrocortisone or cor-
tone acetate) should be started.

 Summary

CH is a rare and heterogeneous disease caused by 
anatomical and/or functional abnormalities of 
either pituitary gland or hypothalamus, and it 
may be congenital or acquired. Despite the 
increase in the knowledge of CH causes, several 
CH cases classified as idiopathic remain unex-
plained. This is true for some familial CH forms 
as well as for CH-acquired cases possibly related 
to specific antithyrotrope antibodies.

Clinical presentation is usually mild, and 
diagnosis is made on the basis of the coexis-
tence of low thyroid hormone circulating levels 
and low/normal/slightly elevated TSH levels. 
CH treatment is based on l-T4 supplementa-
tion, free thyroxine levels being measured 
before blood withdrawal in order to evaluate the 
adequacy of the treatment. In this respect, it is 
advisable to reach FT4 levels laying in the mid-
dle-upper part of the normal range. However, 
further studies are needed to better understand 
thyroid hormone metabolism and action at the 
tissue level, whose results will provide more 
specific markers for a more precise tailoring of 
replacement therapy.

In managing CH patients, it should be taken 
into consideration the possible interplay between 
CH treatment and possibly coexistent pituitary 
hormone deficiencies. In particular, it is manda-
tory to exclude a concomitant condition of cen-
tral adrenal insufficiency prior to l-T4 therapy 
initiation.
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Subclinical Hypothyroidism

Bernadette Biondi and Leonidas H. Duntas

 Introduction

The term “subclinical hypothyroidism” (SCH) has 
classically been used to define that condition in 
which increased serum thyroid-stimulating hor-
mone (TSH) levels are accompanied by thyroid 
hormone serum concentrations within the normal 
population-based reference range [1]. However, 
SCH (as is also subclinical hyperthyroidism for 
analogous reasons) is today considered to be a 
misnomer. This is because, inter alia, it does not 
include instances of thyroid hormone deficiency, 
nor does it account for the observed phenomenon 
of slow disease shifting by degrees from minimal 
to mild and eventually to manifested disease that 
peaks with aging and in which there is a clear pre-
dominance of women compared with men [2, 3]. 
Thus, SCH is usually stratified according to the 
serum TSH level into mild, moderate, or severe 
[Table 1]. Such distinctions are critical since 
adults, especially the elderly, suffering from SCH 

are at greater risk of coronary heart disease, heart 
failure, and cardiovascular mortality, while con-
flicting data have been reported as to the possible 
association between SCH and cognitive impair-
ment, depression, and the risk of fractures [4].

This review aims to assess the current evi-
dence on the clinical aspects of the disorder, 
associations with other clinical conditions and 
diseases, as well as more recent developments in 
treatment recommendations in adults with SCH.

 Prevalence, Diagnosis, and Etiology

The population prevalence of SCH is about 10%, 
rising to 18%–22% in the elderly [5, 6]. In the 
classic Whickham study including 2779 persons 
conducted in the United Kingdom in 1977, SCH, 
defined as having a TSH > 6 mU/L, was reported 
in 5.0% of individuals older than 18  years [7]. 
The diagnosis of SCH is mainly based on a TSH 
measurement, a laboratory test that has been con-
siderably refined over the last 25 years, achieving 
ever greater sensitivity and reliability in measur-
ing very low as well as high TSH levels [8].
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Table 1 Stratification of subclinical hypothyroidism 
according to serum TSH

Condition TSH mIU/L
Mild 4–6
Moderate 6–10
Severe Above 10
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Importantly, TSH concentration constitutes 
the most powerful predictor for the outcome of 
spontaneous SCH in patients over 55  years, as 
these subjects, who present with low serum TSH, 
exhibit a low incidence of overt hypothyroidism 
(OH) [9]. The Cardiovascular Health Study 
 performed at the University Clinic of 
Pennsylvania estimated the persistence and pro-
gression of SCH over a four-year period in 459 
individuals aged 65  years and older not taking 
thyroid medication [10]. A TSH of above 
10  mIU/L was independently associated with 
progression to OH, while transitions between 
euthyroidism and SCH were common but not 
affected by age and gender at 2 and 4 years [10]. 
It is hence evident that since a high serum TSH 
may often be spontaneously reversed, a confir-
mation of TSH values 6–8 weeks later, which is 
necessary also to exclude laboratory fluctuations, 
is mandatory prior to treatment decision. Serum 
TSH and free T4 (FT4) exhibit a substantial vari-
ability among healthy persons, although the 
range of variability within an individual healthy 
person is relatively narrow: this is an important 
observation pointing to a unique set point of the 
hypothalamic-pituitary-thyroid axis for each 
individual [11, 12]. Moreover, the latter finding 
explains why a TSH level of 10  mIU/L can be 
accompanied by a normal FT4 level in one per-
son but declined in another.

The most common cause of SCH is chronic 
autoimmune thyroiditis (CAIT) associated with 
antithyroid peroxidase (TPOAb) and/or anti-thy-
roglobulin antibodies (TgAB) (Hashimoto’s thy-
roiditis) [11]. A distinct ethnic difference has 
been reported, with higher prevalence found 
among Caucasians and Mexican Americans, 
while particularly black and mulatto people are 
seen to be less prone to develop SCH [13, 14].

It is of note that an inverse, statistically signifi-
cant association between current alcohol con-
sumption and progression of SCH, due to CAIT, 
to overt hypothyroidism has been reported [15]. 
It was thus proposed that alcohol intake (about 
11–20  units a week) has a protective effect on 
progression of SCH.  There was no association 
with the type of alcohol consumed, e.g., wine vs. 
beer, gender, or region of residence [15]. The 

mechanisms of interaction between alcohol and 
the immune system are complicated, involving a 
diversity of immune responses, such as loss of 
natural killer cell activity, changes in cytokine 
production, and even alterations, in cases of large 
alcohol intake, in both Th1- and Th2-mediated 
immunity [16]. Among modifiable factors that 
may have an impact on thyroid autoimmunity, 
smoking appears to be negatively associated with 
both thyroid autoimmunity and hypothyroidism 
and positively associated with mild TSH 
decreases [17]. Smoke exposure was associated 
with 200% greater odds of low normal TSH 
0.1–0.4 mU/L.

Excess iodine intake, i.e., ≥ 300 μg/daily, may 
unmask CAIT and promote hypothyroidism, par-
ticularly in areas with mild and moderate iodine 
deficiency [18].

 Cognition, Depression, and Quality 
of Life

There have been conflicting results regarding the 
association between SCH and cognition and 
quality of life (QOL), though recent naturalistic 
studies did not observe any significant relation-
ship [19]. Nevertheless, a reduction in QOL is 
frequently reported in patients with thyroid auto-
immune diseases regardless of thyroid dysfunc-
tion and despite the fact that thyroid peroxidase 
(TPO) antibodies have, moreover, been positively 
associated with trait markers of depression [19]. 
Hypothyroidism has been linked to depression, 
as it may trigger affective disease and psychotic 
disorders. Meanwhile, depressive patients have a 
higher frequency of hypothyroidism, and patients 
with hypothyroidism have a higher occurrence of 
depressive syndrome [20]. Hypothyroidism can 
cause structural abnormalities of the hippocam-
pus through altering (sometimes seriously) blood 
flow and glucose metabolism in the brain, 
changes which can affect memory performance. 
On the other hand, the HUNT study reported a 
protective effect of SCH for anxiety disorder, i.e., 
up to 19% fewer anxiety cases per 1  mU/L 
increase in TSH in men and a trend toward less 
anxiety in women [21]. By contrast, in females 
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on LT4 treatment, TSH was positively associated 
with both depression and anxiety [21]. It is hence 
evident that the relationship between thyroid 
function and depression is not as yet well defined 
[22], nor has it been definitively established 
whether thyroid hormone replacement therapy is 
effective in treating SCH-associated neurobehav-
ioral impairments [23].

In the elderly SCH does not tend to be associ-
ated with depression, although advanced SCH may 
elevate the risk of depressive syndrome [24, 25].

 Clinical Manifestations 
and Associations 
with Cardiovascular Disease

Individuals with SCH are often asymptomatic, 
although clinical manifestations including non-
specific complaints or symptoms similar to those 
registered in overt hypothyroidism, such as 
fatigue, weakness, weight gain, cold intolerance, 
and constipation, may be revealed following a 
careful clinical examination. Furthermore, 
despite the fact that SCH has been associated 
with atherosclerotic cardiovascular disease 
(CVD), it remains uncertain whether SCH repre-
sents a higher risk for CVD, since dyslipidemia 
in elderly people is considered a common bio-
chemical condition. Importantly, though a 
20-year follow-up of 2779 participants in the 
Whickham study did not reveal any association 
between thyroid autoimmunity and CVD [26], a 
reanalysis of these study data exclusively defin-
ing SCH by TSH measurement did disclose an 
adverse effect of SCH on CVD rate and mortality 
[27], while an increase in CVD, including both 
major forms of heart disease and coronary heart 
disease (CHD), has been reported in various lon-
gitudinal and cohort studies [28]. In the Busselton 
Health Study, Western Australia, serum TSH and 
FT4 concentrations were measured in 2108 
archived serum samples [29]. In this cross-sec-
tional study in which the prevalence of CHD was 
observed in persons with and without subclinical 
thyroid disease, it was found that subjects with 
SCH had a significantly higher prevalence of 
CHD than euthyroid subjects. In the longitudinal 

part of the study, the risk of cardiovascular mor-
tality and CHD events, both fatal and nonfatal 
combined, were examined: here it was found that 
individuals with SCH had 21 cardiovascular 
deaths compared with 9.5 expected (age- and 
sex-adjusted hazard ratio, 1.5:95%) and 33 CHD 
events compared with 14.7 expected [29]. The 
heightened risk for CHD events remained signifi-
cant after adjustment for standard CV risk fac-
tors, suggesting that SCH may be an independent 
risk factor for CHD [29]. However, in a meta-
analysis, no difference was detected in CHD 
prevalence in SCH patients over 70  years old 
when compared with euthyroid persons, although 
a higher incidence of congestive heart failure 
[HF] was recorded in those patients with SCH 
having a TSH >7.0 mU/L [30]. In another meta-
analysis investigating whether SCH is associated 
with both prevalence and incidence of augmented 
ischemic heart disease (IHD) and cardiovascular 
mortality, a higher IHD incidence and prevalence 
as well as cardiovascular mortality were clearly 
observed in SCH subjects compared with euthy-
roid individuals younger than 65 years, but not in 
subjects older than 65 years [31]. These data sug-
gest that increased vascular risk may be present 
only in younger individuals with SCH. Partially 
in line with these findings was a classical longitu-
dinal study conducted in Leiden, the Netherlands, 
with the participation of 85-year-olds, which 
revealed that a higher TSH may well be protec-
tive against CVD in the very old [32]. Of note, 
CHD risk associated with SCH did not differ by 
TPOAb status, indicating that biomarkers of thy-
roid autoimmunity do not have any impact on 
CHD outcome [33]. The importance of age in the 
relationship between SCH and CHD as well as in 
the cardiovascular outcome of patients with SCH 
is extensively discussed in a recent analysis by 
Cooper and Biondi [34].

Recently it was demonstrated that thyroid-
stimulating hormone receptors (TSHRs) are 
expressed in cardiomyocytes and that TSH may 
downregulate sarcoplasmic reticulum calcium 
ATPase (SERCA2a) activity and expression in 
neonatal rat cardiomyocytes [35]. It is 
 hypothesized that TSH, by binding to TSHRs in 
cardiomyocyte membranes, possibly inhibits the 
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protein kinase A/phospholamban (PKA/PLN) 
signaling pathway in these cells [35], this denot-
ing that high serum TSH levels could well influ-
ence cardiovascular system function and act as an 
independent risk factor in systolic and diastolic 
heart dysfunction in hypothyroidism.

 SCH and Associations with Lipids

Serum lipid levels are influenced by thyroid sta-
tus, and there is evidence pointing to a link 
between SCH and an unfavorable lipid profile 
[36]. Among SCH patients, considerably altered 
cholesterol and lipoprotein metabolism have 
been noted, especially in those cases where 
serum TSH levels are over 10 mIU/L. The irreg-
ularities include elevated plasma levels of total 
cholesterol (TC) as well as of low-density lipo-
protein cholesterol (LDL-C); meanwhile, the 
observed altered ratios of TC/high-density lipo-
protein cholesterol (HDL-C) and LDL-C/HDL-C 
strongly indicate a potentially greater risk for 
CVD [37]. SCH impact on lipids has been shown 
to be inconsistent: it appears to be directly 
related to the degree of TSH elevation, becoming 
more pronounced as SCH progresses to OH, this 
leading to enhanced propensity to atherosclero-
sis. The elevated LDL-C levels characterizing 
hypothyroidism decrease the expression of LDL 
mRNA and LDL receptors numerically while 
reducing the binding of LDL-C to its receptor, 
resulting in increased half-life of LDL-C and 
diminished degradation of LDL in the fibro-
blasts, thus modifying its residence time in 
serum and its susceptibility to oxidation [38]. 
Finally, other alterations observed in SCH 
involve serum triglycerides, apolipoprotein B 
(ApoB), lipid subparticle size, and LDL-C oxi-
dizability, though the results are inconsistent 
[39, 40].

Although it is estimated that 1–11% of all 
patients with dyslipidemia have SCH, the effects 
of SCH on serum lipid values in these subjects 
are not clear [41]. There is also a significant dif-
ference in the prevalence of SCH and OH after 
adjusting for age and sex between nondyslipid-
emic and dyslipidemic subjects, as the presence 

of dyslipidemia does not predict the presence of 
hypothyroidism [41]: it is well established that 
insulin resistance may modify the effects of SCH 
on serum lipid levels [42]. Notably, morbidly 
obese patients exhibit significantly lower mean 
levels of TC and a significantly lower prevalence 
of hypercholesterolemia (50.9 vs. 72.7%, 
p < 0.01) when compared with nonobese patients 
[43], while they also exhibit lower mean serum 
HDL-C and higher serum triglycerides. Thus, the 
impact of elevated serum TSH on the lipid profile 
varies in morbidly obese compared to nonobese 
patients, suggesting that the obese might not be 
truly hypothyroid. Accordingly, measuring TC 
could be a helpful tool to determine whether a 
morbidly obese patient presenting high TSH 
requires levothyroxine treatment or not [43].

In another prospective population-based 
study, high TSH levels within the reference range 
have been associated with modestly increased 
blood pressure levels, both systolic and diastolic, 
and adverse serum lipids. It is therefore essential 
to bear in mind that TSH levels may covary with 
blood pressure and lipid levels among people 
with obviously normal thyroid function [44].

In a recent study aimed to quantify remnant-
like lipoproteins (RLPs), small dense LDL 
(sdLDL), and hepatic lipase (HL) activity in 
women with SCH (TSH > 4.5 mIU/L) before and 
after levothyroxine replacement treatment, RLP 
levels were found to be elevated and HL activity 
reduced, both parameters being reversed by levo-
thyroxine treatment [45].

Regarding the effects of LT4 on lipids in 
patients with SCH, some longitudinal studies 
found a nonsignificant reduction of TC via LT4 
treatment [46–48]. Of interest, a two-arm study 
including (a) short-term investigation of 11 post-
menopausal females with SCH examined before 
and 6 weeks after LT4 at incremental doses (50, 
100, 150 μg/day) and (b) a long-term controlled 
study with LT4 treatment in 105 females, matched 
for age and menopausal status, for at least 1 year 
[49]. Long-term T4 treatment was associated 
with a reduction in total and LDL cholesterol 
measurements only in those over 55 years receiv-
ing suppressive doses of T4; however, there were 
no significant difference in lipids in those with 
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normal serum TSH compared with non-T4-
treated controls [49]. On the other hand, when 
stratifying SCH according to its severity, a statis-
tically significant decrease in TC and LDL-C was 
shown by means of LT4 only in the more 
advanced forms of SCH [50].

The assessment of carotid artery intima-media 
thickness (IMT) (by high-resolution ultrasonog-
raphy) and the lipoprotein profile were assessed 
in 45 SCH patients (aged 37 ± 11 year) at base-
line and after 6 months of randomized, placebo-
controlled LT4 treatment [51]. A significant 
reduction of both TC and LDL-C and mean IMT 
(by 11%, P  <  0.0001) by LT4 therapy was 
observed. Moreover, the decrement in IMT was 
directly related to the decrease of TC and TSH, 
indicating that early carotid artery wall changes 
are present in SCH patients [51]. Although these 
studies involved a small group of homogenous 
patients, the highly accurate diagnostic technique 
that was employed to assess the cardiovascular 
risk detected an improvement in associated car-
diovascular risk factors in those under treatment 
with replacement doses of LT4 [51].

Another study evaluating the effects of LT4 
replacement on non-HDL-C levels in SCH and 
OH reported significant decrements of the serum 
concentrations of TC, non-HDL-C, RLPs, and 
ApoB, whereas no significant changes in the 
serum concentrations of LDL-C, HDL-C, triglyc-
erides, apolipoprotein A-I, and Lp(a) were 
observed [52]. In all 39 patients, the reduction in 
the non-HDL-C levels correlated with the reduc-
tion in the LDL-C, RLPs, and ApoB levels. The 
decrease of non-HDL was related to the decrease 
of LDL-C, ApoB, and RLPs. Importantly, this 
study, which indicated a role of non-HDL in the 
altered metabolism of LDL-C in SCH, could 
comprise an indirect method to estimate 
ApoB. The above results are usefully integrated 
in the information evaluating the cardiovascular 
risk presenting a more qualitative assessment and 
a more precise target of therapy [53].

In contrast, a study in which 110 hypercho-
lesterolemic patients with high or low normal 
TSH were recruited and assigned to treatment 
with LT4, only those with a TSH between 2.0 
and 4.0 mIU/L exhibited a significant reduction 

of lipids [54]. The discrepancy among the vari-
ous studies might be due to a number of con-
founders that likely influence the lipids, such as 
smoking, obesity, drugs, wide individual and 
interindividual variations in metabolic and thera-
peutic responses, as well as insufficient statisti-
cal power [54].

Newly emerging CVD risk factors, such as 
serum C-reactive protein and retinol-binding pro-
tein 4 levels as well as hemostatic parameters, 
mainly underscored by the increased activity of 
factor VII, have recently been associated with 
SCH [55] .

Recently it was investigated whether LT4 
treatment influences the plasma levels of fibro-
blast growth factor 21 (FGF21), an endogenous 
regulator of energy metabolism [56]. Treatment 
of 107 patients with overt hypothyroidism and of 
116 with SCH with LT4 restored the decreased 
circulating levels of FGF21 in both patient groups 
and increased FGF21 plasma levels: this observa-
tion most probably accounts for the concomitant 
improvement of metabolic disorders such as 
hypercholesterolemia and insulin resistance [56]. 
Importantly, the increased FGF21 levels were 
correlated with the increase of FT4 and FT3 
levels.

 Treatment

The recently issued international guidelines rec-
ommend that SCH patients should be considered 
for treatment while scrupulously taking into con-
sideration age, sex, peripheral targets, and lipid 
metabolism. In other words, the most advisable 
approach is a carefully individualized one to 
accurately identify those patients who should be 
treated [57, 58].

There is a rationale for thyroid hormone 
replacement therapy with LT4 only in individuals 
with TSH levels >10 mIU/L, as the available data 
indicate an increased risk for CVD in patients 
with more severe SCH [59]. Two important meta-
analyses have linked SCH to the risk of HF and 
CHD events and mortality [60, 61]; the pooled 
analysis of the individual participant data from 
the available prospective studies showed that the 
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risk of CHD events and mortality increased with 
higher TSH concentrations and was significantly 
increased in patients with TSH lev-
els ≥10.0 mIU/L. In the absence of large random-
ized trials, the results of these meta-analyses 
offer good evidence that treating SCH in adults 
with serum TSH ≥10 mU/L will improve the car-
diovascular risk (Fig. 1). Serum TSH levels are 
anticipated to normalize during LT4 therapy, this 
in correspondence to the age of the patients.

LT4 treatment of mild and/or progressively 
rising TSH levels in young and middle-aged peo-
ple, a condition that is typically associated with 
such cardiovascular risk factors as hypertension, 
hypercholesterolemia, insulin resistance or dia-
betes, kidney failure, or isolated diastolic dys-
function), is still controversial. Nevertheless, 
recent data suggest that treatment of mild SH in 
the latter context may improve the cardiovascular 
outcome in these patients, especially younger 

persons, by reducing the risk of fatal and nonfatal 
IHD events and mortality [62].

More careful consideration is required as 
regards the anticipated outcome of thyroid hor-
mone replacement in elderly persons suffering 
from mildly increased TSH, since this population 
frequently manifests higher TSH levels as com-
pared to younger subjects, which the increases, 
however, merely represent a physiological pro-
cess. Thus, given that older age is likely to affect 
TSH levels, several studies have proposed the use 
of modified reference limits for elderly popula-
tions in the diagnosis of mild thyroid failure [63]. 
Interestingly, it has been reported that treatment 
appears to improve several other markers associ-
ated with CVD, including carotid intima-media 
thickness (cIMT) and other predictors of vascular 
risk. Meanwhile, studies assessing biochemical, 
functional, and structural variables associated 
with an elevated risk of vascular events in older 
individuals have produced variable results, 
although this could be attributable to the very 
complex interactions between SCH and predic-
tors of vascular disease [64].

Also of considerable importance are the results 
of a recent double-blind, randomized, placebo-
controlled trial including 737 adults 65 years of 
age (Thyroid hormone Replacement for Untreated 
older adults with Subclinical 
hypothyroidism(TRUST) + the Institute for 
Evidence-based Medicine in Old age (IEMO) col-
laboration trial) with persistent SCH [65]. A total 
of 368 patients received LT4 (at a starting dose of 
50 μg/day, or 25 μg if the body weight was <50 kg 
or the patient had CHD), with dose adjustment 
according to TSH level, while 369 patients 
received placebo. There was no apparent positive 
effect of LT4 therapy on the symptoms and qual-
ity of life of the patients with persistent SCH [65]. 
However, due to the fact that the study was under-
powered, it was not possible to determine any 
effect on cardiovascular risk and mortality.

Despite the fact that the recommendations on 
screening are discordant, it has been convincingly 
advocated that thyroid function testing should be 
undertaken in patients who are at risk for hypo-
thyroidism, in subjects over the age of 60 years, 
and in individuals with known CHD and HF [66].
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Fig. 1 Young and middle-aged patients below 65 years 
old with SCH having confirmed TSH above 5  mIU/L 
should be treated with levothyroxine, while treatment 
should be considered in patients with a serum TSH con-
centration between 5 and 10 mU/L, taking into account 
the positivity of antibodies against thyroid peroxidase 
(TPOAb) or thyroglobulin (TgAb), comorbidities, gender, 
and clinical status. Patients older than 65 years should be 
treated when the serum TSH level is higher than 10 mUI/L, 
while treatment should be carried out employing an indi-
vidualized approach when TSH is between 5 mU/L and 
10 mIU/L
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In conclusion, management strategies, 
including screening and treatment of SCH, still 
remain controversial in patients with mild TSH 
increase. Since large, randomized, controlled 
studies to assess the benefit/risk of treatment of 
mild SCH in both young and elderly patients 
have not been conducted, the most reasonable 
strategy is to base treatment on the guidelines 
while also prudently adopting a tailored thera-
peutic approach.
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 Introduction

Replacing a deficient hormone is a relatively sim-
ple concept. As with most other hormone defi-
ciencies, thyroid hormone deficiency is usually a 
lifelong condition that cannot be cured. It is 
therefore incumbent upon the treating physician 
to be sure that the replacement supplied fully 
reverses the symptoms and signs of the deficiency 
without causing any untoward side effects [1]. 
Tracing the history of the treatment of hypothy-
roidism shows that there have been alterations in 
treatment practices. Early treatment of hypothy-
roidism relied on the use of desiccated animal 
thyroid extracts [2, 3]. Thyroid extracts were sub-
sequently largely replaced by synthetic thyroid 
hormone preparations, and levothyroxine (LT4) 
became the standard of care for treating hypothy-
roidism [1–3]. Currently, despite the efficacy of 
synthetic LT4, there is a growing concern that its 
use may not recapitulate normal euthyroid physi-
ology and may not fully restore the health of 
hypothyroid individuals [1, 4]. This has spurred 
an interest in synthetic combination therapy with 
LT4 and liothyronine (LT3) [4, 5]. In addition to 
continuing to explore how best to completely 
reverse the symptoms and signs of hypothyroid-

ism, it is necessary to fully appreciate the benefits 
and risks of both LT4 monotherapy and LT4/LT3 
combination therapy.

 Hypothyroidism: The Basics

Once hypothyroidism has been diagnosed and 
treatment is being pursued, the tenets of success-
ful treatment are to select an appropriate LT4 
treatment dose, administer the dose in a manner 
that will produce adequate and stable levels of 
thyroid hormones, and then adjust the LT4 dose 
for ongoing stability [1, 3]. Concomitant with 
stabilization of biochemical parameters is the 
paramount need to return the treated patient to 
health and avoid the adverse health consequences 
of overtreatment or undertreatment [1].

 Dosing

Once hypothyroidism has been diagnosed, the 
majority of patients can be started immediately 
with a full replacement dose of LT4 [6]. For an 
individual without residual thyroid function, this 
dose is approximately 1.6 μg/kg/day [1]. Patients 
who have undergone thyroidectomy may require 
1.8  μg/kg/day. For patients who retain some 
endogenous function, a lower dose may restore a 
normal serum TSH value. Other algorithms for 
estimating a reasonable replacement dose take 
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into account the serum TSH value at the time of 
initial diagnosis of the patient [7]. When initiat-
ing LT4 treatment, there should be consideration 
of the duration of the hypothyroidism, the 
patient’s age, and other medical conditions. Older 
age and patient frailty may necessitate the use of 
a lower LT4 dose of 25–50 μg that is gradually 
titrated upward.

 Timing

Selecting a regular schedule of LT4 administra-
tion will likely facilitate adherence to the regi-
men. A consistent time of administration would 
also be anticipated to minimize any fluctuations 
in absorption associated with food, beverages, 
and other medications. Absorption may be maxi-
mized and most consistent when LT4 is taken on 
an empty stomach 1  h before breakfast [8]. 
However, it is also important to choose a sched-
ule that a patient can maintain without forgetting 
to take his/her medication. Several timing options 
are available to patients and have been studied in 
comparison with each other (see Table 1) [9–13]. 
The least ideal time, if LT4 is being taken in tab-
let form, is with breakfast, as this is associated 

with the most impaired and variable absorption 
[8]. Overall, 1 hour before breakfast and at bed-
time may be the regimens associated with the 
lowest and least variable TSH values. However, 
patient preference and ability to maintain the 
regimen must also be taken into account. As long 
as a particular regimen is not associated with 
unacceptable variation in TSH values, the LT4 
can be increased if the TSH value is higher than 
the desired target.

It is possible that if mealtime consumption is 
most convenient for the patient, then a liquid LT4 
preparation may best normalize serum 
TSH.  However, head-to-head randomized trials 
of LT4 tablets compared to LT4 liquid have not 
yet been conducted. A recent randomized trial of 
LT4 liquid taken either with breakfast or 30 min 
before breakfast showed similar TSH values in 
both circumstances [14]. However, the liquid 
preparation used was not one that is available in 
the United States. A number of case series favor 
the concept that liquid preparations are better 
absorbed under various circumstances [15–18], 
including proximity to breakfast, concomitant 
enteral feeding [19], coffee consumption [20, 
21], proton pump inhibitor use [22], and malab-
sorption syndromes [23, 24] (see Table 2). If the 

Table 1 Effect of LT4 timing on serum TSH

Study

Designa Serum TSH values
With 
breakfast

0.5 h before 
breakfast

1 h before 
breakfast

Bedtime/3 h 
after dinner Others

Bolk et al. [9] Randomized 
crossover

– 5.1 n/a 1.2↓ –

Bolk et al. [10] Randomized 
crossover

– 2.66, 3.86 – 1.74, 2.36↓ –

Bach-Huynh et al. [8] Randomized 
crossover

2.94 – 1.06↓ 2.19 –

Elliot et al. [11] Nonrandomized 
crossover

– – – 1.77 2.06 (1 h after 
breakfast)

Seechurn (2012) Nonrandomized 
crossover

12.6 – 3.14↓ – –

Rajput et al. [12] Randomized, 
parallel

– 5.13 – 3.27 –

Ala et al. [13] Randomized 
crossover

– 2.03↓ – – 3.35 (1 h 
before dinner)

Cappelli et al. [14] Randomized 
crossover

2.58 2.69

↓ = lower TSH value
aAll trials involve the tablet form of LT4, except Cappelli trial which utilized liquid LT4
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results from these case series and nonrandomized 
trials are confirmed, it appears that liquid LT4 
preparations may be an excellent means to over-
come many causes of impaired absorption [1].

 Adjusting

A particular TSH target can be achieved by serial 
adjustment of a patient’s LT4 dose. Maintenance 
of that TSH should then be possible with continu-
ation of that same dose, if no other influences act 
to perturb the equilibrium. After initiating or 

changing a patient’s LT4 dosage, further adjust-
ment is best performed after repeating the labora-
tory evaluation 6  weeks later. This allows the 
serum concentration of free thyroxine (FT4) to 
reach steady-state levels [1]. The serum TSH is 
presumed to have had sufficient time to reflect 
these steady levels. In order to not miss the need 
for LT4 dose adjustment during the first half of 
pregnancy, repeat testing of TSH every 4 weeks 
is recommended [25]. Repeat testing of TSH and 
FT4 at sooner, nonsteady-state time points such 
as 3 weeks may be reasonable during pregnancy 
under special circumstances such as when a 

Table 2 Situations in which liquid levothyroxine may be associated with improved absorption

Study Design Situation LT4 intervention Results
Vita  
et al. [21]

Nonrandomized 
single crossover

Elevated TSH with 
coffee consumption 
with LT4

Eight patients switched from 
tablets to gel capsules either 
with or 1 h before coffee 
consumption

TSH less affected 
by timing of coffee 
with gel capsule 
use

Cappelli  
et al. [14]

Nonrandomized 
single crossover

Coffee consumption 
with LT4

54 switched from liquid LT4 
with coffee to 30 min before 
coffee

No change in TSH 
seen

Pirola  
et al. [23]

Retrospective 
review

Elevated TSH 
following gastric 
bypass

Four patients switched from 
tablets to liquid

TSH improved 
with liquid

Giusti  
et al. [15]

Retrospective 
review

Patients with thyroid 
cancer taking LT4

59 patients switched from 
tablet to liquid each taken 
30 min before breakfast

Same TSH with 
tablets and liquids

Negro et al. 
[17]

Retrospective 
review

Hypothyroid patients 
taking LT4

100 patients taking liquid 
compared with 100 patients 
taking tablets

Less variable TSH 
values with liquid

Vita  
et al. [22]

Nonrandomized 
single crossover

Patients with 
elevated TSH during 
LT4 and PPI therapy

24 patients switched from 
tablet to liquid

TSH improved 
with liquid

Cappelli  
et al. [14]

Retrospective 
review

Hypothyroid patients 
taking LT4

Five-year records of patients 
aged >65 years taking either 
LT4 tablet of liquid were 
examined

TSH values more 
stable with liquid 
LT4 than tablet

Pirola  
et al. [19]

Randomized 
parallel

Patients requiring 
enteral feeding

Ten patients taking LT4 tablets 
compared with ten patients 
taking liquid. Enteral feeding 
stopped for 60 min in tablet 
group only

TSH not increased 
when liquid given 
with enteral 
feeding

Brancato  
et al. [16]

Retrospective 
review

Patients taking LT4 
tablets within 1 h 
before breakfast

54 patients switched from 
tablet to liquid

TSH lower with 
liquid

Santaguida 
et al. [15]

Nonrandomized 
single crossover

Patients with 
malabsorption

31 patients switched from 
tablet to lower dose of gel 
capsule

TSH maintained 
with lower gel 
capsule dose

Cappelli  
et al. [14]

Randomized 
crossover

Hypothyroid patients 
taking LT4

77 patients switched from 
liquid LT4 30 min before 
breakfast to with breakfast or 
vice versa

TSH not increased 
when LT4 liquid is 
taken with food
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serum TSH value has been well out of the target 
range, making it desirable to verify that the 
 trajectory of abnormal thyroid analytes toward 
reversal is adequate.

If the patient’s TSH is mildly elevated to less 
than 10 mIU/L, or subnormal but not undetectable, 
an increase or decrease to the next available dose 
may be sufficient to normalize the TSH concentra-
tion. Significantly out-of-range TSH values may 
require larger dosage changes. However, there is a 
considerable variation in individual patient sensi-
tivity to dosage changes, so that the most impor-
tant principle of dose titration is to monitor the 
patient’s response. Some patients may be under-
replaced or over-replaced on the available doses 
and may require other adjustments such as alter-
nating their prescribed doses. However, complex 
replacement regimens should be avoided if possi-
ble. Once the goal TSH is achieved, the serum 
TSH can be repeated in another 3–6  months to 
ensure continued adherence to therapy and euthy-
roidism. Clinical euthyroidism should be manifest 
as biochemical euthyroidism is maintained, 
although several months may be necessary for 
patients to feel well. Patients with stable TSH val-
ues can be monitored annually. It has even been 
suggested that less frequent monitoring is ade-
quate in certain groups of patients [26].

 Avoiding Fluctuations

Numerous factors may potentially contribute to 
serum TSH levels not remaining within the tar-
geted parameters during therapy (see Table  3). 
These include, but are not limited to, altered tim-
ing of administration, omitted dosages, interfer-
ing medications, timing with respect to food and 
medications, altered body weight, development 
of gastrointestinal conditions, and pregnancy [1, 
3]. Treatment with higher doses of LT4 also 
seems to predict a greater likelihood of a future 
abnormal TSH value, possibly indicating less 
endogenous thyroid reserve to protect from fluc-
tuation [27]. It should also be remembered that 
there is a circadian in serum TSH values, even in 
LT4-treated patients, such that some natural vari-
ation with TSH values of the order of 2 mIU/L is 
anticipated [3, 9].

 Improving Health Outcomes

It is clear from studies of treatment of myxedema 
coma and reversal of the euthyroid state after 
withdrawal from thyroid hormone for scanning 
and treatment of thyroid cancer that euthyroidism 
is associated with less hypothyroid symptoms 

Table 3 Factors that may alter a patient’s LT4 dose 
requirement or alter TSH

Factors

Increased TSH 
and increased 
requirement

Decreased 
TSH and 
decreased 
requirement

Weight increase √
Weight decrease √
Pregnancy √
Drugs
Impaired absorption 
LT4 (e.g., calcium 
carbonate, phosphate 
binders)

√

Increased protein 
binding/transport of 
LT4 (e.g., estrogen)

√

Decreased protein 
binding/transport of 
LT4 (e.g., androgens)

√

Increased metabolism 
of LT4 (e.g., 
antiepileptic drugs, 
tyrosine kinase 
inhibitors)

√

Altered gastric pH 
(e.g., proton pump 
inhibitors)

√

Malabsorption √
Gastritis √
Reversal of gastritis √
Close proximity to 
food

√

Separation from food √
Factors Increased 

TSH
Lowered 
TSH

Omitted doses √
Additional doses √
LT4 dose >150 μg √ √
Drugs
Metformin √
Statins √
Vitamin C √
Glucocorticoids √
Bexarotene √
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and improved quality of life [1, 28, 29]. Symptom 
questionnaires indicate an increased symptom 
burden in patients with hypothyroidism [30], and 
several different validated questionnaires are 
available [31]. Reversal of hypothyroidism is 
typically associated with weight loss. One study 
documented a mean weight loss of 4.3 kg over a 
year, along with increased resting energy expen-
diture and increased activity. However, the weight 
loss was primarily loss of lean body mass, not fat 
mass, and the investigators suggested that excre-
tion of excess body water was responsible [32]. 
Although improved outcomes are anticipated 
after treatment of hypothyroidism, as overt hypo-
thyroidism is not left untreated, there are no con-
trolled studies of long-term outcomes of the 
treated versus untreated state.

 Avoiding Risks

Laboratory monitoring indicates that despite 
ease of LT4 dose adjustment, many patients 
with hypothyroidism have out-of-range TSH 
values. Thus, treatment of hypothyroidism is 
associated with risks of both overtreatment and 
undertreatment. Biochemical evaluation in sev-
eral populations of individuals taking LT4 
shows that up to 20% of individuals may be 
overtreated or undertreated (Fig. 1) [33–37]. For 
example, of a population attending a health fair, 
18% were receiving inadequate LT4 therapy, 
and 22% were receiving excessive LT4 therapy 

[37]. This is even a problem in those over 
65  years of age [33]. These studies were con-
ducted during period between 1990 and 2014, 
suggesting that this is an ongoing issue. 
Whenever possible, therapy should be adjusted 
to avoidance of iatrogenic hypothyroidism or 
hyperthyroidism. Risks of overtreatment include 
decreased bone mineral density and increased 
cardiac arrhythmias [38, 39]. These data suggest 
more rigorous monitoring, or attention to fac-
tors associated with altered requirement for LT4 
is needed. Some data suggests that the rate of 
LT4 initiation is highest in older populations 
[33, 40]. These may be the very populations that 
are most susceptible to the side effects of iatro-
genic hyperthyroidism. If age-adjusted refer-
ence ranges are taken into account [1], it is 
possible that a subset of these individuals could 
have been monitored without LT4 therapy.

 Hypothyroidism: Debates 
and Controversies

Although many patients feel well on LT4 therapy, 
a proportion of patients who are adequately treated 
based on their normal serum TSH levels do not 
feel restored to their baseline health. The percent-
age of patients with symptoms such as inability to 
think clearly, putting on weight, and difficulty 
remembering things was 32–46% in one study 
[41]. Even if recent thyroid blood tests indicated 
biochemical euthyroidism, based on the local lab-
oratory reference ranges of 0.1–5.5 or 0.2–
6.0  mU/L, symptoms were reported in 34–48%. 
This compares with symptoms being reported in 
25–35% of control participants. Fatigue also 
appears to be more prevalent in euthyroid patients 
compared with euthyroid controls [42] and also 
compared with patients being treated for thyroid 
cancer [43]. Another study, in which subjects were 
recruited by letter and then subsequently took part 
in cognitive testing and completed questionnaires 
assessing well-being, also showed worse scores in 
both these areas in the euthyroid patients taking 
LT4, compared with standard reference values 
[44]. Patients with treated hypothyroidism also 
appear to be more likely to be diagnosed with 
depression and other psychiatric disorders [45].
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This decreased quality of life in biochemically 
euthyroid patients with hypothyroidism could be 
hypothesized to be due to several different causes. 
First and foremost, it is possible that there is some 
aspect of the hypothyroid state that is not ade-
quately reversed with traditional LT4 treatment. 
Alternatively, there may be an ascertainment bias 
because patients who do not feel well are more 
likely to be screened for and diagnosed with 
hypothyroidism. Being categorized as having a 
chronic condition could also be detrimental to a 
patient’s well-being. Some support for this expla-
nation is provided by a study showing that being 
aware of diagnoses such as diabetes, hyperten-
sion, and hypothyroidism was linked with worse 
self-reported health [46]. Finally, there may be 
some autoimmune or genetic condition, either 
associated with hypothyroidism or underpinning 
the development of hypothyroidism, which causes 
morbidity. Examples of such conditions could be 
autoimmunity or genetic variations.

 Targeting TSH Values

The laboratory parameter that is used to adjust 
LT4 therapy is the serum TSH. TSH concentra-
tions are associated with serum FT4 concentra-
tions in a well-described log-linear relationship. 
However, this relationship is complex and may 
be different in individuals without thyroid dis-
ease compared with those being treated with LT4. 
The relationship may also be affected by patient 
age and sex and body mass index [47–49]. 
Reported laboratory reference intervals for com-
mercial clinical laboratories are, by definition, 
based on 120 healthy individuals. Reference 
intervals for TSH vary but are approximately 
0.4–4  mIU/L.  Based on large population-based 
studies, individuals without thyroid disease typi-
cally have mean TSH values of 1–2 mIU/L. This 
has led to suggestions to lower the upper limit of 
the TSH serum interval to 2.5–3 mIU/L [50, 51]. 
There are arguments both supporting and not 
supporting this suggestion [50, 52]. If a lower 
upper limit of the TSH reference interval was 
adopted, logically lower TSH values would be 
targeted during the treatment of hypothyroidism.

The ideal TSH value for a particular patient 
may depend on the patient’s age, coexistent med-
ical conditions, and any benefits that may be 
associated with specific TSH values. When con-
sidering whether the normal reference interval 
should be narrowed, a key question is whether 
there are proven benefits of lowering a patient’s 
TSH from, for example, 3.6–1.1  mIU/L.  This 
same question would also be relevant if one were 
considering whether a specific part of the normal 
range should be the goal of treatment in a particu-
lar individual. Interestingly, a recent meta-analy-
sis suggested that normal TSH values within the 
upper part of the normal reference range were 
associated with adverse cardiovascular and meta-
bolic outcomes, whereas TSH values within the 
lower part of the normal range were associated 
with reduced bone mineral density and fracture 
risk [53].

In theory, some potential advantages of lower-
ing a patient’s serum TSH within the boundaries 
of the normal range include a more favorable 
lipid profile, reduced body weight, and improved 
patient satisfaction or well-being. Theoretical 
advantages of raising a patient’s TSH within the 
normal range might include less development of 
osteoporosis. There seems to be a trend for 
improvement in total cholesterol when modest 
lowering of TSH values is achieved [54, 55]. In a 
crossover trial of 56 patients who were treated for 
8-week periods with three doses of LT4 in a ran-
dom order to achieve TSH values of 2.8, 1, and 
0.3  mIU/L, there was progressive lowering of 
total cholesterol with lowering of TSH values 
[54]. However, most of the reduction may have 
been due to lowering of cholesterol in the group 
that included many patients with subclinical 
hyperthyroidism. The available data do not seem 
to support a relationship between weight and 
altered TSH values within the normal range [54, 
55]. A study in which patients were maintained at 
low-normal or high-normal TSH values for a year 
showed no decrement in body mass index or per-
centage body fat associated with the lower TSH, 
despite an increase in resting energy expenditure 
[55]. Based on such studies, there is insufficient 
data to support targeting a particular TSH value 
within the normal range.
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 Monitoring Other Thyroid Analytes

While monitoring LT4 treatment, it is essential to 
check a serum TSH.  Following FT4 concentra-
tions may also be helpful. In general, targeting 
triiodothyronine (T3) values has not been 
endorsed [1]. If T3 or free T3 (FT3) concentra-
tions are checked during the course of monitoring 
LT4 therapy, they are usually in the low normal 
or low range compared with values seen in indi-
viduals with endogenous thyroid function [1]. 
Altered FT4/FT3 ratios in patients receiving LT4 
therapy have been proposed as a measure of 
impaired type 2 deiodinase activity and impaired 
T3 homeostasis [56] (see Section “How Would 
Combination Therapy Be Monitored?”).

 When Levothyroxine Does not 
Restore Quality of Life

As discussed above, not all LT4-treated patients 
feel well. It is an appealing concept that this may 
be due to not replicating the TSH values seen in 
healthy individuals without thyroid disease. 
However, dissatisfaction with therapy does not 
appear to be ameliorated by targeting a TSH that 
approximates the lower half of the normal range 
(see Section “Targeting TSH Values”).

It is well known that LT4-treated individuals 
have higher FT4 levels, lower T3 levels, and 
higher FT4/T3 ratios than individuals with intact 
thyroid function [57–59] [reviewed in [1]]. It has 
been suggested that the biochemical signature of 
reduced FT3/FT4 ratios and the clinical finding 
of lack of well-being in patients can be paired 
together as possible cause and effect. This has led 
to trials of “combination therapy,” mainly involv-
ing synthetic thyroid hormones (LT4 and LT3) 
but also recently involving porcine thyroid 
extract.

A genetic basic for the failure of LT4 to restore 
well-being has also been sought. A secondary 
analysis of the largest combination therapy trial 
[60] suggested that patients with a particular 
genetic variation, the Thr92Ala variant of the 
type 2 deiodinase, respond differently to treat-
ment of their hypothyroidism [61]. Approximately 

16% of the populations are homozygous for this 
substitution. Not only did these individuals have 
worse scores on the general health questionnaire 
while taking LT4, but they also had a better 
response to combination therapy in which 50 μg 
LT4 was replaced by 10 μg LT3 [61]. This genetic 
variation may potentially lead to altered type 2 
deiodinase enzyme velocity and to a decrease in 
conversion of T4 to T3 [62] [discussed in [1]]. It 
is possible that if patients with this particular 
variant had been specifically targeted in combi-
nation therapy trials, a greater benefit of combi-
nation therapy would have been documented.

Recently it has been shown that expression of 
the Thr92Ala D2 polymorphism in cell lines is 
associated with enzyme accumulation in the 
Golgi apparatus and disruption of cellular func-
tions [63]. Microarray studies of the cerebral cor-
tex of Thr92Ala carriers have shown transcription 
of genes involved in inflammation and apoptosis 
[63]. These two findings combined could suggest 
a reason for the neurocognitive symptoms in 
Thr92Ala carriers. However, the effects of 
genetic variations in the deiodinases on human 
health appear to be complex and extend beyond 
thyroid function to osteoarthritis and insulin 
resistance [64]. The results of the human micro-
array studies do not directly explain why indi-
viduals homozygous for Thr92Ala might prefer 
combination therapy that includes LT3, espe-
cially as the expression of T3-responsive genes 
was unaltered [63].

A recent animal study examined three differ-
ent therapies in hypothyroid rats [65]. These ther-
apies were subcutaneous LT4 administration, 
subcutaneous LT4 administration and LT3 injec-
tion, and continuous administration of both LT4 
and LT3 via subcutaneous pellets. Greater inacti-
vation of type 2 deiodinase in tissues other than 
the hypothalamus, lower serum T3 levels, and 
higher T4/T3 ratios were seen in these rats during 
both monotherapy and intermittent therapy with 
T3, compared with the combination therapy 
employing a subcutaneous slow release T3 pellet. 
The continuous delivery of thyroid hormones 
was also associated with closer replication of 
measures of skeletal muscle functioning, liver 
functioning, and expression of T3-responsive 
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genes, as compared with that seen in the control 
animals [65]. It is possible, if a similar phenom-
enon is seen in humans, that benefits of combina-
tion therapy might only be seen with a 
sustained-release T3 preparation (see Section 
“Are Additional Trials of Combination Therapy 
Needed?”).

 Evidence About Combined 
Levothyroxine/Liothyronine Therapy

Apart from a single trial of combination ther-
apy conducted in 1970 and a recent abstract 
reported in 2015 at the annual meeting of the 
American Thyroid Association, the trials com-
paring synthetic combination therapy to LT4 
monotherapy have been conducted between 
1999 and 2010 [60, 66–77]. A trial comparing 
thyroid extract therapy with LT4 therapy was 
reported in 2013 [78].

 Why Consider Combination Therapy?
Combination therapy has been explored 
because of the documented patient dissatisfac-
tion with LT4 monotherapy. It is possible that 
failure to replace the component of T3 that 
comes directly from the thyroid gland is the 
cause of this dissatisfaction. In humans with 
native thyroid function, the thyroidal produc-
tion of T4 is 85 μg and that of T3 is 6.5 μg daily 
[discussed in [1]]. The ratio of thyroid hor-
mones produced directly from the thyroid 
gland is thus a T4/T3 ratio of 14:1. A further 
26.5 μg T3 is made daily by peripheral conver-
sion from T4 [discussed in [1]]. Individuals 
without their native thyroid function are thus 
missing the 6.5 μg T3 that would normally be 
produced within the thyroid gland. If the 6.5 μg 
of T3 made by the thyroid is provided by exog-
enous LT3 instead, 6–7 μg of LT3 could be pro-
vided daily, depending on the absorption of an 
oral dose of LT3. LT3 absorption is better than 
that of LT4 and is of the order of 95% [79]. If 
inactivation of the type 2 deiodinase also 
occurs in humans during monotherapy, as has 
been shown in rats [65], there may also be less 
than expected production of T3 from T4 by 

peripheral deiodination during LT4 monother-
apy, and additional LT3 may theoretically be 
needed to compensate for this.

 Combination Therapy Thus Far
Thirteen trials comparing synthetic combination 
therapy to LT4 have been conducted [60, 66–77] 
[reviewed in [1]]. Despite this extensive body of 
research into therapy with both LT4 and LT3, 
clear benefit from this combination therapy has 
not yet been shown. These trials have not shown 
improvement in a variety of outcome measures, 
including symptoms, with the implementation of 
combination therapy. However, most of these tri-
als had fewer than 100 patients. Sample sizes 
were too small to detect differences in analyses 
stratified by baseline symptoms. The length of 
the trials has generally been short, with most 
being 5–16 weeks in duration [66–68, 70, 72–75, 
77]. Four of the trials were 4–12  months long 
[60, 69, 71, 76] (see Table 4). Another concern is 
that in most of these trials, participants were 
given LT3 once daily, which would have increased 
their serum T3 levels only for part of the day. 
There were nine trials that used once-daily LT3 
dosing [60, 67, 68, 70–73, 75, 77], four trials that 
employed twice-daily LT3 dosing [66, 69, 74, 
76], and none that used LT3 given three times 
daily (see Table 4).

The trials were heterogeneous with respect to 
the achieved serum TSH, FT4, and T3 levels in 
the monotherapy versus combination therapy 
groups [reviewed in [1]]. Some studies resulted 
in different TSH concentrations between groups 
(two lower and three higher in the combination 
therapy group), potentially confounding the 
study results or reducing the ability to demon-
strate differences between the groups. Another 
issue with the trials performed so far relates to 
the populations studied. Older individuals, those 
with comorbidities, and males have been under-
studied. The predominance of healthy middle-
aged females in the current studies (see Table 4) 
leads to potential problems with generalizing 
results to the entire population with hypothy-
roidism. Additional considerations with these 
trials are that patients with residual symptoms 
were not specifically targeted and that some 
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patients may have had some residual thyroid 
function based on having Hashimoto’s hypothy-
roidism (see Section “Have the Correct Groups 
Been Studied?”).

The heterogeneity of the trials makes it diffi-
cult to assess outcomes with the use of meta-
analyses. Psychologic benefit, or a tendency 
toward benefit, was seen in four trials. A prefer-
ence for synthetic combination therapy was seen 
in four out of the five crossover trials in which 
preference was assessed (see Table  4). Overall, 
including a trial of thyroid extract therapy, 
approximately 66% of patients in the trials with a 
crossover design preferred combination therapy. 
Patients preferred combination therapy in one of 
the trials with a parallel design. However, the 
largest trial, which had a parallel design, was not 
associated with patient preference for combina-
tion therapy [60].

Other outcomes documented in these trials do 
not appear to differ between the monotherapy 
and combination therapy groups (see Table  4). 
However, the range of parameters monitored has 
been quite limited. Most studies showed no 
impact on body weight or blood pressure, two 
showed a favorable effect on the lipid profile, and 
two showed an increase in bone turnover mark-
ers. Heart rate was increased in two studies but 
decreased in two others. When monitored, echo-
cardiographic parameters were unaffected [67]. 
Bone mineral density was only assessed in one 
study and was not altered [71]. Eleven patients 
from the WATTS study [60] underwent 24-h 
monitoring of blood pressure and pulse [80]. 
There were no significant differences in these 
parameters in the patients treated with combina-
tion therapy, compared with those treated with 
LT4 monotherapy. Atrial fibrillation in associa-
tion with a low serum TSH was reported in one 
study [75]. In another study, an individual with a 
history of atrial premature beats who had no 
arrhythmia present at enrollment was noted to 
have atrial premature beats prior to adjustment of 
the study medication at 5  weeks [66]. In sum-
mary, there are no apparent differences in out-
comes in these trials, but no cardiovascular event 
or fracture data are available and long-term data 
are lacking.

 Thyroid Extract Therapy
There is a single 16-week duration crossover trial 
of thyroid extract therapy compared to LT4 ther-
apy [78]. In this trial, 1.667 μg LT4 was substi-
tuted for 1 mg of thyroid extract, and the mean 
dose of thyroid extract was 80 mg daily. This trial 
was associated with a small but significant weight 
loss and patient preference for the extract ther-
apy. However, there were no changes in multiple 
psychologic measures. The biochemical profiles 
of the patients were notably different during the 
two therapies. Mean serum T3 concentrations 
were much higher during extract therapy, 136 ng/
dL compared with 89 ng/dL during LT4 therapy. 
Post-dosing concentrations of serum T3 were 
reported for two patients, and although these 
remained within the reference interval, there is a 
theoretical concern about “T3 thyrotoxicosis” 
with thyroid extract therapy. Older literature 
[reviewed in [1]] demonstrates high levels of 
serum T3 after taking thyroid extract, but higher 
doses and different preparations of thyroid extract 
were used. Similar to the situation with synthetic 
combination therapy, and in contrast to the situa-
tion with LT4 monotherapy, thyroid extract ther-
apy is characterized by low concentrations of 
FT4. For example, in the crossover trial above 
[78], the mean FT4 concentration during LT4 
therapy was 1.36 ng/dL compared with 0.85 ng/
dL during extract therapy. Thus, a potential dis-
advantage of thyroid extract therapy is that it 
also, like LT4 therapy, does not replicate the nor-
mal ratio of circulating T4 and T3 found in 
humans with endogenous thyroid function.

 Have the Correct Groups Been 
Studied?

It is possible that particular subgroups of patients 
may benefit from combination therapy. Potential 
subgroups could include those who are dissatis-
fied or unhappy while taking LT4 therapy and 
those with deiodinase polymorphisms affecting 
conversion of T4 to T3. It could also be specu-
lated that those who are completely athyreotic or 
those with low serum T3 levels during monother-
apy may respond better to combination therapy. 
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These subgroups have not been specifically tar-
geted before in the previously reported trials, 
although patients with depression and fatigue 
were included in some trials [see Table 8 in [1]]. 
When considering the use of combination ther-
apy, the benefits and risks need to be carefully 
weighed. If specific subgroups of patients experi-
ence measurable benefits from combination ther-
apy, some risks may be acceptable, and 
combination therapy could be targeted to those 
who are most expected to benefit.

 How Would Combination Therapy 
Be Monitored?

Combination therapy could potentially include 
synthetic LT4 and LT3, with both selection of the 
ratio of T4 to T3 and choice of the frequency of 
the T3 administration (daily, twice daily, three 
times daily). Alternatively thyroid extracts could 
be considered to be a fixed-dose combination 
therapy with a T4/T3 of approximately 4.2:1 with 
T3 given once daily. A pharmaco-equivalence 
study has shown that the LT4/LT3 equivalence 
ratio is approximately 3:1. For example, approxi-
mately 150 μg LT4 is equivalent to 50 μg LT3 
[81]. Therefore, if a patient were being converted 
from LT4 monotherapy to combination therapy, 
with maintenance of the same dose, there would 
need to be a reduction in the LT4 dose depending 
on the LT3 dose being added, according to the 
3:1 conversion factor. Recommendations for con-
verting a patient who is not doing well while tak-
ing LT4 from LT4 monotherapy to combination 
therapy have been published [82]. There are other 
important considerations if rational combination 
therapy is to be safely undertaken. If steady 
serum levels of T3 are both physiologic and 
desirable, either multiple small doses of LT3 
(e.g., 2 μg four times daily or 2–3 μg three times 
a day) or a sustained-release T3 preparation 
would be needed. These examples employ small 
doses of LT3 that are not available as single tab-
lets. Currently, LT3 is available as 5hcontrolled 
community-based and 25 μg tablets.

An important parameter that could be targeted 
during combination therapy is patient symptoms. 

This is particularly important, because unre-
solved symptoms are what typically lead a patient 
to request combination therapy. The associated 
question is which symptoms or quality of life 
measures would best reflect successful combina-
tion therapy. Symptoms can be assessed using 
validated quality of life questionnaires. Since 
changes in thyroid symptoms might be as appar-
ent in general quality of life questionnaires, it is 
important that standardized and/or validated thy-
roid-related quality of life questionnaires be 
used. Examples of such questionnaires include 
ThyPRO, Chronic Thyroid Questionnaire, and 
Underactive Thyroid-Dependent Quality of Life 
Questionnaire [83–85] [reviewed in [1]]. 
However, such questionnaires have not typically 
been employed in a routine clinical setting but 
have been used primarily in the research setting, 
so this is an untested and potentially time-con-
suming approach.

The optimal biochemical monitoring of 
patients receiving combination therapy has not 
been elucidated. It is not clear whether serum 
TSH is as helpful a marker of euthyroidism in a 
patient receiving combination therapy. Potential 
targets, in addition to serum TSH, include FT4, 
T3, FT3, and the FT4/FT3 ratio. The concept of 
considering serum T3 as a target has been quite 
controversial [1, 86]. An additional concern pres-
ents itself if serum FT3 is a therapeutic target. 
Assays for FT3 may be less accurate, in part due 
to the low concentrations of hormone being mea-
sured [87, 88]. The FT3/FT4 ratio has been pro-
posed as a simple estimate of deiodinase activity 
during LT4 monotherapy [56]. It is possible that 
a FT3/FT4 ratio would reflect a combination of 
peripheral conversion plus the exogenous LT3 
being supplied during combination therapy. 
However, even if the FT4/FT3 or FT3/FT4 ratio 
is a meaningful target, the desired target value 
has not been defined. It is likely that any monitor-
ing strategy that includes a combination of sev-
eral laboratory analytes would necessitate 
additional costs for the patient. These costs would 
be in addition to the extra costs of the LT3 ther-
apy itself.

In addition to selecting the best thyroid ana-
lytes to measure during combination therapy, 
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another consideration is the timing of testing and 
whether a peak or trough thyroid hormone level 
is being sampled. Depending on the timing of 
phlebotomy, high serum T3 levels may be 
encountered. Only two trials of synthetic combi-
nation therapy assessed post-dosing T3 concen-
trations and did so in a small subset of 10–12 
patients [75, 80]. In one study, patients were tak-
ing 10 μg LT3 once daily combined with LT4. A 
42% increase in serum FT3 concentration was 
seen within 4 h after the administration of 10 μg 
LT3 [80]. Three of the ten patients had serum T3 
levels that were above the upper limit of the labo-
ratory reference range for part of the day. In the 
other study, in which 5% of the patient’s dose of 
LT4 was replaced by a single dose of LT3 that 
was prepared in-house, there was a 54% increase 
in FT3 concentrations approximately 2  h after 
LT3 administration [75].

Consideration of the timing of phlebotomy is 
particularly important if LT3 is given only once 
daily. Serum T3 and FT3 levels peak approxi-
mately 2.5 h after dose administration [75, 80, 89, 
90]. A trough serum T3 level is clearly both lower 
and more predictable than a post-dose T3 level, as 
illustrated in three studies of once-daily LT3 dos-
ing [75, 80, 90]. The 24-h profile of serum TSH 
concentrations following once-daily LT4/LT3 
administration appears to show more fluctuation 
than serum TSH levels following daily LT4 
administration [80]. In patients receiving combi-
nation therapy, the TSH nadir was at 6 h following 
LT4/LT3 dosing, before returning to the pre-dos-
ing value about 10 h later [80]. If a trough T3 con-
centration, and its associated TSH level, was 
being targeted because of the predictability of 
analyte values prior to the next LT3 dosing, phle-
botomy in the early morning prior to any of that 
day’s LT3 administration might be particularly 
useful for monitoring therapy. This might also be 
most inconvenience and costly for patients.

 Are Additional Trials of Combination 
Therapy Needed?

The number of patients who have participated in 
the trials of combination therapy already com-

pleted totals 1225. It is possible that a bigger trial 
needs to be conducted in which a large number of 
patients are studied in a single trial in which stan-
dardized outcomes and validated measures of 
quality of life are utilized. Alternatively, it is pos-
sible that any future trials may best focus on a par-
ticular subgroup of patients: those who do not feel 
well; those with type 2 deiodinase polymorphisms 
or other genetic variations, athyreotic patients; or 
those who have particularly low serum T3 levels 
during monotherapy (see Section “Have the 
Correct Groups Been Studied?”). It would also be 
important to include a population that is represen-
tative of the hypothyroid population in general, 
including those with other medical conditions, 
and to ensure that parameters such as serum TSH 
are not different in the treatment groups. Other 
considerations in future trials would be using 
more frequent administration of LT3  in order to 
achieve more stable serum T3 concentrations. 
Three times-daily LT3 therapy (as monotherapy) 
has been successfully achieved [81, 91], but such 
frequent medication administration is challenging 
to maintain during long-term therapy. A sus-
tained-release T3 preparation would clearly cir-
cumvent this issue. The spectrum of medications 
that are available in sustained-release formula-
tions has not yet extended to LT3.

 Conclusion and Future Challenges

Clinicians who are treating patients with hypo-
thyroidism have at their disposal an excellent 
therapy that rapidly and effectively reverses the 
stigmata of hypothyroidism. This is indeed a sig-
nificant advance since Bettencourt and Serrano 
treated hypothyroidism by grafting half a sheep’s 
thyroid gland into a myxedematous patient [92]. 
Levothyroxine is easy to administer and monitor 
and results in excellent quality of life for most 
patients. However, despite the successes in 
 treating hypothyroidism, there are clearly 
nuances of treating hypothyroidism that have not 
yet been elucidated. There is a need to fine-tune thy-
roid hormone replacement so that it provides satis-
factory treatment to all those with hypothyroidism. 
Development of a sustained-release T3 prepara-
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tion and harnessing thyroid follicles generated 
from stem cells [93, 94] are potential avenues 
through which this might be achieved.
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Myxedema Coma

Leonard Wartofsky 
and Joanna Klubo-Gwiezdzinska

Myxedema coma is a relatively rare life-threaten-
ing condition resulting from severe deficiency of 
circulating thyroid hormones. Understanding the 
pathogenesis of the condition, appropriate recog-
nition of the clinical signs and symptoms, and 
rendering prompt and accurate diagnosis and 
treatment are crucial to optimize survival. It was 
probably first reported in 1879 by Ord in a report 
of the Clinical Society of London in 1888  in 
which two of 12 patients with fatal hypothyroid-
ism appeared to have died in coma [1]. The entity 
remained unreported in the literature until 1953 
[2, 3], and by now there have been perhaps 300 
cases reported and, of course, many that have not 
been reported. Most patients with myxedema 
coma have had symptoms of hypothyroidism for 
many months, and the onset of stupor or coma is 
precipitated by cold exposure, by infection or 
other systemic disease, or by drugs, as noted 
below. There may be a past history of antecedent 
thyroid disease, thyroid hormone therapy that 

was discontinued for no apparent reason, or 
radioiodine therapy for hyperthyroidism. 
Examination of the neck may reveal a surgical 
scar and no palpable thyroid tissue or goiter. 
Once the diagnosis is brought to mind, its confir-
mation should be relatively easy based upon the 
presenting clinical and laboratory findings. 
Unfortunately, unless there is early diagnosis and 
implementation of appropriately vigorous ther-
apy, the outcome is often dismal [4].

 Epidemiology and Precipitating 
Events

The incidence rate of myxedema coma is 
0.22/1,000,000 per year [5]. A typical and com-
mon presentation is that of a hospitalized elderly 
woman with a history of long-standing hypothy-
roidism who for various reasons had not been 
taking replacement hormone. Although 80% of 
cases occur in women >60  years of age, myx-
edema coma does occur in younger patients as 
well, with 36 documented cases reported during 
pregnancy [6, 7]. Often the patient may have pre-
viously undiagnosed hypothyroidism and the 
descent into coma is facilitated by the develop-
ment of a systemic illness such as a pulmonary or 
urinary tract infection, congestive heart failure, 
or a cerebrovascular accident (Table 1). In other 
cases, there is a past history of antecedent thyroid 
disease, thyroidectomy, or treatment with radio-
active iodine, e.g., for Graves’ thyrotoxicosis, or 
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of thyroid hormone replacement therapy that was 
discontinued for no apparent reason. The so-
called secondary or tertiary hypothyroidism on 
the basis of pituitary or hypothalamic disease, 
respectively, is relatively rare, being seen in about 
5–15% of patients [8]. It is probably no coinci-
dence that patients with myxedema coma tend to 
present with greater frequency in the winter 
months, suggesting that external cold may be an 
aggravating factor. It is not always clear whether 
some of the associated abnormalities such as 
hypoglycemia, hypercalcemia, hyponatremia, 
hypercapnia, and hypoxemia were conditions 
that actually precipitated the coma or were sec-
ondary consequences of myxedema coma. 
Pulmonary infection may occur as a secondary 
event because of hypoventilation due to somno-
lence, and the somnolent or comatose state pre-
disposes to a risk of aspiration pneumonia and 
sepsis. In other patients, sedative, analgesic, anti-
depressant, hypnotic, antipsychotic, and anes-
thetic drugs were likely to have precipitated 
myxedema coma because of their ability to 
depress respiration. Drug-induced myxedema 
coma is particularly likely to occur in hospital-
ized patients because the latter types of drugs are 

typically dispensed in hospital, and their physi-
cians may not be aware that the patient has hypo-
thyroidism. The risks associated with these drugs 
are real, and their use in a hypothyroid patient 
sets up a chain of events that can lead to coma. A 
case described by Church et al. is typical in this 
regard; they reported a 41 years old male patient 
with no known history of thyroid disease who 
developed myxedema coma after being adminis-
tered combined therapy with aripiprazole and 
sertraline [9]. There is also a report of myxedema 
coma induced by chronic ingestion of large 
amounts of raw bok choy. This Chinese white 
cabbage contains glucosinolates, which have 
breakdown products such as thiocyanates, 
nitriles, and oxazolidines that inhibit iodine 
uptake and the subsequent synthesis of thyroid 
hormones by the thyroid gland. When eaten raw, 
digestion of the vegetable releases the enzyme 
myrosinase which accelerates production of the 
abovementioned thyroid disruptors [10].

 Clinical Signs and Symptoms

Two of the cardinal features of myxedema coma 
are hypothermia (often profound to 80  °F 
(26.7  °C)) and unconsciousness [11, 12]. 
Coincident infection may be masked by the pres-
ence of hypothyroidism such that the patient 
presents as afebrile in spite of an underlying 
severe infection. In view of the latter and the fact 
that undiagnosed infection might lead inexorably 
to vascular collapse and death, the recommenda-
tion for empiric use of broad spectrum antibiotics 
in patients with myxedema coma has some merit. 
Underlying hypoglycemia may further com-
pound the decrement in body temperature. 
Although coma is the predominant clinical pre-
sentation, signs or symptoms of disorientation, 
depression, paranoia, or hallucinations (“myx-
edema madness”) may often be elicited. The 
course often is one of lethargy progressing to stu-
por and then coma, with respiratory failure and 
hypothermia, all of which may be hastened by 
the administration of drugs that depress respira-
tion and other central nervous system (CNS) 
functions. Most patients have the characteristic 

Table 1 Factors reported to precipitate myxedema coma

Drugs
  Withdrawal of l-thyroxine
    Anesthetics
  Sedatives, hypnotics
  Tranquilizers
  Narcotics
  Amiodarone
    Lithium carbonate
Infections, sepsis
  Cerebrovascular accidents
  Congestive heart failure
  Cold; winter temperatures
Surgery; trauma
  Metabolic disturbances
    Hypercapnia
    Acidosis
    Hypoglycemia
    Hyponatremia
Others:
  Gastrointestinal bleeding
  Ingestion of raw bok choy
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features of severe hypothyroidism, such as dry, 
coarse, and scaly skin; sparse or coarse hair; non-
pitting edema (myxedema) of the periorbital 
regions, hands, and feet; macroglossia; voice 
hoarseness; and delayed deep-tendon reflexes 
[13]. Moderate-to-profound hypothermia is com-
mon. The neurological findings may also include 
cerebellar signs, e.g., poorly coordinated pur-
poseful movements of the hands and feet, ataxia, 
adiadochokinesia, poor memory and recall, or 
even frank amnesia. Associated abnormal find-
ings may be documented on electroencephalog-
raphy such as low amplitude and a decreased rate 
of α-wave activity. Status epilepticus has been 
also described [14], and up to 25% of patients 
may experience seizures possibly related to 
hyponatremia, hypoglycemia, or hypoxemia.

 Respiratory System

It is believed that it is a combination of a depressed 
hypoxic respiratory drive and a depressed ventila-
tory response to hypercapnia that constitutes the 
mechanism for hypoventilation in profound myx-
edema [15, 16]. In addition, upper airway partial 
obstruction caused by enlargement and edema of 
the tongue or vocal cords may also play a role. 
Tidal volume also may be reduced by other fac-
tors such as pleural effusion or ascites. 
Hypothyroid patients may be predisposed to 
pneumonitis as a precipitating factor because of 
airway hyperresponsiveness and chronic inflam-
mation [17], and effective pulmonary function in 
myxedema coma is often not achieved without 
prolonged mechanically assisted ventilation. 
Recovery from respiratory failure may be slow 
despite apparently adequate therapy.

 Cardiovascular Manifestations

The findings considered typical of hypothyroid 
heart disease also are found in myxedema coma 
and include cardiac enlargement, decreased car-
diac contractility, and nonspecific electrocardio-
graphic abnormalities. Patients diagnosed with 
myxedema coma are at increased risk for shock 

and potentially fatal arrhythmias. Typical ECG 
findings include bradycardia; varying degrees of 
block, low-voltage, flattened or inverted T waves; 
and prolonged Q–T interval which can result in 
torsades de pointes ventricular tachycardia [18]. 
Myocardial infarction should also be ruled out by 
the usual diagnostic procedures, because aggres-
sive or injudicious T4 replacement may increase 
ischemia and the risk of infarction. However, myo-
cardial infarction may be somewhat more difficult 
to rule out due to low voltage on EKG, particularly 
in the presence of pericardial effusion. In addition, 
hypothyroidism alters the LDH isoenzyme pattern 
and elevates total CPK levels although most of the 
elevation is in the MM band (from skeletal mus-
cle). Patients with myxedema coma may have 
hypotension because of decreased intravascular 
volume, and cardiovascular collapse and shock 
may occur late in the course. If at all, the latter 
characteristically responds only when both a vaso-
pressor drug such as dopamine and thyroid hor-
mone are given. Moreover, cardiac contractility is 
impaired, leading to reduced stroke volume and 
cardiac output, but frank congestive heart failure is 
rare. Reduced stroke volume in severe cases may 
also be due to the cardiac tamponade due to peri-
cardial effusion. The cardiac enlargement may be 
due to either ventricular dilatation or pericardial 
effusion. Rarely, the pericardial fluid is rich in 
mucopolysaccharides and/or lipids and on aspira-
tion may present a colloidal gold appearance.

 Gastrointestinal Manifestations

The gastrointestinal tract in myxedema may be 
marked by mucopolysaccharide infiltration and 
edema of the muscularis as well as neuropathic 
changes leading to gastric atony, impaired peri-
stalsis, and even paralytic ileus. The presence of 
gastric atony [19] may be problematic for the 
absorption of oral medications. A neurogenic 
oropharyngeal dysphagia has been described that 
is associated with delayed swallowing and may 
account for the predisposition to aspiration and 
risk of aspiration pneumonia [20]. Ascites is not 
uncommon and has been documented in one 
report of 51 cases [21]. Another potential compli-
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cation is gastrointestinal bleeding, secondary to 
an associated coagulopathy [22]. It is important 
to recognize the underlying mechanisms of these 
acute gastrointestinal complications in order to 
avoid unnecessary surgeries for an mistakenly 
apparent “acute abdomen” [23].

 Renal and Electrolyte 
Manifestations

Hyponatremia and a decreased glomerular filtra-
tion rate and renal plasma flow are rather consistent 
findings among patients with myxedema coma. 
The hyponatremia is due to the inability to excrete 
a water load, caused both by increased serum antid-
iuretic hormone [24] and impaired water diuresis 
caused by reduced delivery of water to the distal 
nephron [25]. Urinary sodium excretion is normal 
or increased, urinary osmolality is high relative to 
plasma osmolality, and there may be bladder atony, 
with retention of large residual urine volumes. 
Hyponatremia is a common finding observed in 
patients with myxedema coma and it alone may 
cause lethargy and confusion, and depending upon 
its duration and severity, hyponatremia will add to 
altered mental status, and if severe, could be 
responsible for the coma. Renal failure may occur 
due to underlying rhabdomyolysis with extremely 
high creatine kinase levels [26–29].

 Hematological Manifestations

Patients with myxedema coma are predisposed to 
severe infections, including sepsis, due to granu-
locytopenia and a decreased cell-mediated 
immune response. They may also present with a 
microcytic anemia secondary to hemorrhage, or a 
macrocytic anemia due to vitamin B12 defi-
ciency, which may also worsen the neurological 
state. In contrast to the tendency to thrombosis 
seen in mild hypothyroidism, severe hypothy-
roidism is associated with a higher risk of bleed-
ing due to coagulopathy related to an acquired 
von Willebrand syndrome (type 1) and decreases 
in factors V, VII, VIII, IX, and X [30]. The von 
Willebrand syndrome is reversible with T4 ther-
apy [31]. Another cause of bleeding may be dis-

seminated intravascular coagulation associated 
with sepsis.

 Hypothermia

Hypothermia may be dramatic (<80  °F) but 
may be absent in about one-fourth of patients, 
possibly because of underlying infection mask-
ing the hypothermia. Indeed, because hypother-
mia may be the first clue to the diagnosis, the 
possibility of myxedema coma should be enter-
tained in any unconscious patient without fever 
in spite of an infection. The presence of hypo-
glycemia is likely to decrease body temperature 
further. Hypothermia has prognostic signifi-
cance, with survival correlating with the pre-
senting body temperature, and those patients 
with a core temperature below 90 °F are likely 
to do poorly [32, 33].

 Neuropsychiatric Manifestations

Patients with myxedema coma may have a his-
tory of lethargy, depression, slowed mentation, 
poor memory, cognitive dysfunction, or even 
psychosis (“myxedema madness”). Focal or gen-
eralized seizures caused by CNS dysfunction, 
hyponatremia, or hypoxemia due to reduced 
cerebral blood flow may be seen in one-fourth of 
patients [34].

 Infections

An impaired host response to infection may be in 
part responsible for the high mortality rate in 
myxedema coma. As mentioned above, detection 
of infection is often clouded by the presence of 
hypothermia. Rather, the presence of normother-
mia in a myxedematous patient should alert the 
physician to the possibility of an underlying infec-
tion. Similarly, the patients often perspire little, 
and their pulse rate tends to be slow, both of which 
may cause the physician to overlook the possibil-
ity of underlying infection. Pulmonary infections 
may aggravate or even cause hypoventilation, and 
susceptibility to these infections may be increased 
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because of aspiration caused by neurogenic dys-
phagia or seizures [34]. In one retrospective 
series, 12/23 (52%) patients died of sepsis, and 
sepsis was highly correlated with mortality [32]. 
Given that an infection may be difficult to recog-
nize, initiation of empiric broad spectrum antibi-
otic therapy may be justified. Alternatively, a very 
thorough search should be undertaken with cul-
tures of all body fluids with antibiotics only given 
when evidence of infection is present.

 Diagnosis

It should be feasible to make this diagnosis on 
purely clinical grounds. In sum, the typical myx-
edema coma patient is a woman in the later 
decades of her life who may have a past history 
of thyroid disease and who is admitted to hospital 
typically in winter with pneumonia. Physical 
findings could include bradycardia, macroglos-
sia, hoarseness, delayed reflexes, dry skin, gen-
eral cachexia, hypoventilation, and hypothermia, 
commonly without shivering. Laboratory evalua-
tion may indicate hypoxemia, hypercapnia, ane-
mia, hyponatremia, hypercholesterolemia, and 

increased serum lactate dehydrogenase and cre-
atine kinase. On lumbar puncture there is 
increased pressure and the cerebrospinal fluid 
will have high protein content. Although an ele-
vated serum TSH concentration is the most 
important laboratory evidence of the diagnosis, 
the presence of severe complicating systemic ill-
ness or treatment with drugs such as dopamine, 
dobutamine, or corticosteroids may serve to 
reduce the elevation in TSH levels [35, 36]. 
Moreover, there may also be a pituitary cause for 
the hypothyroidism, in which case an increased 
TSH would not be found, but treatment should 
not be delayed while awaiting the results of TSH 
measurement. A lumbar puncture done for the 
evaluation of coma will reveal little other than 
high protein content in the cerebrospinal fluid. 
Nearly all patients with myxedema coma have 
very low serum total and free T4 and triiodothy-
ronine (T3) concentrations, and associated non-
thyroidal illness will contribute to the observed 
reduction in serum T3 concentration. In an 
attempt to objectify the diagnostic process, 
Popoveniuc et al. [37] developed a scoring sys-
tem based upon signs and symptoms at presenta-
tion, but it has yet to be validated (Figs. 1 and 2).
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 Treatment

In view of the high mortality rate among patients 
with myxedema coma, treatment should be insti-
tuted promptly as soon as the diagnosis is strongly 
suspected. Treatment with thyroid hormone alone 
without addressing all of the physiologic and 
metabolic derangements described herein is inad-
equate therapy, and will likely contribute to a 
poor prognosis. All patients should be admitted 
to an intensive care unit so that their pulmonary 
and cardiac status can be monitored continu-
ously. A central venous pressure line should be 
used to monitor volume repletion therapy, par-
ticularly in elderly patients or those with cardiac 
disease.

 Ventilatory Support

The patient’s comatose state is perpetuated by 
hypoventilation, with CO2 retention and respira-
tory acidosis. The single most important support-
ive measure is the maintenance of an adequate 
airway because of the high mortality rate associ-
ated with the inexorable respiratory failure. As 

indicated above, hypoventilation is an important 
component of myxedema coma and is a common 
cause of death in these patients. Respiratory 
function should be evaluated by assessment of 
both pulmonary functions (blood gas measure-
ments), ruling out the possibility of pulmonary 
infection and ensuring that there is no airway 
obstruction by macroglossia or myxedema 
(edema) of the larynx. In comatose patient, 
mechanical ventilation is usually required during 
the first 36–48 h (especially those in whom drugs 
were the precipitant of the hypoventilation), but 
in some patients it may be necessary to continue 
assisted ventilation for as long as 2–3 weeks [34]. 
During the period of ventilatory support, arterial 
blood gases should be measured frequently, and 
it may be necessary to insert an endotracheal tube 
or even perform tracheostomy to ensure adequate 
oxygenation. The endotracheal tube should not 
be removed until the patient is fully conscious 
and there is evidence that the removal will be 
successful. The hypercapnia may be rapidly 
relieved with mechanical ventilation, but the 
hypoxia tends to persist possibly due to shunting 
in non-aerated lung areas [38]. It is obviously 
important to maintain an open upper airway for 
ventilatory support in order to relieve or prevent 
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hypoxemia and hypercapnia, and it is advisable 
not to extubate the patients prematurely and to 
wait until the full consciousness is attained.

 Hyponatremia

Low serum sodium may cause a semicomatose 
state or seizures even in euthyroid patients, and 
the very severe hyponatremia (105–120 mmol/L) 
in profound myxedema is likely to contribute 
substantially to the coma in these patients. While 
comatose patients must be given some saline 
(and glucose) intravenously to replace daily 
losses, the volume should be limited in those 
patients with mild-to-moderate hyponatremia. 
Mortality rates in critically ill patients with 
symptomatic hyponatremia have been reported to 
be 60-fold higher than in patients without hypo-
natremia [39]. The appropriate management of 
severe hyponatremia often requires administra-
tion of a small amount of hypertonic saline (50–
100 mL 3% sodium chloride), enough to increase 
sodium concentration by about 2 mmol/L early in 
the course of treatment, followed by an intrave-
nous bolus dose of 40–120 mg furosemide to pro-
mote a water diuresis [40]. A small quick increase 
in the serum sodium concentration (2–4 mmol/L) 
is effective in acute hyponatremia because even a 
slight reduction in brain swelling results in a sub-
stantial decrease in intracerebral pressure [41]. 
On the other hand, too rapid correction of hypo-
natremia can cause a very dangerous complica-
tion, the osmotic demyelination syndrome. In 
patients with chronic hyponatremia this compli-
cation is avoided by limiting the sodium correc-
tion to less than 10–12 mmol/L in 24 h and less 
than 18 mmol/L in 48 h. After achieving a serum 
sodium level of >120 mmol/L, restriction of flu-
ids may be all that is necessary to correct hypona-
tremia. The administration of fluid or saline 
therapy requires careful monitoring of volume 
status based on clinical parameters and central 
venous pressure measurements, especially in 
patients with significant cardiovascular decom-
pensation. Therapy with a vasopressin antagonist 
seems reasonable because vasopressin levels are 
typically elevated in myxedema. The available 

agents, conivaptan [42, 43] and tolvaptan, have 
been successfully employed to treat euvolemic 
and hypervolemic hyponatremia. Conivaptan has 
been approved for this purpose by the US 
FDA. Recommendations for conivaptan adminis-
tration include first administering a loading dose 
of 20  mg by i.v. infusion over 25–30  min fol-
lowed by continuous i.v. infusion at a rate of 
20  mg per day for an additional 2–4  days. 
Tolvaptan is initially administered as an oral dose 
of 15 mg for the treatment of hospitalized patients 
with euvolemic and hypervolemic hyponatremia 
in a setting of the syndrome of inappropriate 
antidiuretic hormone secretion (SIADH), hypo-
thyroidism, adrenal insufficiency, or pulmonary 
disorders [42]. No data are available on the use of 
conivaptan in more severe hyponatremia 
(<115 mEq/L) in hypothyroid patients [43, 44].

 Hypothermia

Thyroid hormone must be given to restore body 
temperature to normal, but its action is slow. 
Ultimately, treatment with T4 and/or T3 enables 
restoration of body temperature to normal. 
Simultaneously, blankets to prevent heat loss or 
increasing room temperature can be used as addi-
tional interventions to keep the patient warm 
until the thyroid hormone effect is achieved [4]. 
While very gentle warming of patients with 
hypothermia with an electric blanket at the low-
est heat settings is advisable, too aggressive 
warming may cause peripheral vasodilatation, 
which may then lead to hypotension or shock.

 Hypotension

Hypotension should also be correctable by treat-
ment with T4 and/or T3. However a hypotensive 
patient may require additional volume repletion 
therapy. Fluids may be administered cautiously 
as 5–10% glucose in 0.5  N sodium chloride if 
hypoglycemia is present or as isotonic normal 
saline if hyponatremia is present. An agent such 
as dopamine might be employed to maintain cor-
onary blood flow, but patients should be weaned 
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off the pressor as soon as possible because of the 
risk of a pressor-induced ischemic event. 
Theoretically, there could be an adverse interac-
tion between vasopressor drugs and thyroid hor-
mone, but this risk is countered by the potential 
high mortality rate when the hypotension remains 
refractory to less aggressive therapy. 
Administration of hydrocortisone (100  mg i.v. 
every 8 h) is indicated if there is any suspicion of 
adrenal insufficiency and should be continued 
until the hypotension is corrected. The typical 
dosage of hydrocortisone is 50–100  mg every 
6–8 h during the first 7–10 days with tapering of 
the dosage thereafter based upon clinical response 
and any plans for further diagnostic evaluation. 
Decreased adrenal reserve has been found in 
5–10% of patients on the basis of either hypopi-
tuitarism or primary adrenal failure accompany-
ing Hashimoto’s disease (Schmidt syndrome). 
The other rationale for the treatment with corti-
costeroids is the potential risk of precipitating 
acute adrenal insufficiency due to the accelerated 
metabolism of cortisol that follows T4 therapy. 
The clinician should be aware of signs and symp-
toms signaling coexisting adrenal insufficiency 
such as hypotension, hypothermia, hypoglyce-
mia, hyperkalemia, and hyponatremia.

 Glucocorticoid Therapy

As indicated above, one relatively uncommon 
cause of myxedema coma is on the basis of cen-
tral hypothyroidism, and such patients may also 
manifest corticotropin (ACTH) deficiency and 
may therefore benefit from corticosteroid ther-
apy. Similarly, some patients with primary hypo-
thyroidism due to Hashimoto’s thyroiditis may 
have concomitant primary adrenal insufficiency 
(Schmidt syndrome). Whether the hypoadrenal-
ism is primary or secondary, it can aggravate 
clinical features in myxedema coma to include 
hypotension, hypoglycemia, hyponatremia, 
hyperkalemia, and azotemia. Nevertheless, while 
most patients reported have been covered with 
empiric corticosteroids, most patients with myx-
edema coma have normal serum cortisol concen-
trations, although their ACTH and cortisol 

responses to stress may be slightly impaired [45, 
46]. Another oft stated rationale for administer-
ing corticosteroids is based on earlier observa-
tions that thyroid hormone therapy increases 
cortisol metabolism and clearance. In any case, 
there is no downside to short-term glucocorticoid 
therapy which can then be discontinued when the 
patient is alert and stable. Hydrocortisone usually 
is given in an i.v. dosage of 50 to 100 mg every 6 
to 8 h for a few days, after which it is tapered and 
discontinued. 

 Thyroid Hormone Therapy

While it might seem quite basic and straightfor-
ward that patients with the profound hypothy-
roidism of myxedema coma need thyroid 
hormone, the method to provide that thyroid hor-
mone remains controversial. The questions relate 
to which thyroid hormone preparation to give and 
how to give it (dose, frequency, and route of 
administration). The optimum treatment remains 
uncertain, because of the scarcity of clinical stud-
ies and obvious difficulties with performing con-
trolled trials. There is a necessity to balance the 
need for quickly attaining physiologically effec-
tive thyroid hormone levels against the risk of 
precipitating a fatal tachyarrhythmia or myocar-
dial infarction. The main uncertainty is whether 
to administer T4 alone, with conversion to T3 
being dependent on the patient’s endogenous 
deiodinase activity, or to directly administer both 
T4 and T3. Parenteral preparations of either T4 or 
T3 are available for intravenous administration. 
Although oral forms of either T3 or T4 can be 
given by nasogastric tube in the comatose patient, 
this route is fraught with risks of aspiration and 
uncertain absorption, particularly in the presence 
of gastric atony or ileus. Different approaches to 
treatment are based on balancing concerns for the 
high mortality of untreated myxedema coma and 
the obvious need for attaining effective thyroid 
hormone concentrations in different tissues fairly 
rapidly, against the risks of high-dose thyroid 
hormone therapy, which may include atrial 
tachyarrhythmias or myocardial infarction. 
Because of the rarity of myxedema coma and the 
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paucity of studies of the effects of treatment, the 
optimal approach to thyroid hormone therapy 
remains uncertain and several different 
approaches have been used.

Advocates of administering T4 alone point 
out that it provides a steady and smooth, but 
rather slow, onset of action with low risk for 
adverse effects. Conversely, the onset of action 
of T3 is more rapid, but its serum (and probably 
tissue) concentrations fluctuate more between 
doses. In the very sick patient with a “low T3 
syndrome” superimposed upon true hypothy-
roidism, serum T3 levels may not be very readily 
restored to the reference range, making the use 
of T4 therapy less problematic, because serum 
measurements of free T4 are easier to interpret 
as the values vary less between doses. In either 
case, serum TSH values should provide informa-
tion about the impact of treatment at the tissue 
level, with the caveat that the critically ill patient 
may exhibit TSH suppression as part of the non-
thyroidal illness syndrome. Preparations of T4 
for parenteral administration are available in 
vials containing 100 and 500 μg. A high dose, 
given as a single intravenous bolus dose, was 
popularized by a report suggesting that replace-
ment of the entire extrathyroidal pool of T4 (usu-
ally 300 to 600  μg) was desirable to restore 
near-normal hormonal status as rapidly as pos-
sible, with the pool then maintained by adminis-
tration of 50–100  μg daily given either i.v. or 
orally [47]. With this regimen, serum T4 concen-
trations increase abruptly to supranormal values 
and decrease to within normal range in 24 h. As 
the administered T4 is distributed throughout the 
extracellular and then intracellular spaces, serum 
T3 levels increase slightly, and serum TSH levels 
decrease substantially. In one of the prospective 
studies examining the treatment of myxedema 
coma, Rodriguez et  al. employed a T4 loading 
dose in 11 patients as suggested by Holvey et al. 
[47]. Mortality correlated with APACHE score 
and the severity of underlying systemic illness 
with 4/11 patients dying, only one of whom had 
been administered high doses of T4 (500  μg 
loading dose). The best outcomes were in 
younger patients with lower APACHE and 
Glasgow Coma Scale scores. Although the 

importance of extrathyroidal T4 conversion to 
T3 was not known when this regimen was pro-
posed, the approach of Holvey et al. has proved 
effective in other centers. Twenty-four patients 
with myxedema coma or severe hypothyroidism 
reported from Germany were treated initially 
with T4 in doses ranging from 25 to 500 μg with 
six deaths [49]. Dutta et al. [32] noted no differ-
ence in survival between patients given oral vs. 
i.v. T4.

The rate of conversion of T4 to T3 is reduced 
in many systemic illnesses (the euthyroid sick or 
low T3 syndrome) [36], and hence T3 generation 
may be reduced in myxedema coma as a conse-
quence of any associated illness (hypothyroid 
sick syndrome). As a consequence, some clini-
cians suggest that small supplements of T3 
should be given along with T4 during the initial 
few days of treatment, especially if obvious 
associated illness is present. When therapy is 
approached with T3 alone, it may be given as a 
10 to 20 μg bolus followed by 10 μg every 4 h for 
the first 24 h, dropping to 10 μg every 6 h for 
days 2–3, by which time oral administration 
should be feasible. T3 has a much quicker onset 
of action than T4, and increases in body temper-
ature and oxygen consumption may occur 2–3 h 
after i.v. T3, compared with 8–14 h after i.v. T4 
[50]. The other advantage of T3 is the fact that it 
crosses the blood/brain barrier more rapidly than 
T4, which may be particularly important in 
patients with profound neuropsychological 
symptoms [51]. One possible benefit of T3 is 
exemplified by a case report of a patient with 
myxedema coma and cardiogenic shock who 
responded to T3 but not T4 therapy [52]. On the 
other hand, treatment with T3 alone is associated 
with large and unpredictable fluctuations in 
serum T3 levels, and high serum T3 levels dur-
ing treatment have been associated with fatal 
outcomes [49]. Significant clinical improvement 
may be seen within 24 h with T3, but the more 
rapid action of T3 may be  associated with a 
higher risk of adverse cardiovascular actions, 
and in one report high serum T3 concentrations 
during treatment with T4 alone were associated 
with fatal outcome in several patients [49]. In 
another series of eight patients, two of the three 
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patients treated with high-dose T4 died, whereas 
the other five who were treated with smaller 
doses of T4 or T3 survived [33]. The authors 
reviewed 82 cases from the literature and found 
that advanced age, high-dose T4 therapy, high-
dose T3 therapy, and cardiac complications were 
associated with mortality. They concluded that a 
500  g dose of T4 should be safe in younger 
patients, but lower doses are safer in the elderly.

Consequently, our approach to therapy 
attempts to take all of these issues into account 
and to prudently administer both T4 and T3 [53]. 
The T4 is given intravenously in a dose of 4 μg/
kg lean body weight (or about 200–250 μg), fol-
lowed by 100 μg 24 h later and then 50 μg daily, 
either i.v. or orally, as appropriate. The dose sub-
sequently is adjusted on the basis of clinical and 
laboratory results, as in any other hypothyroid 
patient. With respect to T3, the initial intrave-
nous dose is 10 μg, and the same dose is given 
every 8–12 h until the patient can take mainte-
nance oral doses of T4. As little as 2.5 μg, T3 has 
been noted to result in clinical improvement 
[53]. Other experts prefer to give T4 alone, in a 
loading dose of 400–500 μg followed by 100 to 
200 μg daily as described above, and give T3 in 
24 to 48 h only if there is a suboptimal response 
to T4. No general guide to treatment can take 
into account all the factors that might affect sen-
sitivity to thyroid hormone, such as age, intrinsic 
cardiovascular function, and neuropsychiatric 
status. Hence, patients should be monitored 
closely before each dose of thyroid hormone is 
administered. In addition to the specific treat-
ments considered above, attention should be 
given to any comorbid conditions, recognizing 
that drug dosages may need to be modified 
because hypothyroidism can result in altered 
drug distribution and metabolism. With aggres-
sive comprehensive treatment, most patients 
with myxedema coma should recover. Better, 
however, that it be prevented, by earlier recogni-
tion of hypothyroidism. Dutta et  al. [32] noted 
more severe clinical manifestations in patients 
who had discontinued T4 therapy in contrast to 
de novo cases is another reason to ensure that 
patients with hypothyroidism do not discontinue 
therapy for whatever reason.

 General Supportive Measures

In addition to the specific therapies outlined, 
other treatments will be indicated as in the man-
agement of any other elderly patient with multi-
system problems. This might include the 
treatment of underlying problems such as infec-
tion, congestive heart failure, diabetes, or hyper-
tension. The dosage of specific medications (e.g., 
digoxin for congestive heart failure) may need to 
be modified based on their altered distribution 
and slowed metabolism in myxedema.

 Prognosis

Even with this vigorous therapy, the prognosis 
for myxedema coma remains grim, and patients 
with severe hypothermia and hypotension seem 
to do the worst. In the past, the mortality rate was 
as high as 60–70%, and it has been reduced to 
20–25% with the advances in intensive care man-
agement (i). Several prognostic factors may be 
associated with a fatal outcome (ii, iii, iv) and 
include older age, persistent hypothermia or bra-
dycardia, lower degree of consciousness by 
Glasgow Coma Scale, multi-organ impairment 
indicated by an APACHE II score of more than 
20, or SOFA score more than 6. The most com-
mon causes of death are respiratory failure, sep-
sis, and gastrointestinal bleeding. In sum, 
myxedema coma is a true medical emergency 
that requires a multifaceted approach to treat-
ment in a critical care setting. Early diagnosis 
and prompt treatment, with meticulous attention 
to the details of management during the first 48 h, 
remain critical for the therapy to result in an opti-
mal outcome.
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Heart in Hypothyroidism

Bernadette Biondi and George J. Kahaly

 Hemodynamic Alterations 
and Cardiovascular Complications 
in Overt Hypothyroidism

Hypothyroidism is characterized by a low cardiac 
output [1–6] (Table 1). In severe hypothyroidism, 
cardiac output is decreased as a result of a decrease 
in both stroke volume and heart rate [3–6]. 
Circulation time is increased in hypothyroid 
patients, and an enhanced arterial resistance and 
reduced venous resistance limits the return of 
blood to the heart [1–6]. Buccino reported that the 
cardiac papillary muscle obtained from animals 
with hypothyroidism showed a depression of the 
force velocity curve and reduced rate of tension 
development, indicating significant contractile 
abnormalities [7]. The first study to assess systolic 
function in patients with severe hypothyroid was 
performed by Crowley and Ridgway; the results 
proved that systolic time intervals are character-
ized by prolongation of the pre-ejection period 
and reduction of the left ventricular ejection time 
with a resultant increase in the pre-ejection period/
left ventricular ejection period (PEP/LVET) ratio 

[8] (Fig. 1). These abnormalities were reversible 
with physiologic thyroxine replacement, and, dur-
ing therapy, delta PEP was inversely correlated 
with serum thyroxine and directly correlated with 
serum thyrotropin [8] (Fig. 1).

Preload is largely determined by total blood 
volume and venous return as well as the contrac-
tile activity of the atrium and the filling property 
of the ventricle [3, 6]. Cardiac preload is decreased 
in hypothyroid patients due to the impaired dia-
stolic function and the decreased blood volume 
[6, 9] (Table  1). A prolonged isovolumic relax-
ation time of the left ventricle was first reported 
by Manns in 1976; the index of relaxation of the 
cardiac muscle was identified by means of com-
bined apex cardiography and phonocardiography 
[9]. Subsequently, an impaired left ventricular 
diastolic function, characterized by slowed myo-
cardial relaxation and impaired early ventricular 
filling, has been confirmed in hypothyroid patients 
by Doppler echocardiography [10]. In addition, 
tissue Doppler imaging has revealed changes in 
myocardial time intervals in several segments in 
healthy hypothyroid patients [11].

Cardiac manifestations and clinical features in 
hypothyroid patients are dyspnea on exertion, 
easy fatigability, decreased exercise tolerance, 
and hypertension (Table 2) [3–6]. These findings 
may be explained by the reduced systolic and 
diastolic functions at rest and during exercise, as 
demonstrated by radionuclide ventriculography 
[12, 13]. This technique has provided evidence 
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that the peak filling rate is significantly decreased 
in patients with lower FT4 levels; and the time to 
peak both emptying rate and filling rate is increas-
ingly prolonged in patients with more severe 
hypothyroidism [12]. Additionally, left ventricu-
lar ejection fraction at rest and during exercise 
and cardiopulmonary exercise testing are reduced 
in hypothyroid patients and tend to improve when 
euthyroidism is reached [12–14]. These data 

could suggest that left ventricular function is 
reversibly depressed by thyroid hormone defi-
ciency [12–14]. Thyroid hormones modulate the 
strength of both respiratory and skeletal muscles 
and affect regulatory mechanisms of adaptation 
to incremental effort. In hypothyroidism, cardio-
vascular exercise testing and analysis of respira-
tory gas exchange demonstrate low efficiency of 
cardiopulmonary function as well as impaired 

Table 1 Hemodynamic changes in hypothyroidism

Myocardial contractility ↓
Systemic vascular resistance ↑
Circulation time ↑
Diastolic blood pressure ↑
Arterial stiffness ↑
Cardiac output ↓
Cardiac index ↓
LV stroke volume ↓
LV systolic function ↓
LV diastolic function ↓
Exercise tolerance ↓
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Table 2 Cardiac manifestations in untreated persistent 
hypothyroidism

• Bradycardia
• Diastolic dysfunction
• Diastolic hypertension
• Dyspnea on effort
• Endothelial dysfunction
• Dyslipidemia
• Heart failure
• CHD events
• CHD mortality
• Pericardial and pleural effusion
• Ventricular arrhythmias
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chronotropic, contractile, and vasodilator 
reserves, which are reversible when euthyroidism 
is restored [14]. During exercise, the increment 
of minute ventilation and oxygen pulse are sig-
nificantly lower in thyroid dysfunction versus 
euthyroidism [14]. Especially in older patients 
with thyroid disease, markedly reduced work-
load, both at the anaerobic threshold and at maxi-
mal exercise, is observed [14]. In hypothyroidism, 
inadequate cardiovascular support and mitochon-
drial oxidative dysfunction during exercise 
mostly cause intracellular acidosis. These abnor-
malities partly explain why subjects with hypo-
thyroidism are intolerant to exertion [14].

The peripheral circulation in hypothyroidism 
is characterized by an increased vascular resis-
tance and a prolonged circulation time [3–5, 15–
17]. Afterload is increased in patients with 
hypothyroidism as a result of increased systemic 
vascular resistance and arterial stiffness [15–17] 
and is one of the major factors determining myo-
cardial oxygen consumption [18] (Table 1). The 
increase in cardiac afterload can account for the 
finding that the hypothyroid myocardium is 
energy inefficient despite the low level of overall 
oxygen consumption [18].

Renal perfusion, measured by glomerular filtra-
tion, is decreased in hypothyroidism [19–21]. 
Although sodium excretion is normal, free water 
clearance is impaired and can lead to hyponatre-
mia [19–21]. Total-body albumin distribution is 
expanded in myxedema, in keeping with the devel-
opment of high-protein-content effusions in many 
body cavities. Pericardial effusions can occur in 
severe hypothyroidism and occasionally may be 
so large to cause cardiomegaly on routine chest 
X-ray [3, 6]. Echocardiography demonstrates 
small-to-moderate effusions in about 30% of 
overtly hypothyroid patients. Cardiac tamponade 
is very rare, and the pericardial effusion usually 
disappears a few weeks or months after initiation 
of thyroid hormone replacement therapy [3–6].

Hypothyroidism may increase the risk for 
atherosclerosis by several mechanisms [22]. 
Diastolic hypertension in conjunction with 
dyslipidemia and increased arterial stiffness 
are well-recognized risk factors for the devel-
opment of atherosclerosis in overt hypothy-

roidism [3–6, 22]. Severe hypothyroidism is 
associated with lipid abnormalities, especially 
increased total and LDL cholesterol, triglycer-
ides, and lipoprotein (a) [22, 23]. Coagulation 
abnormalities might be additional risk factors 
for atherosclerosis in thyroid hormone 
 deficiency [22].

 Cardiovascular Function 
in Subclinical Hypothyroidism

Important changes in cardiac structure and func-
tion have been reported in patients with subclinical 
hypothyroidism, whose severity depends on the 
degree and duration of thyroid hormone deficiency 
[24–28]. The impairment of left ventricular dia-
stolic function, which is characterized by slowed 
myocardial relaxation and impaired ventricular 
filling, represents the most consistent cardiac 
abnormality reported in patients with subclinical 
hypothyroidism [29, 30] (Fig.  2). Moreover, an 
impaired systolic function has been identified with 
sensitive techniques such as pulsed tissue Doppler 
echocardiography and cardiac magnetic resonance 
imaging [31, 32]. Left ventricular systolic and dia-
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stolic dysfunction on effort has been documented 
by radionuclide ventriculography in SHypo 
patients in comparison with euthyroid controls 
[32]. The finding of impaired systolic and diastolic 
function during exercise might have clinical impli-
cations in SHypo patients similar to those that 
occur in overt disease [33].

Similar to overt disease, SHypo can impair 
vascular function by inducing an increase in sys-
temic vascular resistance and arterial stiffness 
and by altering endothelial function, thereby 
potentially increasing the risk of atherosclerosis 
and coronary artery disease (CHD) [34–37].

More severe cardiovascular and metabolic 
adverse effects have been reported in SHypo 
patients with serum TSH >10 mIU/L [24–28, 38]. 
The lipid pattern is particularly altered in smok-
ers and in insulin-resistant SHypo subjects [38, 
39]. Data on the link between SHypo and homo-
cysteine, high-sensitivity C-reactive protein, and 
coagulation parameters are conflicting and 
require additional studies to clarify the potential 
role of these “nontraditional” cardiovascular risk 
factors in increasing the cardiovascular risk in 
SHypo [24–28].

 Heart Failure and Overt 
and Subclinical Hypothyroidism

Cardiac symptoms are dominant in the clinical 
presentation of patients with severe and long-
standing hypothyroidism with the occurrence of 
bradycardia, congestive heart failure, (HF) and 
pericardial and pleural effusion [3–6] (Table 2). 
Chronic hypothyroidism in adult rats induces 
maladaptive changes in the shape of myocytes 
with the development of HF [40]. Experimental 
studies have demonstrated that hypothyroidism 
causes cardiac atrophy, due to decreases of 
α-MHC expression and increases of β-MHC 
expression [41]. Moreover, it leads to chamber 
dilatation and impaired myocardial blood flow 
[40, 41]. However, the administration of replace-
ment doses of l-thyroxine reduces myocyte 
apoptosis and can improve cardiovascular perfor-
mance and ventricular remodeling in experimen-
tal hypothyroidism [1, 2].

In humans, significant changes in myocardial 
gene expression (α-MHC and phospholamban) 
were documented in hypothyroid patient with 
dilated cardiomyopathy, by measuring the mRNA 
extracted from endomyocardial biopsy speci-
mens, before and after thyroxine replacement 
therapy [42]. In this patient, the administration of 
thyroid hormone and the restoration of euthy-
roidism produced an increase of alpha-myosin 
heavy chain gene expression with a trend toward 
the beta- to alpha-myosin heavy chain shift lead-
ing to an improvement in cardiac function [42]. 
This study represents the first evidence in humans 
that replacement therapy with l-thyroxine may 
reverse hypothyroid cardiomyopathy by affecting 
myocardial gene expression [42].

Recent data suggest that thyroid hormone 
deficiency may be responsible for an increased 
risk of heart failure events even in patients with 
subclinical hypothyroidism [43–45].

In the Cardiovascular Health Study, Rodondi 
and co-workers evaluated 3.065 adults of 65 years 
of age or older in order to identify the risk of HF 
over 12 years of follow-up [44]. They performed 
a routine echocardiography over 6  years and 
showed that participants with TSH levels of 
10 mIU/L or greater had a higher peak early ven-
tricular filling velocity (E) (after adjusting for 
age, gender, and systolic blood pressure) which 
was associated with incident HF (HR 1.14 for 
each 0.1  m/s increment, 95% CI 1.09–1.18 
p  <  0.001) [44]. During the follow-up, patients 
with TSH of 10 mIU/L or greater had a higher 
risk of HF events with low ejection fraction com-
pared to euthyroid participants (80% vs. 45% 
p = 0.08; HR 1.88; CI 1.05–3.34) [44]. Conversely, 
the risk of CHF was not increased among older 
adults with TSH levels between 4.5 and 
9.9 mIU/L [44]. These results argue that subclini-
cal hypothyroidism with TSH ≥10 mIU/L repre-
sents an important risk factor for HF in older 
adults. These findings have been recently con-
firmed by a meta-analysis performed on six pro-
spective cohort studies including 2068 patients 
with subclinical hypothyroidism. In this study, 
the Thyroid Studies Collaboration group 
 performed a pooled analysis of individual partici-
pant data with available thyroid function tests 
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and subsequent follow-up of HF events [45]. The 
pooled data were stratified according to age, sex, 
gender, race, TSH levels, and preexisting cardio-
vascular disease and HF.  The final risk of HF 
events was significantly increased in patients 
with TSH levels ≥10 mIU/L (HR 1.86; CI 1.27–
2.72) compared to euthyroid controls [45]. 
Interestingly, the increased risk of HF in adults 
persisted after excluding patients with preexist-
ing HF or atrial fibrillation (AF) [45]. Further 
adjustments for cardiovascular risk factors and 
other potentially confounding risk factors for HF 
did not significantly change the association with 
HF events [45]. Moreover, the risk of HF was 
increased after excluding participants using thy-
roid medications (mainly T4 replacement) at 
baseline and during periods of follow-up [45]. 
Other studies have even suggested that SHypo 
may be a risk factor for cardiac death in patients 
with preexisting chronic heart failure [46]. 
Hypothyroidism may frequently coexist in 
patients with chronic HF, with a prevalence of 
about 18% in all patients with HF. The onset of 
hypothyroidism may exacerbate progression of 
HF in cardiac patients [47, 48]; even mild or 
SHypo was independently associated with a 
greater likelihood of HF progression in patients 
with chronic HF [47, 48].

These results may explain why the 
American College of Cardiology guidelines 
for HF published in 2010 recommended 
screening with serum TSH of all newly diag-
nosed cases of HF [49].

 Coronary Artery Disease Events 
and Mortality in Overt 
and Subclinical Hypothyroidism

Clinical and autopsy studies have shown that 
coronary artery disease frequently occurs and 
may progress more rapidly in hypothyroid 
patients [22, 50]. An increased risk of coronary 
heart disease events and mortality has been 
reported in young patients affected by SHypo 
[51]. A meta-analysis by Rodondi and the 
Thyroid Studies Collaboration assessed the risk 
of CHD events, CHD mortality, and total mortal-

ity in SHypo patients [52]. The risk of CHD 
events and CHD deaths was examined in 25.977 
participants from seven prospective cohort stud-
ies. The results were analyzed in relation to age, 
sex, race, TSH concentrations, and preexisting 
cardiovascular diseases. The severity of SHypo 
was stratified according to three categories of 
TSH concentration (4.5–6.9, 7.0–9.9, and 10.0–
19.9 mIU/L). The risk of CHD events and mortal-
ity from CHD increased with higher TSH 
concentrations. In age- and sex-adjusted analy-
ses, the HR for CHD events was 1.89 (95% CI, 
1.28–2.80) for a TSH level of 10–19.9  mIU/L 
[52]. The resulting HR for CHD mortality was 
1.58. Risks did not significantly differ by age, 
sex, or preexisting cardiovascular diseases [52]. 
This analysis demonstrates a significant trend of 
increased risk of both CHD events and mortality 
at higher serum TSH concentrations, particularly 
in participants with a TSH level of 10 mIU/L or 
greater [52].

On the contrary, total mortality was not 
increased among participants with SHypo, and 
the results were similar after further adjustment 
for traditional cardiovascular risk factors [52].

 Benefit of Treatment 
with Replacement Doses of l-T4 
on Heart Failure and Coronary 
Heart Disease in Overt 
Hypothyroidism (Table 3)

The administration of thyroid hormone benefits 
the hypothyroid heart because it improves myo-
cardial contractility and diastolic function and 
reduces cardiac afterload, which is the major 
determinant of oxygen consumption [6, 24–26]. 
The administration of replacement doses of 
l-thyroxine can improve cardiovascular perfor-
mance and ventricular remodeling in experimen-
tal hypothyroidism [1, 2, 41, 42, 52, 53]. Some 
cases of myxedema and congestive heart failure 
have been reported in old studies, with an 
improvement in the manifestations of myxedema 
and heart failure during therapy even with 
 desiccated thyroid [52]. The electrocardiogram in 
hypothyroidism is characterized by sinus brady-
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cardia, low voltage, prolongation of the action 
potential duration, and the QT interval [3–6]. 
This latter condition may predispose hypothyroid 
patients to ventricular arrhythmias and rarely to 
acquired torsade de pointes [6]. However, even 
ventricular arrhythmias may improve or com-
pletely resolve after l-T4 treatment [6].

The hypometabolic state associated with 
hypothyroidism benefits the ischemic myocar-
dium by lowering oxygen demand [18]. This 
could explain data showing that thyroid hormone 
therapy improves myocardial efficiency and 
leads to regression of angina symptoms in hypo-
thyroid patients [54]. In a large retrospective 
study, replacement therapy with thyroid hormone 
leads to a decrease in angina frequency more 
often than to a worsening (38% vs. 16%) [54]. 
However, l-T4 may trigger severe angina, myo-
cardial infarction (MI), and arrhythmias in pres-
ence of asymptomatic underlying ischemic heart 
disease and severe hypothyroidism [55]. 
Coronary revascularization may be necessary to 
tolerate l-thyroxine in some patients with long-
standing and untreated hypothyroidism associ-
ated with severe atherosclerosis [6, 55, 56].

Consequently, full replacement doses of l-thy-
roxine can be safely given to young patients with 
overt hypothyroidism without underlying cardiac 

disease [6, 56]. In contrast, in elderly patients 
with known or suspected coronary artery disease 
and in patients with underlying heart disease, 
replacement therapy should be started at a low 
dose and gradually increased while monitoring 
the patient’s condition [6, 56]. Resting and exer-
cise electrocardiograms often show ischemic-like 
ST segment and T-wave changes in hypothyroid-
ism, but these alterations are not a useful test for 
the evaluation of an associated coronary artery 
disease and may disappear after replacement ther-
apy [6]. Therefore, in case of unstable angina, or 
worsening or appearance of angina during l-T4 
treatment, the possibility of significant occlusive 
coronary artery disease should be accurately 
assessed [6]. If patients are not candidates for per-
cutaneous intervention, coronary artery bypass 
grafting can be performed even in the setting of 
overt hypothyroidism [6]. Controlled studies have 
demonstrated that it is safe to perform bypass pro-
cedures or angioplasty before l-T4 therapy [6].

The optimal replacement dose of l-thyroxine 
should take into account the age of patients and 
the cause of hypothyroidism. Indeed, the l-thy-
roxine dosage should be lower in the elderly and 
higher in patients with overt hypothyroidism, 
particularly those who have undergone thyroid-
ectomy or prior iodine treatment for Graves’ dis-
ease [56].

 Benefit of Treatment 
with Replacement Doses of l-T4 
on Heart Failure and Coronary 
Heart Disease in Subclinical 
Hypothyroidism

A few randomized placebo-controlled studies 
have demonstrated an improvement of the car-
diovascular function in patients with mild (TSH 
≤10 mIU/L) and more severe subclinical hypo-
thyroidism (TSH ≥ 10 mIU/L) after replacement 
doses of l-thyroxine [24–28]. Diastolic dysfunc-
tion is reversible after replacement therapy [29, 
57, 58] Moreover, vascular function (SVR, arte-
rial stiffness, endothelial function) may 
 significantly improve when euthyroidism is 
restored [59–63].

Table 3 Recommendations to improve the prognosis of 
patients with hypothyroidism and cardiovascular 
complications

•  Prompt diagnosis of cardiovascular complications in 
elderly patients and in those with underlying heart 
disease (ECG, Holter ECG, Doppler 
echocardiography)

•  Restoration of a euthyroid state with l-thyroxine as 
soon as possible in young patients without 
underlying cardiac disease

•  Hospitalization when heart function does not 
improve upon restoration of euthyroidism

•  Start replacement therapy at a low dose and 
gradually increase while monitoring the patient’s 
condition in elderly patients with known or 
suspected coronary artery disease and in patients 
with underlying heart disease

•  Perform bypass procedures or angioplasty before 
l-T4 therapy in case of unstable angina or 
worsening or appearance of angina during l-T4 
treatment

•  Use lower doses of l-T4 in the elderly
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In the reanalysis of the Wickham survey on 97 
individuals (mean age, 49  years), during a 
20-year follow-up, all-cause mortality was sig-
nificantly lower in l-T4-treated patients with 
SHypo than in untreated individuals after adjust-
ing for age, gender, and cholesterol levels [64]. 
The risk of heart failure was significantly lower 
in thyroxine-treated patients than in untreated 
patients during the follow-up in the Cardiovascular 
Health Study [45]. Patients with TSH > 10 mIU/L 
had an increased risk of HF during the period of 
l-thyroxine withdrawal than during its use [45]. 
This supports a potential reduction of the risk of 
HF with replacement doses of l-thyroxine.

Important meta-analyses [45, 52] provide suf-
ficient evidence to justify the treatment of patients 
with SHypo having a serum TSH level above 
10  mIU/L to reduce the risk of HF and 
CHD. Therefore, the evidence appears substan-
tive for a beneficial effect of l-T4 replacement 
therapy in patients with ≥10 mI/L to prevent the 
risk of HF and CHD events. Prospective random-
ized controlled studies are necessary to evaluate 
the potential effects of l-T4 to prevent the risk of 
HF and CHD and their negative prognosis in 
patients with subclinical hypothyroidism. 
Whether or not to treat patients with mild SHypo 
remains controversial. Mild SHypo may be asso-
ciated with a greater cardiovascular risk in young 
and middle-aged people [25–28]. Recently, Razvi 
and co-workers examined the outcomes of treated 
individuals with mild SHypo (serum TSH of 
5.01–10.0  mIU/L) by analyzing data from the 
United Kingdom General Practitioner Research 
Database [65]. They stratified the analyses 
according to subsequent l-T4 treatment for 
younger (40–70  years) vs. older (>70  years) 
patients. For a median follow-up period of 
7.6 years, 52.8% of younger and 49.9% of older 
patients with mild SHypo were treated with a 
median l-T4 dosage of l-T4 of 75 μg/d (range, 
12.5–175 μ/d). After adjustment for baseline car-
diovascular risk factors, age, sex, baseline serum 
TSH levels, and l-T4 use, the number of incident 
ischemic heart disease events was lower in the 
l-T4-treated younger group (adjusted HR, 0.61; 
95% CI, 0.39–0.95). All-cause mortality was 
lower in the treated younger group (multivariate-

adjusted HR, 0.36; 95% CI, 0.19–0.66), primar-
ily because of a reduction in circulatory and 
cancer-related deaths [65]. This study clearly 
indicated that treatment of mild SHypo with l-T4 
was associated with better outcomes in ≤70-year-
old people with respect to incident fatal and non-
fatal ischemic heart disease events and mortality. 
On the other hand, treatment of older people with 
SHypo was not associated with similar benefits. 
However, the major limit of this study is the ret-
rospective design [65].

Two meta-analyses reported that an associa-
tion between SHypo and CHD existed only in 
patients younger than 60 years [66, 67] with no 
evidence of greater risks of CHD events, CHD 
mortality, and total mortality among pooled par-
ticipants over 80 years of age [67].

On the other hand, modestly increased serum 
TSH levels have been associated with longevity 
in several cross-sectional studies in elderly 
patients vs. younger controls and in nonagenari-
ans with reported familial longevity [68]. A pat-
tern of decreased mortality in SHypo was 
observed in the Leiden 85-Plus Study of 558 indi-
viduals aged 85 years who had been monitored 
for 4 years [69]. There was no link between per-
sistent SHypo and cardiovascular mortality (HR, 
1.07; 95% CI, 0.87–1.31) in 679 patients with 
SHypo of at least 65 years of age, enrolled in the 
recent Cardiovascular Health Study and not tak-
ing thyroid preparations [70].

Therefore, although some studies have dem-
onstrated the potential beneficial effects of l-T4 
therapy to improve cardiovascular risk in patients 
with mild SHypo, large randomized controlled 
studies will be required to assess the importance 
of this treatment in presence of minimal TSH 
elevation especially in elderly patients. About 
20% of patients with hypothyroidism may be 
overtreated during replacement therapy, and this 
suggests that a higher TSH level should be 
reached during replacement treatment with l-T4, 
especially in elderly subjects compared to 
younger people [71]. There is an increased risk of 
AF in overtreated patients with iatrogenic sub-
clinical hyperthyroidism; this risk may be 
avoided by normalizing serum TSH according to 
the age [72].
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 Conclusion

An early detection and an effective treatment of 
patients with thyroid dysfunction are essential to 
improve their cardiovascular prognosis.

Clinical studies have demonstrated that 
replacement doses of l-thyroxine may improve 
cardiovascular remodeling and function in 
patients with hypothyroidism. Replacement 
doses of l-T4 should be considered in patients 
with SHypo and TSH > 10 mIU/L to prevent the 
risk of HF and CHD.  However, large, random-
ized, controlled clinical trials are necessary to 
assess the benefits of treatment to improve car-
diovascular mortality and morbidity in patients 
with subclinical hypothyroidism and serum 
TSH ≥ 10 mIU/L.

All of the available trials concur that replace-
ment therapy may improve systolic, diastolic, 
and vascular function and hence cardiovascular 
hemodynamic in patients with mild SHypo. 
These results should be verified in larger random-
ized trials and longitudinal studies, assessing car-
diac morbidity and mortality.

The aim of treatment with l-thyroxine should 
be to normalize serum TSH levels according to 
the age of the patients, the etiology of hypothy-
roidism, and the associated comorbidities. This 
treatment does not have any adverse effect when 
the same l-thyroxine product is used and thyroid 
function is regularly monitored. Overtreatment 
with l-T4 should be avoided because of the 
adverse cardiovascular and skeletal consequences 
of iatrogenic hyperthyroidism in elderly people. 
Existing evidence suggests that treatment of mild 
SHypo should probably be avoided in patients 
older than 60  years of age because there is no 
definitive evidence that l-T4 treatment will 
reduce cardiovascular mortality in these patients.
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Graves’ Disease
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 Introduction to Thyrotoxicosis

Traditionally, the term thyrotoxicosis is used to 
signify the clinical syndrome resulting from an 
increase in circulating thyroid hormone levels, 
regardless of the source of excess thyroid hor-
mone [1]. On the other hand, hyperthyroidism 
refers to increased biosynthesis and secretion of 
thyroid hormones. Thus, thyrotoxicosis can be 
further classified as hyperthyroidism. For 
instance, thyrotoxicosis can result from 
increased secretion of thyroid hormone from the 
thyroid gland, such as seen in Graves’ disease. 
Alternatively, thyrotoxicosis can result from 
destruction of the gland with release of thyroid 
hormone or exogenous intake of thyroid hor-
mone, neither of which is associated with 
increased thyroid hormone synthesis. Proper 
identification of the causes of thyrotoxicosis is 
crucial for both diagnostic and treatment 
purposes.

 Clinical Signs and Symptoms

The typical symptoms of thyrotoxicosis are 
indicative of the effect of excess thyroid hormone 
throughout the body and enhanced beta-adrener-
gic activity. The most commonly reported symp-
toms are fatigue and weight loss, which occur in 
70 and 60% of patients, respectively [2, 3]. About 
50% of patients report heat intolerance, tremor, 
or palpitations. Common physical examination 
findings include tachycardia, a palpable goiter, 
and tremor. Table 1 summarizes signs and symp-
toms of thyrotoxicosis by organ system.

Older patients tend to have fewer symptoms 
than younger patients, which makes the clinical 
diagnosis more difficult in the elderly [4]. 
Furthermore, the elderly are at a higher risk of 
significant cardiac arrhythmias such as atrial 
fibrillation, which is encountered in up to 20% of 
older patients [2, 5]. Cardiovascular manifesta-
tions have the most serious consequences, as thy-
rotoxicosis is associated with increased morbidity 
and mortality due to the development of heart 
failure and thromboembolism secondary to car-
diac dysrhythmias [5, 6].

Thyroid storm or thyrotoxic crisis is an 
extreme and life-threatening state of severe thy-
rotoxicosis that occurs in less than 10% of 
patients [7]. It is usually precipitated by an acute 
event such as infection, sepsis, diabetic ketoaci-
dosis, trauma, surgery, myocardial infarction, 

J. H. Li 
Department of Medicine, Beth Israel Deaconess 
Medical Center, Boston, MA, USA 

N. Kasid · J. V. Hennessey (*) 
Division of Endocrinology, Department of Medicine, 
Beth Israel Deaconess Medical Center, Harvard 
Medical School, Boston, MA, USA
e-mail: jhenness@bidmc.harvard.edu

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-72102-6_22&domain=pdf
mailto:jhenness@bidmc.harvard.edu


308

pregnancy, or labor. The diagnosis is clinical and 
should be made when there is severe thyrotoxico-
sis on examination. In one case series, over 60% 
of patients had cardiac manifestations such as 
severe tachycardia or atrial fibrillation [8]. Other 
serious clinical manifestations include hyperpy-
rexia, psychosis, stupor, coma, and jaundice. 
Thyroid storm has a mortality of 10% and is con-
sidered a true endocrine emergency [9]. A 
detailed discussion of thyroid storm can be found 
later in this textbook.

 Evaluation of Thyrotoxicosis

Identifying the source of excess thyroid hormone 
is essential for determining the appropriate thera-
peutic intervention. The evaluation should begin 
with a thorough history and physical examina-
tion. Focused inquiry can include questions about 
whether there was a precipitating viral illness, 
use of thyroid hormone supplements or iodine-
containing drugs, a history of radioiodine expo-
sure in the preceding 2–3 months, or high iodine 
content in the diet. With respect to the physical 
exam, it is important to evaluate for clinical signs 
such as tachycardia, elevated systolic blood pres-
sure, irregularly irregular rhythm consistent with 
atrial fibrillation, tremor, a rapid relaxation phase 
of reflexes, and diaphoresis. The Means-Lerman 
scratch is an uncommon mid-systolic murmur 

best heard over the upper part of the sternum that 
results from the rubbing of a hyperdynamic peri-
cardium against the pleura [10]. Examination of 
the thyroid gland should include an assessment 
of size (normal is under 20 mg, which generally 
corresponds to each lobe being the size of the end 
phalanx of the individual’s thumb). Additionally, 
any tenderness to palpation, the presence of thy-
roid nodules, thyroid bruits, and/or cervical 
lymphadenopathy should be noted.

Suspected overt thyrotoxicosis should be con-
firmed by biochemical testing and is usually char-
acterized by a suppressed thyroid-stimulating 
hormone (TSH) level (<0.01 mU/L) in addition to 
increased levels of free thyroxine (T4) and triiodo-
thyronine (T3) [11]. Subclinical thyrotoxicosis is 
present when there is a reduced or low TSH while 
circulating concentrations of T3 and free T4 are 
normal. The etiology of thyrotoxicosis may often 
be apparent based on a clinical presentation consis-
tent with Graves’ disease, but when the diagnosis is 
not obvious, further diagnostic testing should also 
include measurement of radioactive iodine uptake 
(RAIU). While TSH is suppressed, the RAIU 
would be expected to be zero. Generally, values 
greater than 10% are consistent with hyperthyroid-
ism in a thyrotoxic patient. Technetium scintigra-
phy (TcO4) is an alternative imaging modality that 
provides less total body radiation exposure [11, 
12]. While it is effective in detecting both func-
tional and cold thyroid nodules, scintigraphy is less 

Table 1 Signs and symptoms of thyrotoxicosis by organ system

Organ system Signs Symptoms
Cardiovascular Tachycardia, widened pulse pressure, atrial 

arrhythmia, congestive heart failure
Palpitations, shortness of breath, chest 
pain

Gastrointestinal Weight loss, decreased gastric secretion, mild 
transaminitis

Hyperdefecation, increased appetite

Hematologic Anemia, hypercoagulability
Musculoskeletal Myopathy, proximal weakness, increased bone 

turnover, decreased bone density, periodic 
paralysis (rare)

Weakness, tremor

Nervous/psych Hyperactivity, tremor, brisk reflexes, seizure (rare) Fatigue, anxiety, depression, restlessness, 
emotional lability, psychosis (rare)

Reproductive Oligomenorrhea and decreased fertility (female), 
gynecomastia and decreased libido (male)

Respiratory Respiratory muscle weakness Shortness of breath
Skin Increased perspiration, hair loss and thinning, 

onycholysis, edema
Flushing, heat intolerance
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sensitive than ultrasound for the identification of 
nodularity [13].

Thyroid ultrasound can measure thyroid vol-
ume and blood flow, especially in pregnant 
patients where nuclear studies are contraindi-
cated [14]. Additionally, thyrotropin receptor 
antibodies (TRAb), antithyroid peroxidase (TPO) 
antibodies, and anti-thyroglobulin (Tg) antibod-
ies may document the presence of autoimmune 
thyroid disease [15]. Figure 1 provides a system-
atic approach for the evaluation of thyrotoxicosis 
in the nonpregnant patient.

 Differential Diagnosis

The most common cause of endogenous thyro-
toxicosis is Graves’ disease, which comprises 
approximately 80% of cases [1]. Other common 
etiologies include toxic multinodular goiter, toxic 
adenoma, and silent thyroiditis [16]. In this sec-
tion, we will briefly discuss the broad differential 
of thyrotoxicosis and present clinical features 
that distinguish one diagnosis from another. 
Graves’ disease will be discussed in significant 
detail later in this chapter.

Based on history and exposures, consider:
Silent thyroiditis (post-partum)*

Drug-induced thyroiditis*
Iodine-induced hyperthyroidism*

Ectopic production (struma ovarii or functional metastases)*
Ingestion of thyroid hormone (low serum Tg)*

Subacute
thyroiditis*

Infectious
thyroiditis*

AbscessNo abscess

Perform Ultrasound

Painless thyroid Painful thyroid

Low or absent uptake Increased
diffuse

Increased
focal

Check RAI

T3-toxicosis

Consider:
Graves’ disease

Toxic nodular goiter
Ingestion of T3 (low serum Tg)

Subclinical

Low or suppressed TSH

↑TT3, ↓ or
normal fT4

↑TT3 or
fT4

Normal TT3
or fT4

↑TT3 or
fT4

Normal TT3
or fT4

Elevated or normal TSH

Check TSH

Signs/symptoms of thyrotoxicosis

Not thyrotoxicosis Consider central hyperthyroidism

Pituitary MRI, α-subunit/TSH ratio, TRH
stimulation, T3 suppression testing

TSH-secreting pituitary adenoma
vs. thyroid hormone resistance

Increased with
numerous foci

Toxic
adenoma†

Graves’
disease†

Toxic multinodular
goiter†

Fig. 1 A systematic approach for the evaluation of thyro-
toxicosis. TT3 total triiodothyronine, fT4 free thyroxine, 
TT4 total thyroxine, TSH thyroid-stimulating hormone, 

TRH thyrotropin-releasing hormone, Tg thyroglobulin, 
RAI radioactive iodine. *TT3/TT4 ratio is <20  ng/μg. 
†TT3/TT4 ratio is >20 ng/μg
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 Multinodular Goiter/Solitary Toxic 
Nodule

Toxic nodular goiter, which comprises multinod-
ular goiter and solitary toxic nodule, results from 
diffuse or focal hyperplasia of thyroid follicular 
cells over time. While it is less common than 
Graves’ disease, the prevalence of toxic nodular 
goiter is higher in regions of iodine deficiency 
and in older patients [17]. While the etiology is 
not entirely known, many cases are caused by 
TSH receptor G-protein defects that leave the 
cellular activation system of thyroid hormone 
synthesis in a constantly stimulated state [18–
20]. Patients progress from subclinical hyperthy-
roidism to overt hyperthyroidism as these nodules 
grow and become autonomous, independent of 
regulation by TSH. The diagnosis should be sus-
pected in hyperthyroid patients with physical 
examination findings or ultrasound evidence of a 
thyroid nodule or multinodular goiter. Thyroid 
scintigraphy can distinguish functional nodular 
thyroid disease from Graves’ disease. A toxic 
adenoma will have increased radioactive iodine 
uptake confined to the nodule with corresponding 
uptake suppression in other areas of the thyroid. 
Toxic multinodular goiter will have more than 
one focal area of increased radioactive iodine 
uptake compared with the elevated diffuse 
homogenous uptake as seen in Graves’ disease.

 Thyroiditis

Thyroiditis refers to destruction of thyroid fol-
licular cells with release of thyroid hormone, 
often resulting in thyrotoxicosis. In thyroiditis, 
the thyroid gland is not actively synthesizing and 
secreting thyroid hormone, so it is distinguished 
by a low radioactive iodine uptake. The thyro-
toxic phase is usually followed by transient hypo-
thyroidism and subsequent recovery. The most 
common etiologies of thyroiditis are painless 
(spontaneous), painful subacute (de Quervain’s), 
infectious, and drug-induced.

Painless thyroiditis is autoimmune-mediated 
and usually self-limited. Patients with painless 
thyroiditis often have high serum concentrations 

of anti-TPO and anti-Tg antibodies [15]. 
Subacute or painful thyroiditis is thought to be 
caused by an inflammatory reaction to a viral 
infection and is characterized by a prodrome with 
fatigue, malaise, and myalgias [21]. The erythro-
cyte sedimentation rate (ESR) is usually greater 
than 50 mm/h and can be elevated over 100 mm/h 
[11]. Infectious (acute) thyroiditis is an uncom-
mon condition, which presents as sudden onset 
neck pain, tenderness, fever, and a fluctuant uni-
lateral neck mass. Over half of cases are caused 
by either Staphylococcus or Streptococcus spe-
cies [22]. Ultrasound can be used to differentiate 
infectious from subacute thyroiditis, as infectious 
thyroiditis presents with an abscess. Thyroid 
function is usually normal in these cases but thy-
rotoxicosis can be observed transiently.

Drug-induced thyroiditis can occur in patients 
receiving amiodarone, interferon-alfa, lithium, 
and tyrosine kinase inhibitors [23]. Amiodarone-
induced thyrotoxicosis (AIT) occurs by two 
mechanisms, iodine-induced hyperthyroidism 
(type 1) and destructive thyroiditis (type 2). Type 
1 AIT occurs in patients with underlying Graves’ 
disease or toxic nodular goiter, where the excess 
iodine load from amiodarone fuels thyroid hor-
mone production [24]. In contrast, type 2 AIT is 
a destructive thyroiditis that destroys thyroid fol-
licular epithelial cells due to a direct toxic effect 
of the drug. The two forms appear similar bio-
chemically, but thyroid ultrasound reveals 
increased vascularity and a diffusely enlarged or 
nodular goiter in type 1 AIT [25, 26].

 Less Common Causes 
of Thyrotoxicosis

Stimulation of the TSH receptor on thyroid fol-
licular cells by human chorionic gonadotropin 
(hCG) at extremely elevated levels, such as in 
molar pregnancy or choriocarcinoma, can lead to 
clinical thyrotoxicosis or thyroid storm [14, 27]. 
This diagnosis can be made by measuring serum 
hCG levels. Additionally, thyrotoxicosis can 
result from central hyperthyroidism, in the form 
of either resistance to thyroid hormone (RTH) or 
a TSH-secreting pituitary adenoma. Both are 
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uniquely characterized by measurable levels of 
circulating TSH in the setting of elevated levels 
of free T4 [28]. A TSH-secreting pituitary ade-
noma usually presents with signs and symptoms 
milder than those in patients with hyperthyroid-
ism of thyroid origin such as Graves’, in addition 
to potential mass effects of the pituitary tumor 
[29]. This can be differentiated from RTH by a 
pituitary MRI revealing a mass, an elevated 
alpha-subunit/TSH ratio, and a blunted response 
to thyrotropin-releasing hormone (TRH) stimula-
tion and T3 suppression testing [11, 30].

Hyperthyroidism associated with recent 
iodine exposure (Jod-Basedow phenomenon) 
occurs most frequently in iodine-deficient areas, 
especially in those with pre-existing underlying 
thyroid autonomy such as multinodular goiter 
[31]. With an excess iodine load, the autonomous 
areas of thyroid tissue can produce thyroid hor-
mones independent of regulatory mechanisms 
[32]. Exposure to iodinated contrast media has 
also been reported to occasionally precipitate 
development of hyperthyroidism, especially in 
the elderly [33].

Other less common causes of thyrotoxicosis 
include exogenous and ectopic hyperthyroidism. 
Production of thyroid hormone from thyroid tis-
sue in abnormal locations, such as in struma ova-
rii, lingual goiter, or metastatic thyroid carcinoma, 
may be localized by whole-body iodine scanning. 
Surreptitious ingestion of thyroid hormone can 
cause factitious thyrotoxicosis, which presents 
with a nonpalpable thyroid gland and with sup-
pression of circulating thyroglobulin levels [3, 
11]. Dietary health supplements marked for “thy-
roid support” have also been shown to contain 
clinically relevant amounts of T3 and T4, which 
can cause iatrogenic thyrotoxicosis in an unsus-
pecting patient [34].

 Thyrotoxicosis in Pregnancy

To meet the increased metabolic needs during 
pregnancy, there are multiple changes in thyroid 
hormone physiology that occur which require 
special consideration. First, estrogen increases 
the production of thyroxine-binding globulin 

(TBG), which is the main thyroid hormone trans-
port protein [14]. To sustain adequate free hor-
mone concentrations, synthesis of T4 and T3 
must increase. Moreover, degradation of T4 and 
T3 by uteroplacental-bound deiodinase type 3 
further drives the need for this compensatory 
increase in thyroid hormone synthesis [35]. 
Increasing levels of hCG, which is structurally 
homologous to TSH, activates the TSH receptor 
on thyroid follicular cells, increasing total and 
free T4 concentrations, which results in a recip-
rocal physiologic decrease in TSH.

Thyrotoxicosis in pregnancy has a prevalence 
of between 0.1 and 0.4%, and the most common 
cause is Graves’ disease, representing 85% of 
cases [36]. Gestational transient thyrotoxicosis 
(GTT), which results from excessive stimulatory 
action of hCG on the TSH receptor, has a preva-
lence ranging from 2 to 3% in the European pop-
ulation to 11% in Singapore [14]. GTT is typically 
seen with hyperemesis and multiple gestations 
[35]. The differential also includes those entities 
mentioned above, such as toxic nodular goiter 
and thyroiditis, but occurrences are rare.

 Introduction to Graves’ Disease

The most common cause of thyrotoxicosis is 
Graves’ disease, an autoimmune disorder caused 
by stimulating antibodies to the thyrotropin, or 
TSH, receptor on thyroid follicular cells. The inci-
dence of Graves’ disease is slightly over 20 cases 
per 100,000 individuals each year [37]. Graves’ 
disease predominantly affects patients ages 
40–60 years with a female to male predominance 
ranging from 5:1 to 10:1 [38]. In one study, over 
3% of women and 0.5% of men had a lifetime 
probability of developing Graves’ disease [37].

 Pathogenesis of Graves’ Disease

In Graves’ disease, the main autoantigen is the 
TSH receptor, which is a G-protein-linked recep-
tor with seven transmembrane-spanning domains 
[18]. TSH acts via the TSH receptor to regulate 
thyroid growth as well as hormone production 
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and secretion. Patients with hyperthyroidism from 
Graves’ disease have circulating stimulating auto-
antibodies that bind to the leucine-rich repeat 
region of the TSH receptor on follicular cells [39]. 
Binding of antibodies to the TSH receptor acti-
vates G-proteins and transmembrane adenylyl 
cyclases, leading to a rapid increase in cyclic ade-
nosine monophosphate (cAMP) and unregulated 
production of thyroid hormone [40]. However, 
not all TRAb are stimulatory, as patients can also 
have blocking antibodies that inhibit the activity 
of TSH on the receptor. The balance between con-
centrations of stimulating and blocking antibodies 
may explain fluctuations in the clinical presenta-
tion of Graves’ disease [41]. Moreover there exist 
neutral antibodies that do not impact TSH binding 
but are involved in cell signaling and oxidative 
stress-induced apoptosis [42].

Several factors predisposing individuals to 
develop Graves’ disease have been proposed. 
Epidemiologic studies have revealed that genetic 
susceptibility plays a role in the pathogenesis of 
Graves’. In particular, there are strong associations 
between Graves’ disease and variants in the class 
II major histocompatibility component (MHC) 
molecule HLA-DR3, which is involved in antigen 
presentation [43]. Additionally, single nucleotide 
polymorphisms in the TSH receptor and thyro-
globulin genes have also been implicated in 
Graves’ disease [43–45]. While 70–80% of sus-
ceptibility to autoimmune thyroid disease is attrib-
uted to genetic factors, the remaining 20–30% is 
from environmental exposures, including infec-
tions, stress, iodine intake, and radiation exposure 
[46]. Moreover, administration of interferon and 
other immunomodulating drugs can induce thy-
roid autoimmunity and precipitate hyperthyroid-
ism [47, 48]. Smoking also appears to increase the 
risk of Graves’ disease by twofold [49].

 Clinical Manifestations of Graves’ 
Disease

Patients with Graves’ disease present with typical 
symptoms of thyrotoxicosis such as weight loss, 
fatigue, palpitations, tremor, anxiety, and tachy-
cardia, as discussed earlier in this chapter. 

Additionally, patients can present with a 
 characteristic ophthalmopathy, thyroid dermopa-
thy, and thyroid acropachy, which are autoim-
mune manifestations of Graves’ disease that will 
be discussed in further detail in a subsequent 
chapter of this textbook. Briefly, ophthalmopathy 
occurs in approximately 50% of Graves’ patients. 
Approximately 20–30% of cases are clinically 
relevant, and 3–5% are severe cases with intense 
pain and sight-threatening compressive optic 
neuropathy or corneal breakdown [50]. The 
development of ophthalmopathy usually coin-
cides with the onset of thyrotoxicosis, but it can 
precede or follow thyrotoxicosis [51]. Common 
clinical signs include upper eyelid retraction, 
exophthalmos, periorbital edema, and erythema 
[52]. Patients often report diplopia, blurry vision, 
photophobia, a dry gritty sensation in the eyes, or 
pressure behind the eyeballs. Graves’ ophthal-
mopathy is usually bilateral but can present 
asymmetrically in 10–15% of cases or even uni-
laterally [53, 54].

Thyroid dermopathy is present in 4–13% of 
patients with Graves’ disease and is almost 
always seen in conjunction with Graves’ ophthal-
mopathy [55]. The presence of both dermopathy 
and ophthalmopathy is indicative of severe auto-
immune disease. Thyroid dermopathy is charac-
terized by non-pitting scaly thickening and 
induration of the skin and is also known as pre-
tibial myxedema due to its frequent localization 
to the pretibial areas of the lower legs. However, 
lesions can occur in other regions as well, espe-
cially in areas of prior trauma [56]. The skin 
lesions typically are either flesh-colored or yel-
lowish-brown but can have an orange peel texture 
[57]. Hyperpigmentation and hyperkeratosis can 
also be present. These regions are most often 
mild and bothersome only from a cosmetic per-
spective. However, in its most severe form, 
 thyroid dermopathy can have features of elephan-
tiasis causing severe pain and discomfort [58].

An even rarer extrathyroidal expression of 
Graves’ disease is thyroid acropachy, or clubbing 
of the fingers and toes, which occurs approxi-
mately in 0.3% of Graves’ patients [59]. It almost 
always occurs in the presence of both ophthalmop-
athy and thyroid dermopathy; approximately 20% 
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of dermopathy patients have acropachy [55]. 
Usually thyroid acropachy is painless but it can be 
associated with significant swelling causing pain 
and loss of function. The disease process is usually 
symmetric but can present in a single digit [55].

Thymic enlargement has been associated with 
Graves’ disease, though the precise pathophysi-
ology of thymic hyperplasia remains unclear 
[60]. Interestingly, thymic enlargement is revers-
ible and tends to regress with successful treat-
ment of hyperthyroidism with antithyroidal 
drugs, radioiodine, or thyroidectomy [61].

 Diagnostic Evaluation of Graves’ 
Disease

Graves’ disease should be suspected in a patient 
with the clinical signs and symptoms of thyro-
toxicosis in combination with extrathyroidal 
manifestations such as ophthalmopathy, dermop-
athy, or acropachy [12]. Physical examination 
can reveal a goiter with a thyroid bruit, which is 
highly characteristic of Graves’ disease [62]. The 
initial biochemical evaluation should include 
assessment of the TSH, free T4, and total T3 lev-
els. A total T3 to total T4 ratio of greater than 
20 (ng/μg) is more suggestive of Graves’ disease 
than other forms of thyrotoxicosis (such as sub-
acute thyroiditis and exogenous levothyroxine 
thyrotoxicosis), due to a disproportionate increase 
in thyroidal T3 secretion [11, 63].

In clinical settings where the diagnosis is 
uncertain, measurement of TRAb can distinguish 
Graves’ disease from other causes of thyrotoxi-
cosis. In fact, third-generation TRAb assays have 
high sensitivity and specificity in the upper 90% 
[64, 65]. Currently there exist two methods for 
assessing TRAb. The thyroid-stimulating immu-
noglobulin (TSI) assay measures the ability of 
antibodies to bind to the TSH receptor and stimu-
late cAMP production, whereas the thyrotropin-
binding inhibiting immunoglobulin (TBII) assay 
measures the capacity of antibodies to inhibit 
TSH binding to an in vitro TSH receptor prepara-
tion [64]. Notably, measurements of anti-Tg and 
anti-TPO antibodies can be elevated but are not 
unique to Graves’ disease [12].

The evaluation of thyroid function in preg-
nancy must make use of trimester-specific refer-
ence ranges for TSH: 0.1–2.5 mIU/L in the first 
trimester, 0.2–3.0 mIU/L in the second, and 0.3–
3.0 mIU/L in the third, if locally generated ranges 
are not available [11]. Instead of measuring free 
T4, which is highly variable and lacks standard-
ization during pregnancy, total T4 measurements 
should be used to measure hormone concentra-
tions during pregnancy [66]. However, preg-
nancy-adjusted reference ranges must be used 
because total T4 levels increase by approximately 
50% above prepregnancy levels [14]. 
Measurement of TRAb is essential for diagnostic 
and prognostic purposes during pregnancy, as 
TRAb crosses the placenta and may also trigger 
neonatal hyperthyroidism [35].

Several imaging modalities are utilized in the 
diagnosis of Graves’ disease in the nonpregnant 
patient. Thyroid uptake of radioactive iodine is 
typically diffuse and greater than 30–50% in 
Graves’ disease [3]. In pregnant patients with 
Graves’ for which nuclear studies are contraindi-
cated, color flow Doppler sonography will reveal 
a diffusely enlarged and hypoechoic thyroid 
gland with increased extranodular and perithyroi-
dal vascularity [12, 67]. “Thyroid inferno,” a 
sonographic finding in which multiple areas of 
color flow are seen diffusely in both systole and 
diastole, may be noted in untreated patients with 
Graves’ disease [62]. While one study showed no 
difference between scintigraphy and sonography 
in rates of diagnosis, ultrasound was found to be 
more cost-effective and had a higher sensitivity 
for detecting concomitant nodular lesions [13].

 Treatment of Graves’ Disease

The therapeutic goal in treating Graves’ disease 
is either to attain biochemical euthyroidism with 
antithyroidal drugs or achieve hypothyroidism 
following radioactive iodine or thyroidectomy. 
Furthermore, it is important that treatment occurs 
in a timely manner to avoid complications of 
untreated Graves’ such as atrial fibrillation and 
osteoporosis. There are three strategies for treat-
ment: (1) normalization of thyroid hormone pro-
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duction with antithyroidal drugs (ATDs), (2) 
surgical removal of the gland with total thyroid-
ectomy, and (3) destruction of the gland with 
radioactive iodine. The treatment modality 
should be based on the clinical scenario as well 
as the patient’s preference. Interestingly, in a 
study of 179 patients randomized to one of the 
three treatments, no significant differences in 
quality of life were observed among the treat-
ment modalities [68].

 Antithyroidal Drugs

Thionamides are the antithyroidal drugs utilized 
in Graves’ disease and comprise carbimazole, its 
active metabolite methimazole (1-methyl-2-mer-
captoimidazole), and propylthiouracil (6-propyl-
2-thiouracil, PTU). These medications interfere 
with iodination of tyrosine residues in thyroglob-
ulin, which is a key step in thyroid hormone syn-
thesis [69]. PTU also inhibits the conversion of 
T4 to T3 within the thyroid and in peripheral tis-
sues [1, 70]. ATDs are the preferred therapy for 
patients with mild hyperthyroidism and high 
likelihood of remission, multiple comorbidities 
carrying high surgical risk, an inability to follow 
radiation safety guidelines, or with moderate to 
severe active Graves’ ophthalmopathy, as radio-
iodine therapy is associated with precipitating a 
worsening of this condition [11]. ATDs are also 
preferred over definitive therapies during preg-
nancy, which will be further discussed later in 
this section [71].

PTU and methimazole are available in the 
United States, whereas carbimazole, a third 
agent, is a precursor of methimazole and is avail-
able in many countries. Prior to ATD initiation, a 
complete blood count with differential and liver 
panel should be obtained due to the association of 
ATDs with agranulocytosis and hepatic toxicity. 
The titration method of ATD administration 
involves starting at a higher dose of ATD and then 
decreasing to a maintenance dose as a euthyroid 
state is restored [12]. An initial dose of methima-
zole can be initiated at 10–30 mg per day based 
on the degree of thyroid dysfunction and lowered 
to 5–10 mg daily for maintenance therapy. On the 

other hand, PTU requires administration 2–3 
times per day with initial doses of 50–150  mg 
three times daily followed by maintenance ther-
apy of 50 mg two to three times daily. After ini-
tiation, biochemical thyroid studies should be 
reassessed in 4 weeks and subsequent monitoring 
can occur every 2–3 months [11]. In the past, the 
block-replace method was popular and involved 
administering a high dose of ATD with levothy-
roxine to assist in permanent resolution of the 
hyperthyroid state. However, this method has 
fallen out of favor as it has been shown to result 
in a higher rate of adverse events [72].

Interestingly, there are geographic differences 
in prescribing patterns, as ATDs are more favored 
in Europe and Japan as compared to in the United 
States [1, 73]. Among the types of ATDs, carbima-
zole and methimazole are favored over PTU in 
most cases due to increased compliance with once-
a-day dosing and more rapid normalization of 
serum T3 and T4 concentrations [69]. Side effect 
profile is also a strong consideration. Minor side 
effects include cutaneous reactions, arthralgias, 
and gastrointestinal upset, which occur in approxi-
mately 5% of patients on either drug [3]. In a recent 
systematic review of observational studies, the pre-
dominant adverse effect of methimazole was rash 
(6%) whereas it was hepatic involvement in 2.7% 
of patients on PTU [74]. While both methimazole 
and PTU are associated with hepatotoxicity, it is 
less severe in methimazole and usually causes cho-
lestatic dysfunction, while PTU can cause hepato-
cellular inflammation [75]. Because PTU can cause 
fulminant hepatic necrosis and is one of the com-
mon etiologies of drug-related liver transplanta-
tion, the FDA issued a safety alert in 2010 regarding 
PTU’s risk for causing severe liver injury and acute 
liver failure [76].

Agranulocytosis is a serious, life-threatening 
side effect that occurs in approximately 1 in 500 
patients and presents with high fever and severe 
pharyngitis [3]. Patients should be counseled to 
stop the medication immediately and call their 
physician for a complete blood count if they 
experience these symptoms. Treatment usually 
involves hospitalization, administration of broad-
spectrum antibiotics, and granulocyte colony-
stimulating factor. Antineutrophilic cytoplasmic 

J. H. Li et al.



315

antibody (ANCA)-positive vasculitis is another 
rare side effect related to PTU use but is even 
rarer with methimazole use [3].

Once euthyroid levels are achieved on an 
ATD, biochemical testing can be performed at 
2–3-month intervals. There is insufficient evi-
dence currently to recommend periodic monitor-
ing of white blood cell counts or liver function 
for preventative purposes; however, assessment 
of these parameters is certainly reasonable in any 
patient who experiences fever, sore throat, pru-
ritic rash, jaundice, acholic stools, nausea, 
fatigue, or dark urine [11]. Patients on methima-
zole are recommended to continue on therapy for 
12–18 months to prevent recurrence. Furthermore, 
a TRAb level prior to discontinuing therapy can 
aid in predicting the patient’s chances of remis-
sion. Those with persistently elevated TRAb may 
continue therapy for another 12–18  months or 
consider alternative definitive therapy [77]. After 
discontinuation of ATDs, thyroid function should 
be monitored every 1–3 months for 6 months and 
then at increasing intervals if normal.

 Radioiodine Therapy

Radioiodine (RAI) is given orally as sodium 
iodide (131I), which is rapidly absorbed and con-
centrated in the thyroid, causing necrosis of thy-
roid cells due to beta particle release [71]. The 
gradual loss of thyroid tissue results in hypothy-
roidism, which is the goal of this therapy. RAI 
should be considered in females planning preg-
nancy in the future but not for at least 6 months; 
patients with significant surgical risk, previous 
neck operations, or extensive external irradiation; 
or those with contraindications or side effects to 
ATD use [11]. RAI is absolutely contraindicated 
during pregnancy, nursing, or when planning for 
an upcoming pregnancy within 6 months [71]. In 
patients who have a concomitant thyroid nodule, 
further evaluation is indicated to determine if the 
nodule is benign or malignant. If a thyroid nodule 
is concerning for malignancy in the presence of 
Graves’, the recommended treatment would be to 
pursue total thyroidectomy over RAI therapy 
after rendering the patient euthyroid with ATDs.

Biochemical hypothyroidism is usually 
achieved with administration of 10–15 mCi [11]. 
Alternatively, the dose can be estimated based on 
RAI uptake as well as thyroid gland size [12]. 
Because RAI can induce a transient increase in 
thyroid hormone levels, the elderly, those with 
severe hyperthyroidism, and those with a high 
risk of cardiovascular complications may benefit 
from beta-blockade or ATDs before and after 
RAI, though there is limited evidence to support 
this practice [11]. When pretreatment methima-
zole is given, it should be stopped 3–7 days prior 
to RAI and resumed at the same interval after 
treatment [73].

All reproductive aged women are required to 
have a negative pregnancy test before 
RAI. Women who are nursing should stop breast-
feeding for at least 6 weeks prior to RAI admin-
istration. All patients should receive extensive 
counseling on radiation safety precautions as 
determined by the National Council on Radiation 
Protection and Measurement [78]. Pertinent top-
ics include the duration and extent of contact 
avoidance with others, hygiene precautions to 
reduce exposure to bodily fluids, and avoidance 
of commonly shared household items. 
Posttreatment conception should not occur until 
at least 6 months in women to allow restoration 
of a euthyroid state at the time of conception and 
3–4 months in men [11].

Adverse events posttreatment include radia-
tion thyroiditis, which can manifest as neck 
tenderness and transient exacerbation of the 
thyrotoxicosis [73]. Furthermore, sialadenitis, 
neck swelling, and glossitis can be observed. 
To avoid development of sialadenitis, some 
suggest sucking on hard candy that does not 
contain iodinated red dyes or chewing on gum 
in the week following treatment [79]. 
Unfortunately, patients with mild ophthalmop-
athy and/or those with a history of tobacco use 
or positive TRAb may develop or experience 
progression of the associated eye symptoms 
following 131I [80–82]. This complication can 
be prevented by prophylaxis with low-dose 
oral prednisone. Further discussion on the spe-
cific indications is beyond the scope of this 
section.

Graves’ Disease



316

Generally, patients should have biochemical 
thyroid testing every 4–6 weeks after RAI to deter-
mine when thyroid hormone replacement will be 
required. Serum TSH can be suppressed for over a 
month following RAI so assessment should be 
based on free T4 and total T3 levels [11]. Any beta 
blockers or ATDs can be tapered once free T4 and 
total T3 have normalized. Levothyroxine should 
be started when the free T4 falls below the refer-
ence range. If hyperthyroidism is present 6 months 
after therapy, a repeat treatment may be consid-
ered [11]. Patients with Graves’ ophthalmopathy 
should have follow-up with an ophthalmologist 
6–12 months after RAI therapy [80].

 Total Thyroidectomy

With the development of ATDs and RAI, thyroid-
ectomy has become the least recommended treat-
ment for Graves’ disease [3]. However, 
thyroidectomy should be considered as the pre-
ferred therapy in select clinical scenarios, such as 
compressive symptoms from a significantly 
enlarged thyroid gland, low RAI uptake, in difficult 
to control type 1 AIT, concern for thyroid 
 malignancy, moderate to severe ophthalmopathy, 
or coexisting hyperparathyroidism [11]. 
Thyroidectomy is also indicated for those planning 
for pregnancy in less than 6 months, those experi-
encing adverse effects of ATDs, or for patients with 
an inability to follow radiation safety guidelines.

In preparation for thyroidectomy, patients must 
be rendered euthyroid for 1–3 months with ATDs 
[3]. For patients who are intolerant to ATDs, treat-
ment with beta-blockade, potassium iodide, ste-
roids, and cholestyramine have been recommended 
in the preoperative period [83]. Iodide has been 
shown to be beneficial prior to thyroidectomy as it 
decreases the rate of blood flow, thyroid vascular-
ity, and intraoperative blood loss [84]. ATDs should 
be stopped at the time of thyroidectomy and beta 
blockers should be weaned following surgery.

There exist several significant complications of 
thyroidectomy, which include transient or perma-
nent hypoparathyroidism resulting in hypocalce-
mia, recurrent or superior laryngeal nerve damage, 
infection, and postoperative bleeding. Thyroidectomy 

should be performed by an experienced, high-vol-
ume thyroid surgeon, as the complication rates of 
thyroid surgery are inversely correlated with sur-
geon experience and case volume [85]. Near-total 
or total thyroidectomy is recommended as the 
complication rates are similar and the risk of 
relapse is higher with a subtotal thyroidectomy 
[86]. Patients should be informed postoperatively 
that they will require thyroid hormone replace-
ment indefinitely usually at 1.6–1.7  μg/kg/day. 
Furthermore, parathyroid hormone, calcium, and 
albumin levels should be obtained postoperatively 
for monitoring. With modern surgical techniques, 
thyroidectomy may be considered to be an overall 
safe surgery for patients especially since there are 
high cure rates and negligible recurrence rates 
[86].

 Beta-Adrenergic Blocking Agents

For symptomatic relief in the setting of palpita-
tions, irritability, exercise intolerance, and tremor 
and/or to target heart rate less than 90 beats per 
minute in a patient with Graves’ disease, a beta-
adrenergic blocker can be initiated. Propranolol, in 
particular and in high doses, blocks the conversion 
of T4 to T3 through inhibition of 5′-monodeiodin-
ase and appears to have a greater effect on tremor 
compared to β-1 selective agents [87]. However, 
those with relative contraindications to beta block-
ers may better tolerate β-1 selective agents. The 
various options for beta-blockade are as follows: 
propranolol (10–40  mg TID-QID), atenolol (25–
100  mg daily or BID), metoprolol (25–50  mg 
QID), or nadolol (40–160 mg daily). An esmolol 
infusion is used only in the setting of thyroid storm 
[3, 11]. Please refer to the thyroid storm section of 
this text for complete management guidelines.

 Treatment of Graves’ Disease 
in Pregnancy

The ultimate goal of Graves’ disease manage-
ment during pregnancy is to keep the mother and 
fetus in a near euthyroid state with the lowest 
possible dose of antithyroidal medication. Recent 
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studies of ATD side effects in pregnancy have 
influenced changes in management guidelines. In 
a Danish population study, the use of ATDs in 
pregnancy was associated with birth defects in 
3.4% of exposed children [88]. The frequency of 
birth defects after ATD exposure was 75 times 
higher than the risk of maternal agranulocytosis 
and liver failure [88].

For women with Graves’ disease who are con-
templating pregnancy, counseling should focus 
on treatment options (i.e., ATDs, RAI, or thyroid-
ectomy) for attaining euthyroidism prior to the 
attempt to conceive. Those who are already on 
ATDs should contact their physicians immedi-
ately once they are pregnant. In a newly pregnant 
female who is euthyroid on low-dose methima-
zole (5–10  mg daily) or PTU (under 200  mg 
daily), discontinuation of ATD can be considered 
given the potential for teratogenic effects, and 
close monitoring should be performed every 
1–2 weeks [89]. Once the patient remains euthy-
roid off ATDs, continued monitoring can be 
extended to 2–4 weeks.

In a pregnant female with a high risk of 
becoming thyrotoxic off ATDs, continuation of 
therapy may be necessary. PTU remains the rec-
ommended thionamide during the first trimester 
of pregnancy due to the risk of teratogenicity 
with methimazole, and individuals on methima-
zole should be switched as early as possible once 
pregnancy is confirmed [11]. A dose ratio of 1:20 
should be utilized when converting from methim-
azole to PTU.  In other words, 10  mg daily 
methimazole is equivalent to 100 mg twice daily 
PTU [3]. Previously it was recommended that 
patients return to methimazole in the second tri-
mester; however, newer guidelines do not make 
any recommendations on switching the ATD [11, 
89]. In unique situations such as intolerance to 
ATDs in which thyroidectomy is indicated, the 
optimal timing of surgery is during the second 
trimester [71]. Thyroidectomy should be avoided 
in the first and third trimesters due to teratogenic 
effects associated with general anesthesia, risk of 
fetal loss in the first trimester, and preterm labor 
in the third semester. Overall, thyroidectomy at 
any point in pregnancy may confer an increased 
risk of maternal complications from surgery [90].

Thyroid function tests should be checked 
every 4  weeks throughout pregnancy with the 
goal of keeping total T3 and T4 values at or 
slightly above pregnancy-adjusted reference 
ranges with a TSH below the corresponding ref-
erence range [89]. Approximately 30–50% of 
pregnant women may enter remission as preg-
nancy advances, in which case the ATD can be 
reduced or discontinued [3]. TRAb measurement 
during pregnancy can help assess the activity of 
thyroid autoimmunity and guide decisions on 
neonatal monitoring. Pregnant women with 
Graves’ should have TRAb levels measured dur-
ing the first trimester and repeated at 18–22 weeks 
gestation if elevated, as the antibodies can affect 
fetal thyroid function [89]. If a subsequent mea-
surement at 18–22  weeks is positive and the 
patient remains on ATDs, another value should 
be repeated at 30–34  weeks. Fetal surveillance 
for neonatal hyperthyroidism may be indicated 
when maternal TRAb levels exceed three times 
the upper limit of normal [89]. In the first year 
postpartum, thyroid function tests should be mea-
sured every 2–3 months. In patients who discon-
tinue ATDs in late pregnancy, there is a possibility 
for relapse but such a recurrence of thyrotoxico-
sis may also be caused by postpartum thyroiditis 
[91]. The differential diagnosis at this stage in a 
lactating mother may be difficult.

 Prognosis of Graves’ Disease

Management of Graves’ disease involves one or 
more of three therapies: antithyroidal drugs, RAI, 
or thyroidectomy. Definitive treatment with RAI 
or thyroidectomy results in elimination of thyroid 
tissue at the expense of permanent hypothyroid-
ism requiring lifelong thyroid hormone replace-
ment. In a systematic review, relapse rates were 
low at 10–15% for definitive treatment, and no 
difference between rates was observed between 
RAI and thyroidectomy [74]. On the other hand, 
ATDs offer a conservative option for treatment, 
but patients have a higher rate of recurrence of 
Graves’ disease, which varies between 30 and 
70%, with highest rates in the immediate 
3–6 months after discontinuation of ATDs [12]. 
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Multiple factors have been associated with the 
risk of recurrence after ATDs and include male 
sex, young age, a larger thyroid size, the presence 
of persistent TRAb, a high serum T3/T4 ratio fol-
lowing ATD withdrawal, cigarette smoking, and 
severe ophthalmopathy [92–95]. Regardless of 
which treatment is chosen, lifelong monitoring of 
thyroid function is necessary, and patients must 
be counseled regarding long-term follow-up.

 Conclusion

Thyrotoxicosis has a characteristic clinical syn-
drome, which must be recognized early to pre-
vent serious consequences. The differential 
diagnosis of thyrotoxicosis is broad, and thus the 
evaluation of thyrotoxicosis must include a 
detailed history and physical, biochemical stud-
ies, and imaging tests if the etiology is unclear. 
Graves’ disease is the most common cause of 
thyrotoxicosis. The mainstays of treatment are 
antithyroidal drugs, RAI, or thyroidectomy. 
Special considerations must be given in the diag-
nosis and treatment of Graves’ patients in preg-
nancy due to the physiologic changes in 
pregnancy and concerns for the well-being of the 
fetus. A thorough understanding of the clinical 
scenario as well as patient preferences will help 
physicians guide therapy for their patients, as 
each treatment has its own benefits and 
limitations.
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Graves’ Ophthalmopathy

Luigi Bartalena

 Definition

The term Graves’ ophthalmopathy (or orbitopa-
thy, GO) defines the complex ocular or, rather, 
orbital changes that are found in patients affected 
with Graves’ disease or, far less frequently, with 
chronic autoimmune thyroiditis [1]. Thus, GO is 
most commonly associated with hyperthyroidism 
but may occur also in patients who are euthyroid 
or hypothyroid (euthyroid or hypothyroid GO) 
[1]. GO represents the most frequent of the extra-
thyroidal manifestation of Graves’ disease, which 
also includes the rare thyroid dermopathy (or pre-
tibial myxedema) and the exceptional thyroid 
acropachy [1].

 Epidemiology and Natural History 
(Table 1)

Although severe and even sight-threatening 
forms of GO may be observed, recent studies 
indicate that GO is present in only about 20–25% 
of patients with Graves’ disease [5, 6] and is usu-
ally mild and rarely progressive [7]. Among 
patients with no GO at baseline, the large major-
ity (87%) are still GO-free after an 18-month 

follow-up during antithyroid drug treatment, 
10% develop mild GO, and less than 3% moder-
ate-to-severe GO [5]. Conversely, many patients 
have a spontaneous remission of initially mild 
GO, although progression to more severe forms 
of the disease may infrequently also occur [7]. 
Moderate-to-severe forms account for approxi-
mately 5% of cases [1]. Information on the natu-
ral history of moderate-to-severe GO is not 
available, because these patients are promptly 
treated with disease-modifying therapies, such as 
immunosuppressive drugs and/or orbital radio-
therapy. The decline in severity of GO is sup-
ported by the observation that the proportion of 
patients with moderate-to-severe and active GO 
referred to thyroid-eye clinic part of the European 
Group on Graves’ Orbitopathy (EUGOGO) has 
decreased in the last 10  years [8]. This milder 
phenotype and more favorable course of GO 
observed nowadays are probably related to ear-
lier diagnosis and treatment of both Graves’ 
hyperthyroidism and GO, to a more effective 
actions on modifiable risk factors for GO [9] (see 
below), and to a more effective interaction 
between general practitioners and specialized 
centers through the development of referral path-
ways [10].

The age-adjusted incidence rate of GO (all 
degrees of severity) in the Olmsted County study 
was 16 cases per 100,000 per year for women and 
2.9 cases per 100,000 per year for men [2]. The 
incidence of moderate-to-severe forms of GO 
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was reported to be 16.1 per million per year 
(women, 26.7; men, 5.4) in a recent Danish study 
[4]. GO is more prevalent in women, with a 
female-to-male ratio of 2:1 [11], and shows two 
age peaks, in the fifth and seventh decades of life 
[3]. Although rarely, GO may be present also in 
children [12]. Asians have a lower risk of devel-
oping GO than Caucasians [13]. In the majority 
of cases, the onset of GO coincides with the onset 
of hyperthyroidism, but GO may precede or 
develop long after diagnosis and treatment of 
hyperthyroidism [11, 14].

The course of GO is characterized by an initial 
phase of florid inflammation (active phase) asso-
ciated with the appearance of clinical manifesta-
tions, followed by a short phase of stabilization 
(plateau phase), and then by a progressive remis-
sion of inflammation up to inactivation (burnt-out 
disease). Complete disappearance of clinical 
manifestations of the disease is unlikely when 
GO is full blown.

 Pathogenesis

The pathogenic role of genetic factors in GO is 
not well defined, and no clear differences have 
been found between Graves’ patients with or 

without GO [15–19]. An association between GO 
and major histocompatibility complex (MHC), 
cytotoxic T-lymphocyte-associated antigen-4 
(CTLA-4), or intercellular adhesion molecule 1 
gene polymorphisms has been investigated [18], 
but results are conflicting [20, 21].

Most of the clinical manifestations of GO can 
be mechanistically explained by the increased 
orbital content (expansion of the retroocular adi-
pose tissue, enlargement of the extraocular mus-
cles) within a rigid body structure such as the 
orbit. This remodeling of the orbital tissues is the 
consequence of an autoimmune inflammatory 
disorder triggered by the migration of autoreac-
tive T-helper cells into the orbital space [22]. The 
orbital space is infiltrated by CD4+ T cells and, to 
a lesser extent, CD8+ T cells, B cells, fibrocytes, 
mast cells, and macrophages. Orbital fibroblasts 
are the prime target and key effector cells in the 
pathogenesis of GO [23]. After recognition of 
one or more antigens (shared with the thyroid) on 
fibroblast surface, facilitated by HLA class II 
antigen expression on antigen-presenting cells (B 
cells, macrophages), CD4+ T cells secrete cyto-
kines which activate CD8+ T cells and autoanti-
body-synthesizing B cells [Ajjan and Weetman 
2004] and stimulate orbital fibroblasts [24]. The 
latter cells proliferate, may differentiate into 
myofibroblasts and adipocytes, accumulate and 
secrete hyaluronic acid (HA), and synthesize and 
secrete chemoattractants (interleukin-16, 
RANTES, CXCL10) and a number of cytokines 
(interleukin-1, interleukin-6, interferon-γ, tumor 
necrosis factor-α, interleukin-8, interleukin-10, 
platelet-derived growth factor, transforming 
growth factor-β), which automaintain the ongo-
ing inflammatory process [25]. Accumulation of 
HA is fundamental, because it is hydrophilic and 
thereby attracts water and causes edema of the 
extraocular muscles and orbital tissue [22]. 
Orbital fibroblasts can be distinguished on the 
basis of expression or lack of expression of a cell 
surface glycoprotein (thymocyte antigen-1, thy-
1). While thy-1-positive fibroblasts are mainly 
present in the extraocular muscles and produce 
HA, thus contributing to edema and enlargement 
of extraocular muscles, thy-1-negative fibroblasts 
are mostly represented in the connective tissue 

Table 1 Epidemiology and natural history of Graves’ 
ophthalmopathy

Female-to-male ratio 2:1
Peaks of incidence Fifth and seventh 

decades of life
Overall prevalence in newly 
diagnosed Graves’ disease

20–25%

Prevalence of moderate-to-
severe forms

5%

Incidence rate (all degrees of 
severity)

16 per 100,000 per 
year (women)
2.9 per 100,000 per 
year (men)

Incidence rate of moderate-to-
severe forms

26.7 per million per 
year (women)
5.4 per million per 
year (men)

Phases of the disease Active phase, plateau 
phase, inactive phase

Derived from Bartley [2], Bartley et al. [3], Laurberg et al. 
[4], Tanda et al. [5], Bartalena et al. [6]
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and may differentiate into adipocytes, contribut-
ing to the expansion of fibroadipose tissue [22].

Evidence has accumulated suggesting that the 
link between the thyroid and the orbit, i.e., the 
shared antigen triggering the above cascade of 
events, might be represented by the TSH recep-
tor (TSHR). The TSHR is expressed more in GO 
orbital fibroblasts than in control orbital fibro-
blasts and in orbital tissue from patients with 
active GO than from patients with inactive GO, 
and its expression is enhanced when preadipo-
cyte fibroblasts differentiate into adipocytes 
[22]. TSHR antibodies (TRAb) activate the 
TSHR through the adenylyl cyclase/cAMP path-
way and the phosphoinositide 3-kinase (PI3K) 
pathway [26] and stimulate HA production in 
orbital fibroblasts. In different experimental sys-
tems, this has translated into an increased adipo-
genesis [27, 28]. In animal models, BALB/c 
mice immunized by TSHR A-subunit by electro-
poration, orbital remodeling and adipogenesis 
reminiscent of that found in human GO could be 
observed [29, 30]. Other animal models seems to 
support the role of the TSHR in the pathogenesis 
of GO [31–33]. Another player in GO might be 
the insulin-like growth factor-1 (IGF-1) receptor 
(IGF-1R). An increased expression of IGF-1 and 
its receptor has been shown in orbital cells from 
GO patients [34]. HA synthesis from GO orbital 
fibroblasts could be induced by immunoglobu-
lins (IgGs) from Graves’ patients, but not by 
human recombinant TSH, and this effect could 
be blocked by an IGF-1 receptor blocking agent 
(1-H7) [35]. Other studies showed that TSHR-
stimulating monoclonal antibody M22 can stim-
ulate cAMP production and HA synthesis in GO 
fibroblasts [36], and this effect can be inhibited 
by both 1-H7 and a small molecule inhibiting 
TSHR activation [26, 36]. The two receptors 
(IGF-1R and TSHR) colocalize in orbital fibro-
blasts [34]. Locally synthesized IGF-1 acting 
through the IGF-1R might contribute to the 
effect of TRAb on the TSHR [37]. Interestingly, 
it was recently shown in primary cultures of GO 
fibroblasts that the stimulating effect of M22 or 
GO IgGs on HA synthesis could not by blocked 
by one anti-IGF-1R antibody and was only par-
tially blocked by a second anti-IGF-1R antibody 

[38], suggesting that the cross talk between the 
TSHR and the IGF-1R, likely important in the 
pathogenesis of GO, might not involve direct 
binding to the IGF-1R.

 Risk Factors and Prevention 
(Table 2)

While age, gender, and genetics are non-modifi-
able risk factors, several modifiable risk factors 
for the occurrence/progression of GO have been 
identified (Table 1).

 Smoking

The prevalence of smokers is higher among 
Graves’ patients with GO than in those without 
GO; smokers have a higher risk of developing 
more severe forms of GO and have a lower and 
slower response to high-dose glucocorticoids and 
orbital radiotherapy for moderate-to-severe and 
active GO [1, 40]. Smokers are more prone to have 
radioiodine-associated de novo occurrence or 
exacerbation of GO [41, 42]; conversely, as shown 
in a retrospective study, refrain from smoking 
might be associated with a lower risk for the occur-
rence of exophthalmos and diplopia [43]. HA syn-
thesis is increased, and adipogenesis is enhanced 

Table 2 Risk factors for Graves’ ophthalmopathy and 
preventive measures

Risk factor Preventive measure
Cigarette smoking Refrain from smoking
Thyroid 
dysfunction

Correct both hyper- and 
hypothyroidism, and stably 
maintain euthyroidism

Radioiodine 
treatment

Use oral steroid prophylaxis in 
at-risk patients (mainly smokers) 
when giving radioiodine

Oxidative stress 6-month selenium 
supplementation in patients with 
mild Graves’ ophthalmopathy

TSH receptor 
autoantibodies

Control hyperthyroidism with 
antithyroid drugs to reduce serum 
autoantibody concentration

Late diagnosis 
and management

Prompt referral to specialized 
centers, except for mildest cases

Derived from Bartalena et al. [39]
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when human orbital cells in cultures are exposed 
to smoke extracts [44]. Although mechanisms 
whereby cigarette smoking exerts its negative 
effects on GO need to be fully clarified, evidence 
is sufficient to indicate quit smoking as an impor-
tant preventive action in patients with GO [9].

 Thyroid Dysfunction

GO is negatively affected by an abnormal thyroid 
status, likely through the activation of the TSHR, 
by TRAb in the hyperthyroid state and by TSH in 
the hypothyroid state, leading to an increased 
expression of thyroid antigens and an exacerba-
tion of autoimmune reactions [9]. Prompt resto-
ration and stable maintenance of euthyroidism 
are, therefore, of utmost importance in Graves’ 
patients [39, 45].

 Radioiodine Treatment 
for Hyperthyroidism

Radioiodine is associated with a small but definite 
risk of progression of GO [46, 47]. This is most 
likely to occur in smokers [42] or when post-radio-
iodine hypothyroidism is not promptly corrected 
[48, 49]. This untoward effect can be almost 
always prevented by a short concomitant course of 
relatively low doses of oral prednisone (steroid 
prophylaxis) [39, 47, 50]. Prednisone administra-
tion can be avoided in patients with inactive GO, 
particularly if they do not smoke [51].

 Oxidative Stress

Graves’ disease is associated with an increased 
oxidative stress [52]. Antioxidants might, there-
fore, play a positive role for both hyperthyroidism 
and GO.  Selenium is known for its antioxidants 
and immune-regulating actions. In a randomized 
clinical trial, it was shown that a 6-month supple-
mentation of selenium could improve mild and 
active GO and prevent its progression to more 
severe forms [53]. Whether selenium may be ben-
eficial also for moderate-to-severe GO is unsettled. 

Recently published guidelines indicate that sele-
nium supplementation should be offered to 
patients with mild GO [39].

 TSHR Antibodies

As indicated above TSHR and TRAb are impor-
tant players in the pathogenesis of GO [22]. 
TRAb are independent risk factors for the occur-
rence of severe GO [54]. There is no way to 
reduce directly TRAb, but antithyroid drug treat-
ment is usually associated with a gradual reduc-
tion in serum TRAb concentration [55], possibly 
due to an amelioration of autoimmune reactions 
associated with restoration of euthyroidism. 
Thyroidectomy is also associated with a reduc-
tion, whereas radioiodine treatment causes an 
increase in serum TRAb levels that may last for a 
few years [55].

Taking into account the above risk factors, pri-
mary prevention measures include refrain from 
smoking; control of thyroid dysfunction; a 
6-month selenium course, if mild GO is present; 
and a prompt referral to specialized centers under 
most circumstances [39]. The recent observation 
that the use of statins is associated with a 40% 
decreased hazard of developing GO [56] needs to 
be confirmed in prospective studies.

 Clinical Features

 Signs and Symptoms (Table 3)

GO is generally bilateral and symmetrical, but uni-
lateral or asymmetrical forms are not uncommon 
and may be relatively more frequent in euthyroid 
or hypothyroid GO patients [57]. Upper lid retrac-
tion, responsible for the thyroid stare, is the most 
frequent sign, present in about 90% of GO patients 
[58], and associated with lid lag on downgaze. 
Proptosis or exophthalmos, i.e., protrusion of the 
eye globe(s) due to the increased orbital content 
(expanded fibroadipose tissue, enlarged extraocu-
lar muscles), is present in more than 70% of 
patients with GO [58]. Together with upper lid 
retraction, it is responsible for corneal exposure 
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and incomplete lid closure (lagophthalmos) at 
night. Severe exophthalmos may cause globe sub-
luxation. Corneal exposure may lead to secondary 
corneal lesions (punctate keratitis, corneal ulcers, 
corneal breakdown). Lower lid retraction is related 
to the degree of exophthalmos. Extraocular muscle 
dysfunction is observed in about 40% of GO 
patients [58], causing diplopia. Diplopia can be 
intermittent (present when the patient is tired or in 
the morning when awakening), inconstant (at the 
extremes of gaze), or constant (present also in pri-
mary gaze, correctable or not correctable with 
prisms). In addition to diplopia, extraocular mus-
cle inflammatory involvement is responsible for 
retro-orbital pain, either at rest or with eye move-
ments. This is contributed to also by periorbital 
soft tissue inflammation and congestion, which 
manifest with lid edema and redness, conjunctiva 
hyperemia and chemosis, and caruncle edema. 
Patients often complain of lacrimation, gritty sen-
sation, and photophobia. Dysthyroid optic neu-
ropathy (DON) is the most serious manifestations 
of GO, because, like corneal breakdown, it is 
sight-threatening. DON may be due to optic nerve 
stretch, but is more commonly caused by optic 
nerve compression by the enlarged extraocular 
muscles, particularly posteriorly at the orbital 
apex. DON may be heralded by desaturation of 
colors, afferent pupil defect, blurring of central 
vision, and disk edema [59].

 Activity and Severity

Activity identifies the phase in the course of GO 
(active phase vs. inactive phase), while severity 
indicates the degree of involvement of orbital 
structures. Both parameters are fundamental to 
define the general treatment plan for 
GO. Assessment of activity takes advantage of a 
color photographic atlas originally developed 
by Dickinson and Perros [60] and now freely 
downloadable from the EUGOGO website 
(http://www.eugogo.eu). A quick, although 
imperfect tool to assess the disease activity is 
the clinical activity score (CAS) [61] (Table 4). 
In its 7-item form, commonly used for measur-
ing effects of immunosuppressive treatments, it 
includes eyelid edema, edema of caruncle, che-
mosis, eyelid redness, conjunctival hyperemia, 
ocular or retro-orbital pain at rest, and pain with 
ocular movements. One point is given for each 
item present; CAS is the sum of the points. GO 
is considered active if CAS is ≥3/7 [39, 45]. In 
its 10-item formulation, recent changes in pro-
ptosis, extraocular muscle function, and visual 
acuity are also considered useful at the time of 
the first visit to assess recent progression of 
GO.  Assessment of severity is controversial, 
different protocols have been published [62, 
63], but consensus has not reached yet. The 
NOSPECS classification of severity (Table 5) is 

Table 3 Clinical features of Graves’ ophthalmopathy

Changes in the 
appearance of the eyes

Lid retraction, lid lag, stare
Exophthalmos
Swelling of eyelids
Red yes
Chemosis (swelling of 
conjunctiva)
Strabismus

Ocular surface 
involvement

Lacrimation
Photophobia
Grittiness (sandy sensation)

Extraocular muscle 
involvement

Diplopia (intermittent, 
inconstant, constant)
Strabismus
Retrocular pain at rest
Pain with eye movements

Optic nerve 
involvement

Impaired color sensitivity
Blurring of vision

Table 4 Assessment of disease activity by the clinical 
activity score (CAS)

Swelling
  •  Eyelid swelling
  •  Swelling of caruncle or plica
  •  Swelling of conjunctiva (chemosis)
  •  Chemosis
Redness
  •  Redness of eyelids
  •  Conjunctival hyperemia
Pain
  •  Spontaneous retroocular pain
  •  Pain with eye movements
One point is given to each item, if present. CAS is the 
sum of points

CAS ≥3/7 = active Graves’ ophthalmopathy

Derived from Mourits et al. [61]
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a useful mnemonic tool. In the guidelines on the 
management of GO recently published by 
EUGOGO [39], GO has been classified into 
mild, moderate-to severe, or sight-threatening, 
according to the degree of involvement of dif-
ferent parameters (lid retraction, soft tissue 
changes, exophthalmos, diplopia, corneal dam-
age, DON) (Table 6).

 Quality of Life

GO may cause relevant changes in appearance, 
related to lid retraction and stare, exophthal-
mos, swelling of periocular soft tissues, and 
functioning, due to diplopia or decrease in 
visual acuity. Overall these changes may have a 
profound impact on psychological health and 
quality of life (QoL) of affected individuals 
[64, 65] which may be long-lasting and associ-
ated with important socioeconomic conse-
quences [66]. Evaluation of changes in the 
quality of life can be done using a disease-spe-
cific validated questionnaire [67] downloadable 
from the EUGOGO website and translated into 
several languages. Assessment of GO-QoL is 
relevant for selecting therapeutic strategy and 
evaluating treatment outcome.

 Diagnosis

Diagnosis of bilateral and overt GO is easy on 
clinical grounds, particularly if associated with 
hyperthyroidism due to Graves’ disease. Orbital 
imaging (MRI, CT) in overt cases shows typical 
extraocular muscle enlargement (with tendon 
sparing) and/or increased fat mass. The extraocu-
lar muscle enlargement might be a relatively 
early phenomenon, and the increase of the fat 
mass would come later [68]. All muscle can be 
involved, although the inferior rectus and the 
medial rectus are more frequently involved for 
unknown reasons. Diagnosis is more intriguing 
in asymmetrical or unilateral forms of GO, espe-
cially if the patient is euthyroid or hypothyroid, 
or there is no evidence of thyroid autoimmune 
phenomena. Under these circumstances, orbital 
imaging is of paramount importance to rule out a 
number of other GO-unrelated conditions enlisted 
in Table 7. Among the latter, an emerging condi-
tion which may be hardly distinguishable from 
GO is immunoglobulin G4-related disease [69, 
70]. Tendons are spared also in this condition, but 
the lateral rectus muscle and the lacrimal glands 
are more commonly involved than in GO [69]. 
Biopsy is the clue for diagnosis.

Table 5 Assessment of disease severity by the NOSPECS 
system (abridged)

No signs or symptoms
Only signs, no symptoms: lid aperture (mm) measured 
by a rule
Soft tissue involvement: swelling of periocular tissues, 
redness of the eyes
Proptosis: exophthalmos (mm) measured by 
exophthalmometer
Extraocular muscle involvement: assessment of 
subjective diplopia (absent, intermittent, inconstant, 
constant) or objective impairment in motility assessed 
by eye muscle ductions
Corneal involvement: absent/present (punctuate 
keratitis, ulcers)
Sight loss (due to optic nerve involvement): assessed 
by best-corrected visual acuity, color vision, optic disk 
evaluation, relative afferent papillary defect, visual 
field defects)

Table 6 Assessment of GO severity according to the 
European Group on Graves’ Orbitopathy (EUGOGO)

Mild GO
Usually one or more of the following features are 
present: minor lid retraction (<2 mm), mild soft tissue 
involvement, exophthalmos <3 mm above upper limit 
of normal for age and gender, no or intermittent 
diplopia, no or mild corneal involvement responsive 
to lubricants. Impact on quality of life (QoL) is 
insufficient to justify immunosuppressive treatment
Moderate-to-severe GO
Usually two or more of the following features are 
present: lid retraction ≥2 mm, moderate or severe soft 
tissue involvement, exophthalmos ≥3 mm above upper 
limit of normal for age and gender, inconstant or 
constant diplopia, and no dysthyroid optic neuropathy 
(DON). Impact on quality of life (QoL) is sufficient to 
justify immunosuppressive treatment (if GO is active) 
or surgery (if GO is inactive)
Sight-threatening (very severe) GO
Patients with DON and/or corneal breakdown

Derived from Bartalena et al. [39]
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 Management of Associated Thyroid 
Dysfunction

Management of Graves’ hyperthyroidism still 
relies on imperfect treatments, because antithy-
roid drugs belonging to the class of thionamides 
are bound to a high relapse rate, whereas radioio-
dine treatment and thyroidectomy inevitably 
cause lifelong hypothyroidism [71–75].

 Antithyroid Drug Treatment

Antithyroid drugs represent the first-line treatment 
in Europe, Asia, and South America [76], while 
radioiodine treatment is the preferred modality in 
North America [77]. Antithyroid drugs do not 
appear to have direct effects on GO. However, nor-
malization of thyroid status and stable mainte-
nance of euthyroidism associated with treatment 
may favor an amelioration of GO by blunting 
ongoing autoimmune reactions, as reflected by the 
usual, progressive decrease in serum TRAb con-
centration [55]. Very long treatment with thion-
amides has been reported to be associated with 
stable or improved ocular conditions [78].

 Radioiodine Treatment

Radioiodine treatment may cause an exacerba-
tion of GO in about 15% of cases [79], especially 
in smokers [42] and in patients with preexisting 
GO of recent onset [80, 81] or with high TRAb 
levels. The radioiodine-associated progression of 
GO can almost always be prevented by concomi-
tant steroid prophylaxis with relatively low doses 
of oral prednisone [50, 80, 82], although few 
reports showed that GO could rarely progress 
despite this prophylactic treatment [81, 83]. An 
important factor that may concur to progression 
of GO after radioiodine treatment is late correc-
tion of post-radioiodine hypothyroidism [48, 49]. 
Steroid prophylaxis could be avoided in patients 
with long-standing inactive GO, who do not 
smoke and whose hypothyroidism is promptly 
corrected [51].

 Thyroidectomy

Thyroidectomy is less commonly used than anti-
thyroid drugs and radioiodine as first-line treat-
ment for Graves’ hyperthyroidism [71]. Its effect 
on GO is neutral [84]. However, in view of the 
hypothesis that GO may be triggered by autoim-
mune reactions directed toward autoantigen(s) 
shared by the thyroid and the orbit, surgical 
removal of autoreactive T cells and autoantigens 
might be beneficial for GO [11]. Two recent stud-
ies, one retrospective [85] and the other random-
ized and prospective [86], seem to support the 
idea that early thyroidectomy might improve the 
outcome of immunosuppressive drug treatment 
in patients with active GO.

 Management of Hyperthyroidism 
in Patients with GO

Treatment of hyperthyroidism when GO is pres-
ent remains a challenging dilemma [87] 
(Table 8). In patients with mild and active GO, 
treatment of hyperthyroidism is independent of 
GO and is based on established criteria (age, 
goiter size, first episode vs. relapse, patient’s 

Table 7 Main causes of enlarged extraocular muscles 
and/or exophthalmos other than Graves’ orbitopathy

Cushing’s syndrome
Obesity
Orbital pseudotumor
Idiopathic myositis
Orbital cellulitis
Immunoglobulin G4-related orbital disease
Erdheim–Chester disease
Orbital lymphoma
Orbital meningioma
Leukemia
Rhabdomyosarcoma
Metastases (breast cancer, melanoma, lung cancer, 
pancreatic cancer, seminoma, carcinoid)
Vascular causes (arteriovenous malformations, 
carotid-cavernous fistula, angioma)
Systemic manifestations of amyloidosis, sarcoidosis, 
vasculitis
Wegener’s granulomatosis
Eosinophilic granuloma
Cysts
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Table 8 Treatment of Graves’ hyperthyroidism in patients with associated orbitopathy

Severity of GO Treatment of hyperthyroidism
Mild and active Choice of treatment (antithyroid drugs, radioiodine treatment, thyroidectomy) is 

selected independently of GO and based on established criteria, including patient’s 
choice
If antithyroid drugs are used, a 6-month selenium supplementation should be given
If radioiodine treatment is selected, steroid prophylaxis should be given in at-risk 
patients

Mild and inactive Choice of thyroid treatment (antithyroid drugs, radioiodine treatment, thyroidectomy) 
is selected independently of GO and based on established criteria, including patient’s 
choice.
If radioiodine treatment is selected, steroid prophylaxis is not indicated, unless there 
are risk factors for radioiodine-associated progression of GO

Moderate-to-severe and 
active

Treatment of GO should be prioritized
Patients can be maintained euthyroid with antithyroid drugs or receive definitive 
treatment, while GO is being cured. There is no current evidence on superiority of 
either approach

Moderate-to-severe and 
inactive

Choice of thyroid treatment (antithyroid drugs, radioiodine treatment, thyroidectomy) 
is selected independently of GO and based on established criteria, including patient’s 
choice
If radioiodine treatment is selected, steroid prophylaxis is not indicated, unless there 
are risk factors for radioiodine-associated progression of GO

Sight-threatening Hyperthyroidism must be controlled with antithyroid drugs, and definitive treatment, 
if needed, must be postponed until DON and/or corneal breakdown has been cured 
and GO is inactive

Derived from Bartalena et al. [46]

choice) [46] or regional differences [77]. In 
these patients, if antithyroid drugs are used, a 
6-month course of selenium supplementation is 
recommended [39, 46, 53]. The usefulness of 
selenium supplementation in patients treated 
with radioiodine or thyroidectomy remains to 
be established [88]. Steroid prophylaxis is indi-
cated in patients who smoke and have high 
TRAb levels [50] after radioiodine, but not in 
patients undergoing antithyroid drug treatment 
of thyroidectomy [46]. In patients with mild and 
inactive GO, in principle any treatment is 
unlikely to affect GO, and steroid prophylaxis is 
not recommended [46] (Table 8). Patients with 
moderate-to-severe and active GO should be 
promptly treated with appropriate treatments 
(see below) for the orbital disease. Thyroid 
treatment in these patients is controversial. One 
line of thinking suggests that these patients 
should receive long-term antithyroid drug treat-
ment while their GO is being cured, postponing 

possible ablative therapy thereafter [78, 89]. 
Other authors think that, even in these patients, 
thyroid ablation by thyroidectomy, radioiodine 
treatment, or both (total thyroid ablation) might 
be performed while curing GO [90–94]. 
Superiority of either approach in terms of out-
come of GO remains to be demonstrated [46]. 
Patients with moderate-to-severe and inactive 
GO can be treated with any therapy for hyper-
thyroidism, and steroid prophylaxis is not 
needed if there are no risk factors for GO pro-
gression after radioiodine treatment, particu-
larly smoking [46]. Sight-threatening GO is an 
emergency and needs to be treated with large 
doses of intravenous glucocorticoids and/or 
orbital decompression. In this case, hyperthy-
roidism should be managed with antithyroid 
drugs to maintain the patient euthyroid. 
Definitive treatment should be postponed until 
DON or corneal breakdown has been cured and 
GO is stably inactive [46].
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 Management of GO (Table 9)

 Measures for All Patients with GO

All patients with GO of any degree should have 
risk factors for GO progression put under control. 
In particular, they should be urged to refrain from 
smoking. Hyperthyroidism and hypothyroidism 
should be corrected, and euthyroidism should be 
stably maintained. Ocular surface inflammation 
and dry eye should be treated with nonpreserved 
artificial tears, usually containing sodium hyal-

uronate, applied several times a day, or osmopro-
tective agents, such as carboxymethylcellulose. 
In case of corneal exposure (lagophthalmos), gel 
and ointments should be applied at nighttime 
[39]. Except for mildest cases which improve by 
normalizing thyroid dysfunction and using topi-
cal treatments, patients with GO should be 
referred to specialized centers or thyroid-eye 
clinics, because this is associated with a better 
outcome and patient’s higher satisfaction [95].

 Mild Disease

In most cases of mild GO, a wait-and-see strategy 
is enough, because these cases may remit and 
only infrequently progress to more severe forms 
of disease. Selenium supplementation is useful, 
as discussed above [53]. Some patients with mild 
GO have, nevertheless, a profound deterioration 
of their QoL. In these cases, immunosuppressive 
treatment as for moderate-to-severe GO may be 
used. However, in principle this treatment should 
be avoided in patients with mild GO, because 
risks outweigh benefits [39].

 Moderate-to Severe Disease

High-dose intravenous glucocorticoids are the 
first-line treatment for moderate-to-severe and 
active GO [96]. Intravenous glucocorticoids are 
more effective and better tolerated than oral glu-
cocorticoids [64, 65, 96, 97]. Intravenous gluco-
corticoids are usually administered in 12 weekly, 
slow (2–3 h) infusions. The most common cumu-
lative dose is 4.5 of methylprednisolone (6 infu-
sions of 500  mg, followed by 6 infusions of 
250 mg) [64, 65]. A shorter protocol (500 mg for 
3 days for 2 weeks, followed by 250 mg for 3 days 
for 2 weeks) proved to be less effective [98]. In a 
large randomized clinical trial carried out by 
EUGOGO in which three different cumulative 
doses of methylprednisolone (2.25  g, 4.98  g, 
7.47  g) were compared, the highest dose was 
slightly more effective but also associated with a 
higher rate of adverse events [99]. Therefore, also 
considering the potential serious side effects of 

Table 9 Management of Graves’ orbitopathy

Measures for all patients with GO
   Restore euthyroidism
   Urge refrain from smoking
   Local measures (artificial tears, ointments)
    Refer to specialized centers or thyroid-eye clinics 

except for the mildest cases
Mild GO
   Wait-and-see strategy
   Selenium supplementation
    Intravenous glucocorticoids only occasionally, if 

quality of life is severely affected
    Rehabilitative surgery, if needed or required by 

the patient, when the disease is stably inactive
Moderate-to-severe and active GO
  First-line treatment
    Intravenous glucocorticoids [high-dose oral 

glucocorticoids are an option, with a less 
favorable profile of effectiveness and tolerability]

  Second-line treatments (in the case of a partial 
response to first-line treatment)

    Second course of intravenous glucocorticoids 
(not to exceed a cumulative dose of 8 g of 
methylprednisolone)

    Orbital radiotherapy associated with oral 
glucocorticoids

   Oral glucocorticoids associated with cyclosporine
   Rituximab
Moderate-to-severe GO and inactive
    Rehabilitative surgery, if needed or required by 

the patient, including one or more of the 
following procedures, in this order: orbital 
decompression, squint surgery, eyelid surgery

Sight-threatening GO
   Very high doses of intravenous glucocorticoids
    Urgent orbital decompression if response to 

intravenous glucocorticoids is absent or poor 
within 2 weeks

Derived from Bartalena et al. [39]
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this treatment [100], EUGOGO recommended a 
medium dose (4.5 g) for most cases, reserving the 
higher dose (7.5 g) to most severe cases [6, 39, 73, 
76]. In any case, the cumulative dose should not 
exceed 8 g to minimize the risk of liver toxicity 
[101, 102], and the single dose should not be 
higher than 0.75 g [103]. This treatment is contra-
indicated in patients with severe cardiovascular 
problems, uncontrolled hypertension, uncon-
trolled diabetes, liver dysfunction and recent viral 
hepatitis, and psychiatric disorders [96]. 
Glucocorticoids appear to be particularly effec-
tive on soft tissue changes and ocular motility, 
whereas exophthalmos is less responsive [45]. 
Effectiveness is greater when GO duration is less 
than 1 year. One problem observed with glucocor-
ticoid therapy is represented by the not infrequent 
recurrence of the disease [99], making a second 
course of intravenous glucocorticoids or the use 
of a second-line treatment necessary. Indeed, 
what to do when the first course of intravenous 
glucocorticoids provide only a partial response 
remains a dilemma and a challenge [87].

Orbital radiotherapy is a valid second-line 
treatment, effective particularly on extraocular 
muscle dysfunction [104]. It is administered in 
ten daily fractions over a 2-week period, with a 
cumulative dose of 20 Gy per eye [104], although 
different protocols have been proposed [104]. 
Orbital radiotherapy and oral glucocorticoids in 
combination are more effective than either treat-
ment alone [104]. No information from random-
ized clinical trial is available on whether adding 
orbital radiotherapy to intravenous glucocorti-
coids improves the treatment outcome. However, 
two recent retrospective studies showed the effec-
tiveness of combination therapy, particularly in 
women [102], and the greater effectiveness of the 
combined therapy compared to intravenous glu-
cocorticoids alone [105]. Randomized clinical tri-
als are needed to clarify this issue. Data on 
long-term safety are reassuring, but orbital radio-
therapy should be avoided when diabetic or 
hypertensive retinopathy is present [45].

Another second-line treatment for moderate-
to-severe and active GO is the combination of 
cyclosporine and oral glucocorticoids. This is 
based on the results of two randomized clinical 

trials [106, 107], which showed that the combina-
tion of the two drugs was more effective than 
either drug alone. The starting dose of cyclospo-
rine was 5 mg/kg body weight in one study [106] 
and 7.5  mg/kg body weight in the other one 
[107]. Cyclosporine treatment may be associated 
with adverse events, including dose-dependent 
liver and renal toxicity, infections, and gingival 
hyperplasia [39].

Rituximab is a CD20+ B cell-depleting mono-
clonal antibody, initially used for the treatment of 
non-Hodgkin lymphoma and then off-label in 
several autoimmune disorders. After few uncon-
trolled studies [108], two small randomized clini-
cal trials have been recently published on its use 
in patients with moderate-to-severe GO.  In one 
study rituximab was compared with placebo 
[109], while in the other one the drug was com-
pared with intravenous glucocorticoids [110]. 
The two studies provided conflicting results. In 
the first study, the outcome in patients treated 
with rituximab was not different from that of 
patients receiving placebo [109]. Conversely, in 
the second study rituximab treatment was associ-
ated with a higher rate of inactivation of GO 
compared to intravenous glucocorticoids and was 
not followed by flare up of GO observed in 31% 
of glucocorticoid-treated patients [110]. The rea-
sons for this discrepancy between the two studies 
remain elusive, but in the first study duration of 
disease was longer, possibly making the patients 
less responsive to the treatment [109]. In the 
absence of larger, multicenter randomized clini-
cal trials, for the time being rituximab cannot be 
recommended as first-line treatment for 
GO. Minor and major adverse events may occur 
with rituximab. In the two above studies, progres-
sion of DON occurred in 4 of 25 patients (16%) 
during rituximab treatment [111]. Accordingly, 
rituximab should not be used in patients with 
impending or overt DON [39].

Because all of the available therapies for mod-
erate-to-severe and active are not always effec-
tive [72], advantages and disadvantages of each 
treatment should be thoroughly discussed with 
the patient in a shared decision-making  process 
which puts the patient at the center of healthcare 
[112].
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In patients with moderate-to-severe and inac-
tive GO, medical treatment has no role, and dif-
ferent types of rehabilitative surgery, including 
orbital decompression, squint surgery, and eyelid 
surgery, may be required for residual cosmetic 
and functional reasons. Should all of the above 
procedures be needed, they should be performed 
in the given order [39].

 Sight-Threatening Disease

Sight-threatening GO may be due to DON and/or 
corneal breakdown and constitutes an emergent 
situation. Corneal breakdown should be treated 
by different measures aimed at protecting the 
cornea, such as lubricants, moisturized cham-
bers, blepharorrhaphy, and tarsorrhaphy. DON 
requires immediate treatment with high doses of 
intravenous glucocorticoids (500–1000  mg of 
methylprednisolone for 3 consecutive days or on 
alternate days) [113, 114]. This treatment can be 
repeated on the next week, but if the recovery of 
visual acuity is absent or poor, the patient should 
be submitted to urgent decompression surgery to 
preserve his/her sight [39].

 Conclusions and Perspectives

GO is a rare disease, particular in its severe 
expressions. This likely derives from earlier diag-
nosis and treatment of the orbital disease and 
associated thyroid dysfunction. Prompt referral 
to specialized centers plays a major role in this 
regard. Overt GO is usually easy to diagnose, but 
asymmetrical or unilateral forms require a care-
ful diagnostic work-up, particularly if autoim-
mune phenomena and/or thyroid dysfunction is 
absent. Management of moderate-to-severe and 
active forms of GO still relies on imperfect treat-
ments [71, 72]: intravenous glucocorticoids 
remain, for the time being, the first-line treat-
ment. This and other treatments are not targeting 
pathogenic pathways of the disease. However, 
recent studies have improved our understanding 
of the pathogenesis of the disease [37, 115, 116], 
and it is expected that the results of ongoing and 

future trials using drugs targeting different actors 
involved in the cascade of events occurring in the 
GO orbit (orbital fibroblasts, B cells, T cells, 
cytokines) will be available in the near future.
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Subclinical Hyperthyroidism

Gabriela Brenta and José Sgarbi

 Definition

Subclinical hyperthyroidism has been biochemi-
cally defined by values of serum TSH below the 
lower range of reference with thyroid hormones 
within the normal range [1].

Subclinical hyperthyroidism is also known as 
subclinical thyrotoxicosis, a broader term that 
refers to inappropriately high thyroid hormone 
action in tissues. Subclinical thyrotoxicosis 
therefore includes both the “exogenous” and the 
“endogenous” forms. Exogenous subclinical thy-
rotoxicosis is due to administration of thyroid 
hormones, while the endogenous form can be 
explained either by the “release of stored thyroid 
hormones” or by a “true form of hyperthyroidism 
with increased synthesis and secretion of thyroid 
hormones by the thyroid gland” [2].

Endogenous subclinical thyrotoxicosis due to 
the release of stored thyroid hormones is usually 
transient, while the endogenous subclinical thy-
rotoxicosis due to the “true form of hyperthyroid-
ism with increased synthesis and secretion of 
thyroid hormones by the thyroid gland” is usually 

of a permanent nature. From now on we shall 
refer to permanent endogenous subclinical thyro-
toxicosis with the term “Shyper.”

Two categories of Shyper can be defined 
according to levels of TSH below the lower nor-
mal limit [1]:

Grade 1 Shyper: the one that is between the 
functional sensitivity of the second TSH genera-
tion methods, 0.1 mIU/L, and the lower limit of 
the reference range of TSH, usually considered 
as 0.39 mIU/L

Grade 2 Shyper: is the category defined by 
TSH levels below 0.1 mIU/L

 Etiology

As stated endogenous subclinical thyrotoxicosis 
can be transient or persistent [3]. The causes of 
Shyper are the same as those of overt hyperthy-
roidism: Graves’ disease and autonomously 
functioning thyroid nodules (AFTN). AFTN 
include the solitary toxic adenoma (TA) and toxic 
multinodular goiter (TMNG).

Graves’ disease has an autoimmune origin 
where thyrotropin receptor antibodies (TRAbs) 
stimulate the thyroid gland to produce thyroid 
hormone [4], while AFTN is mainly caused by 
the gradual progression of hormone secretion 
from autonomous nodules with somatic gain-of-
function mutations in the TSH receptor or the 
stimulatory Gs alpha subunit [5, 6].
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Transient endogenous subclinical thyrotoxi-
cosis, on the other hand, is mainly due to differ-
ent types of thyroiditis, including subacute, (viral 
or DeQuervain’s), silent, and postpartum thyroid-
itis [7, 8], and recent excess iodine intake, such as 
in type 2 amiodarone-induced thyrotoxicosis [9], 
or other drugs such as interferon-alpha [10]. 
Treatment of overt hyperthyroidism with antithy-
roid drugs or radioiodine can also origin transient 
endogenous subclinical thyrotoxicosis [3].

Exogenous subclinical thyrotoxicosis can 
result from an unintentional over-replacement of 
thyroid hormones in hypothyroid patients [11, 
12], the surreptitious intake of thyroid hormones 
in non-approved indications such as obesity [13], 
or intentional TSH suppression therapy in differ-
entiated thyroid cancer [14] or in patients with 
nontoxic multinodular goiters although this pro-
cedure is no longer recommended [15].

The differential diagnosis of Shyper with 
other causes of low TSH levels is described in 
Table 1.

 Epidemiology

Although the prevalence of Shyper might be esti-
mated about 4.2% [16], it really depends upon 
the considered levels of TSH, the iodine intake, 
and the age of the analyzed population. Population 
studies in iodine-sufficient areas show a preva-
lence of Shyper that spans from 0.7% in case of 
Shyper 2 and up to 1.8% for Shyper 1 [17], while 

in elderly subjects living in an iodine-deficient 
area, the proportion of Shyper might increase up 
to 15% [18].

With regard to age differences, it has to be 
considered that TMNG is more prevalent in aged 
patients, while Graves’ disease is more frequent 
in younger populations [19].

Unfortunately, the exogenous form is by far 
the most frequent cause of subclinical thyrotoxi-
cosis. It has been reported that up to 40% of 
hypothyroid patients under levothyroxine therapy 
are over-replaced and have TSH below the lower 
limit of TSH [11]. In a more recent communica-
tion, however, a lower prevalence (9.6%) of iatro-
genic thyrotoxicosis was found for those patients 
on thyroid hormone participating in the Baltimore 
Longitudinal Study of Aging. Exogenous thyro-
toxicosis accounted for approximately half of 
both prevalent and incident low TSH events [12].

 Natural History (Progression 
to Overt Hyperthyroidism)

One important aspect to consider for the manage-
ment of Shyper is the possibility of progression 
to an overt form of hyperthyroidism. However 
this depends mainly on the cause of Shyper and 
on the initial level of TSH.

In Graves’ disease, TSH values have better 
chance of reverting to normal values or to prog-
ress rapidly to clinical hyperthyroidism unlike 
TMNG that usually has a more indolent course 
[20]. Nevertheless, caution should be taken in 
these patients because despite their low progres-
sion to overt disease, certain situations such as an 
iodine load in a contrast study may precipitate 
severe hyperthyroidism [21]. Furthermore, the 
size of the hot nodule is also related to overt thy-
rotoxicosis. A nodule with a diameter of 3 cm or 
larger has been associated to 20% of overt thyro-
toxicosis in 6 years [22].

With regard to the initial level of TSH sup-
pression, some reports suggest that Shyper may 
spontaneously resolve, especially if the levels of 
TSH are low but detectable [23–25]. Likewise, in 
aged patients with TSH between 0.1 and 
0.4  mIU/L and in whom AFTN was the main 

Table 1 Differential diagnosis of Shyper with other 
causes of low TSH [1]

1.  Delay in the recovery of thyrotrophs after treatment 
for hyperthyroidism (delayed readjustment of the 
thyroid axis)

2. Pregnancy (in 1° trimester)
3. Non-thyroidal illness (NTI)
4.  Drugs (dopamine, corticoids, somatostatin 

analogues, dobutamine, amphetamine, bexarotene, 
bromocriptine)

5.  Central hypothyroidism (in general with low or 
normal T4)

6. Psychiatric diseases
7. Age-related reduced thyroid hormone clearance
8. Presence of heterophile antibodies (HAMA)
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cause of Shyper, the progression toward clinical 
hyperthyroidism was described to be unfrequent 
(approximately 1% per year) [26]. Furthermore, 
in another study performed in patients above 
60  years old followed for 10  years, only 4.3% 
developed overt hyperthyroidism [27]. On the 
other hand, in patients with TSH <0.1 mIU/L or 
grade 2 Shyper, a higher rate of progression to 
overt hyperthyroidism (hazard ratio 3.4, confi-
dence interval 1.6–7.0) was reported [28].

According to the variable evolution that 
Shyper may have, in untreated patients it has 
been recommended to monitor with TSH and free 
T4 or T3 every 6–12 months or sooner if there is 
a change of the clinical picture [1]. This proce-
dure will inform about persistence, progression, 
or disappearance of the disease.

 Biochemical and Morphologic 
Diagnosis

 TSH and Thyroid Hormones 
Determination

The determinations of TSH and total and/or free 
thyroid hormones are used for the diagnosis of 
Shyper.

Serum TSH is used as the first-line diagnostic 
test for Shyper because even a small elevation in 
serum free T4, that is still within the normal 
range, will cause a decrease in serum TSH out-
side its reference range. This is explained by an 
inverse log-linear relationship between TSH and 
the concentrations of free thyroxine (T4). This 
relationship determines that small linear increases 
in free T4 concentrations are associated with an 
exponential decrease in TSH concentrations [29].

Although TSH is a very robust assay, given 
the inherent biological variability of TSH and 
potential episodes of silent thyroiditis and sys-
temic illness, several authoritative guidelines 
advice to assure the diagnosis of Shyper with 1 
second determination of TSH after 2–3 months 
[1] or 3–6  months [2]. Although an extended 
interval to reassess TSH is optimal, certain clini-
cal circumstances such as atrial fibrillation, car-

diac disease, or other serious medical conditions 
may compel physicians to repeat the TSH deter-
mination in a shorter lapse of time.

In the second hormone assay, it has been rec-
ommended to measure free T4 and free triiodo-
thyronine (T3) or total T3 to discard overt 
hyperthyroidism, central hypothyroidism, or 
non-thyroidal illness (NTI) [1]. Moreover, in T3 
toxicosis, free T4 might be normal, while high 
levels of free T3 might discriminate Shyper from 
overt free T3 toxicosis [30].

TRAbs can also be included in the second 
determination for cases in which it is deemed 
necessary to distinguish between Graves’ disease 
and TMNG [31]. They are especially useful when 
a thyroid scan and uptake are unavailable or con-
traindicated (e.g., during pregnancy and nursing). 
In iodine-deficient areas, however, the differen-
tial diagnosis might be difficult since approxi-
mately 17% of patients with scintigraphic criteria 
for TMNG may be positive for TRAb reflecting 
an overlap between both diseases [32].

In order to distinguish Graves’ disease or 
AFTN from thyroiditis, the ratio of total T3 to 
total T4 can be useful. In true hyperthyroidism 
more T3 is synthesized than T4 with a ratio (ng/
mcg) that is usually >20, while it is <20 in pain-
less or postpartum thyroiditis [33].

In hospitalized patients, diagnosis of Shyper 
can be a challenge, because a suppressed TSH is 
less specific than in ambulatory patients and 
because free T4 assays are not reliable in that 
setting. Considering that TSH levels can become 
transiently subnormal in the acute phase of NTI, 
the degree of TSH suppression might be of aid 
for diagnosis. TSH levels <0.01  mIU/L may 
indicate true hyperthyroidism, while a low but 
detectable TSH may imply a transient TSH 
reduction or the result of the use of dopamine 
and steroids [34].

Several biochemical markers such as alkaline 
phosphatase, sex hormone-binding globulin 
(SHBG), liver enzymes, osteocalcin, cholesterol, 
etc. can be employed to study the peripheral 
action of thyroid hormones [35, 36]. However, 
their use is not recommended in Shyper due to 
their lack of accuracy.
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 Nuclear and Imaging Studies

Scintigraphy or thyroid scan and a 24-h radioac-
tive iodine uptake (RAIU) test are very valuable 
methods for the etiologic diagnosis.

A RAIU should be performed when the clini-
cal presentation of thyrotoxicosis is not clearly 
diagnostic of Graves’ disease and other causes of 
thyrotoxicosis have to be distinguished. 
Furthermore, a thyroid scan should be added in 
the presence of thyroid nodularity [2] in particu-
lar in grade 2 Shyper to guide clinicians in the 
choice of treatment [1].

The use of thyroid scintigraphy with the 
objective to identify autonomous tissue has been 
also recommended, despite normal TSH levels, 
in patients with MNG from regions of long-
standing insufficient iodine supply [37, 38]. Its 
contribution to diagnosis has been confirmed in a 
study where scintiscan was the most sensitive 
tool to detect AFTN [39]. Moreover, a recent 
meta-analysis has shown that about half of the 
patients with AFTN discovered in a scintigraphy 
had a TSH value within normal references (40).

Thyrotoxicosis due to diverse forms of destruc-
tive thyroiditis exhibit RAIU near 0% similarly to 
iodine-induced thyroiditis where the radioiodine 
uptake may remain low for 1–2  months after 
exposure. In this case the measurement of 24-h 
urinary iodine excretion may help to confirm sus-
pected excessive iodine intake [1]. On the con-
trary, Graves’ disease patients will display a 
moderate or frankly elevated uptake with a 
homogenous scintigraphic image. Autonomous 
adenomas will show the typical image of the sin-
gle hot nodule and TMNG multiple hot areas, 
although very often a characteristic speckled or 
heterogenous pattern will be observed [1] (Fig. 1).

Thyroid scintigraphy can be performed with 
131I; however an alternative to 131I scintiscan is a 
123I or a 99mTc—(sodium pertechnetate) scintigra-
phy. The advantage of using these two radioiso-
topes is a lower total body radiation exposure than 
with 131I. However 123I is expensive and not always 
available, while 99mTc, that is trapped by the thy-
roid but not organified, can yield some false-posi-
tive (about 5%) hot nodules that are not truly 
autonomous [41].

Another imaging test worth considering for the 
diagnosis of Shyper is Doppler ultrasound. Color 
Doppler flow of the inferior thyroid artery may be 
useful in the differential diagnosis of thyrotoxico-
sis in cases where nuclear imaging is contraindi-
cated. Such is the situation with pregnancy and 
lactation, recent intake of iodine-rich food, and 
injection of iodine-based contrast media (coro-
nary angiography, computed tomography, etc.) or 
when TRAb are not available. Diffusely increased 
thyroid blood flow is pathognomonic of untreated 
Graves’ disease. Peak systolic velocity of the 
inferior thyroid artery was reported significantly 
higher (>40  cm/s) in Graves’ disease patients 
when compared to patients with destructive thy-
roiditis [42]. However, in a recent study assess-
ment of the peak systolic value at the superior 
rather than at the inferior thyroid artery was pro-
posed as an easier way to differentiate between 
these two entities [43].

Although the likelihood of malignancy in a toxic 
nodule is very low [44], the presence of malignant 
nodules in Shyper patients is always of concern. 
The only indication to perform a fine needle aspira-
tion in patients with TMNG is within the hypofunc-
tioning thyroid nodules in a thyroid scan, particularly 
in those with suspicious ultrasound findings [15].

Fig. 1 Thyroid scintigraphy with 5 mCi 99mTc showing a 
multinodular goiter with increased uptake in lower left 
lobe in a patient with Shyper due to a TMNG
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Computed tomography (CT) or magnetic reso-
nance imaging (MRI) can also be indicated for 
diagnosis of patients with Shyper and large goiters. 
An objective measure of thyroid size evaluated by 
diagnostic imaging of intrathoracic (often referred 
to as substernal) goiter in patients with compres-
sive symptoms can be achieved by these imaging 
tests. Furthermore, either CT or MRI can detect 
extrathyroidal extension and/or regional lymph-
adenopathy suggestive of thyroid malignancy and 
provide valuable information regarding the dimen-
sions of the trachea and surgery strategies [45, 46].

 Assessment of Clinical Significance

Due to the detrimental impact of Shyper on the car-
diovascular system, several cardiac tests such as 
ECG, Holter ECG, and Doppler echocardiography 
have been recommended for symptomatic patients, 
the elderly, or those with cardiovascular risks or 
previous cardiovascular disease. Furthermore, 
bone mineral density should also be assessed in 
postmenopausal women, in elderly patients, and in 
patients with underlying bone risk factors [1].

 Clinical Significance

The clinical consequences of overt hyperthyroid-
ism on the general health, particularly on the car-
diovascular and skeletal system, are well 
established, but the clinical significance of Shyper 
remains unclear. However, more recently a grow-
ing body of high-quality evidence has associated 
Shyper with an increased risk of coronary heart 
disease (CHD), atrial fibrillation (AF), bone frac-
tures, and lower life expectancy. Less consistently, 
Shyper has been associated with a decreased qual-
ity of life, cognitive impairment, dementia, insulin 
resistance, and hypercoagulability (Table 2).

 Quality of Life, Cognitive Impairment, 
and Dementia

The literature on the association of Shyper with 
quality of life, cognitive impairment, and dementia 

is large, heterogeneous, and controversial. Patients 
with Shyper are usually asymptomatic, but some 
few small studies have associated Shyper with clin-
ical manifestations of thyrotoxicosis, particularly 
when applying specific clinical indexes to rate 
signs and symptoms of thyrotoxicosis [47, 48]. In 
fact, a larger prospective cohort study on hyperthy-
roidism in France showed that most patients with 
Shyper had signs or symptoms of thyrotoxicosis 
[49], but in another large community-based study 
in women, no impact of Shyper on well-being or 
quality of life was found [50].

In the last years, there have been an increasing 
number of studies exploring an association of 
Shyper with cognitive impairment and dementia 
with conflicting findings. The first data suggesting 
an association between Shyper and dementia or 
Alzheimer’s disease was derived from the 
Rotterdam Study. In a sample of 1843 participants 
aged ≥55 years, subjects with reduced TSH levels 
at baseline had a more than threefold increased 
risk of dementia and Alzheimer’s disease after 
adjustment for age and sex over 2-year follow-up 
[51]. More recently, a cross-sectional population-
based study from Brazil with 1119 elderly 
≥65 years also described an association of Shyper 
with any type of dementia and vascular dementia 
in men, but not in women [52]. In another pro-
spective population-based study from Korea [53] 
with 313 participants (mean age 72.5 ± 6.9 years), 
a lower normal serum TSH level (but not FT4 
level) was independently associated with the risk 
of cognitive impairment and dementia during 
5-year follow-up. In an Australian prospective 
population-based study, comprising 3401 com-
munity-dwelling men aged 70–89  years, there 
was no association between TSH quartiles and 
incident dementia over 5.9-year follow-up. 
However, men who developed dementia had 
higher baseline FT4 levels compared with men 
who did not receive this diagnosis, and the asso-
ciation persisted significant even when the analy-
sis was restricted to euthyroid men [54].

Conversely, in a larger retrospective cohort 
from Scotland including 2004 patients with 
Shyper, no relationship with TSH concentration 
was found, suggesting no causal relationships 
between Shyper and dementia [55]. Moreover, 
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in the PROspective Study of Pravastatin in the 
Elderly at Risk (PROSPER) with 5182 partici-
pants with a mean age of 75.2 years and a fol-
low-up of 42 months, there were no differences 
on the self-reported functional capacity between 
participants with Shyper compared to those in 
euthyroidism [56]. In the same population, 
another study also found no consistent associa-
tion of Shyper with altered cognitive perfor-
mance on the individual cognitive tests [57]. In 
another prospective cohort study from Spain 
with 307 inhabitants aged 85 years at baseline, 
Shyper patients were not significantly associ-
ated with poor physical or cognitive function at 
baseline when compared to euthyroid subjects 
[58]. A negative finding was also found in a 
prospective cohort of the Longitudinal Aging 
Study Amsterdam comprising 1219 individuals 
aged ≥65 years. In this study, Shyper was not 
related to impairment in any of the tested 
domains of cognitive function nor to more 
depressive symptoms at baseline compared to 
euthyroid subjects [59].

Finally, in two recent reviews [60, 61] includ-
ing several well-designed and well-powered 
studies, Shyper was significantly associated with 
cognitive impairment or dementia in elderly 
people.

In summary, at the current time, there is no 
definitive evidence on the association of Shyper 
with low quality of life, but there is moderate-
quality evidence on the association of Shyper 

with cognitive impairment and dementia in older 
people. Nevertheless, there is still a need of 
larger, powered, and well-designed studies as to 
allow analysis according to TSH levels and age 
groups (Table 2).

 Metabolic Consequences

Thyroid hormones have important effects on lipid 
metabolism that are clearly observed in overt 
hyperthyroidism [62]. With regard to the lipopro-
tein profile of Shyper patients, normal levels of 
total LDL and HDL cholesterol, triglycerides, 
Lp(a), apoA1, and apoB have all been reported 
[63]. On the other hand, in a population screening 
study of patients over 60 years, with persistently 
low TSH with normal free T4, a reduction in total 
cholesterol was detected [64]. Furthermore, in 
TMNG patients with Shyper, total serum HDL, 
LDL cholesterol, and triglycerides were lower 
when compared to a control group [65].

Similarly to what has been described in overt 
hyperthyroidism [66], subclinical thyrotoxico-
sis has also been associated with insulin resis-
tance [67–69], although in some but not all 
studies [70]. The heterogenous nature of this 
condition can partly explain this controversy. 
Shyper may have a larger impact on glucose 
metabolism due to its chronicity and higher T3 
levels when compared to exogenous adminis-
tration of T4 [69].

Table 2 Summary of evidences on the clinical relevance of subclinical hyperthyroidism

Shyper grade 1 (TSH 0.1–0.39 mIU/L) Shyper grade 2 (TSH < 0.1 mIU/L)
Quality of life Insufficient Insufficient
Cognitive dysfunction and dementia Moderate (elderly) Moderate (elderly)
Metabolic consequences Insufficient Insufficient
Osteoporosis Insufficient Strong (postmenopausal women)
Fractures Insufficient Strong
Atrial fibrillation Strong (≥60 year) Strong (≥60 year)
Heart failure Insufficient Strong
Coronary heart disease and 
mortality

Insufficient Strong

Stroke Insufficient Insufficient
Thromboembolism Insufficient Insufficient
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 Osteoporosis and Fractures

Thyroid hormones strongly affect the skeletal 
development and bone structure and strength by 
acting in all phases of the bone remodeling cycle, 
stimulating both bone formation and reabsorp-
tion [71]. Thus, either thyroid hormone excess or 
deficiency can have detrimental effects in the 
bone. In fact, overt hyperthyroidism has been 
consistently associated with bone mineral density 
(BMD) loss, osteoporosis, and fractures, but 
whether Shyper is associated with the same risks 
remains controversial [72].

In the last three decades, data derived from 
several small studies on the association of Shyper 
with loss of BMD, osteoporosis, and fractures are 
conflicting. However, most of these studies agree 
on an association between Shyper and a reduc-
tion in BMD and osteoporosis in postmenopausal 
women [3, 71]. Two meta-analyses found that a 
long-term suppressive l-thyroxine treatment is 
associated with a significant BMD loss in post-
menopausal women, but not in premenopausal 
women [73, 74]. In fact, a recent review [3] found 
no evidence of an association between Shyper 
and deleterious bone consequences in men or in 
premenopausal women.

In the last years, Shyper has been related to an 
increased risk of osteoporotic fractures, but 
results derived from prospective studies are also 
conflicting. In the Cardiovascular Health Study 
(CHS), a prospective cohort of 3567 US commu-
nity-dwelling ≥65  years, men (but not women) 
with Shyper had a more than fourfold increased 
incidence of hip fractures compared to euthyroid 
individuals in 13-year follow-up [75]. 
Interestingly, a subsequent study with an expan-
sion of the same study population to 4936 partici-
pants found no association between Shyper and 
incident hip fracture in either sex. These results 
were strengthened by the findings in a subset of 
1317 participants with dual-energy X-ray absorp-
tiometry scans in whom Shyper was not related 
to loss of BMD at the lumbar spine, total hip, or 
femoral neck sites [76].

In another population-based prospective 
cohort study from Israel comprising 14,325 
participants ≥65 years and a mean follow-up of 

102 ± 3 months, low-normal TSH levels were 
associated with a higher risk of hip fractures in 
euthyroid women, but not men [77]. In a larger 
population-based cohort study from Denmark, 
a first and single low TSH in a patient without 
known thyroid disease was associated with an 
increased risk of hip fracture over a median 
follow-up of 7.5 years, which remained signifi-
cant in women but not in men after adjusting 
for confounders. In addition, in this study the 
risk increased exponentially by the length of 
time during which TSH remained low, and the 
risk of fractures increased significantly with 
each SD unit of TSH decrease in euthyroid 
patients [78]. By contrast, in a large retrospec-
tive cohort study from Scotland, Shyper was 
associated with a higher risk of osteoporotic 
fracture, but there was no dose-response effect 
according to TSH level, suggesting no causal 
effect [55].

Despite controversies among prospective 
cohort studies, three recent meta-analyses of pro-
spective studies have demonstrated an increased 
fracture risk in Shyper. In a first meta-analysis 
with 50,245 participants, it was reported that 
Shyper might be associated with an increased 
risk of hip and nonspine fractures, particularly 
for adults with a TSH ≤ 0.1 mIU/L [79]. In a sec-
ond meta-analysis, individual participant data 
were obtained from 13 prospective cohorts com-
prising 70,298 participants. Compared to euthy-
roid participants, the HR for Shyper was 1.36 for 
hip fracture (95% CI, 1.13–1.64), 1.28 for any 
fracture (95% CI, 1.06–1.53), 1.16 for non-
spine fracture (95% CI, 0.95–1.41), and 1.51 
for spine fracture (95% CI, 0.93–2.45). Lower 
TSH (≤0.10  mIU/L) was associated with 
higher fracture rates [80]. Finally, the third 
meta-analysis included 314,146 participants 
from five population-based cohort studies 
including both endogenous and exogenous sub-
clinical thyroid dysfunction. The relative risk 
(RR) for subclinical hyperthyroidism vs. euthy-
roid subjects was 1.25 (95% CI 1.11–1.41) in a 
 multivariable-adjusted model, and a subgroup 
analysis indicated that the risk of fracture was 
higher in the endogenous group than the exoge-
nous group [81].
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These data show that there is high-quality evi-
dence on the association of Shyper with an 
increased risk of BMD loss and osteoporosis in 
postmenopausal women, as with an increased risk 
of osteoporotic fractures in elderly, particularly 
for those with grade 2 Shyper (TSH ≤ 0.1 mIU/L) 
(Table 2).

 Atrial Fibrillation

The association between Shyper and the increased 
risk of atrial fibrillation (AF) has been considered 
the most consistent evidence to recommend treat-
ment of Shyper in elderly people with both 
Shyper grade 1 and Shyper grade 2 [1, 2], based 
on data derived from prospective studies and 
meta-analysis.

In a prospective cohort of the Framingham 
Heart Study with 2007 subjects ≥60 years, a low 
serum TSH (≤0.1 mIU/L) at baseline was associ-
ated with a threefold higher risk of AF in a 
10-year follow-up period, while for those with 
slightly low TSH (0.1–0.4 mIU/L) values, no sig-
nificant difference was found [82]. In the context 
of the CHS, which consisted of 3233 individuals 
aged 65 years or older, participants with Shyper 
had nearly twice the risk of developing AF in a 
13-year follow-up period. The risks (HR) were 
similar for both Shyper grade 2 [1.98 (95% CI, 
1.29–3.03), p < 0.001] and Shyper grade 1 [1.85 
(95% CI, 1.14–3.00), p = 0.007] [83].

Compared to euthyroid subjects, in a large 
population-based cohort study from Denmark, 
comprising 586,460 individuals, the risk [inci-
dence rate ratio—IRR (95% CI)] of AF increased 
with decreasing levels of TSH, from individuals 
with high-normal thyroid function [TSH 0.2–
0.4 mIU/L, 1.12 (1.03–1.21)] to those with mild 
Shyper [TSH 0.1–0.2 mIU/L; 1.16 (0.99–1.36)] 
and more severe Shyper [TSH < 0.1 mIU/L, 1.41 
(1.25–1.59)] in a median follow-up of 5.5 years 
[84]. Finally, in a recent individual participant 
data meta-analysis with 8711 participants from 5 
cohorts, during a mean follow-up of 8.8 years, in 
age- and sex-adjusted analyses, the overall HR 
(95% CI) for participants with Shyper compared 
with euthyroidism was 1.68 (1.16–2.43; 17.1 vs. 

12.5/1000 person-years). The risks were 
increased for both Shyper grade 1 [1.63 (1.10–
2.41)] and Shyper grade 2 [2.54 (1.08–5.9) [16].

Taken together, these data suggest that the risk 
of AF in individuals with Shyper aged 60 years or 
more is higher for both grade 1 and grade 2 
Shyper. In addition, these findings also suggest a 
dose-response relationship between low TSH 
levels and an increased risk of AF and justify rec-
ommendations for treating all patients >60 years 
with grade 1 and grade 2 Shyper [1, 2] (Table 2).

 Heart Failure

Thyroid hormones have marked effects on the 
heart and cardiovascular system through genomic 
and non-genomic actions. It is well known that in 
overt hyperthyroidism thyroid hormone excess 
can lead to a hyperdynamic state, systolic and 
diastolic dysfunction, cardiac hypertrophy, low 
ventricular performance, increased pulmonary 
arterial pressure, and heart failure (HF) that can 
be reversible after euthyroidism with treatment 
[85]. Moreover, in some studies, but not in all, 
Shyper has been associated with similar abnor-
malities, such as with increased resting heart rate, 
supraventricular arrhythmias, increased left ven-
tricular mass, impairment of systolic and dia-
stolic functions, and hemodynamic abnormalities, 
which could be reversible after restoring the 
euthyroid state [48].

More recently, some population-based pro-
spective studies have assessed the association 
between Shyper and HF. Rodondi et al. [86] stud-
ied 3044 individuals ≥65 years initially free of 
HF in the CHS.  Compared to euthyroidism, 
Shyper was associated with larger left atrial size, 
impaired E/A ratio, and increased heart rate, 
although no increased risk of HF was found dur-
ing the 12-year follow-up. Nanchen et  al. [87] 
studied the incidence rate of HF hospitalization 
according to baseline thyroid function in 5316 
patients aged 70–82  years with known 
 cardiovascular in the context of PROSPER study. 
Over 3.2-year follow-up, the rate of HF was 
higher for Shyper compared with euthyroidism 
[HR  =  2.93 (95% CI, 1.37–6.24, P  =  0.005)]. 
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Gencer et al. [88] performed a pooled analysis of 
individual participant data from 6 prospective 
cohorts which consisted of 25,390 individuals. 
Among 648 (2.6%) Shyper participants, in an 
age- and sex-adjusted analyses, risk [HR (95% 
CI)] of HF events was significantly increased for 
TSH levels ≤0.10 mIU/L [1.94 (1.01–3.72)], but 
not for TSH of 0.10–0.44 mIU/L [1.31 (0.88–
1.95)], compared to euthyroidism. However, in a 
study including 758 patients hospitalized for sys-
tolic HF, Shyper was not associated with 
increased age-adjusted mortality risk after a 
median follow-up of 3 years [89], and no clinical 
trial has assessed yet whether treating Shyper 
improved HF outcome.

In conclusion, Shyper is consistently associ-
ated with an increased risk of HF in older people, 
particularly for those with Shyper grade 2 
(Table 2).

 Coronary Heart Disease 
and Mortality

The association between Shyper and CHD has 
been investigated in several prospective popula-
tion-based cohort studies with variable results. 
Some studies have reported significant findings 
[90], while others have found no association 
between Shyper and cardiovascular risk [83]. 
Similarly, data from study-level meta-analyses 
on the topic are also conflicting. In a meta-analy-
ses including 3385 individuals from 5 higher-
quality prospective studies, Ochs et al. [91] found 
that Shyper was associated with only a modest 
increased relative risk [RR (95% CI)] for CHD 
[1.21 (0.88–1.68)], cardiovascular mortality 
[1.19 (0.81–1.76)], and total mortality [1.12 
(0.89–1.42)]. By contrast, based on 7 cohorts 
including 290 participants with Shyper, Haentjens 
et al. [92] estimated that the pooled HR (95% CI) 
for all-cause mortality was 1.41 (1.12–1.79), 
being the excess mortality increased beyond the 
age of 60, especially in aging men.

Several factors have been implicated to justify 
these controversial findings, including different 
population characteristics (such as ethnia, age, 
gender), different Shyper and CHD definitions, 

different inclusion and exclusion criteria, and dif-
ferent confounder adjustments among studies. 
However, most recently, a well-designed, pow-
ered, and robust study based on individual par-
ticipant data (IPD) analysis from large cohort 
studies might have reconciled these conflicting 
results, by having uniformed inclusion and exclu-
sion criteria, CHD definition, and TSH cutoff lev-
els used for Shyper definition for all participants, 
therefore providing pooled survival estimates 
less prone to bias [16].

In such IPD analysis, individual data on 
52,674 (2188 with Shyper) were pooled from 10 
cohorts. In age-and sex-adjusted analyses, 
Shyper was significantly associated with an 
increased risk [HR (95% CI)] of CHD events 
[1.21 (CI, 0.99–1.46)], CHD mortality [1.29 
(1.02–1.62)], and total mortality [1.24 (1.06–
1.46)]. Risks remained significant even after fur-
ther adjustment for cardiovascular risk factors 
and did not differ significantly by age, sex, or 
preexisting cardiovascular disease. However, 
CHD mortality risks were higher in participants 
with Shyper grade 2 compared to those with 
Shyper grade 1 [16].

In summary, despite controversy among pro-
spective studies and meta-analyses, there is now 
strong evidence suggesting a significant associa-
tion between Shyper and fatal and nonfatal CHD, 
particularly for TSH levels <0.1 mIU/L. However, 
clinicians should take these data with caution, 
since there are no randomized controlled studies 
on the benefits of treating Shyper regarding these 
outcomes [93] (Table 2).

 Stroke

Stroke is one of the most important causes of 
mortality and morbidity globally, and some of its 
risk factors such as hypertension and cardiac 
arrhythmia, particularly AF, are associated with 
Shyper. In fact, the link between Shyper and AF 
has been consistently evidenced among 
 prospective studies [82, 83] and meta-analysis 
[16]; nevertheless, the association between 
Shyper and stroke still remains unclear. There are 
a few available studies with heterogeneous qual-
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ity and results on the topic. In a small case-con-
trol Swedish study including 153 patients with 
acute ischemic stroke, unknown Shyper was sig-
nificantly associated with the cardio-embolic 
(based on the presence of AF) compared to non-
embolic group (13% vs. 3%, p = 0.048) [94]. In 
another small study with a total of 165 consecu-
tively recruited patients admitted for ischemic 
stroke, patients with Shyper had a significant 
increased risk of functional disability 3 months 
after stroke compared with those in euthyroidism 
[odds ratio, 2.63 (95% CI, 1.02–6.82)], adjusted 
for age, sex, and smoking status [95]. In a popu-
lation-based prospective study including 609 
subjects ≥50  years from general practice in 
Denmark, the incidence of stroke in median of 
5  years of follow-up was substantially greater 
among Shyper subjects compared to euthyroid 
[HR 3.39 (95% CI, 1.15–10.00, p = 0.027)] after 
adjusting for sex, age, and atrial fibrillation [96].

Conversely, in a more consistent cohort study 
comprising 563,700 (mean age, 48.6 ± 18.2 years) 
subjects without prior thyroid disease from pri-
mary care in Denmark, the incidence rate ratios 
[1.02 (95% CI, 0.93–1.12)] of fatal stroke were 
not significantly associated with Shyper during a 
median follow-up of 5.5 years [97]. Most signifi-
cantly, in a recent systematic review and meta-
analysis with 6029 participants from 4 studies, no 
evidence supporting an increased risk for stroke 
associated with Shyper compared to euthyroidism 
was found [HR = 1.17 (95% CI, 0.54–2.56)] [98].

In conclusion, data about the association of 
Shyper with an increased risk of stroke are insuf-
ficient, and new larger prospective cohort studies 
are needed to clarify this uncertainty (Table 2).

 Venous Thromboembolism

Thyroid hormone exerts important influence on 
the coagulation fibrinolytic system, and overt 
hyperthyroidism has been related to a hyperco-
agulable state and an increased thromboembolic 
risk [99], although there are few data on Shyper.

In a systematic review including only moder-
ate-quality case-control and cohorts studies (no 
high-quality study was found), Shyper was sig-

nificantly associated with subclinical laboratory 
findings suggesting a hypercoagulable and hypo-
fibrinolytic state with a rise in factors VIII and 
IX, fibrinogen, von Willebrand factor, and plas-
minogen activator inhibitor-1 that could induce a 
prothrombotic state and a higher venous throm-
boembolism (VTE) risk [100]. However, in a 
most recent prospective multicenter cohort of 
561 elderly participants, in a mean follow-up of 
20.8  months, the VTE incidence rate was 0.00 
(95% CI, 0.00–0.58) in Shyper compared with 
euthyroid participants, without increased levels 
of thrombophilic biomarkers, suggesting that 
Shyper could be associated with a lower VTE 
risk [101]. In addition, in a larger prospective 
study comprising 11, 962 subjects aged 
25–89  years, low TSH levels were associated 
with only a modest and nonsignificant higher risk 
[HR = 1.55 (95% CI, 0.87–2.77)] of VTE during 
8.2  years of follow-up, suggesting that only a 
minor proportion of the VTE risk in the popula-
tion can be attributed to Shyper [102].

In summary, despite some evidence suggest-
ing an association between Shyper and subclini-
cal laboratory abnormalities on the coagulation 
and fibrinolytic state, there is no consistent evi-
dence suggesting that Shyper enhances the risk of 
clinical outcomes associated to an hypercoagu-
lable and hypofibrinolytic state. Further prospec-
tive cohorts might be needed to provide a more 
definitive information on the clinical significance 
of the association between Shyper and a hyperco-
agulability state (Table 2).

 Case Finding

Screening for Shyper is not currently recom-
mended [103]. However, as mentioned above 
Shyper is associated with atrial fibrillation, con-
gestive heart failure, and osteoporosis in older 
persons and postmenopausal women. Therefore, 
aggressive case finding is advocated in these two 
sets of populations in particular [104]. Moreover, 
although the definition of Shyper is biochemical 
and not clinical, palpitations, weakness, heat-
related signs, and disturbed sleep have been 
reported in patients even with mild degree of 
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hyperthyroidism [49]. Therefore, Shyper has to 
be discarded also in the presence of these signs or 
symptoms.

 Treatment

 Indications of Treatment

In the last two decades there have been continu-
ous and exciting debates whether Shyper should 
be treated or not [105, 106]. Despite a growing 
body of robust evidence that Shyper (particularly 
grade 2) is associated with a higher risk of pro-
gression to overt disease; with cognitive impair-
ment, dementia, AF, HF, and fractures in older 
people; with osteoporosis in postmenopausal 
women; and with CHD event and mortality, there 
are several arguments against treatment. Among 
them  are the low rate of progression to overt 
hyperthyroidism, the risks associated with the 
treatment, and the lack of appropriately large-
scale randomized trials able to detect the benefit 
of treating on the outcomes [93, 105]. Thus, mak-
ing a decision to treat or not a patient with Shyper 
relies mainly in the potential risks of not treating 
and in on our best clinical judgment.

However, some features seem to be consen-
sual. In a hypothyroid patient with exogenous 
subclinical thyrotoxicosis due to excessive dose 
of levothyroxine, titrating the dose to obtain the 
target TSH levels according to age is recom-
mended. In patients under treatment with sup-
pressive levothyroxine therapy for persistent or 
recurrent differentiated thyroid carcinoma, the 
use of beta-blockers should be considered, par-
ticularly for those with symptoms of adrenergic 
hyperactivity, age > 60 years, or with cardiovas-
cular risk or previous cardiovascular disease. 
Postmenopausal women with persistent Shyper, 
particularly those without estrogen replacement 
therapy, should be monitored with bone densi-
tometry, determination of calcium and vitamin D 
to assess the need for specific treatment with 
bone resorption inhibitors, and vitamin D and 
calcium supplementation. In elderly people 
(>60 years), with persistent Shyper and a defined 
thyroid disease (physiological adaptive low TSH 

with aging should be excluded), treatment should 
be considered for grade 1 or 2 Shyper. This rec-
ommendation is based on the association of 
Shyper with a higher risk of AF in elderly people 
even for those with low but not suppressed TSH 
levels [16].

A good suggested policy on how to manage 
Shyper patients in the clinical practice could be 
reached applying a stepwise approach in five 
steps [107]:

Step 1: Establish the diagnosis of persistent 
Shyper.

It is necessary to exclude T3 toxicosis. Non-
thyroidal causes of low TSH should also be 
excluded. Repeat thyroid function tests over a 
period of 3 to 6  months to exclude transitory 
causes.

Step 2: Define the etiology.
The most common causes of subclinical thy-

rotoxicosis are exogenous. Endogenous Shyper 
has the same etiology of overt hyperthyroidism. 
Color-flow Doppler thyroid ultrasound, radionu-
clide thyroid scanning, TRAb determinations, 
and a detailed medical history will be useful to 
establish the etiology of most cases.

Step 3: Assessment of clinical significance.
A careful and detailed medical history may be 

useful in the identification of thyrotoxicosis 
symptoms in apparently asymptomatic patients. 
Patients should be evaluated regarding the poten-
tial harmful effects associated with Shyper, par-
ticularly on the cardiovascular system and 
skeleton. Previous cardiovascular disease and 
cardiovascular risk factors should be routinely 
investigated. According to clinical judgment, 
evaluate the need for ECG, ECG Holter, Doppler 
echocardiogram, and bone densitometry.

Step 4: Stratify patients according to the risks.
Stratify patients according to the severity of 

Shyper (Grade 1 or Grade 2) and the age of the 
patients. Grade 2 Shyper has been associated 
with a higher risk of progression to overt hyper-
thyroidism and incident coronary heart disease 
and mortality. Age > 60 years is associated to a 
significant risk of AF, HF, and fractures.

Step 5: Make a decision.
Each clinical situation should be individually 

analyzed considering the potential clinical conse-
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quences of not treating, and the risks associated 
with the treatment, having in mind data from the 
previous steps and recommendations from recent 
society guidelines [1, 2]. Both ATA and ETA 
guidelines [1, 2] agree on the concept that the 
indication of treatment of Shyper highly depends 
on the age, degree of TSH suppression, and 
comorbidities present in each individual. 
Treatment is either “recommended” or “should 
be considered” accordingly (Table 3).

 Treatment Modalities

Patients with Shyper are treated with antithyroid 
medications, radioiodine (RAI) or 131I, or surgery, 
depending on the clinical circumstances and 
patient preference. Treatment modalities vary 
according to the etiology of Shyper, and there are 
no control trials comparing the efficacy among 
them. Furthermore symptomatic treatment 
includes cardioselective β-blocking agents with 
the aim of improving symptoms, heart rate, and 
supraventricular arrhythmias [108, 109].

In patients with Graves’ disease, RAI therapy, 
antithyroid medication, and thyroidectomy are 
all acceptable modes of treatment. A treatment 
option can be chosen by the patients following 
comprehensive discussion with their physician. 
However in certain scenarios such as young 
Graves’ disease patients with Shyper, long-term 
and low-dose (5–0.10  mg/day of methimazole) 
antithyroid drug therapy is the first choice since 
the remission rate is high [110]. Similarly, in 
patients older than 65 years with Graves’ disease 

and grade 1 Shyper, antithyroid drugs may be 
used as an initial line of therapy [1], while for 
those elderly Graves’ disease patients with grade 
2 Shyper or for patients with cardiovascular dis-
ease, both antithyroid drugs or RAI can be con-
sidered as the first choice with the aim of a rapid 
remission of the disease [1].

On the other hand, 131I therapy and surgery are 
offered primarily to patients with TMNG or TA 
[111] especially in elderly patients. Although, 
pretreatment with antithyroid medication has 
been advocated to avoid exacerbation of hyper-
thyroidism due to RAI, its use remains controver-
sial [112] considering that 10–15% increase in 
RAI activity will be needed after pretreatment 
with antithyroid drugs to maintain efficacy [112]. 
During the first week after RAI, the use of anti-
thyroid medication may decrease complications 
such as atrial fibrillation; however, it may also 
decrease the efficacy of the RAI treatment [112]. 
In those elderly patients in whom neither surgery 
nor RAI are feasible, long-term antithyroid drugs 
can also be used [113].

In case of compressive symptoms, concomi-
tant hyperparathyroidism or suspicion of thyroid 
malignancy, total or partial thyroidectomy is the 
best option. Iodine is primarily used now in con-
junction with antithyroid drugs to prepare 
patients with Graves’ disease for surgical thy-
roidectomy. Conversely, its use is not really 
needed in case of AFTN surgery since it may 
exacerbate thyrotoxicosis. In case of a solitary 
autonomous nodule, lobectomy and isthmus 
resection is sufficient [2]. In the presence of a 
patient with a large goiter with contraindication 
for surgery due to advanced age or comorbidities, 
other treatment modalities may be considered.

Low doses of recombinant human TSH before 
RAI have been advocated in the management of 
multinodular goiter to increase iodine uptake 
[114]. Its use however may be associated to tran-
sient exacerbation of hyperthyroidism.

With regard to possible adverse effects of all 
these treatments, they are the same as when admin-
istered for overt hyperthyroidism [2, 115]. 
However, since the proposed doses of antithyroid 
drugs in Shyper are low and the adverse effects 
with methimazole in particular are dose-related, 

Table 3 Treatment of Shyper according to age and 
degree of TSH suppression

Age 
(years)

Grade 1 Shyper 
(TSH 
0.1–0.39 mIU/L)

Grade 2 Shyper 
(TSH < 0.1 mIU/L)

>65 Consider treatment Treatment is 
recommended in all 
patients

<65 Consider treatment 
if symptomatic or 
with cardiovascular 
or bone fracture 
risk

Treatment is 
recommended in 
symptomatic patients or 
with cardiovascular or 
bone fracture risk
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patients receiving this drug may not be at increased 
risk. With regard to the use of RAI in Graves’ dis-
ease in patients with mild and active eye disease or 
smokers, steroid prophylaxis is recommended to 
avoid Graves’ orbitopathy progression [116]. 
Another unfrequent consequence of RAI is the 
induction of Graves’ disease in patients with 
TMNG. This situation has been associated to pre-
existing thyroid autoimmunity in these patients 
despite undetectable TRAb levels [117].

In patients who are treated surgically, compli-
cations include permanent vocal cord paralysis 
and hypoparathyroidism, although with surgeons 
with high level of experience, these adverse 
events should be relatively low [118].
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Thyroid Storm (Thyrotoxic Crisis)

Leonard Wartofsky 
and Joanna Klubo-Gwiezdzinska

Thyroid storm is a relatively rare life-threatening 
condition resulting from decompensated thyro-
toxicosis with increased action of the thyroid hor-
mones, thyroxine (T4) and triiodothyronine (T3), 
exceeding the patient’s metabolic demands (thy-
rotoxic crisis). Early recognition of the clinical 
signs and symptoms and prompt and accurate 
diagnosis, taken together with an understanding 
of its underlying pathogenesis, will permit appro-
priate therapy and increase the likelihood of 
survival.

In thyroid storm, the usual manifestations of 
hyperthyroidism are severely exaggerated. In the 
overwhelming majority of cases of thyroid storm, 
the underlying cause of thyrotoxicosis is Graves’ 
disease and, less commonly, a toxic multinodular 
goiter. Less commonly, thyrotoxic storm may 
occur as a result of a hyperfunctioning autono-
mous nodule, subacute thyroiditis [1], or facti-
tious thyrotoxicosis due to intentional thyroxine 
or triiodothyronine overdosage [2].

 Epidemiology and Precipitating 
Events

Accurate assessment of the incidence of thyroid 
storm is difficult to determine because of the 
relative rarity of reported cases and the consid-
erable variability in criteria for its diagnosis. 
Storm is likely to be less common today than in 
the past, probably due to earlier diagnosis of 
the hyperthyroidism with initiation of appropri-
ate therapy such as antithyroid drugs, thereby 
precluding progression to storm. Based upon 
various reports, storm appears to occur in 1–2% 
of hospital inpatients, most of whom were 
admitted for management of severe thyrotoxi-
cosis [3], but in other cases, the storm occurs 
incident to admissions for other indications, 
particularly surgery. For example, the setting 
may be postoperatively after non-thyroidal sur-
gical procedures, while thyrotoxic storm is 
much less commonly seen after thyroid surgery. 
This is so in regard to thyroidectomies for 
Graves’ disease because of the routine preop-
erative preparation of patients by treatment 
with antithyroid drugs. In the case of non-thy-
roidal surgeries, fractures, or other traumas, 
storm in a patient with previously undiagnosed 
thyrotoxicosis may be related to perioperative 
events, such as anesthesia, stress, and volume 
depletion, because these conditions are associ-
ated with an increase in free T4 and T3 concen-
trations. Other conditions in which thyroid 
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storm has been seen and observed include preg-
nancy, during labor, molar pregnancy [4], and 
in complicated deliveries such as with placenta 
previa [5]. An acute discharge of hormones in 
the appropriate clinical setting may trigger a 
crisis, and cases have been reported following 
vigorous palpation of the thyroid, radioactive 
131I therapy [6], withdrawal of propylthiouracil 
therapy, or after administration of lithium, sta-
ble iodine, or iodinated contrast dyes. Indeed, 
any conditions known to be associated with 
increased free fraction of T4 and T3 may be 
associated with precipitation of storm, such as 
severe stress, infections, burns, cytotoxic che-
motherapy for acute leukemia, aspirin over-
dose, ketoacidosis, organophosphate intoxica-
tion, and tyrosine kinase inhibitor therapy for 
malignancy [7–13] (Table  1). Amiodarone, an 
antiarrhythmic and antianginal drug which is 
39% iodine, may cause either an iodine-induced 
thyrotoxicosis (type 1) or a destructive thyroid-
itis (type 2); the latter has been reported as a 
cause of thyroid storm refractory to the usual 
treatment [13]. There is also a case report of 
thyrotoxic storm precipitated by food poison-
ing with marine neurotoxin after ingestion of 

seafood [14]. There is a single case that was 
said to be attributed to a TSH-secreting pitu-
itary adenoma [15]. Notwithstanding the latter 
multiplicity of precipitating factors, in hospital-
ized patients, the most common event associ-
ated with thyrotoxic storm is some form of 
infectious disease.

 Clinical Signs and Symptoms

The diagnosis of thyroid storm on clinical 
grounds is based on the identification of signs 
and symptoms which suggest decompensation 
of a number of organ systems in a thyrotoxic 
patient. Some of these cardinal manifestations 
include temperature elevations out of proportion 
to an apparent routine infection as well as more 
accompanying diaphoresis than would be antici-
pated. Another key component of thyrotoxic 
storm is tachycardia out of proportion to the 
fever, and also gastrointestinal dysfunction, 
which can include nausea, vomiting, diarrhea, 
and, in the more severe cases, jaundice. 
Hyperthermia in thyroid crisis is thought to be 
due to a combination of defective hypothalamic 
thermoregulation and increased basal metabolic 
rate [16]. At the height of “the storm,” an 
encephalopathic picture appears with symptoms 
of central nervous system dysfunction that may 
include increasing agitation and emotional labil-
ity, confusion, paranoia, psychosis, and coma 
[17]. Instances of thyroid storm have been 
reported that were associated with status epilep-
ticus and stroke and with bilateral basal ganglia 
infarction [18]. In patients with neurological 
symptoms, a high index of suspicion for cere-
bral sinus thrombosis should be considered, 
because of the higher prevalence of this condi-
tion in severe hyperthyroidism [19]. The appear-
ance of paralysis in thyroid crisis requires 
distinction between an uncomplicated cerebro-
vascular accident and the co-occurrence of thy-
rotoxic periodic paralysis with hypokalemia, 
especially in patients who are Asian men [20]. 
Presentation with masked or apathetic thyrotox-
icosis has been seen in older patients with thyro-
toxic storm [21].

Table 1 Factors reported to precipitate thyrotoxic storm

• Withdrawal of antithyroid drug treatment
• 131I treatment
• Thyroxine overdosage
• Cytotoxic chemotherapy
• Aspirin overdosage
• Iodinated contrast dyes
• Organophosphates
• Targeted chemotherapy (sorafenib)
Sepsis, infection
Gestational trophoblastic disease; molar pregnancy
Seizure disorder
Gastrointestinal bleeding
Pulmonary thromboembolism
Burn injury
Surgery, trauma, vigorous palpation of the thyroid
Metabolic disturbances
  • Diabetic ketoacidosis
  • Hypoglycemia
Parturition
Emotional stress
TSH-secreting pituitary adenoma
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 Renal Manifestations 
and Electrolyte Disturbances

Increased blood levels of calcium can be seen due 
to both hemoconcentration and the release of cal-
cium from the bone due to thyroid hormone effects 
on bone resorption. Sodium, potassium, and chlo-
ride levels are usually normal. Ketoacidosis and 
lactic acidosis may also occur due to augmented 
lipolysis and ketogenesis and basal metabolic 
demands that exceed oxygen delivery.

An accelerated glomerular filtration rate occurs 
in hyperthyroidism and can be associated with 
progression to glomerulosclerosis and excessive 
proteinuria. There are case reports of thyroid 
storm with renal failure due to rhabdomyolysis 
[22], urinary retention associated with dyssynergy 
of the detrusor muscle and bladder dysfunction 
[23], and an autoimmune complex-mediated 
nephritis concomitant with Graves’ disease [24].

 Cardiovascular Manifestations

Disturbances in rhythm are the most common car-
diovascular manifestations in storm and include 
sinus tachycardia, atrial fibrillation or other supra-
ventricular tachyarrhythmias, and rarely ventricu-
lar tachyarrhythmias, which can be observed even 
in patients without previous heart disease [25]. 
Congestive heart failure or a reversible dilated 
cardiomyopathy [26] also may be present even in 
young- or middle-aged patients without known 
antecedent cardiac disease. Increased preload sec-
ondary to activation of the renin-angiotensin-
aldosterone axis results in a high-output state that 
is augmented by a decrease in afterload secondary 
to a direct vasodilatory relaxing effect of thyroid 
hormones on vascular muscle cells. This is why 
we tend to see systolic hypertension with widened 
pulse pressure. The “hyperthyroid heart” is char-
acterized by higher than usual oxygen demands. 
This can lead to ischemia and myocardial infarc-
tion, even in young patients [27, 28]. Pulmonary 
hypertension is a relatively rare complication of 
severe hyperthyroidism and is presumed to be on 
an autoimmune basis when associated with 
Graves’ disease. However, pulmonary hyperten-

sion also may be secondary to an augmented 
blood volume, cardiac output, and sympathetic 
tone that lead to pulmonary vasoconstriction and 
increased pulmonary arterial pressure. This mani-
festation is usually reversible after restoration of 
euthyroidism by treatment with antithyroid drugs. 
Another reason for pulmonary hypertension could 
be pulmonary embolism due to the thrombotic or 
hypercoagulable state that has been observed in 
severe hyperthyroidism.

 Respiratory Manifestations

The principal pulmonary symptoms are dyspnea 
and tachypnea related to increased oxygen demand. 
The excessive work of the respiratory muscles may 
eventually lead to the diaphragmatic dysfunction 
[29]. Respiratory failure may result from the hyper-
dynamic cardiomyopathy, as well as from preexis-
tent underlying pulmonary disease [30, 31].

 Gastrointestinal Manifestations

Diarrhea and vomiting are the most common gas-
trointestinal symptoms and when present can 
aggravate existing volume depletion and postural 
hypotension and even progress to shock with vas-
cular collapse. Non-specific, diffuse abdominal 
pain may be present, possibly due to impaired neu-
rohormonal regulation of gastric myoelectrical 
activity with delayed gastric emptying [32]. The 
latter may progress and present as an acute abdo-
men [33] and intestinal obstruction [34]. The pres-
ence of progressive abnormalities in liver function 
tests and jaundice warrants immediate and vigor-
ous therapy. Although the majority of presentations 
of an acute abdomen in thyrotoxicosis are medical 
in nature, surgical conditions may also occur [35].

 Hematological Manifestations

Complete blood counts will often reveal a moder-
ate leukocytosis with a mild shift to the left even 
in the absence of infection. The hypercoagulabil-
ity noted in hyperthyroidism is believed to be on 
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a multifactorial basis related to increased concen-
trations of fibrinogen, factors VIII and IX, tissue 
plasminogen activator inhibitor 1, von Willebrand 
factor, an increase in red blood cell mass second-
ary to erythropoietin upregulation, and, finally, a 
tendency to augmented platelet plug formation 
[36]. Major thromboembolic complications are 
responsible for 18% of deaths caused by thyro-
toxicosis [37–41].

 Diagnosis

The clinical presentation in thyroid storm forms 
the basis for diagnosis, because the laboratory 
findings may not be much different than those 
observed in uncomplicated hyperthyroidism. 
Indeed, serum total T3 levels may be even within 
normal limits, as these patients may have some 
underlying precipitating illness that reduces T4 to 
T3 conversion as is seen in euthyroid individuals 
with non-thyroidal systemic illness [42]. In order 
to create a more objective basis for the diagnosis, 
a semiquantitative scale (Table 2) was developed 
to help assess the presence and severity of the 
most common signs and symptoms and thereby 
aid in establishing the diagnosis [43]. This scale 
has been referred to as the “Burch-Wartofsky 
score” and examines the presence of criteria simi-
lar to those subsequently suggested and evaluated 
by Akamizu et  al. [44, 45]. The utility of the 
Burch-Wartofsky and Akamizu scoring systems 
was assessed by Angell et  al. in a retrospective 
analysis comparing storm patients to otherwise 
compensated thyrotoxic patients [46].

When thyrotoxicosis is prolonged leading to 
the depletion of glycogen deposits, hypoglyce-
mia may occur, particularly in older people when 
aggravated by malnutrition secondary to emesis 
or abdominal pain [47]. In contrast, a modest 
hyperglycemia in the absence of diabetes  mellitus 
may be present, probably as a result of augmented 
glycogenolysis and catecholamine-mediated 
inhibition of insulin release as well as increased 
insulin clearance and insulin resistance. There 
often will be elevated levels of serum lactate 
dehydrogenase, aspartate aminotransferase, and 
bilirubin resulting from liver dysfunction. An 

increased level of serum alkaline phosphatase is 
more likely to reflect increased osteoblastic bone 
activity in response and augmented bone resorp-
tion rather than liver dysfunction.

Importantly, adrenal reserve may be exceeded 
in thyrotoxic crisis because of inability of the 
adrenal gland to meet metabolic demands in the 
face of accelerated turnover of glucocorticoids. 
Moreover, on a common autoimmune basis, there 
may be coincident occurrence of adrenal insuffi-
ciency and Graves’ disease. This diagnosis 
should be considered when there are hypotension 

Table 2 Burch-Wartofsky diagnostic scoring system

Criteria Score
Thermoregulatory dysfunction
Temperature 99–99.9 °F (37.2–37.7 °C) 5
Temperature 100–100.9 °F (37.8–38.2 °C) 10
Temperature 101–101.9 °F (38.3–38.8 °C) 15
Temperature 102–102.9 °F (38.9–39.3 °C) 20
Temperature 103–103.9 °F (39.4–39.9 °C) 25

Temperature ≥ 104 °F (40 °C) or higher 30

Central nervous system effects
Absent 0
Mild agitation 10
Delirium, psychosis, lethargy 20
Seizure or coma 30
Gastrointestinal dysfunction
Absent 0
Diarrhea, nausea, vomiting, abdominal pain 10
Unexplained jaundice 20 20
Cardiovascular dysfunction
90–109 beats/min 5
110–119 beats/min 10
120–129 beats/min 15
130–139 beats/min 20

≥140 beats/min 25

Congestive heart failure
Absent 0
Mild (edema) 5
Moderate (bibasilar rales) 10
Severe (pulmonary edema) 15
Atrial fibrillation
Absent 0
Present 10
History of precipitating event
Absent 0
Present 10

Based upon the total score, the likelihood of the diagnosis 
of thyrotoxic storm is as follows: unlikely <25, impending 
25–44, and highly likely >45 [43]
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and electrolyte abnormalities suggestive of 
Addison’s disease.

 Treatment of Thyroid Storm

A relatively complex approach to management is 
suggested in order to avoid a potential disastrous 
outcome [3]. Initially, antithyroid drugs of the 
thiourea type should be used to reduce ongoing 
increased thyroid production and release of T4 
and T3. Secondly, a treatment should be imposed 
to block the effects of the remaining but exces-
sive circulating free T4 and T3 concentrations in 
blood. The third leg of therapy is to treat the 
presence of any systemic decompensation, e.g., 
congestive heart failure and shock. Finally, if 
there is an underlying precipitating illness such 
as infection or ketoacidosis present, then it too 
must be treated, or the risk for recurrence of 
storm obtains.

 Therapy Directed to the Thyroid 
Gland

The administration of thionamide antithyroid 
drugs, such as carbimazole, methimazole 
(Tapazole), and propylthiouracil, will inhibit de 
novo synthesis of the thyroid hormones, T4 and 
T3. In the comatose or uncooperative patient, 
these drugs are given by nasogastric tube or per 
rectum as enemas or suppositories [48–53]. In 
the USA, there currently are no available i.v. 
preparations of these compounds, but they have 
been available in some European countries such 
as the UK, Germany, and Poland [54, 55] and 
used effectively. Generally, propylthiouracil 
(PTU) can be started as 200  mg every 4  h 
(1200  mg/day), and methimazole should be 
administered as 30 mg every 6 h or a daily dose 
of 120  mg. Because PTU has the additional 
advantage of inhibiting conversion of T4 to T3, a 
property not shared by methimazole, it is thought 
to provide more rapid clinical improvement. 
Because the thiourea agents like methimazole 
and PTU reduce new hormone synthesis but do 
not block thyroidal secretion of preformed glan-

dular stores of hormone, separate treatment must 
be administered to inhibit the continuing release 
of T4 and T3 into the blood. Either inorganic 
iodine or lithium carbonate may be used to inhibit 
proteolysis of colloid, and iodides may be given 
either orally as Lugol’s solution or as a saturated 
solution of potassium iodide (3–5 drops every 
6 h). As an earlier mainstay of treatment, the use 
of an intravenous infusion of sodium iodide 
(0.5–1 g every 12 h) has not been feasible recently 
as sterile sodium iodide has not been available for 
intravenous use.

Importantly, iodine should be administered no 
sooner than 1 h after the prior administration of a 
dose of thionamide. Otherwise, iodine will 
enhance thyroid hormone synthesis, enrich hor-
mone stores within the gland, and thereby permit 
further exaggeration of thyrotoxicosis. When 
iodine is administered in conjunction with full 
doses of antithyroid drugs, dramatic rapid 
decreases in serum T4 are seen, with values 
approaching the normal range within 4 or 5 days 
[56]. Other agents that may be used in this man-
ner are the radiographic contrast dyes ipodate 
(Oragrafin) and iopanoic acid (Telepaque), which 
act not only by decreasing thyroid hormone 
release but also will slow the peripheral conver-
sion of T4 to T3, as well as possibly blocking 
binding of both T3 and T4 to their cellular recep-
tors. However, these latter agents are not avail-
able in the USA.

Lithium carbonate may be used as an alterna-
tive agent to inhibit hormonal release [57, 58] in 
patients who may be allergic to iodine. Lithium is 
administered initially as 300 mg every 6 h, with 
subsequent adjustment of dosage as necessary to 
maintain serum lithium levels at about 
1–1.2 mEq/L.

 Therapy Directed at the Continuing 
Effects of Thyroid Hormone 
in the Circulation

Treatment with antithyroid drugs alone is not suf-
ficient in instances when severe thyrotoxicosis is 
present, given the presence and likelihood of high 
levels of circulating T4 and T3 in a large vascular 
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pool and tissue distribution space. Effective alter-
native therapeutic measures that can reduce T4 
and T3 levels within 36 h include plasmapheresis 
and therapeutic plasma exchange. Plasma or 
albumin solution given during therapeutic plasma 
exchange provides new binding sites to attract, 
bind, and reduce circulating levels of free thyroid 
hormones [59, 60]. However, this effect is tran-
sient, lasting for perhaps 24–48 h, and thus needs 
to be followed by more definitive therapy. In rare 
patients apparently unresponsive to medical ther-
apy, early thyroidectomy has been reported to 
reduce the mortality rate from 20 to 40% with 
medical therapy alone to less than 10% [61].

Peritoneal dialysis or experimental hemoper-
fusion through a resin bed [62–64] or charcoal 
columns [65] may be attempted. Oral administra-
tion of cholestyramine resin constitutes another 
therapeutic adjunct, the goal of which is to 
remove T4 and T3, by binding thyroid hormone 
entering the gut via enterohepatic recirculation 
with the subsequent excretion of the resin-hor-
mone complex [66].

The treatment of thyrotoxic storm with a 
β-adrenergic blocker was first reported by Hughes 
[67] as a means to ameliorate the manifestations 
of thyroid hormone excess. Propranolol is the 
most commonly used agent in the USA. The oral 
dosage of 60–80  mg every 4  h or intravenous 
doses of 0.5–1 mg followed by subsequent doses 
of 2–3 mg given intravenously over 10–15 min 
every several hours are recommended with con-
stant cardiac rhythm monitoring [68, 69]. There 
may be a minor benefit derived from the inhibi-
tory effect of propranolol on the conversion of T4 
to T3 [70], but this is likely not appreciable below 
oral doses in excess of 160  mg/day. Usage of 
β-blockers not only corrects the heart rate and 
diminishes the oxygen demand of the cardiac 
muscle but also improves the agitation, convul-
sions, psychotic behavior, tremor, diarrhea, fever, 
and diaphoresis. In certain patients, there may be 
relative risks or contraindications to the use of 
these agents. For example, in patients with a his-
tory of bronchospasm or asthma, either treatment 
with selective β1-blockers or reserpine, guanethi-
dine should be considered instead. A very short 
acting β-adrenergic blocker, esmolol, has been 

employed successfully in thyroid storm manage-
ment. An initial loading dose of 0.25–0.5 mg/kg 
is followed by continuous infusion of 0.05–
0.1 mg/kg per min [71, 72]. Another ultrashort-
acting beta-blocker with high cardioselectivity, 
landiolol hydrochloride, has been employed in 
Japan for thyroid storm with some success [73]. 
An i.v. drip of 1.0–5.0 μg/kg/min was adminis-
tered with close monitoring of blood pressure 
and heart rate.

Corticosteroids are other medications with 
moderately important therapeutic potency and 
modest ability to inhibit peripheral conversion of 
T4 to T3. An initial dose of 300 mg hydrocorti-
sone followed by 100  mg every 8  h during the 
first 24–36 h should be adequate. Thyroid storm 
has been reported to recur when steroids had 
been discontinued after initial clinical improve-
ment [74]. The additional rationale behind the 
routine usage of steroids is perhaps theoretical 
and unproven but relates to possible relative adre-
nal insufficiency secondary to increased meta-
bolic demands and more rapid turnover of 
cortisol.

Some authorities have suggested that the sup-
plemental administration of 1α (OH) vitamin D3 
might accelerate the reduction of serum T4 and 
T3 [75]. In a recent study, the administration of 
l-carnitine 2 g/day in thyrotoxic storm facilitated 
a dose reduction of methimazole. The mecha-
nism appears to be related to an inhibition by 
l-carnitine of T3 and T4 entry into cell nuclei 
[76, 77]. While these preliminary findings are of 
interest, the utility of this adjunct to therapy 
requires confirmation.

 Therapy Directed at Systemic 
Decompensation

Fluid depletion caused by vomiting, diarrhea, 
hyperpyrexia, and diaphoresis must be vigorously 
replaced to avoid vascular collapse. Hypercalcemia 
when present is usually corrected by appropriate 
fluid therapy. Hypotension not readily reversed by 
adequate hydration may temporarily require pres-
sor and/or glucocorticoid therapy. However, judi-
cious replacement of fluids is necessary in elderly 
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patients with congestive heart failure or other car-
diac compromise. Intravenous fluids containing 
10% dextrose in addition to electrolytes will serve 
to restore depleted hepatic glycogen. Vitamin sup-
plements may be added to the i.v. fluids to reverse 
vitamin deficiencies.

Acetaminophen rather than salicylates is the 
preferred antipyretic when fever is present, 
because salicylates inhibit thyroid hormone bind-
ing and could serve to increase free T4 and T3, 
thereby transiently worsening the thyrotoxic cri-
sis. Hyperthermia may also respond well to 
external cooling with alcohol sponging, cooling 
blankets, and ice packs. Some authors advocate 
usage of the skeletal muscle relaxant dantrolene 
[78], but significant risk associated with its use 
precludes routine recommendation. When pres-
ent, congestive heart failure should be treated 
routinely. Although less commonly used today, 
when digoxin is employed larger than usual doses 
may be required because of its increased turnover 
in the thyrotoxic state.

 Therapy Directed at the Precipitating 
Illness

Therapy cannot be considered sufficient unless 
the possible precipitating event has been identi-
fied and addressed. Generally this is not a prob-
lem in obvious cases, when trauma, surgery, 
labor, and premature withdrawal of antithyroid 
drugs are known to have been the precipitants of 
thyrotoxic crisis, which may require no addi-
tional management. However, when none of the 
latter precipitating factors is apparent, a diligent 
search for some focus of infection must be car-
ried out. Routine cultures of urine, blood, and 
sputum should be obtained in the febrile thyro-
toxic patient, and cultures of other sites may be 
warranted on clinical grounds. Empiric broad-
spectrum antibiotic coverage may be required 
initially while awaiting results of cultures. 
Conditions such as ketoacidosis, pulmonary 
thromboembolism, and stroke may underlie thy-
rotoxic crisis, particularly in the obtunded or psy-
chotic patient, and require the indicated vigorous 
management.

 Prognosis

Multi-organ system failure is the most common 
cause of death in thyroid crisis and often 
includes respiratory failure, congestive heart 
failure, sepsis, central nervous system dysfunc-
tion, disseminated intravascular coagulation, 
and arrhythmias [79–82]. Even with early diag-
nosis, death can occur, and reported mortality 
rates have ranged from 10 to 75% in hospital-
ized patients [83, 84]. In surviving patients, 
clinical improvement is dramatic and demon-
strable within first 24  h. During the recovery 
period of the next few days, supportive therapy 
such as corticosteroids, antipyretics, and intra-
venous fluids may be tapered and gradually 
withdrawn on the basis of patient status, oral 
intake of calories and fluids, vasomotor stabil-
ity, and continuing improvement. After the cri-
sis has been resolved, attention may be turned 
to consideration of the definitive treatment of 
thyrotoxicosis. Should thyroidectomy be con-
sidered, thyrotoxicosis will need to have been 
adequately treated preoperatively, to obviate 
any likelihood of another episode of crisis 
either during the surgery or postoperatively. 
Total thyroidectomy is the procedure of choice 
in view of reports of recurrent severe thyrotoxi-
cosis and thyroid crisis after less than total thy-
roidectomy [85].

Radioactive iodine as definitive treatment is 
often precluded by the recent therapeutic use of 
inorganic iodine in virtually all cases of storm, 
but it could be considered at a later date, in which 
case antithyroid drugs of the thiourea type may 
be employed to restore and maintain euthyroid-
ism until such time as radioiodine could be 
administered effectively. Continuing treatment 
with antithyroid drugs alone in the hope of the 
patient’s sustaining a spontaneous remission is 
also possible.

In summary, as should be apparent from this 
review, the life-threatening thyroid emergency of 
thyrotoxic crisis requires a high index of suspi-
cion in the appropriate clinical setting followed 
by prompt and accurate diagnosis and urgent 
multifaceted therapy in order to reduce the risk of 
fatal outcome.
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Heart in Hyperthyroidism

Bernadette Biondi and George J. Kahaly

 Effects of Thyroid Hormone 
on the Heart

Triiodothyronine (T3) is essential to control 
molecular pathways on the heart and vasculature. 
Many of the physiological effects of T3 are medi-
ated by its genomic nuclear effects on important 
cardiac proteins such as sarcoplasmic reticulum 
calcium adenosine triphosphatase (ATPase) 
(SERCA2), α-myosin heavy chain (α-MHC), 
ß1-adrenergic receptors, sodium/potassium 
ATPase, voltage-gated potassium channels, malic 
enzyme, and atrial natriuretic hormone [1–4]. 
The non-genomic effects exerted by thyroid hor-
mone (TH) on cardiac myocyte and peripheral 
vascular resistance involve a variety of intracel-
lular signaling pathways, the transport of ions 
across the plasma membrane, glucose and amino 
acid transport, and mitochondrial function [5]. 
Non-genomic effects may explain the effects of 
acute T3 administration on cardiovascular (CV) 
hemodynamic and heart rate [6].

Here we explore the changes in cardiovascular 
hemodynamic in overt and subclinical hyperthy-

roidism (SHyper), their cardiovascular risks and 
the prevention and treatment of these disorders, 
and their CV complications.

 Hemodynamics in Hyperthyroidism

Thyroid hormone increases cardiac output by 
affecting stroke volume and heart rate.

Peripheral vasodilatation occurs as a result of 
rapid utilization of oxygen, increased metabolic 
end products, induction of arterial smooth muscle 
cell relaxation, and increase of endothelial nitric 
oxide availability by thyroid hormones [7–9]. 
Vasodilatation results in a marked decrease in 
systemic vascular resistance which plays a cen-
tral role in the hemodynamic changes that accom-
pany thyrotoxicosis, resulting in a selective 
increase in blood flow to certain organs such as 
skin, skeletal muscles, and heart and a drop in 
diastolic blood pressure with widening of the 
pulse pressure [2, 8]. Vasodilatation and the lack 
of raise in renal blood flow cause a decrease in 
renal perfusion pressure and an activation of the 
renin-angiotensin system, thus increasing sodium 
reabsorption and blood volume [3, 8]. The com-
bination of expanded blood volume and improve-
ment in diastolic relaxation of the heart contribute 
to increase left ventricular end-diastolic volume 
or preload [3, 7, 8]. Similarly, the drop in sys-
temic vascular resistance results in a smaller left 
ventricular end-systolic volume or afterload [3, 7, 
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8]. The net effect of an increased preload and a 
decreased afterload translates into a significant 
increase in left ventricular stroke volume [8]. In 
turn, the rise in heart rate and the increased stroke 
volume combine to cause a two- to threefold 
increase in cardiac output, greater than accounted 
for by the changes in the body metabolic rate 
[1–3, 8]. Therefore, a hyperdynamic cardiocircu-
latory state is associated with short-term hyper-
thyroidism. The increase in heart rate and cardiac 
preload and the effects of thyroid hormone on 
peripheral circulation play a major role in increas-
ing LV performance in human hyperthyroidism, 
which is important in determining the  high-output 
state [8] (Table 1). This suggests that the hyper-
thyroid heart increases its performance through 
the modulation of hemodynamic loads; this posi-
tive effect on energy metabolism and oxygen 
consumption improves the left ventricle mechan-
ical efficiency optimizing its cardiac mechanical-
energetic utilization [8]. Echocardiography data 
indicate that, in humans, newly diagnosed thyro-
toxicosis is accompanied by an improvement in 
left ventricular systolic and diastolic function [7, 
8, 10]. Enhancement in left ventricular relax-
ation, diastolic flow velocities, and isovolumic 
relaxation time has been reported in overt hyper-
thyroidism [7, 8, 10] (Fig. 1).

However, the hyperthyroid cardiovascular 
system is already highly “stressed” at rest, and 
hyperthyroid patients have an impaired cardio-
pulmonary function, which in part reflects their 
reduced cardiovascular and respiratory reserve; 
this may explain why they often complain of low 
exercise capacity and tolerance [11–13] (Fig. 2). 

Stress-induced changes in cardiovascular and 
respiratory function have been demonstrated in 
untreated hyperthyroidism, resulting in a signifi-
cantly reduced maximal work rate with a mark-
edly decreased forced vital capacity as well as 
decreased oxygen uptake per heartbeat (oxygen 
pulse) both at the anaerobic threshold and at 
maximal exercise [1–3, 8, 11, 12].

In experimental studies, prolonged thyroid 
hormone excess induced physiological cardio-
myocyte hypertrophy [14]. Long-term exposure 
to thyroid hormone excess may exert unfavorable 
effects on cardiac morphology and function 
because it may increase left ventricular mass, 
arterial stiffness, and left atrial size and may 
induce diastolic dysfunction, thereby impairing 
left ventricle performance [15–18] (Table 2).

 Interactions with the  
Sympathoadrenal System

Sympathomimetic agents and thyroid hormones 
lead to similar cardiac symptoms, especially 
inducing tachycardia and increasing the force and 
velocity of cardiac contraction. Treatment of thy-
rotoxic patients with sympatholytic agents amelio-
rates rate-related cardiac changes. These 
observations have resulted in the hypothesis that 
some T3 effects are mediated by an increased 
activity of the sympathoadrenal system or an 
increased responsiveness and sensitivity of cardiac 
tissue to normal sympathomimetic stimuli. Since 
plasma and urine levels of catecholamines are nor-
mal in thyrotoxicosis, the hypothesis that the thy-
roid status leads to an increased sensitivity of the 
sympathoadrenal system has been favored. The 
enhanced sympathetic sensitivity of the thyrotoxic 
heart may be mediated by an increased number of 
ß-adrenergic receptors. In humans, short-term 
hyperthyroidism is associated with an increase in 
the sensitivity of heart rate and left ventricular 
shortening velocity to isoproterenol stimulation. 
In addition, an increased level of other compo-
nents of the sympathetic transmission system 
occurs. Specifically, investigations in thyrotoxic 
pigs show that FT3 markedly increases the amount 
of stimulatory guanine nucleotide regulatory 

Table 1 Hemodynamic changes in hyperthyroidism

Systemic vascular resistance ↓
Circulation time ↓
Diastolic blood pressure ↓
Systolic blood pressure ↑
Pulse pressure Widened
Cardiac output ↑
Cardiac index ↑
LV stroke volume ↑
LV systolic function ↑
LV diastolic function ↑
Exercise tolerance ↓
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 protein. Studies of the various components of the 
adrenergic receptor complex in plasma mem-
branes have also shown that ß-adrenergic recep-
tors, guanine nucleotide regulatory proteins, and 
adenylyl cyclase types V and VI are all altered by 
changes in thyroid status [19–23].

Cardiac tissue contains both ß1- and ß2-adren-
ergic receptor subtypes. In most species studied, 
the ß1-receptors account for 70% of  
total ß-adrenergic receptors. Furthermore, 
ß-adrenoceptors are increased approximately 
twofold in the sinoatrial node compared to their 
level in surrounding myocytes. The proportion of 
ß-adrenoceptors in the sinoatrial node is com-
prised predominantly of ß1-receptors (75%). In 

contrast, ß2-receptors are the predominant spe-
cies in non-myocyte vascular cells (75%). Thus, 
ß1-receptors are the predominant ß-adrenocep-
tors in cells of myocyte origin and might be 
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Systemic vascular resistance ↓

Venous return ↑

Blood volume ↑

Contractility ↑
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Fig. 2 Factors 
responsible for the 
reduced cardiovascular 
reserve in patients with 
hyperthyroid

Table 2 Cardiac complications in untreated persistent 
subclinical hyperthyroidism

• Increased left ventricular mass
• Impaired left ventricular filling
• Increased heart rate
• Atrial arrhythmias
• Persistent atrial fibrillation
• Stroke
• Heart failure
• CHD mortality
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 responsive to T3 regulation. Indeed, there appears 
to be a differential induction of cardiac ß1- and 
ß2-adrenergic receptor mRNA in rat myocytes by 
T3. T3 causes a fourfold induction of cardiac 
ß1-adrenoceptor mRNA, but no significant 
change in ß2-receptor mRNA. The effects of T3 
on ß1-adrenergic gene transcription occur within 
30 min, elevations lasting for 72 h. Following the 
rise in ß1-mRNA, there is a threefold increase in 
the density of cardiac ß1-receptors, which per-
sists for 48  h. In contrast, ß2-receptors are not 
significantly increased following T3 administra-
tion. These studies suggest that in cardiac tissue, 
the ß1-adrenoceptor gene is sensitive to T3, 
whereas the ß2-receptor gene is influenced mini-
mally [24–26].

 Cardiovascular Complications 
in Hyperthyroid Patients

Some important cardiovascular complications 
may develop in patients with overt and subclini-
cal hyperthyroidism (Table 3).

 Heart Failure
Any adverse event that might damage the effi-
ciency of the cardiovascular system may precipi-
tate congested circulation or may induce a true 
congestive heart failure (HF) [27]. The patient’s 
age, the severity of hyperthyroidism, and the 
underlying cardiac conditions may affect the clini-
cal manifestations and severity of HF in hyperthy-

roid patients (Table  2) [27, 28]. Severe 
hyperthyroidism in young patients without under-
lying heart disease may induce a “high-output 
HF,” an inappropriate term to define the congestive 
circulation due to the increased heart rate and car-
diac output, normal systolic function, low sys-
temic vascular resistance, and increased blood 
volume [27–29]. This high-output HF may induce 
symptoms such as breathlessness at rest, fatigue 
and fluid retention with peripheral edema, pleural 
effusion, hepatic congestion and increased pulmo-
nary arterial hypertension [27, 29, 30]. Rarely, 
untreated high-output state may lead to ventricular 
dilatation and persistent tachycardia, which can 
trigger chronic HF and fatal events [31].

Some hyperthyroid patients may develop dia-
stolic HF [32]. Increasing age may be an inde-
pendent predictor for the development of diastolic 
dysfunction and HF in hyperthyroid patients 
[32]. Elderly hyperthyroid patients may develop 
HF even in presence of slight thyroid hormone 
excess [27, 33]. Cardiac preload is increased in 
these patients, despite the increase in systemic 
vascular resistance, the reduced myocardial con-
tractility, the impaired left ventricular filling, and 
consequent low cardiac output [33].

Recent data suggest that even subclinical hyper-
thyroidism (SHyper) may be responsible of heart 
failure. In a recent meta-analysis, Gencer et al. ana-
lyzed the association between SHyper and heart 
failure (HF) event [34]. They pooled individual 
participants (IPD) data from six prospective cohort 
studies (HF). Among the 648 participants with 
SHyper, the (hazard ratio) HR for HF events was 
significantly increased during a median follow-up 
of 10.4 years in age and sex-adjusted analyses [34]. 
The risk of HF was much higher in participants 
with grade 2 SHyper (TSH levels  <0.1  mIU/L) 
(HR = 1.94; 95% CI, 1.01–3.72) than in those with 
grade 1 SHyper (TSH 0.1–0.39 mU/L), (HR = 1.31; 
95% CI, 0.88–1.95) [34].

 Atrial Fibrillation
Sinus tachycardia, atrial premature beats, and 
symptoms of adrenergic over activity are fre-
quently observed in young patients with overt 
and subclinical hyperthyroidism [35]. Atrial 
fibrillation may be the first symptom of thyroid 

Table 3 Cardiac manifestations and clinical features in 
hyperthyroid patients

• Dyspnea on effort
• Easy fatigability
• Reduced exercise tolerance
•  Systolic hypertension with widened pulse pressure
• Atrial fibrillation
• Stroke
• Heart failure
• Coronary heart disease
• Pulmonary hypertension
• Dilated cardiomyopathy
• Myxomatous valve disease
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hormone excess in the elderly [36]. About 7–8% 
of middle-aged hyperthyroid patients may 
develop atrial fibrillation or flutter compared to 
0.5–9.0% of the general population [13]. This 
prevalence increases with age, being 10–20% in 
patients aged >60  years and even 20–40% in 
hyperthyroid patients with coexistent ischemic 
heart disease or heart valve disease [36].

Collet et al. analyzed the risk of AF in patients 
with subclinical hyperthyroidism [37]. They 
included IPD data from five prospective cohort 
studies and stratified the analysis by age, sex, 
race, and TSH categories. During a mean follow-
up of 8.8 years, the overall HR for incident AF 
was higher in participants with SHyper than in 
those who were euthyroid, and the attributable 
risk for AF was 41.5% in patients with SHyper 
[37]. After age- and sex-adjusted analyses, inci-
dent AF was significantly more common in par-
ticipants with grade 2 SHyper (HR = 2.54; 95% 
CI, 1.08–5.99) than in those with grade 1 SHyper 
(HR = 1.63; 95% CI, 1.10–2.41; p for trend 0.02), 
and a slightly greater risk of incident AF was 
observed in men and in elderly patients [37].

 Stroke
Stroke is a potential complication of AF in overt 
hyperthyroidism where thyroid hormone excess is 
associated with a prothrombotic state [38]. In par-
ticular, thyrotoxic atrial fibrillation has been asso-
ciated with an increased risk of cerebrovascular 
and pulmonary embolism [39–41]. Atrial fibrilla-
tion is responsible for embolic events in 10–15% 
of cases of hyperthyroidism [13]. Elderly patients 
with atrial fibrillation are susceptible to embolic 
events, especially when left atrial enlargement, 
risk factors for stroke, and cardiovascular disease 
(or other comorbidities) are also present [13].

Conflicting data have been reported on the 
risk of stroke in patients with subclinical hyper-
thyroidism. A recent systematic review assessed 
the results from the available prospective studies 
[42]. The pooled data did not support an increased 
risk of stroke linked to subclinical hyperthyroid-
ism (HR of 1.17 (95% CI 0.54–2.56). [42]. 
However, the available literature on the risk of 
stroke in SHyper is insufficient, and more 
research is needed.

 Autoimmune Cardiovascular 
Involvement in Patients 
with Autoimmune Hyperthyroidism
Interestingly, autoimmune hyperthyroidism is 
frequently responsible for autoimmune cardio-
vascular involvement; therefore, pulmonary 
arterial hypertension, myxomatous cardiac 
valve disease, and autoimmune reversible and 
irreversible dilated cardiomyopathy have been 
reported in patients with Graves’ disease [13]. 
Pulmonary arterial hypertension is character-
ized by an increase in systolic pulmonary artery 
pressure above 30 mmHg at rest and a progres-
sive increase in pulmonary vascular resistance, 
leading to right ventricular insufficiency. 
Pulmonary arterial hypertension has been 
reported in hyperthyroid patients [13]. It may be 
the consequence of the immune-mediated endo-
thelial damage and the increased metabolism of 
vasodilating substances in hyperthyroid patients 
[13]. Asymptomatic pulmonary hyperthyroid-
ism has been detected in 45% hyperthyroid 
patients at echocardiographic examination [43–
45]. A significant reduction in pulmonary arte-
rial pressure has been usually observed after 
correcting hyperthyroidism; severe pulmonary 
hypertension may also be completely reversible 
after successfully treating hyperthyroidism [13]. 
A specific vasoactive effect of methimazole has 
been postulated to explain the significant 
improvement in the pulmonary vasculature after 
medical treatment of hyperthyroidism [13]. Few 
cases of hyperthyroid GD with severe right ven-
tricle volume overload, tricuspid regurgitation, 
and isolated right heart failure have been 
described in the literature [46, 47]. Some of 
these cases were reversible with the achieve-
ment of euthyroidism.

Autoimmune myocarditis is another cardiac 
complication of GD; myocardial changes are 
characterized by lymphocytic infiltrations, 
 mucopolysaccharide deposits, necrosis, and 
fibrosis [13]. Approximately one-third of 
hyperthyroid patients will develop a specific 
reversible or irreversible dilated cardiomyopa-
thy in GD [48–55]. The autoimmune origin of 
this disease is supported by endomyocardial 
biopsies [13].

Heart in Hyperthyroidism
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 Coronary Heart Disease Events 
and Cardiovascular and Total 
Mortality

Some recent meta-analyses suggest that patients 
with untreated overt and subclinical hyperthy-
roidism are at increased risk for cardiac mortality 
[37]. In an analysis of IPD data from ten prospec-
tive cohorts, grade 2 SHyper was linked to an 
increased risk of total mortality with an attribut-
able risk of 14.5% [37]. The IPD analysis of the 
association between SHyper and coronary heart 
disease (CHD) in six prospective cohorts sug-
gests that the risk of CHD events was not signifi-
cantly higher in grade 2 SHyper than in grade 1 
SHyper [37]. However, in age- and sex-adjusted 
analyses, the overall HR for CHD mortality was 
increased in patients with grade 2 SHyper than in 
euthyroid individuals (HR = 1.84; 95% CI, 1.12–
3.00; p value for trend ≤0.03) [37]. Heterogeneity 
was present across studies for total mortality 
(I2 = 49%), but not for CHD mortality and CHD 
events (all I2 = 0%). Men had a slightly greater 
risk for total mortality and CHD mortality than 
women [37].

 Prevention and Treatment 
of Cardiovascular Complications 
in Hyperthyroid Patients (Table 4)

Data from all the available prospective cohort 
studies demonstrate that overt hyperthyroidism 
and grade 2 SHyper are associated with an 
increased risk of total mortality, CHD mortality, 
and AF with a greater risk among elderly patients 
and patients with underlying heart disease [34, 
37]. Although the available meta-analyses do not 
show evidence that treatment is effective in pre-
venting the risks associated with untreated hyper-
thyroidism, they clearly demonstrate that even 
slight thyroid hormone excess is a potentially 
life-threatening condition [34, 37, 56–60].

The timely recognition of overt and SHyper 
may improve the prognosis of cardiovascular 
complications in hyperthyroid patients. 
Subclinical hyperthyroidism should be treated 
with ATDs in all patients with grade 2 SHyper 

and in those with grade 1 SHyper older than 
65 years, particularly in the presence of heart dis-
ease, diabetes, renal failure, previous stroke or 
transient ischemic attack, left atrial dilatation, 
increased risk factors for stroke, HF, CHD, val-
vular heart disease, and coronary or peripheral 
arterial disease [58, 59].

Prevention of the cardiovascular complica-
tions of thyroid hormone excess should be con-
sidered in hyperthyroid patients, especially in 
those with preexisting cardiac disease [27, 58, 
59]. Electrocardiography and Doppler echocar-
diography are mandatory to assess cardiac func-
tion, pulmonary pressure, valve disease, and 
pleural or pericardial effusion in symptomatic 
patients [27, 59].

Prompt, effective treatment of cardiac mani-
festations in symptomatic patients with hyperthy-
roidism is important because cardiovascular 
complications account for most of the deaths in 
hyperthyroid patients [27]. According to the 
American College of Cardiology/American 

Table 4 Recommendations to improve to prognosis of 
patients with hyperthyroidism and cardiovascular 
complications

1.  Prompt diagnosis of CV complications in elderly 
patients and in those with underlying heart disease 
(ECG, Holter ECG, echocardiography)

2.  Restoration of a euthyroid state with antithyroid 
drugs as soon as possible

3.  β-blocking drugs to obtain heart rate control
4.  Prevention of thromboembolism in patients with 

AF (anticoagulation with an international 
normalized ratio (INR) of 2.0–3.0)

5.  Pharmacological or electrical cardioversion in 
patients with persistent atrial fibrillation after 
4 months of euthyroidism

6.  Anticoagulant therapy with warfarin for at least 
3 weeks before cardioversion and for at least 
4 weeks after successful cardioversion to avoid the 
risk of embolic events

7.  Antiarrhythmic drugs to avoid the recurrence of 
atrial fibrillation after successful cardioversion

8.  Treatment with β-blockers and diuretics to improve 
the congestive circulatory in young patients with 
severe hyperthyroidism

9.  Hospitalization when HF does not improve upon 
restoration of euthyroidism

10.  Pretreatment with antithyroid drugs before 
definitive treatment of hyperthyroidism with RAI 
or surgery
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Heart Association, the first-line treatment of AF 
and HF in patients with thyroid dysfunction 
should be directed primarily toward restoring a 
euthyroid state because cardiovascular drugs are 
generally unsuccessful while thyroid hormone 
excess persists [58]. Treatment of hyperthyroid-
ism with ATDs should be the first-line therapy in 
patients with overt hyperthyroidism and AF and/
or HF to obtain spontaneous conversion to sinus 
rhythm and to improve cardiovascular hemody-
namic. β-blocking drugs may control cardiovas-
cular symptoms before attaining euthyroidism in 
patients treated with antithyroid drugs [59]. 
Symptomatic patients should be treated with car-
dioselective β-blocking agents to obtain control 
of the heart rate [59].

In patients with hyperthyroidism and atrial 
fibrillation, initial therapy should aim at control-
ling ventricular rate to a nearly normal level by 
using β-blockers [57–59]. Atrial fibrillation spon-
taneously converts to sinus rhythm after treatment 
of hyperthyroidism in about two-thirds of hyper-
thyroid patients under 50 years of age, particularly 
in a new onset of AF without underlying heart dis-
ease [13, 59, 60]. Persistent AF after 4 months of 
euthyroidism should be treated with pharmaco-
logical or electrical cardioversion during antico-
agulation [13, 59, 61, 62]. In hyperthyroid patients 
who do not regain normal rhythm spontaneously 
within 4 months of normalization of thyroid func-
tion, pharmacological or electrical cardioversion 
should be considered after evaluation of the age of 
the patient and the underlying cardiac condition 
[13, 61, 62]. Thromboembolism should be pre-
vented in patients with AF. The American Heart 
Association suggests anticoagulation with an 
international normalized ratio (INR) of 2.0–3.0 for 
patients with hyper and AF [57].

Antiarrhythmic drugs should be used to 
avoid the recurrence of atrial fibrillation after 
successful cardioversion. Anticoagulant ther-
apy with warfarin should be administered for at 
least 3 weeks before cardioversion and should 
be continued for at least 4 weeks after success-
ful cardioversion, to avoid the risk of embolic 
events [13, 61, 62]. Hyperthyroid patients, 
however, have an increased sensitivity to the 
anticoagulant effects of warfarin, owing to the 

increased clearance of clotting factors and the 
reduced plasma protein binding of the drug 
[13]. Moreover, these patients are resistant to 
reversal of warfarin-induced hypoprothrombin-
emia by vitamin K. Reduced doses of warfarin 
should, therefore, be administered to hyperthy-
roid patients [13].

HF may be a complication of atrial fibrilla-
tion or sinus tachycardia and may be improved 
or resolved when the ventricular rate is slowed 
or sinus rhythm is restored. Treatment with 
β-blockers and diuretics may improve the con-
gestive circulation in young patients with severe 
hyperthyroidism [27] .Treatment of HF in 
elderly patients should aim at improving car-
diac hemodynamics and heart rate. 
Hospitalization is required to treat HF in 
patients with preexisting left ventricular dys-
function or when HF does not improve upon 
restoration of euthyroidism [27].

Antithyroid drugs (ATDs), radioactive iodine 
(RAI), or surgery are all effective in treating per-
sistent hyperthyroidism, although a high relapse 
rate has been observed with ATDs in comparison 
with RAI or surgery [58, 59]. Pretreatment with 
MMI should be considered before definitive 
treatment of hyperthyroidism with RAI or sur-
gery in patients with cardiovascular disease (AF, 
CHD, or HF) and in patients at an increased risk 
of complications due to the potential worsening 
of hyperthyroidism [58, 59].
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Chronic Autoimmune Thyroiditis
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 Chronic Autoimmune Thyroiditis

Chronic autoimmune thyroiditis was first described 
as struma lymphomatosa by the surgeon Hakaru 
Hashimoto in 1912. He reported enlarged thyroid 
glands with unique histologic features: diffuse 
lymphocytic infiltration, lymphoid follicles, 
destruction of epithelial cells, and proliferation of 
fibrous tissue. It was not until 1956 that the patho-
genesis of Hashimoto’s disease became clear due 
to the pioneering work of Rose and Witebsky, who 
reproduced the disease by immunizing rabbits 
with thyroid extracts, and Doniach and Roitt, who 
discovered thyroglobulin and thyroid cytoplasmic 
(microsomal) antibodies.

Chronic autoimmune thyroiditis, also known 
as lymphocytic thyroiditis, presents with two 
main clinical entities: a goitrous form 
(Hashimoto’s thyroiditis) and an atrophic form 
(atrophic thyroiditis or primary myxedema). 
Clinical variants include juvenile thyroiditis 
(lymphocytic thyroiditis of childhood and ado-
lescence) and focal or minimal thyroiditis. Silent 
(painless) thyroiditis and postpartum thyroiditis 
also recognize an autoimmune origin, but in most 
cases their clinical courses are transient (Table 1). 
Organ-specific autoimmunity is the cause of 
chronic autoimmune thyroiditis. In all variants 

the thyroid is infiltrated by lymphocytes, thyroid 
antibodies are present in serum, and there is a 
clinical or immunological overlap with other 
autoimmune diseases. Chronic autoimmune thy-
roiditis occurs frequently in certain families, par-
ticularly among the female members. The disease 
is also more common in patients with Down’s 
syndrome or Turner’s syndrome than in the gen-
eral population.

 Basic Mechanisms in the Initiation 
of Thyroid Autoimmunity

Most of our current knowledge on the mecha-
nisms involved in the development of thyroid 
autoimmunity derives from studies in experimen-
tal models of autoimmune disease, mainly in 
mice. Experimental autoimmune thyroiditis 
(EAT) in mice can be induced by immunization 
with mouse thyroglobulin (mTg) emulsified in 
complete Freund’s adjuvant. Antigen-presenting 
cells (APC), such as dendritic cells (DC), present 
immunogenic epitopes of Tg to T cells in the con-
text of Class II major histocompatibility mole-
cules (MHC). Costimulatory signals are also 
required, which may result in either activation or 
downregulation of T cells. Based on the type of 
cytokines secreted by these DCs, a Th1, Th2, or a 
Th17 immune response is initiated. Th1 cells pre-
dominantly secrete IFN-γ and IL-12, whereas 
Th2 cells secrete IL-4 and IL-10. Th17 cells 
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secrete IL-17. Th1 and Th17 cells have been 
shown to infiltrate the thyroid, resulting in 
chronic inflammation and eventually death of the 
thyrocytes in EAT (Fig. 1) [1–5]. CD4+ T cells 
are the major type of lymphocytic cells infiltrat-
ing the gland in thyroid autoimmune diseases. 
CD4+ T cells comprise a functionally heteroge-
neous population of T effector cells (Teff), being 
responsible for the development of thyroiditis, 
and a smaller population (10%) of T regulatory 
cells (Tregs), which express CD25 (the IL-2 
receptor α). Tregs are critical for maintaining 
peripheral tolerance and are identified by their 
expression of Foxp3, a transcription factor, which 
is necessary and sufficient for Treg development. 
These cells typically secrete the cytokines IL-10 
and transforming growth factor-β (TGF-β) to 
induce tolerance. Neonatal thymectomy (at age 
3  days) and irradiation result in a multi-organ 
autoimmune disease, thus providing evidence for 
natural Tregs. The role of these cells is to prevent 
the development of organ-specific autoimmunity. 
Tregs are kept at a basal state of activation by low 
levels of circulating autoantigen; the homeostatic 
level is sufficient to prevent the development of 
autoimmunity. However, the clonal balance 
between Tregs and autoreactive T cells may be 
overcome by immunogenic stimuli, such as the 
administration of mTg and adjuvant [6]. As dem-
onstrated by the group of Prabhakar [7],  treatment 
of mTg-primed mice with granulocyte-macro-
phage colony-stimulating factor (GM-CSF) 
induces semi-matured tolerogenic DCs that are 
characterized by reduced levels of pro-inflamma-
tory cytokines such as IL-1β and IL-12 and 
increased levels TGF-β. These tolerogenic DCs, 
instead of activating pathogenic Teff, induce and 

expand Tregs. Tregs produce IL-10 and TGF-β, 
two regulatory cytokines, which, by counteract-
ing the role of pro-inflammatory cytokines, result 
in the suppression or prevention of EAT. 
Experimental evidence in mice showed that, 
apart from Tg, thyroid peroxidase (TPO) is also a 
major antigen in chronic autoimmune thyroiditis. 
Indeed, transgenic, TAZ1 mice expressing a 
human T cell receptor-specific for a cryptic TPO 
epitope spontaneously develop chronic autoim-
mune thyroiditis. This thyroid autoimmunity 
model is MHC II restricted but occurs indepen-
dently from mature B cells and antibodies [8]. 
Experimental data in humans with chronic auto-
immune thyroiditis do not clearly show a deficit 
in number of Tregs, but this T-cell subpopulation 
may be functionally deficient [9].

In the last few years, evidence was also accu-
mulated supporting the concept that INF-γ-
inducible chemokines, such as CXCL10, play an 
important role in the initial stages of thyroid 
autoimmunity. Chemokines are a group of low 
molecular weight proteins that recruit leukocyte 
subtypes and other cell types to sites of inflam-
mation. When stimulated by INF-γ, thyroid fol-
licular cells secrete CXCL10, which in turn 
recruits into the thyroid Th1 lymphocytes 
expressing CXCR3 and secreting INF-γ, thus 
establishing a loop which reinforces and main-
tains the autoimmunity process (Fig. 2) [10]. In 
addition, INF-γ stimulates MHC class II 
(HLA-DR) expression on thyroid epithelial cells, 
which may be important for the amplification and 
progression of thyroid autoimmunity [11].

 Loss of Self-Tolerance to the Thyroid 
in Humans

According to the clonal selection theory, in the 
early stage of fetal-neonatal development, most 
autoreactive T cells are eliminated within the thy-
mus by negative selection [12]. This mechanism is 
usually referred to as central tolerance. The few 
escaped autoreactive clones that migrate to the 
periphery are controlled by several mechanisms of 
peripheral tolerance involving  ignorance (they 
remain non-responsive to antigenic stimulation), 

Table 1 A clinical classification of chronic autoimmune 
thyroiditis

Chronic autoimmune thyroiditis
  Hashimoto’s thyroiditis
  Atrophic thyroiditis
  Focal thyroiditis
  Juvenile thyroiditis
  Silent thyroiditis (a)
  Postpartum thyroiditis (a)

(a)Transient
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anergy, activation-induced cell death, and active 
suppression by Tregs. Similar to other autoim-
mune diseases, loss of tolerance to thyroid anti-
gens involves a complex interplay between genetic 
background and environmental factors [13, 14].

 Role of Genetics
The role of genetics is suggested by the high fre-
quency of autoimmune thyroid diseases affecting 
family members and by a significantly higher 
concordance of autoimmune thyroid diseases in 
monozygotic (up to 55% for chronic autoimmune 
thyroiditis) compared to dizygotic twins [15, 16]. 
The fact that concordance rate is not 100% in 
monozygotic twins indicates that environmental 
factors also play an important role in the etiology 

of autoimmune thyroid diseases [14, 17, 18]. 
Several susceptibility genes have been identified 
by whole candidate gene analysis, genome link-
age studies, genome-wide association studies, 
and whole-genome sequencing techniques 
(Table 2) [14]. These genes are classified as non-
specific immune-related genes and thyroid-spe-
cific genes. The immune-related genes are 
divided into two groups: immunological synapse 
genes and regulatory T-cell genes. The immuno-
logical synapse is the interface between APCs 
and T cells that is formed during T-cell  activation. 
It is a complex interface involving peptide anti-
gen bound to an MHC-II molecule and to the 
T-cell receptor, costimulatory molecules, recep-
tors on the APC and T cells, integrins, and other 
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Fig. 1 Schematic representation of the immune events 
occurring after different immunizations of a mice. 
Experimental autoimmune thyroiditis (EAT) can be 
induced by immunization with mouse Tg emulsified in 

complete Freund’s adjuvant (CFA) in the presence of 
costimulatory signals (B7–1 and B7–2). Treatment of mTg-
primed mice with granulocyte-macrophage colony-stimu-
lating factor (GM-CSF) results in suppression of EAT
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molecules [19]. Some alleles of the HLA-DR 
gene can facilitate antigen presentation. This 
mechanism might explain the association of 
DR3, DR5 with goitrous, and of DR3, HLAB8 
with atrophic chronic autoimmune thyroiditis.

The CTLA-4 gene is a major negative regula-
tor of T-cell activation. Some polymorphisms of 
CTLA-4 have been shown to reduce the suppres-
sion of T-cell activation by antigens [20]. The 
protein tyrosine phosphatase-22 (PTPN22) gene 
plays a role as negative regulator of T-cell activa-
tion [21]. Genes for T regulatory cells (Tregs) 
that can predispose to autoimmune thyroid dis-
eases are FOXP3, a key gene in the differentia-
tion of T cells in Tregs, and CD25. Other 
immune-related genetic variants involve poly-
morphisms of the IL6 promoter, of the INF-γ 
gene, and of the T-cell receptor gene [22]. 
Allotypes of immunoglobulin heavy chains and 
polymorphisms of the vitamin D receptor gene 
have also been associated with an increased risk 
of chronic autoimmune thyroiditis [23]. Among 
thyroid-specific genes, those for thyroglobulin 
(Tg) play a role in susceptibility to chronic auto-
immune thyroiditis. Tg is one of the main targets 
of the immune response in autoimmune thyroid 
diseases. Amino acid variants in the Tg gene 
(A734S, V1027M, W1999R) can result in altered 

degradation of Tg in endosomes, inducing a 
pathogenic Tg repertoire (unique Tg peptides 
binding to specific HLA-DR pockets).

In spite of the impressive progress of genetics, 
most of the identified genes have a very minor 
effect. To explain the strong genetic susceptibility 
to autoimmune thyroid diseases, three hypotheses 
have been formulated: (1) an individual needs to 
inherit many genes of small effect; (2) gene-gene 
interaction may occur resulting in a combined odds 
ratio (OR) that is significantly higher than that 
expected with an additive effect alone; (3) a subset 
effect (also called genetic heterogeneity) may be 
involved producing a high OR only in a subset of 
patients with autoimmune thyroid diseases. As a 
matter of fact, really significant genes, which 
means that the autoimmune disease should not 
occur without some of the responsible polymor-
phisms, are still to be identified [14, 24]. A possible 
exception is the autoimmune regulator gene 
(AIRE). Its products mediate the transcription of 
many self-antigens in medullary epithelial cells in 
the thymus. Decreased AIRE expression may lead 
to a decrease in thymic expression of Tg and other 
thyroid autoantigens, resulting in the peripheral 
escape of autoreactive T cells [25]. Indeed, an auto-
somal dominant allele of AIRE has been associated 
with Hashimoto’s thyroiditis [26]. The complex 
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role of epigenetic control on gene transcription is 
far from being exhaustively explored, while the 
influence of X chromosome inactivation on thyroid 
autoimmunity also remains to be clarified.

 Role of the Environment
As reviewed by Duntas, an array of environmen-
tal factors was inculpated for their stimulatory 
effect on thyroid autoimmunity (Table  3) [13]. 
Some of these factors, such iodine excess, sele-
nium deficiency, and, possibly, industrial pollut-
ants, exert their effects mainly at a population 
level. Infective agents, immune-modulatory 
drugs, and stress are probably more relevant for 
the individual development of autoimmune thy-
roid diseases. Tobacco smoking deserves a spe-
cific mention because, while being a well-known 
risk factor for the development of Graves’ orbi-
topathy [27], it may in fact protect against the 
occurrence of TPOAb and inferentially chronic 
autoimmune thyroiditis [28].

 Hypotheses on the Pathogenesis 
of Thyroid Autoimmunity

 Innate Immune Activation (The Danger 
Hypothesis)
Endogenous molecules, also referred to as danger 
(damage)-associated molecular patterns (DAMPs), 
which are produced by dying cells, may induce 
innate immune responses. DAMPs include 
genomic DNA fragments, heat shock proteins, 
high-mobility group B1 proteins, uric acid, colla-
gen, and hyaluronic acid. Toll-like receptors of 
innate immunity are present on thyrocytes and, by 
recognizing DAMPs, may activate the innate 
immune response. Genomic DNA (but also RNA) 
may behave as a DAMP. When introduced into the 
cytosol of a viable cell, double-stranded DNA is 
recognized by DNA sensors (such as histone H2B) 
and can activate immune responses by upregulat-
ing the genes for MHC, costimulatory molecules, 
transporter associated with antigen processing 
(TAP-1), immune proteasome subunit LMP2, sig-
nal transducer of transcription 1 (STAT-1), IFN 
regulatory factor (IRF), protein kinase R, and 
type-1 IFNs. This process of autophagy also 
allows the processing and delivery of cytosolic 
antigens to be loaded on MHC-II molecules, thus 
enabling thyroid cells to present their antigens to 
CD4+ T cells [18]. The danger hypothesis has 
been put forward to explain the possible role of 

Table 2 Immune-related genes and thyroid-specific 
genes associated with autoimmune thyroid diseases

Genes Mechanism
Immunological synapse genes
HLA-DR3, 
HLA-DR5 
(goitrous)

(Caucasian) Facilitated antigen 
presentation

HLA-DR3 and 
HLA-B8 
(atrophic)

(Caucasian)

HLA-DR9 and 
HLA-Bw46,87

(Chinese)

HLA-DQw2 (link 
dis HLA DR3)

(Caucasian)

HLA-DQ A0301 
(link dis 
HLA-DR4)

(Caucasian)

HLA-DQ B0201 
(link dis 
HLA-DR3)

(Caucasian)

CTLA4 Reduced 
suppression of 
T-cell activation 
by antigen

CD40 APCS B-cell 
activation, CD40 
on thyrocytes

Protein tyrosine 
phosphatase-22 
gene (PTPN22)

Negative regulator 
of T-cell 
activation?

Regulatory T-cell genes
FOXP3 Reduced 

differentiation of 
T cells into natural 
Treg cells

CD 25 Reduced α chain 
IL2 R on Treg 
cells

Thyroid-specific genes
Tg Amino acid 

variants resulting 
in altered 
degradation of
Tg in endosomes
Unique Tg 
peptides binding 
to specific 
HLA-DR pockets
(A734S, V1027M, 
W1999R)
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thyroid follicular cells as self-antigen-presenting 
cells to the immune system, the old Bottazzo’s 
hypothesis [29].

 Fetal Microchimerism
Fetal cell microchimerism (FCM) was also impli-
cated in the pathogenesis of thyroid autoimmune 
diseases.43 FCM is due to the passage of cells 
from the fetus to the mother. Fetal cells com-
monly appear in the maternal circulation early in 
gestation (4–5 weeks). FCM involves T (CD4+ 
and CD8+) and B cells, monocytes, macro-
phages, NK cells, CD34+ hematopoietic stem 
cells, CD34+/CD38+progenitor stem cells, mes-
enchymal cells, and endothelial progenitor cells. 

Fetal cells can persist in the mother for more than 
27 years after the partum. While not producing a 
graft-versus-host reaction, fetal cells might 
mature in the maternal thymus. The presence of 
these engrafted cells or their proteins could break 
tolerance or could impair the function of host 
autoantigen-specific immunoregulatory cells. 
Such a mechanism could also explain the exacer-
bation of autoimmune reactivity in the postpar-
tum period and later in life. Evidence favoring a 
pathogenic role of FCM in thyroid autoimmunity 
stems from studies indicating that:

 1. A significantly higher number of FCM was 
found within the thyroid gland of women with 
Hashimoto’s thyroiditis and Graves’ disease 
compared with women without thyroid auto-
immunity [30].

 2. Male cells can be detected in the peripheral 
blood of both Graves’ disease patients and 
healthy women of reproductive age [31].

 3. In a murine model of EAT, fetal immune cells 
(T-cell and dendritic cell lineages) were found 
to accumulate in maternal thyroids [32].

 4. The thyroid autoimmunity susceptibility 
markers, HLA DQA1*0501-DQB1*0201 and 
DQB1*0301, are more common in mother-
child pairs positive for FCM [31].

 5. One case-control study indicated parity as a 
potential risk factor for AITD [33].

By contrast, three large epidemiological com-
munity-based studies failed to demonstrate an 
association between pregnancy, parity, abortion, 
and the presence of thyroid autoantibodies or thy-
roid dysfunction, indicating that FCM could be a 
marginal phenomenon [34–36].

 The Hygiene Hypothesis
The hygiene hypothesis suggests that people born 
and living in countries with a high socioeconomic 
standard and, as a consequence, being exposed to 
a lower burden of infectious agents during child-
hood might be more prone to develop thyroid 
autoimmunity. An epidemiological study compar-
ing the prevalence of thyroid antibodies in the 
genetically similar populations of Russian Karelia 
and Finland supports this hypothesis. Indeed, the 

Table 3 Environmental factors involved in thyroid 
autoimmunity

Dietary 
factors

Iodine excess
Selenium deficiency

Pollutants Radioiodine
Tobacco smoking
Polychlorinated biphenyls
Effects of global warming (possible)
Metals
Solvents

Hormones Female sex (10/1)
Parity (OR = 4.6)
Postpartum
Oral contraceptives

Infections Yersinia enterocolitica
Hepatitis C virus

Therapy Interferon α
Interferon β
Interleukin 2
(Amiodarone)
(Lithium)
Ipilimumab (anti CTLA-4 mAb)
Campath-1H (alemtuzumab) 
anti-CD-52 mAb
Immune reconstitution syndrome
  • Bone marrow transplantation
  •  Highly active antiretroviral therapy 

(HAART) for AIDS
Other Stress

Small fetal size (fetal nutrition)
Direct trauma on thyroid
Seasonal variation
Allergy
Socioeconomic environment (lower 
exposure to infective agents)
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prevalence of thyroid antibodies was significantly 
lower in school children from Karelia compared 
to their counterparts in Finland. This result sup-
ports the idea that the Russian environment, which 
was characterized by inferior prosperity and stan-
dard of hygiene, may provide a protection against 
thyroid autoimmunity [37].

 Antigen-Antibody Systems in Thyroid 
Autoimmunity

The three main thyroid autoantigens, which were 
identified several decades ago, are thyroglobulin 
(Tg), the organ-specific enzyme thyroid peroxi-
dase (TPO), and the TSH-receptor (TSH-R) [38]. 
Human Tg has at least 40 epitopes, but only one 
or two of these bind human thyroglobulin anti-
bodies (TgAb), which in humans are mainly IgG 
and belong to the IgG4 subtype, thus explaining 
their poor complement-fixing property. TgAb 
have been detected in up to 60% of patients with 
chronic autoimmune thyroiditis, but, similarly to 
TPO antibodies (TPOAb), they are also found in 
healthy individuals and in patients with non-auto-
immune thyroid diseases such as nontoxic goiter 
and thyroid cancer [39]. In the latter conditions, 
circulating thyroid antibodies reflect the presence 
of focal autoimmune thyroiditis within the 
affected gland. Thyroid peroxidase, previously 
termed the microsomal antigen, evokes high 
affinity, IgG class autoantibodies (TPOAb), 
which fix complement and may be implicated in 
thyroid destruction [40]. However, when TPOAb 
are transferred passively from mothers, they do 
not seem to damage the fetal thyroid. This is 
because in the intact gland TPO is secluded from 
TPOAb been expressed at the apical pole of fol-
licular thyroid cell facing the colloid [41]. Test 
for TPOAb is positive in nearly 90% of patients 
with chronic autoimmune thyroiditis [42]. Thus 
they have a superior diagnostic value compared 
with TgAb for the confirmation of chronic auto-
immune thyroiditis. However, in some instances, 
patients have only TgAb as a marker of the dis-
ease. Antibodies directed to the thyroid-stimulat-
ing hormone (TSH) receptor with blocking 
activity (TSBAb) have been also detected in a 

minority of patients with chronic autoimmune 
thyroiditis, mainly of the atrophic variant [41]. 
They are believed to bind the C-terminal part of 
the extracellular domain of the receptor. However, 
in  vitro conversion from TSBAb to TSAb after 
addition of antihuman IgG antibody implies that 
the same antibody may act as blocking or stimu-
lating depending on the influence of other factors 
[43].

In the first years of this century, antibodies to 
the sodium-iodide symporter (NIS) and pendrin 
[44], an iodide transporter located at the apical 
pole of thyroid follicular cells, were identified in a 
minority of patients with chronic autoimmune 
thyroiditis. Their pathogenic role is probably neg-
ligible. Antibodies to thyroxine (T4) and triiodo-
thyronine (T3) may be also found in patients with 
chronic autoimmune thyroiditis. These antibodies 
interfere with measurement of serum T4 and T3, 
mainly in the assays for free T4 and T3 [45].

 Cellular and Humoral Effector 
Mechanisms in Thyroid 
Autoimmunity

Cell damage mechanisms in chronic autoimmune 
thyroiditis include antibody-dependent cell-
mediated cytotoxicity (ADCC); Fas/Fas ligand-
mediated apoptosis of thyroid cells (the so-called 
suicide or fratricide); the direct cytotoxic effect 
of CD8+ and CD4+ cells, which is MHC I and 
MHC II restricted, respectively (the so-called 
homicide); and the granule exocytosis pathway 
(perforins, granzymes) [46]. Lymphokine-
activated killer cells are also involved. Although 
Fas ligand is expressed in thyrocytes from both 
normal individuals and patients with chronic 
autoimmune thyroiditis, Fas is present only in 
thyrocytes from autoimmune glands, its expres-
sion being stimulated by IL-1α [47]. Humoral 
mechanisms include the TSH blocking effect of 
TSH-R antibodies [42] and the complement-
mediated cytotoxic effect of TPOAb [46]. TPOAb 
probably exert a secondary destructive mecha-
nism, requiring a primary disruptive event to 
allow antibody access to the intra-follicular site 
of TPO expression.
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The eventual destruction and/or apoptosis of 
thyroid follicular cells is responsible for the 
development of hypothyroidism in chronic auto-
immune thyroiditis. Hypothyroidism can also 
occur by being mediated through the inhibiting 
effect of cytokines on thyroid hormone synthesis. 
According to this model, clinical hypothyroidism 
results from a chronic inhibition of thyroid func-
tion, which is induced by exposure of the thyroid 
to pro-inflammatory cytokines like IFN-γ and 
TNF-α. These factors can be present in the thy-
roid also independently of infiltrating lympho-
cytes. The novelty of this nonclassical model is 
that thyroid atrophy is shown to be the conse-
quence of thyroid hypofunction rather than the 
cause of it [48].

 Pathology

Goitrous Hashimoto’s thyroiditis is characterized 
by lymphocytic infiltration with plasma cells and 
germinal centers, follicular destruction, colloid 
depletion, and fibrosis. Thyroid cells may show 
an oxyphilic cytoplasm (Hurthle or Askanazy 
cells). In atrophic thyroiditis, the gland is reduced 
in size, with lymphocytic infiltration and fibrosis 
replacing the thyroid parenchyma. Thyroid folli-
cle destruction is mild and lymphocytic infiltra-
tion is minimal in focal thyroiditis. In juvenile 
thyroiditis, oxyphil cells, fibrosis, and germinal 
centers are less prominent or absent. In silent and 
postpartum thyroiditis, the thyroid is infiltrated 
with lymphocytes and thyroid follicles are col-
lapsed, but germinal centers and Hurthle cells are 
absent.

 Epidemiology

Chronic autoimmune thyroiditis is the most com-
mon cause of spontaneously acquired hypothy-
roidism in populations with sufficient iodine 
intake. Severe forms of autoimmune thyroiditis 
are detected at autopsy in 5–15% of women and 
in 1–5% of men. The disease is most often diag-
nosed between the ages of 50 and 60 years, and it 
is 5–7 times more frequent in women than in 

men. The prevalence of thyroid antibodies, which 
correlates with at least some degree of autoim-
mune thyroiditis, increases from 6 to 15% in the 
second to third decades of life to more than 
21–27% in women 60 years old or older [49]. In 
communities with sufficient iodine intake, ele-
vated serum TSH concentrations mainly result 
from chronic autoimmune thyroiditis. In these 
populations, subclinical hypothyroidism is found 
in 8–17% of subjects older than 55–60 years, and 
overt hypothyroidism is found in 1.7–3% of 
elderly women [50]. The rate of hypothyroidism 
is higher in women than in men and higher in 
whites than in blacks. In recent years, chronic 
autoimmune thyroiditis has been diagnosed more 
frequently than in the past due to both improved 
diagnostic procedures and to an increased num-
ber of affected cases. The increased iodine con-
sumption that occurred in Western countries in 
the past few generations may explain this phe-
nomenon [51].

 Clinical Findings

Most patients with chronic autoimmune thyroid-
itis are euthyroid or have subclinical hypothy-
roidism and circulating thyroid antibodies. The 
classical presentation with goiter and overt hypo-
thyroidism is nowadays uncommon. In many 
patients the diagnosis is made because blood 
tests, done for unrelated complaints (weight gain, 
anxiety, asthenia), reveal thyroid dysfunction or 
thyroid antibodies. On physical examination, the 
typical Hashimoto’s gland is diffusely enlarged, 
but one lobe may be larger than the other, and the 
pyramidal lobe may be palpable. The goiter is 
generally moderate in size, though massive 
enlargements may occur. The gland is nontender, 
firm or rubbery in consistency, with a smooth or 
bosselated surface. If left untreated, the goiter 
either remains unchanged or enlarges gradually 
over many years, mainly in patients with unrec-
ognized hypothyroidism. In other instance the 
goiter becomes smaller. A feeling of tightness in 
the neck may occur, but compression of the tra-
chea is uncommon. Rapid growth of the goiter 
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and compressive symptoms should raise the sus-
picion of thyroid lymphoma.

Patients may present with complaints of hypo-
thyroidism, but for each patient with overt thy-
roid failure, several have subclinical 
hypothyroidism. Patients with atrophic thyroid-
itis exclusively present with hypothyroidism. The 
incidence rate for the development of hypothy-
roidism in women increases with age, with 
51%of cases diagnosed between 45 and 64 years 
of age. Thyrotoxicosis (Hashitoxicosis) rarely 
occurs, due to a combination of Hashimoto’s thy-
roiditis with Graves’ disease in the same patient 
or to the transient discharge of preformed thyroid 
hormones as a result of follicle disruption result-
ing from the inflammatory process. In the latter 
case, the disease, at least in its initial stage, 
should more appropriately be classified as pain-
less thyroiditis. Hyperthyroidism in patients with 
a combination of Graves’ and Hashimoto’s disor-
ders is produced by TSH-receptor antibodies 
with thyroid-stimulating (TSAb) activity and is 
indistinguishable from that of only Graves’ dis-
ease. The only differences with Graves’ disease 
are that the goiter is firmer, the titers of TPOAb 
and TgAb are higher, and the chance of spontane-
ous remission of hyperthyroidism is higher. Rare 
cases of transition from hypothyroidism to hyper-
thyroidism, and vice versa, are also reported, 
probably due to a shift from TSBAb to thyroid-
stimulating antibody (TSAb) within the family of 
circulating TSH-receptor antibodies. Thus, the 
clinical features of patients depend on the bal-
ance among stimulating, blocking, and destruc-
tive aspects of humoral and cellular immunity. 
High iodine ingestion can aggravate chronic 
autoimmune thyroiditis, thus precipitating 
hypothyroidism.

 Diagnostic Procedures

Clinical observation may be enough to diagnose 
the classic picture of goitrous Hashimoto’s thy-
roiditis, but, in the majority of “subclinical” pre-
sentations of the disease, laboratory and 
instrumental investigations are necessary. The 
diagnostic workup includes tests for thyroid 

autoimmunity, thyroid echography, and assays 
for TSH and freeT4 (fT4). Serum TPOAb are 
detectable in up to 95% of patients with 
Hashimoto’s thyroiditis and 90% of those with 
atrophic thyroiditis. TgAb are less frequently 
positive in patients with both types of autoim-
mune thyroiditis. Low or undetectable titers of 
both TPOAb and TgAb are encountered in a few 
patients with chronic autoimmune thyroiditis, the 
so-called serum-negative chronic autoimmune 
thyroiditis. Conversely, low to medium titers of 
TPOAb and/or TgAb are found in a minority of 
normal subjects and in patients with nontoxic 
goiter, subacute thyroiditis, or thyroid carcinoma 
[39]. Thus, the diagnostic specificity of thyroid 
antibody tests is not absolute. Antibodies to thy-
roid hormones may interfere with the measure-
ment of serum T4 or T3 and result in falsely high 
or low thyroid hormone levels, depending on the 
assay used.

At ultrasound examination, a diffusely 
reduced echogenicity of the thyroid is detected in 
chronic autoimmune thyroiditis (Fig. 3). Because 
this hypoechogenic pattern of the gland is pathog-
nomonic of thyroiditis, echography is nowadays 
the easiest tool for diagnosing chronic autoim-
mune thyroiditis. Thyroid radionuclide scan is 
not crucial to the diagnosis and shows either a 
diffuse, patchy uptake or a pattern that may 
mimic hypofunctioning or hyperfunctioning nod-
ules (pseudo toxic adenoma). Values of thyroid 
radioactive iodine uptake (RAIU) may be nor-
mal, low, or high in Hashimoto’s thyroiditis. In 
the assessment of most patients, fine needle aspi-
ration cytology (FNAC) is not necessary, but it is 
advisable in those with suspicious nodules or a 
rapidly enlarging goiter in order to rule out malig-
nancy. Cytological smears of Hashimoto’s thy-
roiditis are rich in lymphocytes and oxyphil cells.

An increase in serum TSH concentration 
may occur long before any decline in serum fT4 
levels (subclinical hypothyroidism). Decreased 
serum concentrations of fT4, and less frequently 
of free T3 (fT3), are observed in overt hypothy-
roidism; but low serum fT3, and lessfrequent-
lyfT4 levels, may be found in patients with 
non-thyroidal illnesses. An increased serum 
TSH concentration is the single best diagnostic 
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test for primary  hypothyroidism. Because rare 
cases of peripheral resistance to thyroid hor-
mones are an exception to this rule, fT4 assays 
are needed as a second key test.

The diagnosis of chronic autoimmune thyroid-
itis is based on the detection of a typical 
Hashimoto’s goiter in euthyroid patients or in the 
detection of hypothyroidism (either overt or sub-
clinical). Positive tests for thyroid antibodies sup-
port the diagnosis, but they are not completely 
specific. Thyroid echography, by showing a 
hypoechogenic pattern of the goiter in Hashimoto’s 
thyroiditis or a gland reduced in size in atrophic 
thyroiditis, provides confirmatory evidence. In 
patients with serum-negative chronic autoimmune 
thyroiditis, a typical hypoechoic ultrasound pat-
tern supports the diagnosis. Rarely, the ultimate 

diagnosis may require FNAC. In iodine-deficient 
areas, differentiation of Hashimoto’s thyroiditis 
from nontoxic multinodular goiter with focal thy-
roiditis may be difficult, and intermediate condi-
tions are encountered. Differentiation between 
Hashimoto’s thyroiditis with a prominent “nod-
ule” and thyroid carcinoma requires FNAC.  A 
rapidly enlarging nodule with regional lymphade-
nopathy suggests thyroid malignancy.

 Natural History

Overt hypothyroidism can develop in patients who 
are euthyroid or have subclinical hypothyroidism 
when first seen, but the progression is slow and 
takes several years. Temporary remissions of 

a b

c d

Fig. 3 Echographic aspect of normal thyroid (a), atrophic thyroiditis (b), Hashimoto’s thyroiditis, (c) and focal 
 thyroiditis (d)
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 subclinical hypothyroidism may also occur. In the 
follow-up study performed in Whickham [50], the 
annual rate of developing overt hypothyroidism 
was 4.3% in women with both raised serum TSH 
(>6 mU/L) and positive thyroid antibodies, 2.6% if 
only TSH was raised, and 2.1% if only thyroid 
antibodies were positive. Even a serum TSH level 
at the upper limit of the normal range (>2–4 mU/L) 
was associated with an increased probability of 
developing hypothyroidism in the following 
20  years. Graves’ hyperthyroidism occasionally 
develops in patients with hypothyroidism caused 
by chronic autoimmune thyroiditis and is believed 
to result from a change in the nature of TSH-
receptor antibodies (TRAb) from blocking to stim-
ulating. The opposite evolution from 
hyperthyroidism to hypothyroidism may also 
occur due to changes in the biological activity of 
TRAb or to the progressive destruction of thyroid 
parenchyma produced by autoimmune thyroiditis. 
Hypothyroidism due to chronic autoimmune thy-
roiditis ultimately supervenes in 10–20% of 
patients with Graves’ hyperthyroidism who remain 
in remission after antithyroid drugs (burn-out 
Graves’s disease). Euthyroid patients with chronic 
autoimmune thyroiditis are more susceptible to the 
antithyroid effects of excess iodine, and amioda-
rone is a common cause of iodine-induced hypo-
thyroidism in these patients. Remissions of 
hypothyroidism have been described in Japan after 
discontinuation of excessive dietary iodine intake 
[52]. Hypothyroidism may develop in up to one-
third of patients treated with lithium and is more 
common in those with thyroid antibodies. Therapy 
with IFN- α, IL-2, or granulocyte-macrophage 
colony-stimulating factor may be associated with 
the development of thyroid antibodies, transient 
thyrotoxicosis, hypothyroidism or both, primarily 
in patients who have thyroid antibodies before 
therapy. Smoking increases the risk of hypothy-
roidism in patients with autoimmune thyroiditis.

 Serum-Negative Chronic 
Autoimmune Thyroiditis

Compared to the typical disease, patients with 
serum-negative chronic autoimmune thyroiditis 

usually display lower levels of serum TSH and 
higher FT4 levels. As a consequence, the preva-
lence of overt hypothyroidism is lower in serum-
negative patients. Their thyroid volume is also 
smaller. On the other hand, the prevalence of 
female gender and thyroid nodules among 
affected patients is similar to that observed in 
those with chronic autoimmune thyroiditis and 
circulating thyroid antibodies. Overall, it appears 
that serum-negative chronic autoimmune thy-
roiditis represents a milder form of thyroid auto-
immunity [53].

 IgG4 Thyroiditis

Recently, a subtype of Hashimoto’s thyroiditis 
associated with sclerosing pancreatitis has been 
identified as a distinct clinical-pathological entity 
being termed IgG4 thyroiditis. The disease is 
characterized by fibrosis, lymphoplasmacytic 
infiltration, increased IgG4 positive plasma cells 
in the thyroid, and high IgG4 levels in serum. 
Clinically, IgG4 thyroiditis presents with a more 
rapid progress of goiter, subclinical hypothyroid-
ism, high levels of circulating thyroid antibodies, 
and a diffuse hypoechogenic pattern of the gland 
at ultrasound examination. Positive immunos-
taining for IgG4 plasma cells and histologic evi-
dence of invasive fibrosis, even beyond the 
thyroid capsule, may be required for the differen-
tial diagnosis. It is suggested, but not definitely 
proved, that Riedel’s thyroiditis might belong to 
the spectrum of IgG4 thyroiditis [54].

 Associated Diseases

Up to 5% of patients with thyroid-associated 
orbitopathy have chronic autoimmune thyroiditis 
with hypothyroidism [27]. A peculiar encepha-
lopathy or encephalitis with stroke-like episodes, 
seizures, or altered consciousness has been 
reported in euthyroid patients with Hashimoto’s 
thyroiditis, though rarely [55]. This neurologic 
disease is more common in females and has been 
described in all ages. Although corticosteroid-
responsive, its course may be progressive or 
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relapsing. Hashimoto’s encephalopathy is associ-
ated with abnormal electroencephalogram and 
high cerebrospinal fluid proteins without pleocy-
tosis. Some patients have residual disability; cog-
nitive decline and behavioral problems may 
occur in children. This condition may represent 
an association with Hashimoto’s thyroiditis with 
a rare autoimmune encephalopathy, although the 
binding of TPOAb to astrocytes has been 
described [56].

Patients with Hashimoto’s thyroiditis are 
prone to develop other autoimmune organ-spe-
cific, endocrine and non-endocrine (i.e., vitiligo, 
myasthenia gravis, multiple sclerosis, thrombo-
cytopenic purpura, Sjögren’s disease, alopecia), 
diseases. Non-organ-specific systemic autoim-
mune conditions (i.e., rheumatoid arthritis, lupus 
erythematosus) are also more frequent (Table 4). 
These associations are suggested by the presence 
in the patients’ serum of autoantibodies to adre-
nal cortex (1–2%), pancreatic islet cells (l–3%), 
gastric parietal cells (10–30%), intrinsic factor 
(1%), DNA, mitochondria, phospholipids, or 
IgG. Celiac disease is now believed to be a com-
mon association. In a study, 15% of patients with 
chronic autoimmune thyroiditis had positive 
serology for the gastrointestinal disease, and 
21% of celiac patients had circulating thyroid 
autoantibodies [57]. Chronic autoimmune thy-
roiditis is a component of type 2 autoimmune 
polyglandular syndrome (APS), a condition 
characterized by the coexistence of two or more 
of the following disorders: Addison’s disease, 

autoimmune thyroiditis, and insulin-dependent 
diabetes mellitus [58]. The association with 
other autoimmune conditions, apart from 
Addison’s disease, is categorized as type 3 poly-
glandular syndrome (Table 5).

Focal thyroiditis is seen in many patients with 
papillary thyroid carcinoma, and it may repre-
sent a secondary immune response to cancer. 
Although still controversial, recent studies have 
shown that patients with chronic autoimmune 
thyroiditis may have an increased risk of devel-
oping papillary thyroid cancer, and molecular 
findings demonstrated that RET/PTC oncogene 
is more commonly expressed in nonneoplastic 
follicular cells in Hashimoto’s glands [59]. From 
a clinical point of view, the coexistence of 
chronic autoimmune thyroiditis (even focal) 
with differentiated thyroid cancer is of relevance 
because circulating TgAb interfere with the 
measurement of serum Tg, thus rendering unreli-
able the use of this marker in the follow-up of the 
neoplastic disease [60].

In patients with chronic autoimmune thyroid-
itis, the prevalence of primary B-cell lymphoma 
of the thyroid is 80 times greater than expected, 
and most patients with this malignancy have pre-
existent Hashimoto’s thyroiditis [61]. Sequence 
determination of immunoglobulin heavy chain 
gene rearrangements suggests that primary thy-
roid lymphoma evolves from lymphocytes infil-
trating the gland in Hashimoto’s thyroiditis. 
Despite this increased incidence, lymphomas of 
the thyroid remain rare tumors.

Table 4 Hashimoto’s thyroiditis and its association with autoimmune diseases

Hashimoto’s thyroiditis
Associated autoimmune disease Women N = 427 Men N = 68 Total N = 495
Type 1 diabetes 5 (1.17%) 0 (0%) 5 (1.01%)
Rheumatoid arthritis 20 (4.68%) 1 (1.47%) 21 (4.24%)
Pernicious anemia 19 (4.45%) 0 (0%) 20 (4.04%)
Systemic lupus erythematosus 3 (0.70%) 0 (0%) 3 (0.61%)
Addison’s disease 5 (1.17%) 2 (2.94%) 7 (1.41%)
Celiac disease 5 (1.17%) 0 (0%) 5 (1.01%)
Vitiligo 12 (2.81%) 1 (1.47%) 13 (2.63%)
Multiple sclerosis 3 (0.70%) 1 (1.47%) 4 (0.81%)
Myasthenia gravis 1 (0.23%) 0 (0%) 1 (0.20%)
Inflammatory bowel disease 3 (0.70%) 1 (1.47%) 4 (0.81%)
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 Treatment

Immunosuppressive agents such as corticoste-
roids are not recommended in a benign disease 
that can be safely and economically treated with 
l-thyroxine (l-T4). Corticosteroids cause some 
regression of Hashimoto’s goiter and decrease 
thyroid antibody titers, but the activity of the dis-
ease returns after treatment is withdrawn. In rare 
cases, painful subacute exacerbations of 
Hashimoto’s thyroiditis may benefit of a short 
course of corticosteroid treatment.

Patients with overt hypothyroidism require 
substitution therapy with l-T4 at a dose that nor-
malizes serum TSH levels. The average daily 
replacement dose of l-T4 in adults is 1.6 μg/kg 
body weight. Full replacement doses are 
75–100  μg per day in most women and 100–
150 μg per day in most men. Elderly hypothyroid 
patients require a dose 20–30% lower. In hypo-
thyroid patients with coexistent cardiac disease, 
l-T4 therapy should be initiated with 12.5–25 μg 
per day, followed by careful increments of 12.5–
25 μg per day every 4–8 weeks. l-T4 substitution 
may precipitate angina or myocardial infarction 
in the elderly with coronary artery disease, but it 
ameliorates reversible coronary dysfunction 

inherent with hypothyroidism and produces ben-
eficial effects on hypothyroid hyperlipidemia. 
Coronary by-pass or angioplasty can be safely 
performed before starting l-T4 administration. 
Long-term l-T4 substitution was not found to 
reduce bone mineral density, provided that serum 
TSH concentrations are kept in the normal range. 
Successful l-T4 therapy is often accompanied by 
a decrease in thyroid antibody titers in patients 
with elevated serum TSH levels before treatment. 
Indications for l-T4 substitution therapy in sub-
clinical hypothyroidism are not univocal, but an 
improvement in some hypothyroid features was 
observed in two placebo-controlled trials of l-T4 
therapy [62]. Restoration of normal TSH levels 
with l-T4 also produces a slight reduction in the 
elevated serum cholesterol levels sometimes 
observed in patients with subclinical hypothy-
roidism. Replacement therapy is usually advised 
when serum TSH concentration is higher than 
10  mU/L and in those patients with borderline 
high serum TSH (5–10 mU/L) and positive thy-
roid antibody who are at high risk for progression 
to overt hypothyroidism. The presence of goiter 
and symptoms consistent with thyroid hormone 
deficiency favor treatment. Substitution treat-
ment should be lifelong because hypothyroidism 

Table 5 Autoimmune polyendocrine syndrome 3 (APS 3)

Chronic autoimmune thyroiditis
Type 1 diabetes mellitus Chronic atrophic 

Gastritis
Vitiligo SLE

Hirata’s disease Pernicious anemia Alopecia Rheumatoid arthritis
Hyper-gonadotropic 
hypogonadism

Celiac disease Idiopathic urticaria Systemic sclerosis

Lymphocytic 
hypophysitis

Protracted diarrhea of 
infancy

Bullous skin diseases Seronegative Arthritis

Idiopathic diabetes 
insipidus

Inflammatory bowel 
diseases

Myasthenia gravis Scleroderma

Chronic 
hypoparathyroidism

Autoimmune hepatitis Stiff-man syndrome Vasculitis

Sjögren’s syndrome Primary biliary cirrhosis Multiple sclerosis
Breast lymphocytic 
lobulitis

Sclerosing cholangitis Guillain-Barrè syndrome

Autoimmune pancreatitis Werlhof’s disease
Autoimmune anemia
Antiphospholipid syndrome
Idiopathic myocarditis

Endocrine or exocrine 
diseases 3A

Gastrointestinal or liver 
diseases 3B

Skin, neuromuscular, 
hematological, cardiac diseases 3C

Rheumatic diseases or 
vasculitis 3D
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tends to recur when therapy is discontinued. A 
spontaneous recovery of thyroid function that 
persists when l-T4 treatment is withdrawn occa-
sionally occurs when hypothyroidism has been 
precipitated by dietary or pharmacological over-
load, by administration of lithium or cytokines, 
or when TSBAb present in serum before starting 
l-T4 treatment disappear in the subsequent fol-
low-up. The permanence of such remissions is 
uncertain, but most of these patients might not 
remain euthyroid during the follow-up. Selenium 
treatment was shown to reduce circulating thy-
roid antibodies and possibly TSH in some, but 
not all studies. The issue is still controversial, and 
there is no evidence enough to recommend this 
type of treatment [63].

The proper treatment of euthyroid Hashimoto’s 
goiter is controversial. The use of l-T4 may be 
considered for two main reasons. The first is that 
a reduction in goiter size was observed in euthy-
roid patients with Hashimoto’s thyroiditis ran-
domly allocated to l-thyroxine therapy as 
compared to those who were observed with no 
active treatment [64]. The second reason pertains 
to the possible evolution to hypothyroidism and 
to the fact that l-T4 therapy may limit a further 
growth of goiter. The decision to treat with l-T4 
is optional. Untreated euthyroid patients with 
autoimmune thyroiditis require periodic thyroid 
function tests: once a year in patients with goi-
trous Hashimoto’s thyroiditis and every 6 months 
in those with a gland of reduced size.

Surgery is indicated, though this happens 
rarely, in cases of extremely large Hashimoto’s 
goiters with obstructive symptoms or when asso-
ciated thyroid malignancy is suspected. l-T4 
therapy is mandatory after surgery, as hypothy-
roidism invariably results.

 Juvenile Thyroiditis

Among children and adolescents living in areas 
of iodine sufficiency, juvenile (lymphocytic) thy-
roiditis is the cause of euthyroid goiter in one-
half to two-thirds of patients. Atrophic thyroiditis 
may also occur and is associated with hypothy-
roidism. Thyroid antibodies are less frequently 

positive than in adults. In a 20-year follow-up 
study of goitrous juvenile thyroiditis, spontane-
ous resolutions occurred in about 25% of cases, 
but hypothyroidism developed in 33% of patients. 
A more recent Italian study [65] investigated 
children with Hashimoto’s thyroiditis being 
euthyroid or showing mild subclinical hypothy-
roidism (TSH <100% of the upper limit) when 
first seen. After a 3-year observation period, 72% 
of originally euthyroid children maintained nor-
mal thyroid function, while 13% and 15% devel-
oped subclinical or overt hypothyroidism, 
respectively. Among children with initial subclin-
ical hypothyroidism, 41% normalized their func-
tion, while 19% remained stable and 40% 
progressed to overt hypothyroidism. The pres-
ence of celiac disease and elevated TSH and 
TPOAb increased the risk of developing hypo-
thyroidism by 4.0-, 3.4-, and 3.5-fold, respec-
tively. The increase in TSH levels during 
follow-up was strongly predictive of the develop-
ment of hypothyroidism. Active l-thyroxine 
treatment in euthyroid children with juvenile thy-
roiditis is pointless, while elevated serum TSH 
may indicate the need for substitution therapy.

 Silent Thyroiditis

Silent (painless) thyroiditis is characterized by 
transient thyrotoxicosis with low RAIU, and a 
small, painless, nontender goiter. Silent thyroid-
itis occurs either sporadically or in the postpar-
tum period (postpartum thyroiditis). The overall 
prevalence of silent thyroiditis as a cause of thy-
rotoxicosis ranges from 4 to 15%, but the latter 
figure appears high. A seasonal and geographic 
variation in the prevalence has been reported, 
with those areas previously iodine-deficient, but 
recently exposed to sufficient iodine, having a 
greater prevalence [66]. The female/male ratio is 
approximately 2/1. Thyrotoxicosis results from 
damage of the follicular cells by the inflamma-
tory process, with leakage of preformed thyroid 
hormones in the bloodstream. The inflammatory 
process impairs the capacity of the thyroid to 
make thyroid hormones. As a consequence, 
patients undergo a euthyroid phase and then, 

A. Carbone et al.



393

when thyroid hormone stores are depleted, 
become hypothyroid. Silent thyroiditis has been 
reported in patients with other autoimmune dis-
orders, with a personal or family history of thy-
roid autoimmunity, and in those experiencing a 
rebound of immunity after treatment of Cushing’s 
syndrome. Excess iodide intake, amiodarone, 
IFN-α and IL-2, simple palpation, or parathyroid 
surgery have been reported as initiating events of 
silent thyroiditis.

Silent thyroiditis presents with a relatively 
abrupt onset of symptoms of mild thyrotoxicosis 
(tachycardia, heat intolerance, sweating, ner-
vousness, and weight loss). The thyroid may be 
normal in size (50% of cases), or a small, mod-
estly firm, nontender goiter may be palpable. 
After 2–9  weeks, thyrotoxicosis subsides, and 
patients progress to euthyroid and hypothyroid 
phases before recovering normal thyroid func-
tion. About 40% have a hypothyroid phase, which 
usually lasts between 4 and 10  weeks. 
Euthyroidism is ultimately restored in most 
cases, but persistent hypothyroidism may also 
develop (5%). Recurrences may develop in up to 
11% of cases. Impaired thyroid reserve or goiter 
may occur after a bout of silent thyroiditis.

Free T4 and free T3 are elevated in the thyro-
toxic phase, but the increase of T4 relative to T3 
is disproportionate owing to the release of pre-
formed thyroid hormones into the circulation. 
Serum Tg and urinary iodide concentrations are 
also increased. RAIU is suppressed (often 1–2% 
at 24  h). The erythrocyte sedimentation rate is 
normal or only slightly elevated. The white blood 
cell count is usually normal. TPOAb and TgAb 
are present in sera of 60% and 25% of patients, 
respectively. Serum TSH levels are low in the 
thyrotoxic phase, but they may increase to hypo-
thyroid levels before recovery. Silent thyroiditis 
should be considered in all cases of thyrotoxico-
sis with low RAIU and a nontender gland. Other 
causes of thyrotoxicosis with low RAIU should 
be excluded, such as thyrotoxicosis factitia 
(serum Tg is low), iodine-induced hyperthyroid-
ism (urinary iodine excretion >1000 μg/24 h), or 
ectopic thyroid hormone production (struma ova-
rii). Differentiation from Graves’ hyperthyroid-
ism is important (Table  6). FNAC reveals 

lymphocytic thyroiditis, but it is usually not nec-
essary to make the diagnosis. Thyroid ultrasound 
shows decreased echogenicity.

Antithyroid drugs or radioiodine are inappro-
priate for the treatment of silent thyroiditis, 
because thyrotoxicosis is due to the release of 
preformed thyroid hormones. Thyrotoxic symp-
toms are managed with β-adrenergic blocking 
agents, such as propranolol (30–40 mg orally 3–4 
times daily). Prednisone, started at 40–60 mg per 
day orally and then tapered over 4 weeks, may 
cause a decline of T4 and T3 serum concentra-
tions within 7–10 days. L-T4 replacement ther-
apy is usually not needed because symptoms of 
hypothyroidism are often mild and transient. 
When hypothyroidism is symptomatic, a subopti-
mal replacement dose of l-T4 should be given, 
and then it should be tapered after 6 months and 
the patient should be checked to determine 
whether recovery has occurred.

 Autoimmune Thyroiditis During 
Pregnancy and Postpartum

Chronic autoimmune thyroiditis, mainly asymp-
tomatic, is relatively common in women of child-
bearing age. During pregnancy all autoimmune 
reactions are downregulated by a number of 
physiologic factors. Following delivery there is a 

Table 6 Differences between silent thyroiditis and 
Graves’ disease

Silent 
thyroiditis

Graves’ 
disease

Onset Abrupt Gradual
Severity of 
thyrotoxicosis

Mild-
moderate

Moderate-
marked

Duration of symptoms <3 months >3 months
Thyroid bruit Absent May be 

present
Ophthalmopathy, 
dermopathy

Absent May be 
present

T3 (ng/mL)/T4 (μg/
dL) ratio

<20/1 Mostly >20/1

RAIU Low High
TSH-R antibodies Usually 

negative
Usually 
positive

Thyrotoxicosis Transient Persistent

Chronic Autoimmune Thyroiditis
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reversal of these alterations with a rebound of 
autoimmune phenomena. Thus, TPOAb, TgAb, 
and TSH-receptor antibodies decrease or may 
even disappear during the third trimester of preg-
nancy, but a rebound increase is observed after 
delivery [67]. Patients with asymptomatic chronic 
autoimmune thyroiditis may undergo a deteriora-
tion of their thyroid function during pregnancy 
with a slight increase in serum TSH (up to 
5–10 mU/L) at the end of pregnancy. It is there-
fore recommended that in these women serum 
TSH and fT4 levels are frequently checked dur-
ing gestation and l-thyroxine replacement ther-
apy initiated when serum TSH levels increase 
over trimester-specific reference values. 
Hypothyroid patients with autoimmune thyroid-
itis on replacement therapy frequently require an 
increase in the dose of l-T4 during pregnancy, 
which mainly occurs in the first trimester of ges-
tation and is highlighted by an elevation in serum 
TSH level. The dose of l-T4 should be adjusted 
to keep serum TSH within trimester-specific nor-
mal limits [68]. TPOAb and TgAb cross the pla-
centa, but they do not directly damage the fetal 
thyroid. Because of this, the incidence of con-
genital hypothyroidism is not increased in neo-
nates of mothers with autoimmune thyroiditis. 
Rare neonates born to mothers with atrophic thy-
roiditis and serum TSBAb may develop transient 
neonatal hypothyroidism.

The rebound of immunity that follows deliv-
ery may be accompanied by destructive thyroid-
itis resulting in transient thyrotoxicosis evolving 
to hypothyroidism or by hypothyroidism occur-
ring de novo, followed by gradual recovery (post-
partum thyroiditis, PPT). The incidence of PPT 
ranges from 1.1 to 16.7% in different studies. 
Risk factors for the development of PPT include 
positive TPOAb in the first trimester of preg-
nancy, type 1 diabetes mellitus, a history of 
chronic autoimmune thyroiditis or Graves’ dis-
ease, or a previous episode of PPT during a pre-
ceding pregnancy. Circulating TPOAb are found 
in the majority of women with PPT. FNAC show 
diffuse lymphocytic infiltration.

The classical clinical course is observed in 
about 26% of patients. The first phase, within 
2–3  months after delivery, is characterized by 

mild symptoms of thyrotoxicosis and lasts from 1 
to 6 weeks. Mild hypothyroidism of 2–6 weeks’ 
duration may then occur between 3 and 8 months 
after delivery. Lack of energy, poor memory, dry 
skin, and cold intolerance predominate. 
Postpartum depression is more common in 
women with positive thyroid antibodies irrespec-
tive of their thyroid status. A small, diffuse, firm, 
nontender, usually painless goiter is palpable. 
Transient thyrotoxicosis alone or transient hypo-
thyroidism alone occurs in 38% and 36% of 
patients, respectively. In the long run, persistent 
hypothyroidism develops in 20–30% of patients.

Postpartum thyroiditis is suspected in women 
who have fatigue, palpitation, emotional lability, 
or goiter during the first year after delivery. 
Thyroid hormone and TSH changes are similar to 
those found in silent thyroiditis. High titers of 
TPOAb are found in most patients. Serum Tg is 
elevated. Diffuse or multifocal reduction of thy-
roid echogenicity is found at ultrasound. The dif-
ferential diagnosis with Graves’ hyperthyroidism, 
which may actually appear or relapse in the post-
partum period, is based on the same criteria sug-
gested for silent thyroiditis (Tabella). RAIU 
evaluation using 123I may be ordered, but breast 
feeding should be interrupted for at least 3 days. 
Long-term follow-up of thyroid function is man-
datory in patients with PPT.

Administration of B-adrenergic blocking 
drugs ameliorates symptoms of thyrotoxicosis. In 
patients with marked hypothyroid symptoms, l-
T4 treatment at medium-low dose (50–75  μg/
day) is required, and it should be maintained for 
the first year after parturition. Thereafter an 
attempt to withdraw therapy should be done to 
check whether hypothyroidism is transient or 
permanent.
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Acute Infectious Thyroiditis (Acute 
Suppurative Thyroiditis)

Hiroo Masuoka and Akira Miyauchi

 Introduction

Acute infectious thyroiditis, also known as acute 
suppurative thyroiditis (AST), is a rare inflamma-
tory thyroid disease that is caused by bacterial or 
fungal infection. The thyroid gland is an endocrine 
organ having no external connections and is 
remarkably resistant to bacterial infection due to 
its high iodine content. This generally prevents the 
gland from becoming infected unless there is some 
underlying abnormality. Anatomical abnormalities 
found in patients with acute infectious thyroiditis 
include pyriform sinus fistula, thyroid nodules, 
and cancers. One of the present authors was among 
those who, in 1979, first reported the frequent phe-
nomenon of a congenital internal fistula originat-
ing from the pyriform recess and running to the 
thyroid lobe in AST patients and named this entity 
pyriform sinus fistula [1]. Patients with thyroid 
nodules or cancers who develop infectious thy-
roiditis have also been shown to be susceptible to 
other forms of infection.

 Clinical Manifestations

Most patients with AST caused by infection 
through a pyriform sinus fistula complain of an 
abrupt onset of painful swelling in the thyroid 
region accompanied by fever. The pain increases 
on swelling and is usually accentuated by swal-
lowing. Some adult patients present with a vague 
firm mass in the thyroid region and slight pain 
without the typical features of acute inflamma-
tion, suggestive of an unusual malignant tumor. 
With the progression of inflammation, the overly-
ing skin becomes edematous and erythematous, 
and an abscess develops that may rupture to the 
skin spontaneously (Fig. 1). Infants with a large 
cystic fistula may develop acute respiratory dis-
tress due to tracheal compression following feed-
ing or crying, and this risk increases markedly 
with inflammation. The left side is predominantly 
involved [2], with the left-to-right ratio being 
166:8  in our updated data. In only two patients 
with AST through a pyriform sinus fistula were 
bilateral sides involved.

In most cases, the clinical features are typical 
of AST at the initial episode. In the many cases 
with recurrence of the disease, the inflammation 
tends to be local, probably due to adhesions in the 
perithyroidal space, and shows the features of a 
localized abscess in the region of the thyroid 
lobe. Recurrence of the episodes is quite com-
mon. In a previous series of 43 patients, 29 had 
had a number of previous episodes (up to 12 
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 episodes; mean, 2.8), while 14 patients were 
being seen for their first episode [2]. In our 
updated series of 176 patients with a pyriform 
sinus fistula, the intervals between episodes var-
ied from 1  month to 37  years, and the patients 
were asymptomatic before the onset and during 
the remission of the inflammation.

Age at first episode varies widely, as the dis-
ease can be seen in infants and is common in 
youth but can appear as late as middle age. 
Among our 176 patients, the age at first episode 
ranged from 11 months to 58 years with a mean 
of 10 years and was less than 20 years in 79.1% 
of the patients (Fig. 2).

The onset of AST often follows upper respira-
tory tract infection and occurs frequently in the 

fall and winter. In a few cases, it follows blunt 
trauma to the thyroid region [3].

Patients with AST caused by infection of a 
thyroid nodule also have painful swelling in the 
thyroid region and fever. These patients may have 
noticed a preexisting nodule and may have had 
fine-needle aspiration on the nodule [4].

 Laboratory Findings

Laboratory investigations typically show leuko-
cytosis and a positive C-reactive protein reflect-
ing acute inflammation. Serum levels of thyroid 
hormones, thyrotropin, and thyroglobulin are 
normal in most patients, while some patients with 
severe destruction of thyroid follicles show tran-
sient thyrotoxicosis with elevations of serum thy-
roxine and thyroglobulin [5].

 Pathogenesis and Management

 1. Infection through a pyriform sinus fistula
 (a) Pathogenesis

A congenital fistula, pyriform sinus fis-
tula, is the most common route of infec-
tion in AST.  The fistula originates from 
the apex of the pyriform recess of the 
hypopharynx, penetrates the cricopharyn-
geal muscle, runs anteroinferiorly, and 
ends in or adjacent to the thyroid lobe. 

Fig. 1 A 10-year-old girl with acute suppurative thyroid-
itis showing swelling in the region of the left thyroid lobe. 
The overlying skin is erythematous. The abscess ruptured 
spontaneously to the skin
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Bacteria from the fistula cause inflamma-
tion in the thyroid lobe in cases with a fis-
tula entering the lobe, or they may spread 
along the perithyroidal space around the 
thyroid and invade the thyroid gland 
secondarily.

Recurrence of inflammation is very 
common in patients with a pyriform sinus 
fistula. Successful surgical removal of the 
fistula terminates the recurrence of the 
inflammation. However, this surgical pro-
cedure is not easy and is associated with 
the risk of incomplete resection of the fis-
tula and injury to the recurrent laryngeal 
nerve. In order to overcome these limita-
tions, a method of chemically cauterizing 
the pharyngeal opening of the fistula 
causing the fistula to close secondarily 
was developed by Kim et al. [6]. The suc-
cess rate in closure of the fistula was 85% 
in our series. Spontaneous closure of the 
fistula following inflammation may be 
possible in some patients, especially in 
those with a very fine fistula.

 (b) Embryology
A pyriform sinus fistula arises from the 
hypopharynx and ends in or adjacent to 
the thyroid lobe. We examined resected 
specimens of the thyroid glands and the 
pyriform sinus fistulae from 15 patients 
immunohistochemically with rabbit anti-
sera to human calcitonin and thyroglobu-
lin. The fistulae were lined by squamous, 
columnar, or ciliated epithelium and 
sometimes formed branches in the thyroid 
lobe. Near the branches there were solid 
cell nests, which are regarded as remnants 
related to the ultimobranchial body. 
Mucous glands, follicular structures, and 
thymic tissue were found in the fistula. 
The follicular structures stained positive 
for thyroglobulin. Immunostaining for 
calcitonin revealed aggregates of many C 
cells in the thyroid near the fistula. A few 
calcitonin-positive cells were also found 
in the fistulae. These findings, along with 
the anatomical relation of the fistulae to 
major structures of the neck, strongly sug-

gest that the fistulae are remnants related 
to the ultimobranchial body and that fistu-
lae trace the migration route of the ulti-
mobranchial body to the thyroid gland to 
become C cells [7].

 (c) Imaging studies
Thyroid scintigraphy with radioactive 
iodine or sodium pertechnetate 99mTc dem-
onstrates a decreased uptake in the affected 
lobe. Plain roentgenograms of the neck 
show the trachea shifted laterally by soft 
tissue swelling, which occasionally con-
tain a gas shadow. Ultrasonography (US) 
and CT scan can reveal the inflammatory 
status more accurately than any other 
modalities. In the acute inflammatory 
stage, US shows a hypoechoic lesion 
spreading in and around the affected thy-
roid lobe, destruction of the lobe, and 
abscess formation in the neck. CT scans 
demonstrate similar features with clearer 
anatomical involvement and edema in the 
ipsilateral hypopharynx (Fig.  3). These 
findings allow easy  diagnosis of 

Fig. 3 A CT scan of a patient with acute suppurative thy-
roiditis caused by bacterial infection via a pyriform sinus 
fistula, showing massive swelling in and around the left 
thyroid lobe, which was destroyed by the inflammation
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AST. However, in the early inflammatory 
stage, US may show an unclear hypoechoic 
area in the affected lobe, and CT scans 
show a nonspecific low-density area 
(Fig.4). These findings often lead to erro-
neous diagnoses of subacute thyroiditis. In 
the convalescent stage of the inflamma-
tion, US and CT scans often show atrophy 
and an unclear hypoechoic or low-density 
area in and around the affected lobe. In 
detecting pyriform sinus fistulae, barium 
swallow studies are more sensitive than 
US or CT scans (Fig. 5). A careful search 
of the hypopharynx discloses an internal 
fistula originating from the apex of the 
pyriform recess on the affected side. In 
some cases, there is no detectable fistula 
during the acute inflammatory stage, but a 
fistula is detected upon follow-up during 
convalescence [8]. A CT scan under the 
trumpet maneuver can also reveal a pyri-
form sinus fistula. For this maneuver, 
patients are instructed to hold and blow 
into the outer part of an empty syringe as 
if they are blowing up a balloon or playing 
a trumpet so that air can be used as a con-
trast agent. The CT scan taken under the 
trumpet maneuver clarifies the anatomical 
path and the relationship of the fistula to 
the laryngeal organs and the thyroid, 
which cannot be shown by barium swal-
low studies [9].

 (d) Differentiation from subacute thyroiditis
The most important consideration in the 
initial evaluation is differentiating AST 
from subacute thyroiditis [10]. Subacute 
thyroiditis is a relatively common entity 
associated with anterior neck pain and an 
increase in inflammatory markers such as 
white blood count (WBC) and C-reactive 
protein (CRP). During the active inflam-
matory stage, subacute thyroiditis often 
shows thyrotoxicosis. As AST at its early 
onset may mimic subacute thyroiditis, 
some patients with AST have been 
referred to our hospital after being errone-
ously diagnosed with subacute thyroiditis 
and prescribed prednisolone, which 
aggravated the inflammation [5]. The dif-
ferential diagnosis at the early inflamma-
tory stage can be difficult, especially if it 
is the first episode and the inflammation is 
mainly located within the thyroid lobe. 
The most straightforward methods to dif-
ferentiate subacute  thyroiditis and AST 

Fig. 4 A CT scan at an early stage of acute inflammation 
showing mild swelling of the left lobe with a low-density 
area, mimicking subacute thyroiditis

Fig. 5 A barium swallow study revealing a left pyriform 
sinus fistula. Note that this fistula is much thicker than the 
average fistula
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are careful US examination and fine-nee-
dle aspiration biopsy (FNA) targeting any 
mass and/or fluid collection. US can dem-
onstrate the collection of small amounts 
of fluid around the affected thyroid lobe, a 
small heterogeneous low-density area in 
the thyroid gland, and can determine 
whether hypoechoic lesions are unifocal, 
which is a characteristic finding in patients 
with early-stage AST (Fig.  6). On the 
other hand, in patients with subacute thy-
roiditis, ultrasound examinations usually 
show multifocal hypoechoic areas and no 
fluid collection around the thyroid lobe. 
FNA usually shows evidence of multinu-
cleated giant-cell granulomas and mono-
nuclear cell infiltration in subacute 
thyroiditis, while it shows pus formation 
with many leukocytes in AST patients. 
The age of the patient is also important. 
We should remember that subacute thy-
roiditis is extremely rare in patients under 
20 years of age [11], while the vast major-
ity of AST cases due to infection through 
a pyriform sinus fistula occur in this age 
group.

 (e) Management
• Initial treatment

 If an abscess formation is detected by 
imaging studies such as CT scan and US 
in patients with AST, adequate drainage 
should be performed, which can be done 

through a small incision in the skin. 
Intravenous empiric broad-spectrum anti-
biotics should be given. If a specific 
organism is identified by culture, antibi-
otic selection can be more focused. The 
acute inflammation and abscess formation 
will readily subside if these initial treat-
ments are performed. Only patients with 
mild symptoms and a small abscess for-
mation are likely to be candidates for con-
servative treatment with antibiotics, with 
or without fine-needle aspiration. After 
the inflammation has subsided and while 
waiting for definitive treatment, adminis-
tration of antibiotics is usually not neces-
sary [12].

• Definitive treatment
 – Fistulectomy

Because recurrence of the inflammation is 
very common, a definitive treatment should be 
performed in the convalescent stage, usually 
several months after the initial treatment. 
Until the invention of chemocauterization 
treatment described below, we used to per-
form fistulectomy. In our series of patients 
with AST through a pyriform sinus fistula, we 
confirmed that patients in whom the fistula 
was completely removed had no recurrence 
after surgery [2]. However, a fistulectomy for 
a pyriform sinus fistula is not an easy opera-
tion, because the pyriform sinus fistula is usu-
ally covered with fibrous or granulation tissue, 
and the recurrent laryngeal nerve usually runs 
close to the fistula. Thus there are risks of 
incomplete resection of the fistula and injury 
to the recurrent laryngeal nerve on this 
operation.

The surgical procedure is described as fol-
lows: a collar skin incision is made on the 
upper neck slightly cranial to the cricoid carti-
lage. The superior thyroid vessels are ligated 
and cut, taking care not to injure the external 
branch of the superior laryngeal nerve. Next, 
the upper pole of the thyroid lobe is retracted 
anterolaterally to expose the surfaces of the 
cricothyroid and the cricopharyngeal muscles, 
and the fistula is identified at the lower border 
of the thyroid cartilage (Fig. 7). The inflamma-

Fig. 6 Ultrasonogram showing swelling of the left thy-
roid lobe with a hypoechoic area extending dorso-crani-
ally from the posterior surface of the lobe

Acute Infectious Thyroiditis (Acute Suppurative Thyroiditis)



404

tory changes are usually less severe at this 
point. In this procedure, we remove the fistula 
(and part of the thyroid lobe in the cases where 
it is attached to the lobe) and refrain from 
attempting to remove all the fibrous tissue 
around the thyroid to avoid injury to the recur-
rent laryngeal nerve. In some cases with severe 
adhesion between the upper pole of the thyroid 
and cricopharyngeal muscle, another surgical 
approach (we call it the Nonomura method) 
can be adopted [13]. After incising the inferior 
pharyngeal constrictor muscle vertically over 
the posterior edge of the thyroid cartilage ala, 
the thyroid cartilage is retracted anteriorly to 
reveal the pyriform recess and the pyriform 
sinus fistula. Special care should be taken not 
to incise the pyriform recess. If it is opened, a 
pharyngeal fistula might occur as a difficult 
complication. This approach enables us to 
identify the fistula, in cases where we could 
not find the fistula outside the larynx because 
of severe adhesion and fibrosis from previous 
inflammations (Figs. 8 and 9).
 – Chemocauterization

Kim et al. invented a chemocauterization tech-
nique as an alternative to surgical fistulectomy 
[6]. In this procedure, the pharyngeal orifice of 
a pyriform sinus fistula is chemically cauter-
ized under direct laryngoscope, and the orifice 
closes secondarily, eliminating the infectious 
spread from the pharynx to the thyroid. The 

actual procedure of the chemocauterization is 
as follows: under general anesthesia, the 
patient’s neck is flexed dorsally, and the head is 
placed in a suspended position. Under suspen-
sion laryngoscopy, the opening of the pyriform 
sinus fistula is identified at the bottom of the 
pyriform recess. A small cotton ball measuring 
about 4 mm in diameter soaked in 30% trichlo-
roacetic acid is placed in the opening for 1 min. 
The color of the pharyngeal mucosa changes 
white following this procedure. The procedure 
is repeated three times (Fig. 10). The pharynx 
is washed with saline after the procedure. The 
patients are given intravenous infusion of anti-
biotics for 3 days, and oral feeding is started on 
the fourth postoperative day. The cauterized 

Head =>

Upper Pole of Thyroid

Cricothyroid Joint

Parathyroid

Fig. 7 An intraoperative image showing a left pyriform 
sinus fistula, which penetrated the cricothyroid muscle 
just medial to the cricothyroid joint and entered the left 
thyroid lobe. The superior thyroid vessels were ligated 
and divided, and the upper pole of the left lobe was 
retracted anteriorly and caudally. The head is to the right

Pyriform sinus fistula
Left recurrent laryngeal nerve Pyriform recess

Thyroid cartilage

Thyroid gland

Fig. 8 The scheme of the Nonomura procedure. The infe-
rior pharyngeal constrictor muscle was divided along the 
lateral edge of the thyroid cartilage

Crico-Thyroid Joint 

Thyroid Cartilage 

Pyriform sinus fistula 

Fig. 9 A pyriform sinus fistula was found by the 
Nonomura procedure. The inferior pharyngeal constrictor 
muscle was divided along the lateral edge of the thyroid 
cartilage, which was retracted with a fine hook. Note that 
the pyriform recess was not incised. The head is to the 
right
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wound is allowed to heal secondarily (Fig. 11). 
The procedure is usually scheduled during the 
remission of the inflammation. However, this 
can be done during a mild inflammatory 
period, although incision and drainage for the 
abscess might be necessary. We performed a 
barium swallow study and CT scan taken under 
the trumpet maneuver 3 and 12 months after 
the treatment in order to confirm the closure of 
the fistula. In our experience, 85% of the 
patients have achieved closure of the fistula, 

and none of them have experienced recurrent 
inflammation.

The merits of this nonsurgical obliteration 
technique of the pyriform sinus fistula 
include the absence of a surgical scar, lack of 
serious complications such as vocal cord 
paralysis, and less pain [6, 14]. Moreover, 
this procedure can be performed during an 
inflammatory period, although simultaneous 
incision and drainage is necessary, while fis-
tulectomy can be performed only during 
remission. However, this method has limita-
tions, as the endoscopic procedure is difficult 
or impossible to perform in patients whose 
mouths do not open widely or whose necks 
do not flex dorsally enough to insert a laryn-
goscope. This procedure also carries a risk of 
tooth injuries. Some patients might require 
multiple treatments to achieve obliteration of 
the fistula. Retention cysts may possibly 
develop during long-term follow-up, since 
the thyroidal part of the fistula remains.

 2. Infection of a thyroid nodule or cancer
 (a) Pathogenesis

Infection of a thyroid nodule or cancer is 
one of the possible causes of AST 
(Fig. 12). The infection may be caused by 
repeated aspiration of the nodule [4]. 
Other mechanisms include a direct spread 
of infective organisms and hematogenous 
or lymphatic spread from distant infected 

Fig. 10 The chemocauterization procedure. Under a sus-
pension laryngoscope, the orifice of the pyriform sinus 
fistula was identified and cauterized chemically. The mon-
itor shows a change in the color of the pharyngeal mucosa

Fig. 11 Laryngoscope showing the white color change in 
the pharyngeal mucosa around the orifice of the pyriform 
sinus fistula

Fig. 12 Ultrasonogram of the infected thyroid nodule. 
The nodule has a thick fibrous capsule surrounding unho-
mogeneous hypoechoic content

Acute Infectious Thyroiditis (Acute Suppurative Thyroiditis)
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foci [10]. Infection of a thyroid nodule or 
cancer often occurs in elderly patients 
who are susceptible to infection due to 
diabetes mellitus, use of glucocorticoid or 
immunosuppressive agents or HIV infec-
tion, and so on.

 (b) Management
The treatment for AST through an infected 
thyroid nodule is usually antibiotics and sur-
gical drainage. In case of mild inflammation, 
symptoms may subside only by the adminis-
tration of antibiotics and aspiration of pus. 
However, in many cases, these therapies fail 
to ameliorate the inflammation, probably 
because of degenerated tissues and fibrosis in 
the nodules. Such patients may require thy-
roidectomy for recovery [4].

 3. Infection through the esophagus due to a for-
eign body or esophageal cancer
 (a) Pathogenesis

Penetration of a foreign body such as a fish 
bone through the cervical esophagus, infec-
tion of the cervical esophagus due to a for-
eign body, or perforation of esophageal 
cancer may also cause AST (Fig. 13). Such 
patients complain of pain and tenderness in 
the neck and fever. US examination and/or 
CT scan may detect swelling of the esopha-
gus and an obscure border between the thy-
roid gland and the esophagus due to the 
inflammation and foreign body.
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Postpartum Thyroiditis

Juan C. Galofré and L. D. Premawardhana

 Introduction

Postpartum thyroiditis (PPT) is defined as the 
occurrence of a sporadic destructive thyroiditis in 
the first year postpartum, in women with no overt 
thyroid disease before pregnancy [1]. Clearly, 
this definition does not take into account those 
women who have had thyroid dysfunction pre-
dating their pregnancy, as we now know that they 
too can develop PPT (see below). Several types 
of thyroid dysfunction may occur as a conse-
quence of PPT. The classic presentation is of a 
triphasic illness with a transient thyrotoxic phase 
followed by a hypothyroid phase and then recov-
ery. However, incomplete forms are not unusual, 
and many women present solely with either a 
hyperthyroid or a hypothyroid phase.

The fact that a vast majority of women who 
develop PPT have antithyroid peroxidase anti-
body (TPOAb) in their blood prior to pregnancy 

is a marker of the autoimmune nature of this 
condition.

This chapter reviews the epidemiology, clini-
cal manifestations, diagnosis and management of 
this often overlooked condition.

 Epidemiology

 Prevalence

The reported prevalence of PPT from systematic 
reviews of prospective studies of women during 
the first year after delivery is around 4–8% [2–4]. 
However there is a wide range from 1 to 20% in 
different patient groups (Table 1). The variability 
in the reported prevalence depends on several 
factors such as patient selection, geographic and 
ethnic differences, variable diagnostic criteria, 
frequency and timing of blood samples and con-
comitant illnesses.

 The Role of Autoimmunity

As expected, reflecting its autoimmune origin, 
the incidence of PPT increases dramatically in 
seropositive women (those with elevated anti-
body titres). Although the presence of TPOAb 
is usual, anti-thyroglobulin antibodies (TgAb) 
may occur alone in less than 5% of cases. 
However, PPT has been reported in a small 
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percentage of women without evidence of 
autoimmune thyroid disease. Experimental 
evidence shows that seropositive females have 
a six times higher risk of developing PPT; in 
other words, around 40–60% of women with 
positive TPOAb and normal thyroid function 
during pregnancy will develop PPT compared 
with 5–8% of women without TPOAb [5]. In 
this context the prevalence of PPT in patients 
with Graves’ disease (GD), which is an auto-
immune condition, is comparable to that in the 
population with positive TPOAb [6], and the 
differential diagnosis between these two condi-
tions could be challenging (see below). It has 
been described that PPT can develop in patients 
who had Hashimoto’s thyroiditis prior to preg-
nancy and who were being treated with levo-
thyroxine [7]. Interestingly, in line with this 
finding, it has also been described that PPT is 
more common in those women with a prior his-
tory of hypothyroidism, independently of the 
autoimmune status [2].

The history of previous PPT is a clear risk fac-
tor for relapse. A past history of PPT indicates a 
70% chance of developing PPT in a subsequent 
pregnancy. An increased incidence has also been 
reported in type 1 diabetes (DM1) patients: 
around 20–25% of DM1 women will develop an 
episode of PPT after delivery [3]. Similarly it has 
also been described in patients with other auto-
immune diseases such as rheumatoid arthritis, 
lupus erythematous and scleroderma. On the con-
trary, seronegative women (those with negative 
autoantibodies) who do not develop PPT after the 
first delivery rarely acquire the condition after 
successive pregnancies.

 The Role of the Environment

In addition to genetic influences, the incidence of 
PPT might be influenced by environmental fac-
tors such as iodine intake and smoking [1]. PPT 
is more prevalent among smokers. Iodine con-
sumption may have a role in the appearance of 
PPT, but to date there have been no reports as to 
whether iodine supplements during pregnancy 
increase its risk.

 Screening

 Universal Screening: Remains 
Controversial

The need for universal screening for PPT is con-
troversial. Although the benefits of preventing 
PPT are clear, no firm single strategy is currently 
recommended. The significant morbidity that 
PPT produces, the fact that nearly three-fourths 
of women who have PPT will have an episode in 
a future pregnancy, the high prevalence of long-
term thyroid dysfunction following PPT and the 
availability of effective treatment should make 
screening for PPT useful. But there have been no 
randomized controlled trials examining the util-
ity of screening [8].

 The Pros and Cons
In order to analyse the need for screening for 
PPT, several aspects of screening merit consider-
ation. First, whether screening for PPT is needed; 
second, if required, the aim of screening should 
be defined; third, it would be crucial to define the 
best tool and time for screening; and lastly the 
logistics of screening should be clarified.

The aim of screening for PPT is twofold. On 
the one hand, an adequate screening test should 
detect women at risk of developing PPT, giving 
healthcare workers a window of opportunity to 
potentially prevent the onset of disease. On the 
other hand, a good screening programme also 
allows healthcare personnel to provide early 
treatment as soon as the disease becomes clini-
cally manifest, which undoubtedly is also good 

Table 1 The incidence of postpartum thyroiditis (PPT) in 
different groups of women

Condition Incidence (%)
General population 5–8
Seropositive women (positive 
TPOAb)

50

Women with previous PPT 40–70
Type 1 diabetes mellitus 20–25
Previous Graves’ disease 50–70

(TPOAb)-antithyroid peroxidase autoantibodies
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clinical practice. To date, there are no clear 
 measures to predict or prevent the appearance of 
PPT in predisposed women, but early treatment 
is fairly straightforward and prevents potential 
complications.

 Case Finding vs. Screening
Although the ATA guideline for the management 
of thyroid disease during pregnancy and postpar-
tum [9] is presently (2016) under revision, the 
2012 Endocrine Society Guidelines on the same 
topic stated that there is insufficient data to rec-
ommend screening of all women for PPT [1]. In 
a broader sense the recommendations favour a 
policy of selective case finding in women who 
are at risk of developing PPT. Those individuals 
belong to the following six groups: (1) DM1 
patients, (2) those with a previous episode of 
PPT, (3) all TPOAb-positive women, (4) women 
with a past history of miscarriage, (5) women 
with postpartum depression and (6) women with 
a family history of autoimmune diseases. In all 
these circumstances, it is advisable to follow a 
screening programme of thyroid function 3 
months after delivery.

However these suggestions are sometimes 
contradictory, cause confusion and are almost 
impossible to follow, because they show a lack of 
consistency. For instance, in order to follow a 
case finding strategy in all TPOAb-positive 
women, it would be necessary to have prior 
knowledge of their antibody status. Thus, in the-
ory the recommendation entails the previous 
screening for the presence of TPOAb in all poten-
tial mothers, and this is what the Guidelines rec-
ommend against.

It has been demonstrated that a case-finding 
approach focused only on high-risk patients will 
miss around a third of PPT cases. Taking all this 
information together, it is not surprising that 
many experts currently recommend a screening 
programme for PPT [9, 10, 11]. Similarly the 
current authors also think that there are important 
reasons to do so [12]. The scenario is similar to 
screening for thyroid disease during pregnancy. 
Although many scientific societies argue against 
universal screening, the Spanish Endocrine 
Society and others have a clear position support-

ing it [11]. For instance, the American College of 
Obstetricians and Gynecologists recommends 
TSH testing (and thyroid hormone testing if indi-
cated), if clinical features suggest postpartum 
thyroid disease.

Some authors may argue that a screening pro-
gramme is not cost-effective. Nevertheless, there 
is positive evidence that screening for PPT is cost 
beneficial [13].

 The Suitable Screening Test
The presence of TPOAb is a risk factor for PPT, 
and the presence of TPOAb before or during 
pregnancy identifies women at risk. Furthermore, 
there is evidence that the TPOAb titre at 16 weeks 
of gestation is related to the severity of PPT [2]. 
Specifically about 90% of patients with PPT have 
positive TPOAb. However, only around 40–50% 
of patients with positive TPOAb will develop 
PPT.  By contrast, less than 1% of TPOAb-
negative patients have PPT [5]. Thus, TPOAb 
measured in the first trimester is the most sensi-
tive screening tool to detect individuals at risk 
that we currently have.

It is well established that the serum TPOAb 
levels decrease during pregnancy and recover in 
the postpartum period peaking around the third to 
fourth month postpartum as the release from 
pregnancy induced immune modulation leads to 
a rebound of the autoimmune process. Certainly, 
seronegative euthyroid women would not need 
further follow-up. For this reason, despite the fact 
that current guidelines do not recommended a 
universal screening strategy, some experts advo-
cate the routine measurement of TPOAb in all 
childbearing age women.

 The Postpartum Follow-Up
Seropositive women (or those who meet any known 
risk factor criteria) need careful follow-up. As men-
tioned, the presence of TPOAb has a positive pre-
dictive value (about 50%) for development of 
thyroiditis in the postpartum period. Normally the 
onset of PPT occurs 2–3 months in the postpartum 
period (Fig. 1). In addition to clinical assessment, it 
is recommended that biochemical screening of thy-
roid function is undertaken in all TPOAb-positive 
women 2–3 months after delivery. According to the 
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2011 ATA  guidelines, all TPOAb-positive women 
(or those who have DM1) should have a serum 
TSH performed at 3 and 6 months postpartum. The 
determination of TSH in the postpartum period will 
identify women that have developed the disease. If 
the TSH level is abnormal, it should be repeated 
along with a free T4 level and T3 (if TSH is low), 
within 1–2 weeks. In addition, increased thyroid 

hypoechogenicity in the ultrasound (if done) is also 
predictive of PPT [14].

In the long-term follow-up, it is worth consid-
ering that women with a history of PPT have a 
markedly increased risk of developing permanent 
hypothyroidism in the 5 to 10 years after PPT, 
and therefore an annual TSH assessment is rec-
ommended in these women.
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Fig. 1 The clinical course of postpartum thyroiditis. 
Typically, postpartum thyroiditis (PPT) starts about 
3 months after delivery with a thyrotoxic period (upper 
panel). This is the consequence of a massive and continu-
ous release of intra-thyroidally stored thyroxine (T4) and 
thyroglobulin (Tg) as a result of destructive thyroiditis. 
This period usually lasts several weeks and leads to a 
sudden increase of serum T4 and Tg level. As a conse-
quence of the negative feedback mechanism that oper-
ates, the elevated T4 inhibits pituitary thyrotropin (TSH) 
secretion. After several weeks circulating T4 levels are 
cleared from the blood consistent with the long half-life 
of T4. In this period, decreasing T4 levels begin to stimu-
late the release of TSH from the pituitary. However this 
TSH increase is not immediately translated into an 
increase in circulating T4 levels because the thyroid 
gland is still recovering and is unable of synthetize T4. 
This situation leads to the second phase (hypothyroidism) 
that usually lasts several months. Eventually the gland is 
fully restored, and the situation turns normal in a few 
months thereafter. In a parallel way, the circulating anti-

peroxidase antibodies (TPOAb) levels that normally have 
been declining during pregnancy start to rise following 
delivery and plateaus after several months. All three 
phases could be identified by nuclear medicine tech-
niques (middle panel). During the T4 and Tg release 
period (A), the gland is unable to trap radionuclides, and 
the scintigraphy image is blank. This corresponds to the 
thyrotoxic phase. Subsequently, the gland gradually 
recovers during the second period (B) that corresponds to 
the hypothyroid phase. At the end of this period the scin-
tigraphy may show an intense uptake that could lead to 
confusion in the interpretation of the result (yellow line) 
because the blood hormones levels are almost normal. 
Finally (C) the gland completely recovers, and all circu-
lating hormones (T4 and TSH) and Tg levels are back to 
the normal ranges. The scintigraphy images display a 
normal uptake. Therapy (lower panel) should be tailored 
to suit each phase of the illness. The thyrotoxic phase is 
treated with β-blockers (thionamides are not useful), 
while the hypothyroid phase responds to levothyroxine 
replacement therapy
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 Clinical Manifestations

Destructive forms of thyroiditis may demonstrate 
a triphasic clinical course that reflects the periph-
eral action of thyroid hormones on different body 
tissues at different times in the course of the ill-
ness. Approximately one third of women with 
PPT have the classic thyrotoxicosis-hypothyroid-
ism-recovery phases, whereas the rest have 
incomplete forms (Fig. 1). In the classic form, the 
thyrotoxic period typically begins 1–4 months 
after delivery and lasts around 2–10 weeks. The 
hypothyroid phase that follows lasts from about 2 
weeks to 6 months, followed by recovery. The 
most frequent incomplete form that occurs in 
approximately 40–50% of cases is an isolated 
transient hypothyroid episode. The remaining 
20–40% cases have transient hyperthyroidism 
only (Table 2) [14].

 Signs and Symptoms

The clinical manifestations of the hyperthyroid 
phase (both in the classic and isolated forms) are 
usually mild (palpitations, irritability, fatigue, 
weight loss, nervousness, lack of energy, heat 
intolerance, anxiety and tremor). Due to its minor 
symptoms, the disease may go frequently unno-
ticed, and it is necessary to have a high level of 
awareness to detect this phase. On the other hand, 
hypothyroidism normally produces more signifi-
cant symptoms. Women usually complain of cold 
intolerance, lack of energy, sluggishness, poor 
memory, dry skin, tiredness, constipation and 

probably depression. On physical examination it 
is frequent to find a mildly enlarged, diffuse, non-
tender goitre. Lactating women may notice that 
postpartum hypothyroidism may decrease milk 
volume.

 The Sequelae
In around 20–50% of women, hypothyroidism is 
permanent. According to a single prospective 
study, this association increases with time, and 
the risk continues beyond 10 years after the PPT 
episode [4]. Unfortunately there are no clear pre-
dictors that indicate which patients are at risk of 
progressing to permanent hypothyroidism. Some 
data suggest that this evolution is more common 
when higher initial TSH levels or TPOAb titres 
are present, as well as in older mothers or when 
the baby is female.

 Diagnosis and Differential 
Diagnosis

 Thyrotoxic Phase of Postpartum 
Thyroiditis

The thyrotoxic phase of PPT occurs early and 
needs to be differentiated from postpartum 
GD.  This is important as the management of 
postpartum GD differs from PPT. From an epide-
miological point of view, PPT is 20 times more 
common than postpartum GD. It is estimated that 
in Denmark, Japan and the USA, 40–45% of 
women who develop GD do so in the postpartum 
period [15]. There are several features, which 

Table 2 Clinical presentation of postpartum thyroiditis

Presentation Mean onset (month postpartum) Duration (months) Prevalence (%)
Transient
Classic (hyperthyroidism and 
hypothyroidism)

1–4 2–8 25–35

Isolated hypothyroidism 3–6 1–6 40–50
Isolated thyrotoxicosis 1–3 2–4 20–40
Asymptomatic (hypoechogenicity by US) 1–6 40–80
Permanent
Hypothyroidism >6 Permanent 25–50
Abnormal US >6 Permanent 50–75

US ultrasound
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may be useful in differentiating between thyro-
toxic PPT and postpartum GD (Table 3).

 The Onset of Symptoms and Clinical 
Features
Most studies of PPT report the onset of thyro-
toxic symptoms at a median time of 12–13 weeks 
postpartum [16, 17]. This contrasts with the late 
onset of postpartum GD, which usually occurs 
between 6 and 12 months. Although the timing of 
the onset of symptoms may help in differentiat-
ing between PPT and postpartum GD, there may 

be an overlap, as 22% of postpartum GD occurred 
earlier in one study [16].

PPT symptoms are mild (with occasional 
reports of severe disease), short lasting and self-
limiting. There is no single symptom or symptom 
complex that can herald the onset of thyroid dys-
function, as most postpartum women are known 
to develop significant but non-specific symptoms 
whether they have PPT or not. Symptoms may be 
more severe in TPOAb-positive women who 
develop PPT, compared to TPOAb-positive 
women who do not develop PPT and TPOAb-
negative postpartum women [18]. The existence 
of extrathyroidal manifestations of GD such as 
orbitopathy, and a smooth symmetrical goitre 
with a bruit heard over it, would favour the diag-
nosis of postpartum GD.

 Free T3 and T4 Concentrations
Thyrotoxic PPT results in T4 predominance in 
the blood, compared to postpartum GD where T3 
predominates [19]. This T4 predominance 
reflects the release of stored intra-thyroidal hor-
mones following the “destructive thyroiditis” of 
PPT (T4 is stored in excess of T3 within the 
gland). An elevated Free T4/T3 ratio in the blood 
has been used in the past to differentiate, but clin-
ically this ratio is not accurate or very useful.

 Thyrotropin Receptor Antibody
The sensitivity and specificity of thyrotropin 
receptor antibody (TRAb) in diagnosing GD is 
very high and is estimated to be 97–99% using 
second- and third-generation assays [20]. Most 
studies using TRAb report successful differentia-
tion of postpartum GD (TRAb positive) from 
thyrotoxic PPT (TRAb negative) [16]. The previ-
ously seen overlap between the two conditions 
with second-generation assays has been elimi-
nated with highly sensitive third-generation 
assays. TRAb testing is very useful during the 
overlap period of 3–6 months postpartum where 
other tests may be confusing [16].

 Ultrasound Scans and Thyroid  
Blood Flow
Measuring thyroid blood flow (TBF) using ultra-
sound scanning techniques may also be used to 

Table 3 A comparison of thyrotoxic PPT and postpartum 
Graves’ disease

Condition/feature Postpartum GD
Thyrotoxic 
PPT

Prevalence in 
thyrotoxic subjects 
(%)

0.2 4

Presentation
Months after 
delivery

4–12 2–4

Onset of symptoms Late Early
Severity of 
symptoms

Often severe Usually mild

Clinical signs
Goitre (%) 90 0–40

Smooth, 
symmetrical 
goitre

Small 
smooth 
goitre

Neck thrill and bruit May be 
present

Absent

Ophthalmopathy 
(%)

10–50 Absent

Pretibial 
myxoedema and/or 
acropachy (%)

5–10 Absent

Laboratory
T4/T3 ratio T3 

predominant
T4 
predominant

TPOAb (%) 75 80
TRAb Positive Negative
Ultrasound TBF High Low
Scintigraphy uptakea High Low

In clinical practice, the most useful distinguishing fea-
tures are clinical signs, the presence of TRAb and 
increased TBF in Graves’ disease
PPT postpartum thyroiditis, GD Graves’ disease, TPOAb 
antiperoxidase autoantibodies, TRAb thyrotropin receptor 
antibody, TBF thyroid blood flow
aScintigraphy with radioactive iodine is contraindicated 
during breastfeeding
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differentiate between thyrotoxic PPT and GD [21]. 
TBF is high in GD reflecting a vascular gland, 
compared to PPT, where TBF is low. However, 
this investigation is not readily available in all cen-
tres rapidly enough for diagnostic purposes. Also, 
TBF may be unhelpful in differentiating PPT from 
postpartum GD, during the overlap period between 
3 and 6 months postpartum.

 Take Home Message
In practice, the most useful factors in differentiat-
ing between thyrotoxic PPT and postpartum GD 
are the timing of the onset and severity of clinical 
features, TRAb positive status and increased TBF 
of GD.

Although rarely necessary, scintigraphy with 
radionuclides can help in the differential diagno-
sis as uptake is near 0% in PPT, whereas it is very 
high in GD. However, it is necessary to stress that 
radioiodine uptake scans are contraindicated dur-
ing lactation [16].

 Hypothyroid Phase of Postpartum 
Thyroiditis

As mentioned before the hypothyroid phase of 
PPT may occur alone or as part of a triphasic 
PPT. It occurs late in the first postpartum year—a 
median time to onset of about 20 weeks or later—
and this phase is also self-limiting in the majority 
of cases. Women who develop PPT are generally 
thyroid antibody positive (TPOAb usually, but 
TgAb in some), and differentiation from 
Hashimoto’s thyroiditis is therefore not easy. The 
therapeutic test of thyroxine withdrawal at the 
end of the first postpartum year may however be 
useful. Those with Hashimoto’s thyroiditis will 
continue to require thyroxine upon withdrawal 
(as evidenced by a return of symptoms and ele-
vated TSH levels), but the majority of those with 
hypothyroid PPT will not: they will remain 
symptom free with TSH levels in the reference 
range. However, it is prudent to remember that a 
significant minority may require long-term thy-
roxine therapy when withdrawal is attempted at 
the end of the first postpartum year, said to be 
between 4 and 54% in various studies [14].

 Postpartum in Hypothyroid Women 
on Thyroxine Replacement Therapy

Two previous studies have examined the inci-
dence and pattern of postpartum thyroid dysfunc-
tion in women previously diagnosed to have 
hypothyroidism and taking thyroxine replace-
ment therapy [22]. Both reported fluctuations in 
thyroid function suggestive of PPT in around 
68% of subjects studied (n = 97 and 31). It is to 
be noted that this is a significantly higher inci-
dence of PPT, compared to those without previ-
ous thyroid disease at the onset of pregnancy. In 
the more recent study, a third of women each 
developed hyperthyroidism or hypothyroidism 
alone or had a triphasic pattern [22].

 Association with Depression

The prevalence of depression is about 10% in the 
postpartum period. Data are unclear whether 
there is a link between depression and PPT or 
TPOAb status. The rationale behind a possible 
association between depression and PPT is that 
hypothyroidism is associated with depression 
outside the postpartum period. The association of 
TPOAb and depression is less evident. However, 
the link between the two is not entirely consis-
tent. This association described in several reports 
suggests that an association may exist in a subset 
of women that, to date, has not been clarified. In 
any case, as hypothyroidism is a reversible cause 
of depression, women with postpartum depres-
sion should be screened for thyroid dysfunction.

 Management of Postpartum 
Thyroiditis

The management of PPT is largely empirical and 
directed towards symptom control. There is no 
firm evidence base from clinical trials. There is 
very little evidence for intervention that alters the 
course or duration of the disease following the 
onset of symptoms either (see selenium below).

The only intervention that may be required 
during the thyrotoxic phase of PPT is a beta-
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blocker. The minority of women with trouble-
some adrenergic symptoms of thyrotoxicosis 
(such as palpitations) may benefit from a small 
dose of propranolol or bisoprolol (or another 
beta-blocker) for a few weeks. This can be safely 
withdrawn when the thyrotoxic phase subsides 
spontaneously. Thionamides are not useful and 
should not be given, as the thyrotoxic phase is the 
result of a destructive thyroiditis, as mentioned 
before, and not caused by increased synthesis of 
thyroid hormones.

However, those with the hypothyroid phase 
often require thyroxine replacement because of 
significant symptoms. Treatment should also be 
considered for women who are contemplating a 
further pregnancy soon after the index pregnancy 
or those who are breastfeeding. Treatment can be 
safely started with a full dose of thyroxine, e.g. 
100–125 μg/day, as these are young and otherwise 
healthy women. It is customary to stop thyroxine 
at the end of the first postpartum year, as the major-
ity of those women with hypothyroid PPT will not 
require thyroxine thereafter. Clearly this should 
not be done if the woman is breastfeeding, is plan-
ning another pregnancy or is actually pregnant.

 Prevention of Postpartum 
Thyroiditis

 Factors Affecting the Incidence 
of Postpartum Thyroiditis

 Selenium
There has been a study from Italy of the effects of 
selenium (Se) supplementation in pregnancy, 
evaluating the incidence and type of thyroid dys-
function in the postpartum period. One hundred 
and fifty-one TPOAb-positive women and a 
cohort of TPOAb-negative women were recruited 
at 10 weeks of pregnancy. They had Se levels at 
the lower end of the reference range for the popu-
lation. Se was given to 77 of the 151 TPOAb-
positive pregnant women. TPOAb fell by a 
significantly greater amount in Se-treated women 
compared to those without treatment (62.4% vs. 
43.9%; p  <  0.01) and TPOAb-negative control 
women. The mean levels and rebound postpar-

tum peak TPOAb titres were also significantly 
lower in the Se-treated group. PPT developed in 
28.6% of Se-treated women, and 11.7% had per-
manent hypothyroidism at the end of the study, 
compared to 48.6% and 20.3%, respectively, in 
the untreated group. This is the only study to have 
demonstrated the benefits of Se supplementation 
in pregnant women with low normal selenium 
levels, in relation to thyroid autoimmunity during 
and after pregnancy and the incidence of PPT and 
permanent hypothyroidism [23]. Further studies 
are needed to corroborate this evidence.

 Radioiodine for Graves’ Disease 
and Lower Incidence of Postpartum 
Thyroiditis
There are reports of a lower incidence of PPT in 
subjects who had been treated with radioiodine 
(RAI) for GD compared to those who had a sub-
total thyroidectomy or antithyroid drugs (ATD) 
before pregnancy [24]. A retrospective review of 
118 women who had RAI before pregnancy 
found a reduced incidence of PPT (2.1%), com-
pared to the group who had a subtotal thyroidec-
tomy (23.6%) or ATD (55.1%). The authors 
commented on the protective effect of RAI 
against the occurrence of PPT compared to the 
other two modalities, despite the reduction in 
thyroid volume in those who had had a subtotal 
thyroidectomy. However, more evidence is 
required before firm conclusions can be drawn.

 Type 1 Diabetes Mellitus 
and Gestational Diabetes 
and Increased Risk of Postpartum 
Thyroiditis
Following Gerstein’s and Alvarez-Marfany’s initial 
studies, there have been several reports of an 
increased incidence of PPT in subjects with 
DM1—a reported incidence of approximately 25%. 
However, a recent study from Iran [25] suggests that 
this increased risk of developing PPT also extends 
to lesser forms of glucose  intolerance in pregnancy, 
such as gestational diabetes mellitus. They found an 
incidence of 19.2% in 341 women with gestational 
diabetes compared to an incidence of 10.2% in 313 
women without GDM. These data need to be con-
firmed in further studies.
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 Thyroxine and Iodine Administration 
and Postpartum Thyroiditis
Previous studies of thyroxine and iodine adminis-
tration in TPOAb-positive women did not confer 
any benefits in terms of the incidence of hypothy-
roidism postpartum, although there was a reduc-
tion in hypothyroid symptoms of PPT in the 
thyroxine-treated group. Also, the degree of thy-
roid dysfunction was more severe in the iodine-
treated group [14].

Another study evaluated the usefulness of 
iodine during pregnancy only, compared to iodine 
administration during both pregnancy and the 
postpartum period. There was no reduction in the 
incidence or severity of PPT in women given 
iodine in either group.
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Amiodarone-Induced Thyroid 
Dysfunction

Simone De Leo and Lewis E. Braverman

 Introduction

Amiodarone is a benzofuranic drug, whose 
chemical structure resembles that of thyroid hor-
mones, and contains 37.5% iodine by weight [1]. 
Therefore, a 200  mg tablet contains 75  mg of 
iodine. After deiodination, 6  mg of free iodine 
(3 mg per 100 mg of amiodarone) is released into 
the circulation [2]: an amount that is 40 times 
higher than the recommended daily iodine intake 
for adults. The iodine load markedly increases 
the urinary iodide excretion [3].

Amiodarone is metabolized in the liver to des-
ethylamiodarone (DEA), through N-dealkylation 
by the cytochrome P450 enzyme group. DEA is 
the main active metabolite; other metabolites can 
be formed after deiodination and glucuroconju-
gation [4]. Amiodarone is markedly lipophilic, 
with a large distribution volume, including adi-

pose tissue, liver, lung, and thyroid. Due to its 
high fat solubility, the drug has a slow turnover, 
which explains the long elimination half-life of 
around 40 days for amiodarone and 57 days for 
DEA [4]. Some studies reported an even longer 
half-life for amiodarone, up to 100  days, after 
withdrawal of long-term treatment [5]. This 
explains why the adverse effects of amiodarone 
can occur long after drug withdrawal. Amiodarone 
is mainly eliminated through biliary excretion; 
other pathways are minor and include saliva, 
tears, semen, and sweat [4].

Amiodarone is a class III antiarrhythmic 
agent, since it blocks myocardial potassium 
channels, and it shares some of the properties of 
class I, II, and IV antiarrhythmic agents [6]. It is 
approved by the US Food and Drug Administration 
for the treatment of patients with life-threatening 
recurrent ventricular fibrillation or hemodynami-
cally unstable ventricular tachycardia, who are 
refractory or intolerant to other antiarrhythmic 
drugs used for these conditions [7]. Amiodarone 
is also commonly used for the treatment of atrial 
fibrillation and other supraventricular tachyar-
rhythmias and for cardiac arrest (mainly due to 
ventricular fibrillation or pulseless ventricular 
tachycardia) resistant to other resuscitative mea-
sures [8]. Amiodarone was previously reported to 
promote successful defibrillation of shock-resis-
tant cardiac arrest and to increase survival rate 
from home to hospital admission [9, 10]; how-
ever, a recent prospective randomized  controlled 
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trial reported that in patients who received amio-
darone, survival rate to hospital discharge is simi-
lar to that of patients who received lidocaine or 
placebo [11].

Amiodarone is associated with many side 
effects, since it can cause thyroid, pulmonary, 
gastrointestinal, neurologic, ocular, and dermato-
logic toxicities. Adverse effects are common, 
with a prevalence of up to 15% in the first year of 
amiodarone treatment and 50% during long-term 
use [8]. This high prevalence can partly explain 
why discontinuing amiodarone treatment is com-
mon. A recent study reported that 52% of younger 
patients (≤65 years) treated for non-life-threaten-
ing atrial fibrillation discontinued amiodarone 
during the first year of treatment [12].

Thyroid dysfunction is particularly dangerous 
in these patients, because of the underlying car-
diovascular dysfunction. It has been clearly 
reported that both hypothyroidism and hyperthy-
roidism have a detrimental effect on cardiovascu-
lar function, causing manifestations ranging from 
bradycardia/tachycardia to onset or recurrence of 
arrhythmias and even heart failure [13, 14]. One 
retrospective study reported that one-third of 
patients who developed thyrotoxicosis during 
amiodarone treatment developed major adverse 
cardiovascular events, in particular new onset or 
recurrence of ventricular arrhythmias that 
required hospitalization, and this risk was signifi-
cantly higher compared with patients who 
remained euthyroid (hazard ratio 2.68, CI 1.53–
4.68, p < 0.01) [15]. Another retrospective study 
showed that thyrotoxicosis induced by amioda-
rone had a significant increased risk of mortality 
compared with thyrotoxicosis due to other 
causes, such as Graves’ disease and toxic nodular 
goiter. Patients with amiodarone-induced thyro-
toxicosis (AIT) were at higher risk if severe left 
ventricular dysfunction was present [16].

 Effect on Thyroid Function Tests

Amiodarone exerts multiple effects on thyroid 
function tests, due to the high iodine content of the 
drug and an effect of the drug. The thyroid adapts 
to iodine excess by inhibiting iodide organification 

in the thyroid, a mechanism called the acute Wolff-
Chaikoff effect. T3 and T4 production decreases 
and serum TSH increases. Subsequently, the thy-
roid escapes from the acute Wolff-Chaikoff effect 
by decreasing the sodium/iodide symporter (NIS) 
and resumes its normal function of iodide organi-
fication: serum TSH returns to baseline values [see 
the iodine-induced thyroid dysfunction chapter].

Amiodarone also exerts direct drug effects. 
Amiodarone and DEA are concentrated into thy-
roidal and non-thyroidal cells [17], where they 
induce a peripheral “hypothyroid-like” effect, 
due to inhibition of T3 binding to its nuclear 
receptor and cytotoxic effects on thyroid cells 
[18, 19]. The latter can be explained, at least 
partly, by the iodine contained in this drug. These 
toxic effects can induce a release of autoantigens 
by thyroid cells and can trigger thyroid autoim-
mune reactions, even though the development of 
thyroid autoimmunity secondary to amiodarone 
treatment is controversial [20].

The main direct drug effect of amiodarone is a 
decrease in the activity of deiodinase enzymes 
(Fig. 1) [20–22]. Thyroid function changes occur 
acutely within 2 weeks [23]:

• Serum T4 concentration increases and serum 
T3 concentration decreases, due to:

 – Inhibition of type I 5′-deiodinase (D1) 
activity, which converts T4 to T3 in periph-
eral tissues, mainly in the liver [24]

 – Inhibition of thyroid hormone entry in 
peripheral tissues

• Serum rT3 concentrations increase, due to:
 – Inhibition of type I 5′-deiodinase (D1) 

activity, which converts rT3 to T2 in periph-
eral tissues, mainly in the liver [24]

• Serum TSH concentration transiently 
increases, due to inhibition of type II 5′-deio-
dinase (D2) activity, which converts T4 to T3 in 
the pituitary. Less T3 is generated and TSH 
synthesis and release are increased [25].

Chronically, a steady state is reached. T4 and 
rT3 remain at the upper limit or slightly elevated, 
while T3 is slightly reduced. Conversely, serum 
TSH concentration returns to normal levels after 
3 months [2].
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 Epidemiology and Risk Factors 
for Amiodarone-Induced Thyroid 
Dysfunction

The incidence of amiodarone-induced thyroid 
dysfunction is estimated to be around 15–20%; 
however, it varies widely among studies, because 
of various selection criteria (inclusion of subclin-
ical dysfunction and use of thyroid hormone ref-
erence ranges adjusted for amiodarone use) and 
different geographical areas [4].

Indeed, it is known that different geographical 
iodine intake is responsible for the different epi-
demiology of amiodarone-induced thyroid dys-
function: in areas where iodine intake is low, 
amiodarone-induced thyrotoxicosis (AIT) is 
more frequent than amiodarone-induced hypo-
thyroidism (AIH); conversely, in areas where 
iodine intake is sufficient, AIH is more frequent 
than AIT [26]. It has been estimated that AIT 
occurred in 8% and in 2–6% of patients treated 
with amiodarone, in iodine-deficient and iodine-
sufficient areas, respectively, while AIH occurred 
in 6% and 14–30%, respectively [27–31].

AIH can develop in patients with or without 
underlying thyroid dysfunction [32]. Some risk 
factors have been identified, including thyroid 
autoimmunity [32], female gender, older age 
(>60–65 years old), and higher serum TSH con-
centration at baseline (>1.4 mU/l) [27, 33]. One 
study reported a significant increased risk of AIH 
in patients with β-thalassemia, who are chroni-

cally exposed to blood transfusions and, there-
fore, thyroidal iron accumulation [34] (Table 1).

On the other hand, AIT is more typical in 
males [35] and younger patients (<60–65 years 
old) [27, 29, 36] (Table 1). The incidence of AIT 
has been increasing over the last decades. 
According to one study conducted in Italy, in 
iodine-deficient area, type 2 AIT incidence is dra-
matically increasing, and this form is now more 
frequent than type 1 AIT [37]. The causes of this 
increase are not clear. A possible explanation 
might be the avoidance of amiodarone adminis-
tration in patients with preexisting thyroid dys-
function, since patients are screened for thyroid 
disease more frequently than in the past and 
improved dietary iodine intake in Italy.

Patients with underlying thyroid dysfunction 
have a well-known increased risk of developing 
amiodarone-induced thyroid dysfunction (both 
AIH and AIT), and some studies reported an 
increased risk (up to 30%) in adults with congen-
ital heart disease (CHD) [38, 39].

 Onset Time of Amiodarone-Induced 
Thyroid Dysfunction 
and Monitoring

Before starting amiodarone therapy, physicians 
should assess thyroid function (including serum 
TSH concentration, serum free T4 or free T4 
index, and free or total T3 concentrations) and 
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thyroid autoimmunity (including thyroid peroxi-
dase (TPO) and thyroglobulin antibodies). 
During amiodarone therapy, physicians should 
check thyroid function every 3 months, but no 
later than 6 months. If thyroid dysfunction is sus-
pected, adjunctive diagnostic tools may be neces-
sary (see paragraph about diagnosis). Monitoring 
should be continued for at least 2 years after 
amiodarone withdrawal [40], because of the slow 
drug turnover, in particular in patients without 
underlying thyroid disease, who more frequently 
develop type 2 AIT. AIT after amiodarone with-
drawal was reported to develop in 7% and 20% of 
patients residing in iodine-sufficient and iodine-
deficient areas, respectively [41, 42]. In particu-
lar, in an iodine-deficient area, more than 20% of 
patients developed type 2 AIT after amiodarone 
withdrawal, while this percentage was signifi-
cantly lower (5%) in patients who developed type 
1 AIT (with underlying thyroid disease) [42].

The onset time of thyroid dysfunction after 
starting amiodarone treatment is unpredictable. 
AIT can occur at any time, and the appearance 
is generally sudden and explosive [4]. Type 1 
AIT tends to occur earlier than type 2 AIT: 
according to a recent retrospective study, 
median onset time of thyrotoxicosis was 
3.5 months in type 1 AIT and 30 months in type 
2 AIT [42]. Conversely, AIH seems to occur 
more frequently in the first months of therapy 
[36, 43]. One prospective study reported that 
AIH occurred in the first 6 months of therapy in 
76% of patients who developed AIH [31]. 
Although it was previously reported that the 
risk of amiodarone-induced thyroid dysfunc-

tion increased with exposure to higher cumula-
tive doses [44], more recent studies reported 
that the daily or cumulative dose of amiodarone 
are not significant risk factors [27–29, 36].

 Amiodarone-Induced 
Hypothyroidism

 Pathogenesis

The basis of hypothyroidism during amiodarone 
treatment is the failure to escape from the acute 
Wolff-Chaikoff effect [see the iodine-induced 
thyroid dysfunction chapter]: this explains the 
significant increased risk of AIH in patients with 
underlying thyroid disease, in particular thyroid 
autoimmunity, which was detected in around 50% 
of patients with AIH [20]. In patients with an 
apparent normal thyroid gland, pathogenesis is 
less clear and is postulated to be the presence of a 
subtle abnormality of hormone synthesis [20]. 
This hypothesis is corroborated by the restoration 
of euthyroidism in patients with AIH (and without 
underlying thyroid abnormalities) treated with 
potassium perchlorate and subsequent reoccur-
rence of hypothyroidism when potassium per-
chlorate was withdrawn [45]. Potassium 
perchlorate reduces intrathyroidal iodide content 
by inhibiting thyroid iodide transport (NIS). As a 
result, thyroid hormone synthesis is restored, 
since the inhibitory effect due to excessive intra-
thyroidal iodide is no longer present [46]. Some 
experimental studies reported an iodine-indepen-
dent inhibition of iodide transport exerted by ami-
odarone [47], but the relevance of this mechanism 
in AIH development is still debated [45].

 Diagnosis

The clinical manifestations of AIH are similar to 
those of hypothyroidism due to other causes. 
Hypothyroidism develops in the first months of 
therapy (usually in the first 6 months), and the 
diagnosis is based on the findings of increased 
serum TSH concentrations and low or normal 
serum thyroid hormones. Thyroid antibodies are 
frequently present (usually preexisting).

Table 1 Characteristics of patients at risk for developing 
AIH and AIT

AIH AIT
Ambient iodine 
intake

Adequate Low

Underlying thyroid 
dysfunction

Present or not Present or not

Gender Female Male
Age Older Younger
TSH at baseline Higher Lower
Onset time First months of 

therapy
Unpredictable

AIH amiodarone-induced hypothyroidism, AIT amioda-
rone-induced thyrotoxicosis
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It should be noted that slight increases in 
serum TSH concentrations are common shortly 
after amiodarone therapy initiation. These 
alterations are transient and not clinically sig-
nificant. Therefore, AIH should be diagnosed 
and treated when hypothyroidism is overt or 
persists.

 Treatment

AIH does not require amiodarone discontinua-
tion, since it is easily treated with levothyroxine.

Levothyroxine replacement should aim at nor-
malizing TSH, which should be maintained at the 
upper half of normal TSH range. In general, this 
goal is achieved using larger-than-usual doses of 
levothyroxine [48], because of the intrapituitary 
and peripheral inhibitory effect of amiodarone on 
T4 conversion to T3 [25].

TSH should be revaluated 6–12 months after 
amiodarone withdrawal to determine if levothy-
roxine therapy is still necessary, since euthyroid-
ism is restored in most patients [32]. One study 

reported that half of patients became euthyroid 
within 6 months after discontinuing amiodarone 
[49]. Patients with thyroid autoimmunity are at 
increased risk of permanent hypothyroidism after 
amiodarone withdrawal and require permanent 
levothyroxine therapy.

 Amiodarone-Induced 
Thyrotoxicosis

 Types of Amiodarone-Induced 
Thyrotoxicosis

There are two types of amiodarone-induced 
 thyrotoxicosis (AIT): type 1 AIT, a form of 
iodine-induced thyrotoxicosis, and type 2 AIT, a 
drug-induced destructive thyroiditis. These two 
forms should be distinguished, since they have 
different pathogenesis and consequently different 
treatment modalities. In some cases, it is not pos-
sible to differentiate between the two types: these 
so-called mixed types share the pathogenic 
mechanisms of both AIT types (Table 2).

Table 2 Characteristics of patients with type 1 AIT and type 2 AIT

Type 1 AIT Type 2 AIT
Pathogenesis Iodine-induced thyrotoxicosis Drug-induced destructive thyroiditis
Incidence Rarer More frequent
Ambient iodine intake Low Variable
Onset time of AIT Unpredictable but generally 

during first months of therapy
Unpredictable but generally after 
2–3 years of therapy

Preexisting thyroid abnormalities Generally yes Generally no
Physical examination Usually goiter or nodules Sometimes small firm goiter
Thyroid autoimmunity Generally present Generally absent
Thyroid radioiodine uptake Variable (low, normal, high) Low or absent
99mTc-sestaMIBI uptake Diffuse retention Absent uptake
Thyroid ultrasound scan Generally enlarged and nodular 

gland
Generally normal gland

Color-flow Doppler sonography Increased vascularity (pattern 
I-III)

Absent vascularity (pattern 0)

Spontaneous remission Unlikely Likely
Subsequent hypothyroidism Unlikely Likely
Thyrotoxicosis recurrence during 
amiodarone-free period

Likely Unlikely

Thyrotoxicosis recurrence after 
amiodarone restarted

Very likely Likely

AIT amiodarone-induced thyrotoxicosis
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 Pathogenesis

The pathogenesis of type 1 AIT is the same as 
that of the iodine-induced thyrotoxicosis and is 
based on the Jod-Basedow phenomenon. The 
iodine load acts as a substrate for the thyroid, 
which has areas of underlying autonomy, and is 
responsible for the uncontrolled overproduction 
of thyroid hormones. Generally, these patients 
have underlying thyroid abnormalities and reside 
in areas of iodine deficiency [4]. Conversely, in 
areas with adequate or high iodine intake, the 
thyroid gland is more able to adapt to iodine 
excess, and this type of AIT is less common [29].

Type 2 AIT is caused by a destructive thy-
roiditis, induced by a direct cytotoxic effect of 
amiodarone and DEA on thyroid follicular cells 
[18, 19]. Consequently, preformed thyroid hor-
mones are released into the circulation. Thyroid 
hormone synthesis does not increased, and, 
generally, these patients do not have an under-
lying thyroid abnormality. Destruction of the 
thyroid gland frequently results in permanent 
hypothyroidism. In a prospective study, 17% of 
patients with type 2 AIT developed permanent 
hypothyroidism, a percentage significantly 
higher than that for subacute thyroiditis (5%, 
p  <  0.03), even in the absence of subsequent 
iodine exposure [50].

 Diagnosis

The clinical manifestations of AIT are similar to 
those of other causes of thyrotoxicosis [51]. 
Signs and symptoms are due to hypermetabolism 
and hyperactivity of physiological processes, 
induced by excess thyroid hormones, and include 
unexplained weight loss, sweating, tremor, weak-
ness, heat intolerance, hyperdefecation, and car-
diologic manifestations such as palpitations, 
tachycardia, and worsening of the preexisting 
cardiac disease [52, 53]. Diagnosis of AIT is 
based on the finding of a suppressed serum TSH 
concentration and elevated levels of serum thy-
roid hormones, in a patient receiving amiodarone 
or who recently (from few months to 1–3 years) 
has stopped the drug. Serum free T3 concentra-

tion can be elevated or normal but generally less 
elevated than T4 because of the inhibition of deio-
dinases, which convert T4 to T3.

 Differential Diagnosis Between Type 
1 and Type 2 AIT

Differential diagnosis between type 1 and type 
2 AIT is challenging because no gold-standard 
diagnostic test is available. Physical examina-
tion and biochemical evaluation, including 
TSH, free T3 (or total T3), and free T4 (or free 
T4 index), should be performed in all patients. 
Additional diagnostic procedures, which may 
help in differentiating the two types of AIT, 
include nuclear medicine imaging tests (such 
as radioactive iodine with 131I or 123I, techne-
tium-99 pertechnetate (99TcO4

−) scintigraphy, 
and 99m technetium (99mTc) sestaMIBI) and 
ultrasound imaging, including thyroid ultra-
sound and color-flow Doppler sonography 
(CFDS) [54].

Surveys aimed at ascertaining the preferred 
modalities for diagnosing and treating the two 
types of AIT showed a lack of consensus among 
endocrinologists [55–58]. CFDS is considered 
the preferred diagnostic procedure by European 
and American endocrinologists (decreased 
blood flow in type 2 AIT and increased in type 
1 AIT), even though the large majority of 
respondents would add an additional test to 
CFDS, such as the thyroid radioiodine uptake 
[55–57]. However, the thyroid radioiodine 
uptake has been demonstrated to have a poor 
diagnostic value and, probably, is currently far 
less used, especially in the United States. The 
high iodine intake would lower the thyroid 
radioiodine uptake, and it is indeed puzzling 
that the radioiodine uptake would be normal or 
elevated in patients treated with amiodarone. 
Conversely, 99mTc-sestaMIBI scan has been 
recently suggested as a useful tool and was 
reported to be superior to CFDS in differentiat-
ing type 1 from type 2 AIT [59]. However, this 
is an expensive procedure, and these prelimi-
nary results need to be confirmed by larger pro-
spective studies [60, 61].
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 Physical Exam
Some patients can have a goiter or nodules, which 
suggest type 1 AIT, even though this is not a spe-
cific finding. In contrast, type 2 AIT generally 
presents with a normal thyroid gland or a small 
firm goiter [4, 54].

 Biochemical Evaluation
In order to differentiate between the two types of 
AIT, free T4 and free T3 levels are not specific, 
even though these are higher in type 2 AIT than 
type 1 AIT [42, 62]. Similarly, the T4/T3 ratio is 
not useful and was reported to be on average 
more than 4 in AIT [42].

Thyroid autoimmunity evaluation, including 
TPO and thyroglobulin antibodies, is helpful, 
since antibodies are generally positive in type 1 
AIT and negative in type 2 AIT. However, TPO 
and thyroglobulin antibodies can be positive in 
patients with type 2 AIT [63], up to 8% of patients 
according to a retrospective study [37]. Evaluation 
of TSH-receptor antibodies (TRAb) or TSH-
stimulating immunoglobulins (TSI) is useful to 
diagnose patients with underlying Graves’ 
disease.

Interleukin-6 (IL-6) evaluation has been pre-
viously recommended, since IL-6 levels were 
reported to be significantly higher in type 2 than 
type 1 AIT [64]. IL-6 is synthetized by thyrocytes 
and represents a useful parameter of thyroid 
destructive process; indeed, IL-6 concentrations 
are markedly increased during the thyrotoxic 
phase of subacute painful thyroiditis. However, 
subsequent studies failed to replicate this finding 
[62, 65]. In addition, IL-6 evaluation is an expen-
sive test, so that its usefulness in clinical practice 
is limited [57, 58, 66]. Other inflammatory mark-
ers, such as serum C-reactive protein, are equally 
ineffective [67].

 Thyroid Radioiodine Uptake
Thyroid radioiodine uptake is higher in type 1 
than type 2 AIT, both at 3rd and 24th hour [42]. 
Patients with type 2 AIT have an invariably low 
or absent uptake. Conversely, patients with type 1 
AIT have a variable uptake, ranging from low to 
high, in areas with low iodine intake, such as 
Europe, while in areas with higher iodine intake, 

such as the United States, the uptake is generally 
low [68]. Therefore, the test might be superfluous 
in areas where iodine intake is adequate [65].

 Thyroid 99TcO4
− Scintigraphy

Thyroid 99TcO4
− uptake should be present in type 

1 AIT and absent in type 2 AIT [69]. However, 
the method has low sensitivity and specificity 
[54], and some studies reported failure in differ-
entiating the two AIT types, since thyroid scintig-
raphy had, in almost all cases, low or absent 
uptake [59, 70].

 99m Technetium (99mTc) SestaMIBI Scan
99mTc-sestaMIBI scan is a new method that is 
proving highly effective. 99mTc-sestaMIBI uptake 
is increased in hypermetabolic cells, which con-
tain a high number of mitochondria, such as in 
hyperfunctioning thyroid tissue. Conversely, 
99mTc-sestaMIBI uptake is reduced or absent in 
thyroid tissue with glandular destruction and 
fibrosis [71]. In patients with AIT, diffuse MIBI 
uptake was observed in patients with type 1 AIT 
and absent uptake in patients with type 2 AIT. A 
mixed form may occur, and, in this case, faint 
persistent uptake or an uptake with a rapid wash-
out (within 10  min) was observed [59]. This 
method was reported to be superior to both thy-
roid radioiodine uptake and 99TcO4

− scintigraphy 
[59]. One study proposed the use of quantitative 
thyroid-to-background ratio displayed on a time-
activity curve to improve the interobserver reli-
ability of 99mTc-sestaMIBI scans for differentiating 
the two types [72]. Another advantage of this pro-
cedure is that the thyroid uptake appears not to be 
altered by iodine overload and antithyroid drug 
use [73].

 Thyroid Ultrasound
Thyroid ultrasound is a noninvasive and cost-
effective tool but with a low diagnostic value in 
AIT. Type 1 AIT is generally characterized by an 
enlarged thyroid gland and nodularity because of 
the underlying thyroid disease, while type 2 AIT 
presents with a normal thyroid gland. However, 
some studies reported similar thyroid gland size 
in the two AIT types [70]. Thyroid echogenicity 
was also not discriminatory [69, 74].
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 Color-Flow Doppler Sonography (CFDS)
CFDS is one of the most helpful diagnostic tools 
to differentiate type 1 from type 2 AIT. Four dif-
ferent CFDS patterns have been described. 
Pattern 0 refers to absent vascularity and patterns 
I–III to progressively increased vascularity, rang-
ing from the presence of parenchymal blood flow 
with patchy uneven distribution to a markedly 
increased blood flow with diffuse homogenous 
distribution [66]. Patients with type 1 AIT show 
increased vascularity (patterns I–III), while 
patients with type 2 AIT show absent vascularity 
(pattern 0) [62, 68].

CFDS can also be helpful in determining the 
presence of nodules. This differentiation proved 
useful in diagnosing the underlying thyroid dis-
ease in patients with type 1 AIT. A diffuse hyper-
vascular parenchymal pattern without detectable 
nodules is typical of Graves’ disease, while peri-
nodular or intranodular vascularization is 
detected in toxic multinodular goiter or toxic 
adenoma [69]. CFDS has been reported to be a 
useful tool in directing therapy [62], even though 
one study reported a high heterogeneity in treat-
ment responses within the same CFDS patterns, 
especially in the presence of increased vascular-
ity (patterns I–III) [70].

 Management and Treatment

 Decision Regarding Continuation/
Discontinuation of Amiodarone 
Therapy
Once AIT is diagnosed and the type is ascer-
tained, the first question to be addressed pertains 
to the decision whether to continue amiodarone 
administration. The decision to discontinue ami-
odarone is often difficult to determine. 
Amiodarone effects are long lasting (and benefits 
of drug withdrawal are not immediate), and there 
might be a worsening of thyrotoxic symptoms 
because there is no longer an inhibition of T4 to 
T3 conversion. Moreover, amiodarone discontin-
uation is not always feasible because it might put 
the patient at increased risk for worsening of the 
cardiovascular problem. On the other hand, thy-
rotoxicosis itself has a detrimental effect on car-

diovascular function and significantly increases 
the risk of major adverse cardiovascular events 
[13–15].

Generally, patients with type 2 AIT can safely 
continue amiodarone [75, 76]. Restoration of 
euthyroidism and median time to first normaliza-
tion of thyroid function are not significantly dif-
ferent in patients who continue compared to 
those who discontinue amiodarone treatment [76, 
77]. However, patients who continue amiodarone 
have an increased recurrence rate of thyrotoxico-
sis, thus delaying the stable restoration of euthy-
roidism [77]. Therefore, if cardiac conditions are 
stable, it is preferable to discontinue amiodarone 
treatment.

In patients with type 1 AIT, the decision to 
continue amiodarone is controversial because of 
lack of data. Although available data seem to be 
reassuring if amiodarone is continued [78], it 
seems prudent to discontinue amiodarone treat-
ment in these patients [13], whenever possible. 
This practice is commonly shared by the large 
majority of American and European endocrinolo-
gists [55–57]. However, in any given patient, the 
decision to withdraw amiodarone needs to be dis-
cussed with endocrinologists and cardiologists 
regarding the potential risks and benefits.

 Management and Treatment  
of Type 1 AIT
Patients with type 1 AIT should be treated with 
thionamide drugs, which are actively transported 
into the thyroid where they inhibit thyroid hor-
mone biosynthesis [51]. Due to thyroid exposure 
to excess iodine, higher doses of thionamide 
drugs are usually required. The starting dose of 
methimazole should be 40–60 mg once daily (or 
equivalent doses of carbimazole, in countries 
where methimazole is not available, or propyl-
thiouracil (600 mg daily), when methimazole is 
contraindicated) [60, 79]. Once euthyroidism is 
restored, methimazole is tapered to a lower main-
tenance dose.

In patients with a poor or absent treatment 
response after 4–8  weeks of thionamide treat-
ment, potassium perchlorate should be added, 
since it inhibits thyroid iodide transport and, 
therefore, reduces intrathyroidal iodide content. 
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Potassium perchlorate should be administered at 
doses of 1000 mg daily (250 mg four times daily) 
or lower [60–79]. The suggested dose should not 
be exceeded in order to reduce the risk of side 
effects, such as aplastic anemia [80]. The drug is 
not available in some countries, including the 
United States.

The combination treatment with thionamide 
and potassium perchlorate should be continued 
for 2–6  weeks. If euthyroidism is restored, 
methimazole is tapered and potassium perchlo-
rate discontinued. If the patient remains refrac-
tory to therapy, definitive treatment should be 
considered (see paragraph about definitive ther-
apy), or a “stepwise” approach may be tried. In 
the latter case, if after a month of therapy with 
methimazole and potassium perchlorate, free T4 
or free T4 index is not decreased by more than 
50%, glucocorticoids are added (prednisone 
40 mg daily) and tapered over 1 month after free 
T4 or free T4 index concentrations normalize [81] 
(Fig. 2).

 Management and Treatment  
of Type 2 AIT
Unlike type 1 AIT, patients with type 2 AIT may 
have a self-limiting disease, which might not 
require therapy if mild and the cardiovascular 
condition is stable. Patients with overt thyrotoxi-
cosis or those who require restoration of euthy-
roidism because of the cardiac condition should 
be treated with glucocorticoids [6].

Glucocorticoids are the treatment of choice 
for type 2 AIT. Iopanoic acid proved effective but 
cured patients less rapidly compared with gluco-
corticoids [82]; moreover, the drug is not avail-
able in some countries, such as the United States. 
Thionamide drugs have no role in the treatment 
of patients with type 2 AIT [83] but can be used 
in when the diagnosis is unclear or mixed forms 
are present [84] (see paragraph about manage-
ment and treatment of mixed forms of AIT).

Generally, the glucocorticoid drug most com-
monly used is prednisone. The starting dose is 
usually 40  mg once daily, for 2–4  weeks, fol-
lowed by a gradual tapering over 2–3  months, 
depending on the patient’s clinical and biochemi-
cal response [79]. Improvement is generally 

rapid, and euthyroidism is restored in 4–8 weeks, 
whether amiodarone is continued or not [77, 85]. 
In a prospective study, patients who discontinue 
amiodarone had a median cure time of 30 days to 
restore euthyroidism. However, 15% were still 
thyrotoxic after 3  months. Higher baseline thy-
roid hormone concentrations (serum free 
T4 > 50 pg/mL) and larger thyroid volume (thy-
roid volume normalized for body surface 
area > 12 mL/m2) were the main determinants of 
a delayed response to glucocorticoids [85].

As mentioned above, patients with type 2 AIT, 
who continue amiodarone, are at increased risk 
of reoccurrence of thyrotoxicosis [77]; however, 
other studies reported a low reoccurrence rate 
(6–8%), and these patients had mild episodes, 
which quickly responded to therapy [75, 86] 
(Fig. 3).

 Management and Treatment of Mixed 
Forms of AIT
Mixed forms of AIT should be treated with a 
combination of thionamide and glucocorticoids 
[60]. The starting doses should be methimazole 
40 mg daily and prednisone 40 mg daily. After 
2  weeks, if serum thyroid hormone concentra-
tions normalize, methimazole can be stopped and 
glucocorticoids tapered over 2–3  months, since 
the patient is likely to have type 2 AIT. If thyro-
toxicosis persists, the most likely diagnosis is 
type 1 AIT.  Therefore, methimazole should be 
continued, possibly adding potassium perchlo-
rate, and glucocorticoids tapered and discontin-
ued [87]. If the patient is still irresponsive to 
therapy, definitive treatment should be consid-
ered (see below) (Fig. 4).

 Definitive Therapy
Some patients may be treated by thyroidectomy. 
Regardless of AIT type, thyroidectomy is recom-
mended in patients refractory to medical therapy 
or unable to tolerate a protract thyrotoxic state, 
because of worsening cardiac disease. AIT 
patients with left ventricular (LV) dysfunction 
have a mortality rate as high as 30–50% [16, 53]. 
These patients need a rapid restoration of euthy-
roidism, and total thyroidectomy was reported to 
reduce the mortality risk and improve cardiac 
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function in patients with severe LV dysfunction 
(LV ejection fraction <50%) [88, 89].

Patients should be euthyroid prior to surgery 
in order to reduce surgical risk. A short course of 

iopanoic acid, for 1–3  weeks, at a dose of 
1000  mg/day orally, is suggested to quickly 
restore euthyroidism. Iopanoic acid is iodine 
rich, inhibits type I 5′-deiodinase (D1) activity, 
and decreases serum free T3 concentration in few 
days [90, 91]. However, as mentioned above, the 
drug is not available in some countries, including 
the United States.

Total thyroidectomy, under general anesthe-
sia, is the procedure of choice and is considered 
safe [88, 92–94], even though one study reported 
a high complication and mortality rate (29% and 
9%, respectively), probably due to poor cardiac 
state of the enrolled patients [95]. Some authors 
suggested minimally invasive video-assisted thy-
roidectomy under regional anesthesia to reduce 
complications [96], but this data need to be con-
firmed in larger studies.

Type 1 AIT
diagnosis

Thionamide

Euthyroidism

Taper thionamide

after 4-8 weeks

TFT unchanged
or worsened

Add potassium perchlorate

after 2-6 weeks

TFT unchanged
or worsened

based on preference

Add glucocorticoids

after
2-4 weeks

TFT unchanged
or worsened

Euthyroidism

Euthyroidism

Taper thionamide
+

stop potassium perchlorate

Thyroidectomy
or

(  ) RAI therapy with rhTSH.

Fig. 2 Suggested 
algorithm for the 
management of patients 
with type 1 AIT. RAI 
radioactive iodine, TFT 
thyroid function test

Type 2 AIT
diagnosis

Glucocorticoids

(Usually) Euthyroidism (rarely) TFT unchanged
or worsened

Taper glucocortoids Consider thyroidectomy

Fig. 3 Suggested algorithm for the management of 
patients with type 2 AIT. TFT thyroid function test
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Radioactive iodine therapy is rarely feasible 
because patients with AIT have usually a low 
radioiodine uptake. However, some studies 
reported a role for radioactive iodine therapy in 
patients with type 2 AIT with a low radioiodine 
uptake [97–99]. However, relapse or persistence 
of thyrotoxicosis is not uncommon in these 
patients, and, according to one study, 15% were 
still thyrotoxic after 2-year follow-up [99]. 
Therefore, restoration of euthyroidism is delayed, 
and the underlying cardiac disease can worsen 
due to protracted thyrotoxicosis. In patients with 
type 1 AIT and a low radioiodine uptake, recom-
binant human TSH (rhTSH) increases uptake, 
and radioactive iodine may be effective in treat-
ing the thyrotoxicosis [100]. However, rhTSH 
should be used cautiously in these patients, since 
it stimulates the hyperfunctioning thyroid tissue 

and can induce worsening of thyrotoxicosis, 
which poses a further risk to the heart [101].

 Management of Patients After 
Restoration of Euthyroidism and if 
Amiodarone Needs to Be Restarted
After restoration of euthyroidism and discontinu-
ation of amiodarone, patients who had type 1 AIT 
should receive definitive therapy because of the 
underlying thyroid disease. Approximately one-
third of European and American endocrinologists 
recommend definitive therapy in these patients, 
and almost 50% of thyrotoxicosis recurs [55–57]. 
Patients who had type 2 AIT, and do not need to 
restart amiodarone, rarely have a recurrence of 
thyrotoxicosis. Therefore, American and 
European endocrinologists generally prefer to 
monitor these patients [55–57]. Patients who had 

Mixed
forms

Thionamide
+

Glucocorticoids

TFT normalized

Stop thionamide
+

Taper glucocorticoids

after 2 weeks or more

TFT unchanged
or worsened 

Continue thionamide

+

Add potassium perchlorate

+

Taper glucocorticoids

TFT unchanged
or worsened

Euthyroidism

Thyroidectomy

after 2-6 weeks

Fig. 4 Suggested 
algorithm for the 
management of patients 
with mixed forms of 
AIT. TFT thyroid 
function test
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type 2 AIT are at risk for subsequent hypothy-
roidism [50], and this risk is increased in patients 
with thyroid autoimmunity [63]. Close monitor-
ing is recommended, and levothyroxine replace-
ment should be instituted when permanent 
hypothyroidism develops.

When a euthyroid patient, with a history of 
AIT, needs to restart amiodarone, a decision on 
whether to begin prophylactic definitive therapy 
is still controversial because of a lack of studies 
[55, 57, 102]. A recent retrospective study 
reported a recurrence of AIT in 30% of patients, 
and this percentage seems to be underestimated, 
since a subgroup of patients received preventive 
thionamide treatment. Thyrotoxicosis recurred in 
19% of patients with a history of type 2 AIT. In 
patients with a history of type 1 AIT thyrotoxico-
sis recurred in 37% of cases; however, when con-
sidering only the subgroup of patients without 
preventive thionamide treatment, thyrotoxicosis 
recurred in 73% of cases [103].

In conclusion, euthyroid patients with a his-
tory of AIT (in particular type 1 AIT) who need to 
restart amiodarone should receive prophylactic 
definitive therapy (thyroidectomy or radioactive 
iodine at high doses). Patients who urgently need 
amiodarone therapy and are awaiting thyroidec-
tomy may benefit from a low dose of thionamides 
for a short period [103]. After thyroidectomy, 
levothyroxine can easily be given during amioda-
rone treatment, keeping in mind that a larger dose 
of levothyroxine may be required since amioda-
rone inhibits conversion of T4 to T3.

 Patients Treated with Warfarin

A complex interaction between warfarin, amio-
darone, and thyroid hormones has been reported. 
Warfarin is an anticoagulant drug, which inhibits 
vitamin K-dependent clotting factors II, VII, IX, 
X, and proteins C and S. Thyroid function abnor-
malities play a role in the coagulation-fibrino-
lytic system regulation: hyperthyroidism 
increases the risk of thrombosis, while hypothy-
roidism increases the risk of bleeding [104, 105]. 
Nevertheless, in patients treated with warfarin, 
thyrotoxicosis increases the risk of bleeding, 

since warfarin effects are potentiated by thyro-
toxicosis. Indeed, thyrotoxic patients have an 
exaggerated degradation of functional clotting 
factors (II, VII) in response to warfarin [106]. In 
addition, amiodarone itself inhibits hepatic war-
farin metabolism and potentiates warfarin’s anti-
coagulant effect [107]. Therefore, in AIT 
patients, warfarin therapy should be started with 
a very low dose and international normalized 
ratio (INR) monitored closely in order to adjust 
the warfarin dose [108].

 Dronedarone

Dronedarone is a non-iodinated benzofuran 
derivative related to amiodarone. A methane-sul-
fonyl group is added to dronedarone, which 
reduces lipophilicity and the half-life of the drug 
(to 24 h), and iodine moieties are not present, so 
thyroid complications typical of amiodarone are 
absent [109].

Dronedarone has been approved for the use in 
patients with paroxysmal or persistent atrial 
fibrillation but is contraindicated in patients with 
permanent atrial fibrillation or with concomitant 
heart failure [110]. When compared to amioda-
rone, dronedarone proved less effective in reduc-
ing atrial fibrillation recurrences post 
cardioversion but had a better safety profile, 
 specifically less thyroid and neurologic events 
[111]. In the DIONYSOS trial, 1% of patients 
treated with dronedarone had thyroid toxicity 
(mainly hypothyroidism) compared with 6% of 
patients who developed thyroid dysfunction dur-
ing amiodarone treatment [111]. Therefore, 
dronedarone may be beneficial in patients at 
increased risk or with a history of amiodarone-
induced thyroid dysfunction [1]; however, poor 
efficacy and the contraindications of the drug 
limit its use.
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Iodine-Induced Thyroid 
Dysfunction

Simone De Leo and Lewis E. Braverman

 Introduction

Iodine is an essential trace element required for 
the synthesis of the thyroid hormones, thyroxine 
(T4) and triiodothyronine (T3). It is present in 
varying amounts in the Earth’s soil, which in turn 
is responsible for the different iodine content of 
crops and foods. In general, the highest environ-
mental iodine is available in coastal areas.

There is a U-shaped relationship between 
iodine intake and thyroid disorders, since both 
low and high iodine intakes are responsible for 
increased thyroid dysfunction. Several studies 
reported a significantly higher prevalence of 
hypothyroidism, hyperthyroidism, and thyroid 
autoimmunity in the population with excessive 
iodine intake compared to those with an adequate 
iodine intake [1–5]. The prevalence of thyroid 

nodules and the association with iodine excess is 
not clear, and further studies are needed.

The Institute of Medicine [6], the WHO 
(together with the International Council for the 
Control of Iodine Deficiency Disorders (ICCIDD) 
and the United Nations Children’s Fund 
(UNICEF)) [7], and the European Food Safety 
Authority (EFSA) [8] recommend a daily iodine 
intake of 150 μg for adults. Iodine intake should 
be increased during pregnancy and lactation 
(Table 1). Moreover, the Scientific Committee on 
Food of the European Commission and the 
Institute of Medicine have established a tolerable 
upper iodine intake in adults of 600 and 1100 μg 
daily, respectively (Table 2) [9]. The Endocrine 
Society recommended that iodine intake not 
exceed 500 μg of iodine daily in pregnant and 
breastfeeding women [10], and the WHO consid-
ered iodine intake excessive when the median 
UIC is higher than 300  μg/L in children (>6 
years) and adults and higher than 500  μg/L in 
pregnant women [7].

Urinary iodine (UI) correlates with iodine 
intake, since more than 90% of ingested iodine is 
excreted in the urine within 24–48  h [11, 12]. 
Many urinary iodine measurements have been 
proposed for evaluation of iodine status in popu-
lations [13]; however, urinary iodine excretion is 
not reliable in individuals, because it varies 
widely within the day and day-to-day depending 
on a circadian rhythm and alimentary iodine 
intake [14, 15], limiting its use in clinical  practice. 
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Some studies reported that 10–12 repeated spot 
urine samples or 7–10 24 h urine collections are 
needed to estimate individual urinary iodine 
excretion, with a precision range ±20% [16, 17]. 
In population studies, the 24  h urinary iodine 
excretion is considered the reference standard 

[13, 18]. However, because of the difficulty in 
collecting 24 h urines, WHO recommends using 
median urinary iodine concentration (UIC), 
obtained by single spot urine samples [7]. It is 
worth noting that some studies demonstrated that 
the two evaluations are not interchangeable [19, 
20], and because of variability in hydration sta-
tus, some suggest estimating 24 h iodine excre-
tion using a creatinine correction [21, 22], 
although WHO considers the creatinine correc-
tion not reliable [7].

Thyroglobulin has been proposed as an alter-
native method to assess iodine status in the gen-
eral population. Serum thyroglobulin significantly 
decreased in an iodine-deficient population after 
the introduction of an iodization program or after 
iodine supplementation [23, 24], and it was more 
reliable than thyroid volume evaluation, which 
requires decades to reflect a new iodine status. In 
addition, an increased thyroid volume has been 
reported to reflect an extremely high dietary 
iodine intake (>500 μg/day), but not a moderately 
high dietary intake (300–500  μg/day) [25]. A 
more practical way to assess thyroglobulin con-
centrations is using dried blood spots (DBS). This 
method is recommended by the WHO, UNICEF, 
and ICCIDD for the evaluation of iodine status in 
school-age children (≥6 years old) [7]. In 2006, 
an International Reference Range for DBS-
thyroglobulin of 4–40  μg/L in iodine-sufficient 

Table 1 Recommended daily iodine intake (μg/day)

Recommended dietary intake 
according to WHO, ICCIDD, and 
UNICEF

RDA according to Food and 
Nutrition Board (US Institute of 
Medicine)

Adequate intake 
according to EFSA

Infants (0–12 
months)

90 RDA not determined
AI 0–6 months—110
AI 7–12 months—130

0–6 months—ND
7–11 months—70

Children (1–18 
years old)

1–6 years old—90
6–12 years old—120
12–18 years old—150

1–8 years old—90
9–13 years old—120
14–18 years old—150

1–10 years old—90
11–14 years 
old—120
15–17 years 
old—130

Adults (>18 
years old)

150 150 150

Pregnancy 250 220 200
Lactation 250 290 200

RDA recommended dietary allowance, AI adequate intake, WHO World Health Organization, ICCIDD International 
Council for Control of Iodine deficiency disorders, UNICEF United Nations Children’s Fund, EFSA European Food 
Safety Authority

Table 2 Tolerable upper intake limits for iodine (μg/day)

Scientific Committee 
on Food (European 
Commission)

Food and 
Nutrition Board 
(US Institute of 
Medicine)

Infants 
(0–12 
months)

ND ND

Children 
(1–18 years 
old)

1–3 years old—200
4–6 years old—250
7–10 years 
old—300
11–14 years 
old—450
15–17 years 
old—500

1–3 years 
old—200
4–8 years 
old—300
9–13 years 
old—600
14–18 years 
old—900

Adults (>18 
years old)

600 1100

Pregnancy 600 ≤18 years 
old—900
>18 years 
old—1100

Lactation 600 ≤18 years 
old—900
>18 years 
old—1100
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children 5–14 years old was established [26]. 
DBS-thyroglobulin shows a U-shaped distribu-
tion related to iodine intake, because children 
with excess intake had significantly higher DBS-
thyroglobulin concentration [27].

 Adaptation to Excess Iodine

The thyroid gland is able to adapt to iodine 
excess, due to the acute Wolff-Chaikoff effect. 
This phenomenon was first described in 1948, 
when Wolff and Chaikoff reported that, in rats 
injected with excess iodine, the thyroid tran-
siently inhibited the incorporation of inorganic 
iodide into the thyroid hormones [28]. To date, 
the acute Wolff-Chaikoff effect is not completely 
understood. One hypothesis is based on the thy-
roidal generation of iodinated lipids, such as 
iodolactones and iodoaldehydes [29]. 
α-Iodohexadecanal (α-IHDA), the major 
iodolipid formed after iodide administration, has 
been shown to reduce intrathyroid cyclic adenos-
ine monophosphate (cAMP) levels and to inhibit 
thyroid peroxidase activity, necessary for thyroid 
hormone synthesis [30, 31] (Fig. 1).

Some studies aimed at ascertaining possible 
mechanisms involved in the decrease of thyroid 
hormone release during the acute Wolff-Chaikoff 
effect. In particular, monocarboxylate transporter 
8 (MCT8), which transports thyroid hormones in 

and out of the cells, has been reported to be 
downregulated by iodine overload [32]. 
Therefore, iodide excess may decrease T4 secre-
tion during the acute Wolff-Chaikoff effect, by 
not only decreasing thyroid iodide organification 
but also impairing the transporters responsible 
for thyroid hormone release.

In normal individuals, the acute Wolff- 
Chaikoff effect is only transient; subsequently 
the thyroid gland resumes its function of iodine 
organification: the so-called “escape” from the 
acute Wolff-Chaikoff effect. Braverman and 
Ingbar, in 1963, postulated that adaptation to 
long-term iodide exposure is due to reduction of 
iodine transport into the thyroid gland and, there-
fore, reducing the thyroidal iodide concentration 
to a level inadequate to sustain the acute Wolff- 
Chaikoff effect [33]. In 1996, Dai et  al. cloned 
the sodium/iodide symporter (NIS) [34]. NIS is a 
13-transmembrane glycoprotein, located in the 
basolateral membrane of thyroid follicular cells, 
and responsible for the active transport of iodide 
into the thyroid [35]. NIS plays an important role 
in the “escape” phenomenon, because it has been 
demonstrated that NIS mRNA expression and 
protein levels are strikingly reduced after 1 and 6 
days of iodide administration to rats [36]. 
Moreover, TPO mRNA expression was signifi-
cantly decreased after 6 days of iodide adminis-
tration [36]. High doses of iodide inhibit NIS 
function by increasing reactive oxygen species 
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Fig. 1 The acute Wolff-Chaikoff effect. DIT diiodotyro-
sine, I iodide, MIT monoiodotyrosine, Na sodium, Tg thy-
roglobulin, TPO thyroid peroxidase, T3 triiodothyronine, 
T4 thyroxine (Adapted from Pramyothin P, Leung AM, 
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(ROS) production [37, 38]. Iodide-induced ROS 
were reported to activate the phosphatidylinositol 
3-kinase (PI3K)/protein kinase B (Akt) pathway, 
which downregulates NIS function [39, 40].

Other thyroid mechanisms, such as dehaloge-
nases and pendrin might take part in the escape 
from the acute Wolff-Chaikoff effect. 
Dehalogenases are deiodinases that recycle iodide 
by iodotyrosines (MIT and DIT) and by inactive 
iodothyronines. The decrease of thyroidal iodide 
concentration may be partly due to reduction of 
iodide recycling by inhibition of thyroidal deha-
logenases induced by iodide excess [41]. Pendrin 
is a glycoprotein, located at the apical membrane 
of thyrocytes, and responsible for iodide efflux 
from the thyroid cell into the colloid. Iodine excess 
has been shown to increase pendrin expression and 
half-life, so that reduction of thyroidal iodine con-
centration might in part be due to the higher iodide 
efflux through pendrin [42, 43] (Fig. 2).

 Sources of Excess Iodine

 Iodinated Contrast Agents

One important cause of transient excess of iodine 
intake is the use of iodinated contrast agents, 

which has grown more rapidly than that of other 
physician-ordered services in the past decade [44]. 
CT scans have doubled from 2000 to 2012 [45].

Iodinated contrast agents or media (ICM) 
are used because iodine has a high atomic 
number so that it enhances visibility of organs 
or vessels in medical imaging by attenuating 
X-rays. In general, ICM can be high-osmolar 
or low/iso- osmolar [46]. Low-osmolar ICM are 
preferred because they have less side effects 
and they are generally better tolerated than 
high-osmolar ICM.  However, low-osmolar 
ICM have a higher iodine concentration than 
the high-osmolar [46, 47] (Table 3). The organ-
ically bound iodine contained in an ICM is 
only minimally free iodide. In an ICM contain-
ing 300  mg of iodine/mL, the upper limit of 
free iodide is generally below 50 μg/mL after 
production. Nevertheless, 100  mL of ICM, 
containing 50  μg/mL, provides 5000  μg free 
iodide, which is 20 times the recommended 
daily intake [48]. In addition, ICM molecules 
are deiodinated in the body, and free iodide is 
increased especially in patients with kidney 
dysfunction, although available studies have 
not shown an increased risk of thyroid dys-
function after ICM in patients with impaired 
renal function [46, 48].
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In iodine-sufficient areas, several studies dem-
onstrated an association between ICM exposure 
and development of thyroid dysfunction. Children 
without thyroid abnormalities had an increased 
risk of iodine-induced hypothyroidism after ICM 
exposure [49]. Similarly, larger studies reported 
that adults without known thyroid dysfunction, to 
whom ICM was administered for cardiac cathe-
terization and/or computed tomography, had an 
increased risk of both hypothyroidism and hyper-
thyroidism [50–52]. Moreover, thyroid disorders 
appear to be more frequently detected if ICM 
exposure is repeated [51], although other studies 
failed to demonstrate this result [52]. Slight and 
transient modifications of thyroid function were 
reported after ICM exposure: in iodine-deficient 
areas, TSH decreased after coronary angiography 
[53, 54] and computed tomography [55]. In con-
trast, in an iodine-sufficient area, a significant 
increase in serum TSH, up to 24 weeks after hys-
terosalpingography, was reported in euthyroid 
patients, while free T3 and free T4 concentrations 
remained stable [56].

 Metabolism of ICM
After ICM administration, UIC peaks after 1 
week and returns to baseline levels on average in 
5–6 weeks in euthyroid patients without kidney 
dysfunction, although some patients may require 
more than 2 months [57, 58]. Thyroidectomized 
patients require 4 weeks to normalize UIC after 
ICM [59–61].

Iodine introduced with contrast media com-
petes with radioactive iodine (RAI) for uptake by 
thyroid tissue, so that ICM can reduce the effi-
cacy of diagnostic or therapeutic RAI [48]. 
Therefore, the American Thyroid Association 
guidelines regarding management of patients 
with thyroid nodules and papillary thyroid cancer 
suggest performing RAI therapy and diagnostic 
scans 4–8 weeks after administration of 
ICM.  Moreover, a random urinary iodine (and 
creatinine) evaluation should be measured to 
ensure that iodine concentration is not high [62]. 
However, it is worth noting that biliary contrast 
media may circulate longer in the body, and an 
interval of 3–4 months between ICM administra-
tion and RAI may be appropriate [48].

 Thyroid Function Monitoring After ICM 
Administration
Overall, even though an increased risk of thyroid 
dysfunction and abnormal thyroid function tests 
after ICM exposure was reported in euthyroid 
patients, these are transient and the incidence is 
low [51]. Routine monitoring of thyroid function 
prior to ICM administration is not recommended 
[48, 55, 63]. Conversely, patients with risk fac-
tors (see below), in particular latent Graves’ dis-
ease and nodular goiter with thyroid autonomy 
that increase the risk of iodine-induced thyrotoxi-
cosis, require special attention. Guidelines from 
the Contrast Media Safety Committee of the 
European Society of Urogenital Radiology 

Table 3 Radiographic contrast media [47]

Name (trade name)
Iodine content 
mg/mL Osmolality (mOsm/kg H2O)

Ionic contrast media Diatrizoate (Hypaque 50) 300 1515—High
Metrizoate (Isopaque 370) 370 2100—High
Ioxaglate (Hexabrix) 320 600—Low
Iothalamate (Conray) 282 1400—High

Nonionic contrast media Iopamidol (Isovue 370) 370 796—Low
Iohexol (Omnipaque 350) 350 844—Low
Ioxilan  (Oxilan 350) 350 721—Low
Iodixanol (Visipaque 320) 320 290—Low
Ioversol (Optiray 350) 350 792—Low
Iopromide (Ultravist 370) 370 774—Low

Iodine-Induced Thyroid Dysfunction
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 contraindicate ICM in patients with overt hyper-
thyroidism and recommend close monitoring of 
thyroid function after ICM administration in 
patients at risk [48]. However, because many 
patients who developed iodine-induced thyroid 
dysfunction were not reported to have underlying 
risk factors, monitoring of thyroid function may 
also be appropriate in patients unable to tolerate 
thyroid dysfunction, such as patients with unsta-
ble cardiovascular disease [64].

 Special Circumstances

ICM Exposure In Utero
ICM administration in pregnant women can 
induce hypothyroidism in the fetus since iodine 
readily crosses the placenta [65]. Fetal iodine 
uptake and thyroid hormone synthesis is possible 
after 20 weeks of gestation, while up to 36 weeks 
of gestation, the fetal thyroid may not be able to 
escape from the acute Wolff-Chaikoff effect. The 
fetal thyroid is, therefore, at risk for iodine over-
load [46]. However, the available studies, which 
evaluated the adverse effects of ICM administra-
tion in pregnant women, failed to demonstrate a 
detrimental effect on neonatal thyroid function 
[66–69]. The ICMs currently administered are 
water soluble and rapidly cleared from the body. 
Moreover, they have a high molecular weight and 
cross the placenta less readily than smaller water- 
soluble molecules. Therefore, fetal exposure to 
ICM is transient [70]. Although the available 
results are reassuring, there is still little direct 
evidence. Guidelines of the Contrast Media 
Safety Committee of the European Society of 
Urogenital Radiology recommend screening all 
infants exposed to ICM during the first week, 
using a blood test [70]. The American College of 
Radiology suggests that the routine evaluation of 
all newborns for congenital hypothyroidism 
(measuring TSH levels at birth) is sufficient [47].

ICM Exposure in Infants
According to the Institute of Medicine, the rec-
ommended dietary adequate iodine intake for 
infants aged 0–6 months is 110  μg/day and in 
infants aged 6–12 months 130  μg/day [6] 
(Table  1). The tolerable upper intake level for 

iodine has not been determined in infants up to 
12 months because of the lack of data of adverse 
effects in this age group, while in children 1–3 
years of age, the upper limit is 200 μg/day [6] 
(Table  2). Infants may be exposed directly to 
ICM or breastfed by a mother who was exposed 
to ICM. ICM can be secreted into the milk, but 
minimally compared to the iodine administered 
because ICM has low affinity for binding to milk 
proteins and the duration of iodine exposure is 
short. Therefore, breastfeeding is considered safe 
after the mother has received ICM [47, 70].

In contrast, direct ICM exposure in infants was 
reported to increase the risk for iodine- induced 
hypothyroidism and of abnormal thyroid function 
[71, 72]. These risks are particularly higher in pre-
mature infants, compared to term infants. 
According to a meta-analysis, 8% of term infants 
and 18% of premature infants developed hypothy-
roidism after exposure to ICM [71]. Thyroid 
glands of premature infants may be immature and 
unable to escape from the acute Wolff-Chaikoff 
effect. Therefore, the risk of exposure should be 
minimized in this at-risk population, and thyroid 
function monitoring is recommended.

 Diet and Iodine Supplementation

 Excessive Dietary Iodine Intake
The diet is particularly important for achieving 
iodine sufficiency in a population. Some foods 
contain elevated concentration of iodine, in par-
ticular seaweed. Other foods contain variable 
amount of iodine and contribute to the total 
dietary iodine intake [73, 74].

The main sources of dietary iodine are 
[74–76]:

• Dairy products, because of the use of iodo-
phor disinfectants in pre- and post-milking 
teat dips and udder washes, and because of 
iodine supplementation of cattle feed.

• Grain or breads, since crops might grow in 
iodine-rich soils or iodine might be added as 
iodate bread conditioners (which may be 
added to prolong shelf life of the products), 
table salt, seaweed, or other seafood.

S. De Leo and L. E. Braverman
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In infants, it has been estimated that 90% of 
iodine intake is obtained from dairy products and 
baby foods (including infant formulas), unlike all 
other ages in whom iodine intake is predomi-
nantly from dairy products and grains [76].

Some populations ingest excessive amounts 
of seaweed, such as Japanese and those from 
other Asian countries, and their iodine intake 
may be excessive [77]. There are several differ-
ent types of seaweed, which contain various 
amounts of iodine ranging from a small amount 
to more than 8000  μg/g in laminaria [78]. 
Moreover, the iodine content of seaweed varies 
with food preparation and cooking methods. For 
example, about 99% of iodine contained in 
Kombu may be lost after 15  min of boiling in 
water, since iodine in edible seaweed is gener-
ally water soluble [77].

Daily consumption of seaweed in adults, even 
though for a short term (7–10 weeks), increases 
UIC and serum TSH levels [79, 80]. Therefore, 
populations at risk, such as lactating women, 
should avoid ingestion of seaweed. Korean lac-
tating women often use seaweed during the early 
postpartum period [81], and subclinical hypothy-
roidism has been described in their preterm 
infants because of the excessive iodine in their 
breast milk [82]. A large epidemiological study 
in postmenopausal women reported an associa-
tion between seaweed consumption and differen-
tiated thyroid cancer [83], although other studies 
failed to find this association [84].

 Iodine Supplementation
Iodine supplementation worldwide is fundamen-
tal to correct iodine deficiency [85]. Different 
methods are available, including salt iodization, 
fortification of bread with iodine, iodization of 
drinking and irrigation water, use of iodophors in 
the dairy industry, administration to cattle of 
iodine-fortified fodder, or administration to par-
ticular populations of iodized oil orally or intra-
muscularly [73, 86].

However, excessive iodine supplementation, 
for example, by salt iodization, may be responsi-
ble for iodine excess, as reported in some coun-
tries [87–89]. In general, iodine supplementation 
confers benefits that outweigh the risks of iodine 

excess, but it should be monitored to avoid excess 
while ensuring adequate iodine intake.

Salt iodization is mandatory in approximately 
120 countries, while in others it is voluntary, such 
as the United States [90]. In some countries, the 
excessive iodization of salt was responsible for 
iodine-induced thyroid dysfunction, especially 
goiter and thyrotoxicosis, more common if other 
source of iodine were already available in the diet 
[91, 92].

After universal salt iodization, even though an 
excessive iodine level is not reached, the sudden 
exposure to increased iodine intake might be 
responsible for higher rates of thyroid dysfunc-
tion. In Denmark, the DanThyr program was 
developed to monitor iodine intake and thyroid 
diseases after the introduction of mandatory 
iodine fortification of bread salt and household 
salt [93]. Median UIC significantly increased 
from 61 μg/L pre-fortification to 101 μg/L 4–5 
years after mandatory iodization [94]. In this 
population, after iodine fortification, increased 
serum TSH concentrations were reported, as was 
the prevalence of mild hypothyroidism, with a 
decrease of overt hypothyroidism. The preva-
lence of hyperthyroidism, after an earlier 
increase, subsequently declined [95]. Changes in 
thyroid gland structure were also described; there 
was an increased prevalence of multinodularity, 
while one-third of single nodules disappeared 
[96]. Finally, a marked increase in thyroid cancer 
incidence was reported, which was almost exclu-
sively explained by an increase in papillary thy-
roid carcinoma [97]. This finding was also 
confirmed in studies conducted in other countries 
after universal salt iodization [98]. However, the 
increased incidence of thyroid cancer is partly 
explained by overdiagnosis, due to improvements 
in diagnostic and screening activities in the last 
decades [99].

Some studies reported an excessive iodine 
intake due to drinking water. Endemic goiter was 
reported in these populations, both in adults [100] 
and in children [4, 101, 102]. In lactating women, 
subclinical hypothyroidism was demonstrated to 
be significantly more prevalent in women with 
iodine excess compared with adequate iodine 
intake. Thyroid autoimmunity was also more fre-
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quent, although not statistically significant [103]. 
Similarly, Saharawi lactating women with exces-
sive iodine intake due to increased iodine content 
in the drinking water had high rates of thyroid 
dysfunction, up to 33%, including hypothyroid-
ism, hyperthyroidism, and thyroid autoimmunity 
[104]. These thyroid abnormalities persisted after 
3 years of follow-up [105]. Breast milk iodine 
concentration was high and correlated well with 
thyroid dysfunction in these women [104–106]. 
Other regions of the world in which high iodine 
in groundwater has been reported to be responsi-
ble for iodine excess include some areas of China 
[107–109], Somali [110], and probably in Somali 
refugees in Kenya [111]. A study conducted in 
China defined a safe upper limit of iodine con-
tained in water to be 100 μg/L [112].

 Nutritional Supplements

Multivitamins might be a source of excess iodine 
because of administration errors or elevated 
iodine content of the supplements. Multivitamins 
contain iodine typically as potassium iodide 
(which is the preferred form) and kelp. In the 
United States, it was reported that iodine content 
of multivitamins containing kelp was frequently 
discordant with the values on their labels and 
ranged from 33 to 610 μg per capsule [113].

Administration of excessive doses of iodine 
supplements has been shown to induce thyroid 
dysfunction. In a double-blind prospective trial, 
euthyroid adults were randomized to an interven-
tion group receiving iodine supplements and to a 
placebo control group. Participants who received 
excessive amounts of iodine developed subclini-
cal hypothyroidism after 4 weeks, and the per-
centage varied between 5% in those who received 
400 μg/daily and 15–45% in those who received 
500–2000 μg/daily. Therefore, the authors sug-
gested that the total daily iodine intake should not 
exceed 800 μg/daily [114]. Similarly, in a ran-
domized controlled trial, patients receiving ele-
vated doses of iodine (>50 mg daily) for 8 weeks 
significantly increased serum TSH concentra-
tions, 25% of participants developed hypothy-
roidism and 7% hyperthyroidism [115].

Moreover, congenital hypothyroidism and 
neonatal goiter were reported in infants whose 
mothers had taken iodine supplements or herbal 
iodine-containing medicine during pregnancy 
[116, 117]. In one report, congenital hypothy-
roidism was reported in newborns following 
ingestion of Iodoral daily, an iodine supplement 
containing 12.5 mg of iodine [118].

Because of the demonstrated adverse effects of 
excessive doses of iodine, the ATA Public Health 
Committee has advised against the administration 
of iodine and kelp supplements containing more 
than 500 μg iodine daily for children and adults 
and during pregnancy and lactation [119].

 Iodine-Rich Medications and Other 
Sources

One of the most important causes of iodine- 
induced thyroid dysfunction is amiodarone (see 
chapter “Pathology of the Thyroid: A Review”). 
Other sources of iodine include iodine- containing 
antiseptics, such as those containing povidone- 
iodine. Povidone-iodine is a water-soluble com-
plex and, in the form of a 10% topical solution, 
contains 10 mg of iodine per milliliter. Povidone- 
iodine can be absorbed by the skin [120], and 
iodine excess was demonstrated by surgical staff 
after scrubbing with iodine-containing solutions 
[121]. Iodine is also employed as a preoperative 
antiseptic in many surgical settings [122–125], 
for vaginal disinfection [126] or disinfection 
before catheterization [127]. Iodine absorption is 
higher in cases of skin damage or thinner skin, 
such as in infants [128], and it can alter thyroid 
function, increasing serum TSH concentrations 
in exposed patients. Preterm infants are at a par-
ticular higher risk of developing hypothyroidism, 
because of the immaturity of the thyroid gland 
and inability to escape from the acute Wolff- 
Chaikoff effect [129–131]. Some alternatives to 
povidone-iodine are the alcohol-based cleansers, 
such as chlorhexidine, which was demonstrated 
to be superior in preventing surgical-site  infection 
compared with cleansing with povidone- iodine 
[132]. The adverse effects with the two antisep-
tics seem to occur in equal proportion [132], 
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although there are still concerns regarding the use 
of alcohol-based disinfectants in premature 
infants because of the increased risk of systemic 
absorption and skin irritation or burns.

Finally, potential sources of excess iodine 
exposure are mouthwashes [133], expectorants, 
food preservatives, and water when it is enriched 
with iodine to avoid microbial contamination 
[134]. In American Peace Corp workers in Niger, 
it was reported that exposure to iodine-enriched 
water was responsible for iodine excess and thy-
roid dysfunction. After removal of the iodine 
exposure source, serum iodine levels signifi-
cantly decreased and thyroid abnormalities 
resolved [134].

 Iodine-Induced Hypothyroidism

 Pathogenesis and Risk Factors

Failure to escape from the acute Wolff-Chaikoff 
effect results in iodine-induced hypothyroidism. 
Hypothyroidism might also be a result of thyroid 
autoimmunity induced by iodine excess [135] or 
because of direct toxic effect of iodine on thyro-
cytes [136].

Although iodine-induced hypothyroidism 
may develop in subjects without apparent risk 
factors, others may develop hypothyroidism 

because of underlying thyroid abnormalities 
or other risk factors [29, 73, 137, 138] 
(Table 4).

 Diagnosis

Patients with hypothyroidism induced by iodine 
excess commonly report symptoms similar to 
those of primary hypothyroidism. Physical exam-
ination may reveal a goiter, and patients with 
Hashimoto thyroiditis are at increased risk of 
developing iodine-induced hypothyroidism.

The diagnosis is based on the finding of 
increased serum TSH concentrations. The serum 
thyroid hormones, free and total thyroxine (T4) or 
the free T4 index and serum total and free triiodo-
thyronine (T3), may be low or normal. Overt 
hypothyroidism is characterized by a high serum 
TSH concentration and low serum thyroid hor-
mone concentrations, while subclinical hypothy-
roidism is defined as a high TSH and normal 
serum thyroid hormone concentrations.

The physician should obtain a history of 
excess iodine ingestion or administration, includ-
ing all the possible sources of excess iodine.

Subsequent evaluation is useful to ascertain 
the possible presence of underlying thyroid dis-
ease. Serum TPO and thyroglobulin antibodies 
are present in patients with underlying thyroid 

Table 4 Risk factors for iodine-induced hypothyroidism

Underlying thyroid dysfunction Hashimoto thyroiditis
Euthyroid Graves’ disease previously treated with RAI, surgery, or ATD
History of postpartum thyroiditis
History of subacute (painful) thyroiditis
History of type 2 amiodarone- induced thyrotoxicosis
Post-hemithyroidectomy for benign nodules
Thyroid dysfunction induced by treatment with IFN-α

Nonthyroidal illness Thalassemia major with repeated blood transfusions
Chronic renal diseases (in particular during dialysis treatment)
Anorexia nervosa

Synergism with other goitrogens Lithium, sulfonamides, sulfonylureas
Healthy population at risk Transplacental transfer of iodine to fetus

Neonates and infants (in particular preterm)
Elderly (>65 years old)

RAI radioactive iodine, ATD antithyroid drug, IFN-α interferon-α
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autoimmunity. Thyroid ultrasound may identify 
an enlarged gland with increased blood flow. A 
careful history of previous thyroid dysfunction 
and concomitant treatment with goitrogen drugs 
and amiodarone should be obtained.

The thyroid radioactive iodine uptake is not 
useful since it is almost always low due to the 
excess iodine, but an elevated uptake has been 
reported [139, 140].

 Management and Treatment

Iodine-induced hypothyroidism is typically tran-
sient. Euthyroidism is usually restored in a few 
weeks (2–8 weeks) after iodine withdrawal. 
However, some compounds may require more 
time if the iodine-containing substances respon-
sible for iodine excess are not rapidly eliminated.

Levothyroxine replacement is not generally 
necessary in patients with iodine-induced hypo-
thyroidism. However, if hypothyroidism persists, 
is severe, or the iodine-containing compounds 
cannot be withdrawn, treatment of the hypothy-
roidism with levothyroxine replacement therapy 
is recommended.

Patients who developed transient iodine- 
induced hypothyroidism require subsequent fol-
low- up with periodic monitoring of serum TSH 
and thyroid hormone concentrations because of the 
underlying thyroid disease predisposing to hypo-
thyroidism [29]. These patients may be at increased 
risk of developing permanent hypothyroidism.

 Iodine-Induced Hyperthyroidism

 Pathogenesis and Risk Factors

Iodine-induced hyperthyroidism usually devel-
ops in patients who have underlying autonomy of 
the thyroid, which can be in small foci or nodules 
or can be diffuse [141]. The iodine load acts as a 
substrate for the thyroid to produce excess 
amount of thyroid hormones. This response is 
called the Jod-Basedow phenomenon, in recogni-
tion of the German physician Von Basedow who 
first described iodine-induced hyperthyroidism.

Patients at increased risk of developing 
iodine- induced hyperthyroidism are those with 
(1) nontoxic nodular or diffuse goiter, especially 
in elderly patients, (2) latent Graves’ disease, 
and (3) long-standing iodine deficiency. 
However, iodine-induced hyperthyroidism can 
also develop in patients with an apparent normal 
thyroid gland [73, 142].

 Diagnosis

Clinical presentation is similar to that of other 
causes of thyrotoxicosis, with the signs and 
symptoms due to excess circulating thyroid hor-
mones. The physical examination may reveal a 
goiter, often multinodular.

The diagnosis is based on the finding of sup-
pressed levels of serum TSH, while serum thy-
roid hormone concentrations can be high (overt 
thyrotoxicosis) or normal (subclinical thyrotoxi-
cosis). Iodine-induced hyperthyroidism should 
be distinguished from other causes of 
thyrotoxicosis.

A history of iodine ingestion or administration 
should be ascertained, taking into account that 
iodine exposure might have occurred weeks or even 
months before development of thyrotoxicosis.

Underlying thyroid disease should be 
excluded, such as nodular goiter and Graves’ 
disease. Radioactive iodine uptake might be use-
ful in some circumstances, such as confirming 
the diagnosis of Graves’ disease in cases of 
doubt or for differentiating functioning from 
nonfunctioning nodules that might require fine-
needle aspiration biopsy. However, the radioac-
tive iodine uptake in a patient with iodine-induced 
hyperthyroidism is not reliable, since the uptake 
is typically low because of dilution of the radio-
iodine tracer and a decrease in the transport of 
iodine from blood to thyroid. However, the 
uptake is generally not as low as detected in 
patients with subacute thyroiditis or ectopic 
hyperthyroidism, where the uptake is typically 
lower than 1% [143]. Clinicians who need to 
perform a thyroid radioactive iodine uptake 
should await at least 4 weeks after iodine expo-
sure, so that iodine is cleared from the body [48], 
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although some organic iodine products may take 
far longer to be cleared.

If the diagnosis of iodine-induced hyperthy-
roidism is likely, but a source of iodine excess 
cannot be determined, a 24 h urinary iodine mea-
surement can confirm the diagnosis, especially if 
results are greater than 1000 μg/day [144].

 Management and Treatment

Iodine-induced hyperthyroidism is usually tran-
sient lasting 1 to 18 months after the source of 
iodine is discontinued. In mild hyperthyroidism, 
patients can be treated with β-adrenergic block-
ing agents alone, after having excluded contrain-
dications to these drugs, such as heart failure and 
asthma. β-blockers may decrease the peripheral 
effects of excess thyroid hormones and, in high 
doses, slightly decrease T4 to T3 conversion [145].

All β-blockers are efficacious. An initial dose 
of atenolol 25–50 mg daily is usually adequate. 
Subsequently, β-blockers should be titrated and 
discontinued once euthyroidism is restored.

In case of severe or persistent hyperthyroid-
ism, patients might require treatment with anti-
thyroid drugs. Antithyroid drugs prevent the 
synthesis of new thyroid hormones, and propyl-
thiouracil in large doses, but not methimazole, 
slightly decreases T4 to T3 conversion. However, 
methimazole is the preferred drug, except during 
the first trimester of pregnancy or in patients with 
adverse reactions to methimazole [146].

Doses are generally higher than those gener-
ally used, since patients with iodine-induced 
hyperthyroidism may have a relative resistance to 
antithyroid drugs. Therefore, the American 
Thyroid Association (ATA) and American 
Association of Clinical Endocrinologists (AACE) 
guidelines for hyperthyroidism and thyrotoxico-
sis recommend methimazole at a dose of 
20–40 mg daily for treatment of iodine-induced 
hyperthyroidism [145].

After initiation of therapy, thyroid function 
tests should be checked after 4–6 weeks and sub-
sequently every 2–3 months. Antithyroid drugs 
can be tapered and discontinued once euthyroid-
ism is achieved. After resolution of the acute epi-

sode, clinicians should treat the underlying 
thyroid disease, if needed.

In patients with underlying Graves’ disease, 
treatment with antithyroid drugs should be con-
tinued for 12–18 months to reduce the risk of 
relapse of hyperthyroidism. If hyperthyroidism 
returns, without exposure to iodine excess, defin-
itive treatment with radioactive iodine or thyroid-
ectomy is recommended [146]. In patients with 
nodular goiter, definitive treatment may not be 
necessary. However, because of the high risk of 
relapse of hyperthyroidism, if patients with nodu-
lar goiter are exposed again to iodine, definitive 
treatment with radioactive iodine or thyroidec-
tomy can be considered. Radioactive treatment 
should be performed at least 4–8 weeks after 
withdrawal of iodine, if the radioactive iodine is 
high normal or elevated [48].

 Prevention and Prophylaxis

When the administration of iodine cannot be 
avoided, it would be helpful to predict which 
patients will develop overt thyroid dysfunction. 
Some studies attempted to assess this risk by per-
forming a thyroid scintigraphy using 99mTc 
pertechnetate. Technetium thyroid uptake is able 
to measure the amount of functional thyroid 
autonomous tissue: the higher the uptake, the 
more the risk of hyperthyroidism is increased, in 
patients with a suppressed serum TSH.  Iodine 
administration, such as ICM, is considered safe 
when the technetium thyroid uptake is less than 
1% [147]. However, sensitive TSH assays cur-
rently available and the cost of scintigraphy 
resulted in the test being performed only 
occasionally.

Some regimens were attempted to decrease 
the risk of thyrotoxicosis after ICM administra-
tion in high-risk patients. Prophylactic drugs that 
have been proposed are methimazole, which 
blocks thyroid hormone synthesis, and perchlo-
rate, which competitively inhibits the sodium- 
iodine symporter. These drugs should be used 
together from the day before ICM administration 
and continued for 14 days [148]. However, this 
prophylaxis method, even though it has a protec-
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tive effect against iodine excess, does not com-
pletely prevent thyrotoxicosis. Moreover, 
perchlorate is not available in all countries, such 
as the United States, and antithyroid drugs have 
some risk that would limit their routine use [64]. 
In conclusion, prophylactic treatment should not 
be routinely used, while limited use may be con-
sidered for selected high-risk patients.
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 Introduction

The thyroid may be involved by a variety of dis-
ease processes that may be neoplastic and non-
neoplastic as well as focal or diffuse. This chapter 
will provide a brief overview and update of thy-
roid pathology.

 Processes that Diffusely Involve 
the Thyroid

The most common clinically and histopathologi-
cally encountered thyroid lesions are autoim-
mune in origin including Graves’ disease or 
diffuse toxic goiter and chronic lymphocytic thy-
roiditis particularly Hashimoto thyroiditis. These 
processes usually produce thyroid enlargement 
without discrete nodules and involve the entire 
thyroid uniformly. Both entities are morphologi-
cally characterized by lymphocytic or lympho-
plasmacytic infiltration of the gland with reactive 
changes in the follicular epithelium. Care must 
be rendered not to confuse these reactive follicu-
lar epithelial changes with those seen in papillary 
thyroid carcinoma [1].

Recently, certain diffuse fibrosing lesions of 
the thyroid including fibrosing Hashimoto’s thy-
roiditis and Riedel’s thyroiditis have been shown 
to be part of the spectrum of IgG4-related dis-
eases [2]. In this condition there is extensive 
fibrosis and a predominant plasma cell infiltra-
tion of the gland. Special staining techniques 
have shown that the majority of the plasma cells 
in these conditions stain for IgG4 [3, 4]. Many of 
the patients affected by this thyroid disease can 
have systemic manifestations of hyper-IgG4 pro-
duction including involvement of the retroperito-
neum, the pancreas, the kidney, the salivary 
glands, and the mediastinum [5].

 Nodular Thyroid Lesions

Thyroid nodules are very common and vary in 
their incidence in different parts of the world. In 
endemic goiter regions, the frequency of thyroid 
nodules may be as high as 25%, whereas in non-
iodine-deficient areas, 4–7% of the population 
has palpable thyroid nodules [6]. However, with 
the increasing use of ultrasound as screening 
tool, thyroid nodules can be encountered in up to 
60% of the population [7–10].

Nodular thyroid disease comprises the major-
ity of lesions which are examined by patholo-
gists. Thyroid nodules are initially examined 
either by fine-needle aspiration (FNA) biopsy or 
by large-core needle biopsies [11–13]. FNA 
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 samples are often obtained under radiologic 
guidance, and the pathology can be classified 
according to various schemes. In the United 
States, the most common classification for thy-
roid FNA cytology is the “The Bethesda System 
for Reporting Thyroid Cytology (TBSRTC)” 
[14]; see Table 1. This system not only attempts 
to classify the nature of the biopsied nodule but 
also assigns a risk level for malignancy. FNA is 
most useful for identifying benign nodules (i.e., 
hyperplastic nodules in multinodular goiter), 
papillary thyroid carcinoma, and medullary thy-
roid carcinoma [15]. However, FNA has limita-
tions for diagnosing follicular or oncocytic 
(Hürthle cell) lesions since due to the nature of 
the specimen, it cannot assess both capsular and 
angioinvasion, the two criteria to determine 
malignancy in follicular thyroid lesions. 
However, molecular analysis of thyroid FNA 
cytology is becoming a useful ancillary tool for 
predicting malignancy in thyroid nodules. 
Numerous recent studies have elucidated the 
value of molecular testing of FNA specimens to 
further characterize the nature of the nodule. 
Excellent negative and positive predictive values 
are reported for these analyses [16–18].

Core needle biopsies have become more 
recently utilized for analyzing thyroid nodules. 
Excellent results can be obtained for diffuse thy-
roid diseases, benign nodular conditions, and 
papillary thyroid carcinomas [19]. However these 
types of biopsies suffer from the same issues as to 

FNA in that follicular nodules that have a monot-
onous and cellular pattern require evaluation of 
the lesional capsule or edge in order to define 
benign from malignant lesions [20, 21]. However, 
similar to FNA, molecular analysis may be useful 
to determine malignancy risk in many, but not all, 
of these biopsy samples.

 Hyperplastic/Adenomatoid Nodule

The most common nodule produced by the thy-
roid gland is the hyperplastic (also known as 
adenomatous, adenomatoid, or follicular nodule). 
These lesions most commonly occur in back-
ground of multinodular goiter. Such lesions 
which may be solitary, but most often are multi-
ple, are composed of follicles which are varied in 
size and shape and amount of luminal colloid. 
Some hyperplastic nodules show papillary 
growth with edematous “pseudo-papillae” lack-
ing fibrovascular core. These papillae are lined 
by small-sized, dark polarized nuclei and are 
often seen focally in an otherwise recognizable 
adenomatous follicular nodule [1, 15, 22].

Hyperplastic lesions are usually well circum-
scribed and unencapsulated (although rarely, thin 
partial capsulation may be evident). It is not 
uncommon to see scattered lymphocytes, hemor-
rhage, hemosiderin, and varying degrees of fibro-
sis in hyperplastic nodules. In hyperplastic 
nodules that have undergone biopsy, an addi-
tional assortment of inflammatory changes may 
be seen including granulomatous reaction, calci-
fication, and squamous metaplasia of the follicu-
lar epithelium. Rarely, along biopsy needle tracts 
nuclear changes reminiscent of those seen in pap-
illary carcinoma nuclei may be found [23]. In 
addition, FNA may result in lesion infarction 
which is more commonly seen in lesions biop-
sied with large gauge needles (18G or less).

A very rare probably familial entity is so-
called multiple papilloid nodules. This condition 
is characterized by a multinodular gland in which 
the nodules are circumscribed and cystic and 
show papillary ingrowth into the cyst by very thin 
papillae; these papillae are not edematous and are 
different from the papillary hyperplastic nodule 

Table 1 The Bethesda system for reporting thyroid cyto-
pathology (TBSRTC): diagnostic categories and implied 
risk of malignancy

Diagnostic category ROM(%)a ROM(%)b

Nondiagnostic or unsatisfactory 1–4 11–26
Benign 0–3 4–9
Atypia of undetermined 
significance or follicular lesion of 
undetermined significance

~5–15 19–38

Follicular neoplasm or suspicious 
for a follicular neoplasm

15–30 26–40

Suspicious for malignancy 60–75 50–79
Malignant 97–99 98–99

ROM risk of malignancy
a2007-calculated based on available literature
bCalculated based on current literature
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(see below). The genetics of this condition is not 
yet known; a few affected patients have devel-
oped papillary thyroid carcinoma [24].

The FNA specimens form nodular goiter can 
range in cellularity from specimen barely meet-
ing the criteria for cell adequacy to those speci-
mens containing large numbers of cells which 
can be mistaken for a neoplasm. The cytology 
specimen from a goitrous nodule stained with 
Romanowsky stain/Diff-Quik® stain shows abun-
dant watery colloid, which usually appears blu-
ish-pink magenta in color and shows a “chicken 
wire” artifact due to air-drying. The follicular 
cells appear small and round to oval in shape with 
dark nuclei and are arranged in monolayer sheets, 
groups with follicle formation, or as single cells. 
In some cases of nodular goiter especially the 
ones with cystic changes, the follicular cell group 
may assume spindle shape and appear similar to 
cells growing in “tissue culture.” Macrophages, 
usually filled with hemosiderin granules are also 
noted; however, their number depends upon the 
presence or absence of degenerative changes or a 
cystic component [15].

The FNA specimens of hyperplastic/adeno-
matoid nodules are usually more cellular and can 
be mistaken for a follicular neoplasm (Figs. 1 and 
2). The papillary hyperplastic nodules besides 

being cellular can show papillary formations 
with transgressing vessels; however, diagnostic 
nuclear features of papillary thyroid carcinoma 
are not seen [22, 25].

 Follicular Adenoma

The most common type of benign neoplasm of 
the thyroid is the follicular adenoma. Such lesions 
are characterized by a capsule (often thin, but 
complete) around the lesion; the cytology of the 
lesion is monotonous, often cellular and com-
posed of microfollicles, macrofollicles, or tra-
beculae (Fig.  3). Examination of the capsule 
shows no evidence of invasion. In addition vascu-
lar (angio)invasion is not seen (Figs.  4 and 5). 
Follicular adenomas can vary in size from sub-
centimeter to several centimeters and are often 
solitary; however multiple adenomas may arise 
in glands with multinodular goiter or various 
types of thyroiditis [26–28].

In adenomas that have undergone preoperative 
biopsy, changes related to the biopsy procedure 
may be identified. These vary with the time 
between the biopsy and the surgical excision of 
the nodule. Such changes include hemorrhage, 
hemosiderin, reactive nuclear changes (which 

Fig. 1 Fine-needle 
aspiration specimen 
from a hyperplastic 
nodule arising in nodular 
goiter, showing watery 
colloid in the 
background with small 
groups of benign 
follicular cells (air-dried 
Diff-Quik stain)
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may mimic the nuclear changes of papillary thy-
roid carcinoma), granulomatous/histiocytic and/
or lymphocytic reaction, linear fibrosis, calcifica-
tion, and epithelial (usually squamous) metapla-
sia. In some examples a biopsy needle tract is 
identified and may extend into and through the 
lesion’s capsule mimicking invasion. Microscopic 
examination of these areas will show the pres-

ence of inflammatory tissue and hemosiderin 
admixed with lesional follicular cells. The geo-
graphic linear configuration of the biopsy tract at 
low power magnification is a helpful clue that 
one is dealing with a post biopsy artifact and not 
true invasive growth. On occasion, partial or 
complete infarction of an adenoma may occur 
after biopsy [23]. This is most commonly seen 

Fig. 2 The 
corresponding alcohol-
fixed smear shows the 
same features; notice the 
follicular cells have 
small dark nuclei and 
lack nuclear features of 
papillary thyroid 
carcinoma 
(Papanicolaou stain)

Fig. 3 Follicular 
neoplasm. Fine-needle 
aspiration specimen of a 
solid hypoechoic nodule 
showing a monotonous 
population of follicular 
cells arranged in 
cohesive follicular 
groups with nuclear 
overlapping and 
crowding. No nuclear 
features of PTC are seen
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with oncocytic (usually Hürthle cell) lesions 
biopsied with larger than 18-guage needles.

 Special Subtypes of Adenoma

 Oncocytic or Hürthle Cell Adenoma

This is essentially a follicular adenoma in which 
at least 75% (usually 100%) of the cells compris-
ing the lesion are eosinophilic in their cytoplasm 

which may be granular. The nuclei of these cells 
are large and rounded and show prominent cen-
trally located nucleoli. Some of these tumors 
show the cytology of unequivocal Hürthle cells, 
whereas others show just eosinophilic cytoplasm. 
These lesions are surrounded by a complete cap-
sule, and as long as there is no invasion of the 
capsule of blood vessels, they behave in a benign 
fashion [29–31].

So-called papillary hyperplastic nodules 
(“papillary adenoma,” follicular adenoma with 

Fig. 4 Follicular 
adenoma with thin 
capsule and 
macrofollicular growth 
pattern

Fig. 5 Same lesion as 
Fig. 1. Note smooth 
capsular edge without 
invasion
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exuberant papillary hyperplasia) (Figs. 6 and 7) 
are clonal proliferations and therefore neoplasms. 
They are characterized by encapsulation, are 
often centrally cystic, and show papillary prolif-
erations often with edematous papillae contain-
ing small benign follicles. The nuclei are round 
dark and polarized often to the base of the prolif-
erating cells. The great majority of such lesions 
occur in young women around the age of men-
arche; a small minority about 10–15% are associ-
ated with hyperthyroidism, whereas another 25 
or 30% show abnormal thyroid function espe-
cially low TSH [22, 25].

Fine-needle aspiration biopsy cannot distin-
guish between follicular adenoma and carcinoma 
(same applies to oncocytic lesions); both demon-
strate similar cytomorphology and most are diag-
nosed as follicular neoplasm (Figs.  8 and 9). 
Several authors have shown that, at most, 20–30% 
of cases diagnosed as “follicular neoplasm” are 
diagnosed as malignant on histological examina-
tion, and the rest are either follicular adenomas or 
cellular adenomatoid nodules, i.e., benign [32, 
33]. Interestingly half of the malignant cases are 
diagnosed as follicular variant of papillary thy-
roid carcinoma [33]. However, these rates will 
change as reclassification of noninvasive follicu-
lar variant of papillary thyroid carcinoma as neo-

plasm rather than carcinoma [34, 35]. FNA 
specimens obtained from an oncocytic follicular 
neoplasm usually demonstrate a monotonous 
population of oncocytic cells arranged in cohe-
sive groups/tissue fragments and as single cells. 
Random nuclear atypia in the form of nuclear 
enlargement, multinucleation, cellular pleomor-
phism, and prominent “cherry red” nucleoli is 
commonly observed in oncocytic follicular 
lesions. Intranuclear grooves are common in non-
papillary oncocytic follicular lesions; however, 
the nuclei maintain a round shape with prominent 
nucleoli, and other major diagnostic features of 
papillary carcinoma are not seen. It has been 
shown that the presence of intra-cytoplasmic 
lumens and transgressing vessels is common in 
FNA specimens of neoplastic oncocytic follicular 
lesions [36].

 Hyalinizing Trabecular Tumor (HTT)

This controversial lesion, originally described 
by Dr. Carney and his colleagues from the 
Mayo Clinic as “hyalinizing trabecular ade-
noma,” is a circumscribed but nonencapsu-
lated tumor  comprised of trabeculae of 
follicular cells containing nuclei with exag-

Fig. 6 Papillary 
hyperplastic nodule. 
Note polarized even 
nuclei
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gerated features of papillary carcinoma (elon-
gation, intranuclear inclusions, intranuclear 
grooves) (Figs. 10 and 11). The stroma inter-
vening between and among the trabeculae is 
fibrous and hyalinizing [37]. Within the tumor 
cells in about 60% of cases, there are so-called 
yellow bodies presumably a degenerative 
change. In addition, the cytoplasm of the 

tumor cells may stain with antibodies to 
MIB–1 (but the conditions of this stain are 
unusual for a positive reaction to take place) 
[38]. These lesions may be multifocal; they 
may occur in the background of chronic lym-
phocytic thyroiditis; and at least 30% of them 
will show a papillary thyroid carcinoma in the 
background thyroid.

Fig. 7 Same case as 
Fig. 3. Upper left shows 
cystic area. Nuclear 
polarization is well 
illustrated

Fig. 8 Follicular 
neoplasm with oncocytic 
features. Monotonous 
population of cells with 
eosinophilic cytoplasm 
and round nuclei 
(Diff-Quik air-dried 
smear)
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The controversy with this lesion is whether or 
not they represent an unusual variant of papillary 
carcinoma although there have been only rare 
reports of metastases from these lesions. (In the 
opinion of the current authors, the examples of 
HTT with evidence of metastases are not actually 
HTT but are actually papillary thyroid carcinoma 

and are not classic hyalinizing trabecular tumors.) 
Molecular analysis has shown that classic HTT 
does show rearrangements in ret proto-oncogene 
but no mutations in Braf 600Ve [39]. In deference 
to the controversy, the World Health Organization 
classification in 2004 [40] termed these lesions 
“hyalinizing trabecular tumor” rather than 

Fig. 9 Same case as 
Fig. 8. The 
corresponding alcohol-
fixed smear shows the 
same features and 
prominent nucleoli 
(Papanicolaou stain)

Fig. 10 Hyalinizing 
trabecular tumor. Note 
trabecular growth 
pattern and large 
irregular nuclei
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 “hyalinizing trabecular adenoma” or “hyaliniz-
ing trabecular carcinoma.”

The fine-needle aspirates of HTT show cohe-
sive lesional cells with easily identifiable well-
formed intranuclear inclusions and grooves 
embedded or closely associated with an acellular 
matrix. These are often diagnosed as suspicious 
for or compatible with papillary thyroid carci-
noma due to the presence of diagnostic nuclear 
features [41, 42].

 Malignant Lesions of the Thyroid: 
Carcinomas

The vast majority of malignancies of the thyroid 
gland are carcinomas. Most of these are of fol-
licular cell derivation, and as seen in Table 2, they 
comprise a variety of histologic patterns with 
variable prognostic risks. These will be discussed 
below.

 Papillary Thyroid Carcinoma

Papillary thyroid carcinoma (PTC) is the most 
common malignancy of the thyroid and of the 
entire human endocrine system. Common and 

uncommon histological variants comprise about 
80–85% of thyroid cancers [43–45].

Classical papillary carcinoma can present at 
any size including minute microcarcinomas (<0.1 

Fig. 11 Higher power 
of Fig. 5. Note large 
nuclei with intranuclear 
inclusions

Table 2 Carcinomas of the thyroid of follicular 
derivation

Considered “low risk”
  Encapsulated, non-invasive, papillary carcinoma, 

including follicular variant
  Classic papillary carcinoma
  Warthin variant papillary carcinoma
  Spindle cell variant papillary carcinoma
  Papillary micro-carcinoma
  Macrofollicular variant papillary carcinoma
  Minimally invasive (capsule only) follicular 

carcinoma
Considered “intermediate risk”
  Diffuse sclerosis variant papillary carcinoma
  Solid variant papillary carcinoma
  Hürthle cell carcinoma, minimally invasive
  Tall cell variant papillary carcinoma
  Columnar cell variant papillary carcinoma
  Invasive follicular variant papillary carcinoma
Considered “high risk”
  Angioinvasive follicular carcinoma
  Angioinvasive Hürthle cell carcinoma
  Hobnail variant papillary carcinoma (especially 

associated with micropapillary carcinoma)
  Poorly differentiated carcinoma
  Anaplastic (undifferentiated) carcinoma
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cm) and ranging up to several centimeters. In the 
modern era, most clinically evident carcinomas 
are in the 1.5–3 cm range [43, 45].

Grossly, PTC of usual or classic type can 
appear as a circumscribed (rarely encapsulated) 
nodule or more commonly as a firm infiltrative 
tumor mass. Some PTCs show calcification and 
even ossification. In a few lesions, cyst formation 
may be present and in fact PTC may be entirely 
cystic [46, 47].

Microscopically, PTC is comprised of papillae 
and follicles with a wide variation in which pat-
tern predominates. In those with a majority papil-
lary pattern, the papillae are composed of 
fibrovascular cores lined by 1–2 layers of tumor 
cells (Figs.  12, 13, 14, 15, and 16). The cells 
themselves show amphophilic cytoplasm (rarely 
this is clear) and the characteristic nuclei (Fig. 17) 
which allow for both cytologic and histologic 
diagnosis of this entity. The nuclear features 
(listed in Table  3) include enlargement, oval 
shape, intranuclear grooves and intranuclear 
cytoplasmic inclusions as well as thick nuclear 
membranes and eccentrically located nucleoli. (It 
is important to note that some of these nuclear 
features may be seen in non-papillary thyroid 
tumors (benign and malignant) and in reactive or 
reparative sites; however, the constellation of 

nuclear features is characteristic of papillary car-
cinoma [47, 48].)

The majority of PTCs show an infiltrative pat-
tern of growth and invade the surrounding thy-
roid tissue. Lymphatic invasion is commonly 
noted. An important diagnostic feature, the psam-
moma body which represents a lamellated calci-
fication produced by gradual infarction of a 
papilla, is commonly seen within the tumor 
stroma and within lymphatics (Fig. 18). The pres-
ence of psammoma bodies in lymphatics in areas 
of thyroid removed from the main tumor mass 
may be associated with regional node metastases. 
The presence of only psammoma bodies in a 
neck lymph node is diagnostic of metastatic pap-
illary carcinoma even if no viable tumor cells are 
present [49–51]. In addition, sometimes the pri-
mary tumor will consist solely of a fibrous scar 
with occasional psammoma bodies within it; 
such lesions represent totally involuted papillary 
carcinoma.

The concept of multifocality in PTC has cre-
ated some controversy. The main question is 
whether the tumor in these cases reflects true 
multiclonal origin in several sites in the thyroid 
or multiple foci of intraglandular intralymphatic 
spread [52–55]. Evidence suggests that both may 

Fig. 12 Papillary 
thyroid carcinoma. A 
case of papillary 
carcinoma diagnosed on 
fine-needle aspiration 
shows papillary 
formation (Papanicolaou 
stain)

V. A. LiVolsi et al.



465

occur although in most classic PTC the second 
option is more common [55–57].

Another common finding in PTC is the pres-
ence of lymph node metastases which occurs in 
over 50–60% of patients at the time of diagnosis. 
In some cases, the nodal metastases are tiny and 
subcapsular and truly “micrometastases 
(<0.2cm)”; in others the nodal disease is large 
and may be the presenting symptom of the cancer 

[50, 58, 59]. In large nodal metastases, large 
areas of cyst formation may occur, and the clini-
cal misdiagnosis of “branchial cleft cyst” may be 
given [60].

The cytomorphologic diagnosis of PTC is 
based on major and minor diagnostic criteria. 
The major diagnostic feature is the characteristic 
nuclear morphology regardless of the features of 
cytoplasm, growth pattern, special stains, and 

Fig. 13 The lesional 
cells demonstrate 
elongated nuclei with 
chromatin clearing and 
delicate intranuclear 
grooves (arrows, 
Papanicolaou stain)

Fig. 14 Papillary 
thyroid carcinoma. 
Intranuclear 
pseudoinclusions are 
shown (arrows, 
Papanicolaou stain)
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immunohistochemical markers. This holds true 
for a majority of cases of PTC; however, some 
variants of PTC may be difficult to diagnose due 
to the lack of some of the nuclear features. The 
FNA specimen of PTC is usually cellular and 
shows tumor cells arranged in papillary groups, 
three-dimensional clusters, or as single cells in a 
background of watery or thick “ropy” colloid 

(aka chewing gum colloid), nuclear or calcific 
debris, macrophages, and stromal fragments. The 
cell groups may show a typical concentric 
arrangement of lesional cells described as “cel-
lular swirls” (Figs. 12, 13, and 14).

The individual tumor cells are enlarged; the 
nuclei show elongation, membrane thickening, 
chromatin clearing, grooves, and inclusions [61]. 

Fig. 15 Typical 
sclero-elastotic stroma 
seen in some examples 
of papillary thyroid 
carcinoma

Fig. 16 Papillary 
carcinoma with papillary 
growth pattern and 
fibrosis
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The nucleoli are usually small and eccentric. 
Multinucleated histiocytes are common in FNA 
specimens of papillary thyroid carcinoma. These 
can be variable in size, shape, and number of nuclei. 
Squamous metaplasia can be seen in FNA speci-
mens of papillary thyroid carcinoma; however, it is 
more common in cases with cystification [62].

 Papillary Carcinoma Variants

Numerous papers have described variants and 
subvariants of papillary thyroid carcinoma. Some 
of these point out the diagnostic difficulties in 
recognizing these lesions; some however give 

indication of prognostic differences and point the 
clinical relevance of the recognition of these sub-
types [63]. The following section will discuss 
those variants which have clinically relevant 
importance, their frequency, histological fea-
tures, and prognostic meaning.

 Tall Cell Variant Papillary Carcinoma

The tall cell variant has been defined differently 
over the years since it was originally described. 
In the modern era, the tall cell is described as a 
thin cell with eosinophilic cytoplasm in which 
the length of the cell is three times its width [40, 
48]. The nuclei are those of papillary carcinoma, 
and in many examples, they show multiple intra-
nuclear inclusions (this finding in an FNA sample 
may allow the cytopathologist to suggest the 
diagnosis of tall cell papillary carcinoma) 
(Figs.  19 and 20) [64]. A second controversial 
issue in the definition of this subtype of  carcinoma 
has been the amount of tall cell cytology needed 
for a diagnosis of “tall cell variant papillary car-
cinoma.” Percentages of tall cell morphology 
have ranged from 10 to 70% [40, 48, 65]. A study 
from Memorial Sloan Kettering Cancer Center of 
almost 500 cases indicated that the diagnosis 

Fig. 17 The classic 
nuclei of papillary 
carcinoma lining 
papillae with 
fibrovascular cores

Table 3 Nuclear features of papillary carcinoma of 
thyroid

Enlargement
Elongation (oval shape)a

Thick nuclear membranes
Small nucleoli near or attached to thick nuclear 
membrane
Intranuclear inclusions
Intranuclear grooves extending across or almost across 
nucleus
Nuclear overlapping

aThe follicular variant of papillary carcinoma and the solid 
variant (solid follicular variant) often show rounded nuclei
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“tall variant papillary carcinoma” is appropriate 
if 30% or more of the tumor has tall cell features, 
whereas a diagnosis of “papillary carcinoma with 
tall cell features” is appropriate for those tumors 
that show 10–30% tall cell morphology [65]. 
However, this paper admonishes pathologists to 
mention any amount of tall cell features since in 
recurrences and/or metastatic foci, the percent-
age of tall cell change may increase [65].

It is critical to point out that the identification 
of tall cell morphology can be problematic for 

pathologists. Hence, in our experience, about 
40% of tall cell papillary carcinomas or tall cell 
features in these tumors are not recognized [66]. 
Similarly, overdiagnosis of oncocytes in benign 
nodules or even in Graves’ disease can cause 
diagnostic errors.

Tall cell papillary carcinoma tends to occur in 
older individuals and is often a large tumor which 
is extraglandular in extent. Lymphatic as well as 
vascular invasion (up to 20% of cases) is noted in 
this variant. The vascular (venous) involvement 

Fig. 18 Psammoma 
body to left of center. It 
is in a lymphatic space

Fig. 19 Tall cell 
PTC. Note voluminous 
eosinophilic cytoplasm

V. A. LiVolsi et al.
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is often found in the extrathyroidal component of 
the tumor; this is also the one subtype of papil-
lary carcinoma in which perineural invasion may 
be found [67–69].

Lymph node metastases are often present and 
extranodal involvement is identified in many 
cases. Extracervical metastases to the lungs, 
pleura, bone, and brain may also develop [69, 70].

A small number of patients with tall cell papil-
lary carcinoma will progressively develop 
changes of less differentiated tumor (often with 
spindle cell areas associated with hemorrhage), 
and these are found in recurrent or metastatic 
foci. Some of these patients will eventually 
develop anaplastic transformation usually with a 
spindle cell squamous component [71].

Molecular studies have shown that over 70% 
of tall cell papillary carcinoma harbor Braf V 
600E mutations [72, 73], the highest percentage 
of any subtype of papillary cancer (the one excep-
tion is in patients of Asian heritage [74]).

The cytologic samples from tall cell variant of 
PTC contain elongated cells with sharp cytoplas-
mic borders, granular eosinophilic cytoplasm, 
and variably sized nuclei with nuclear features of 
papillary carcinoma. The diagnostic nuclear fea-
tures of PTC are readily found in aspirates of this 
variant. The intranuclear inclusions can be mul-
tiple within the same nucleus giving rise to a 
“soap-bubble-like” appearance [64].

 Columnar Cell Variant Papillary 
Carcinoma

This variant is rare, and some reported examples 
show an intermingling with tall cell papillary car-
cinoma [63, 75, 76]. When originally described, 
it featured a predominance in male patients with 
extra thyroidal tumors and a rapidly fatal course 
[77]. However, additional reports indicate that 
this tumor if contained within the thyroid may 
have a less worrisome prognosis than originally 
thought [78].

Morphologically the tumor is composed of 
papillae and trabeculae lined by cells with strati-
fied nuclei. Portions of the tumor may show cyto-
plasmic clearing which in conjunction with the 
nuclear stratification resembles the morphology 
of normal early secretory endometrium [48].

A curious and still unexplained phenomenon 
is the finding in over 50% of cases studied of 
nuclear localization of CDX2 protein, a growth 
factor predominantly found in the gastrointesti-
nal tract. Virtually no other thyroid cancer shows 
this finding [79, 80].

Cytologic preparations of this tumor demon-
strate cohesive cell fragments with a prominent 
papillary architecture. The tumor cells appear 
columnar in shape with pale cytoplasm which 
tapers at one end. Nuclear palisading and stratifi-
cation are prominent at the periphery of papillary 

Fig. 20 Tall cell variant 
PTC. Note nuclei with 
loss of polarization
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fragments. Intranuclear grooves and intranuclear 
inclusions are rare as are psammoma bodies and 
multinucleated tumor giant cells. Due to the scar-
city or lack of diagnostic nuclear features, the 
aspirates of CCV-PTC can be mistaken for med-
ullary carcinoma or metastasis (especially from 
the colon) to the thyroid gland [80].

 Hobnail Cell Variant Papillary 
Carcinoma

This recently described subtype of papillary car-
cinoma is characterized by papillary growth, and 
the cells lining the papillae are large oncocytic 
and have appropriate nuclei. However, the lumi-
nal surface of the cells shows apocrine-like secre-
tion giving the “hobnail” appearance [81–83]. 
The lesions described have been large, often 
extrathyroidal, with aggressive clinical behavior 
(50% mortality at 5 years). Over half of the 
described cases are Braf V 600E mutated. Some 
show associated tall cell features and a few have 
micropapillary pattern [84].

 Diffuse Sclerosis Variant

This variant is rare comprising about 10% of can-
cers in the pediatric thyroid tumor epidemic that 
occurred following the Chernobyl nuclear acci-
dent [85]. This variant of papillary cancer dispro-
portionately affects young individuals (often 
females who are teenagers or in their early 20s); 
the gland is frequently diffusely enlarged and very 
hard. A dominant nodule may be present, but often 
the tumor is found diffusely infiltrating gland 
stroma and lymphatics without a main tumor mass 
[86, 87]. The tumor has a small number of papil-
lae, prominent squamous or epidermoid metapla-
sia, and numerous psammoma bodies (which are 
responsible for the firm to hard gland). The back-
ground thyroid demonstrates well-developed lym-
phocytic thyroiditis (which is histologically and 
immunologically identical to autoimmune thy-
roiditis) [87, 88]. One case of diffuse sclerosis 
variant of papillary carcinoma has been reported in 
a gland involved by Graves’ disease [89].

Because of the extensive lymphatic invasion 
in the gland and in the surrounding extrathyroidal 
tissues, virtually 100% of patients with this tumor 
subtype have regional node metastasis at diagno-
sis, and 25% of cases show lymphangitic spread 
to the lungs. However, although it is difficult to 
get data on many patients with long-term follow-
up, it appears (perhaps because the patients are so 
young) that the patients live many years often 
with the presence of pulmonary metastases which 
can respond to radioactive iodine therapy and 
remain stable [90, 91].

The FNA specimens of diffuse sclerosis vari-
ant of PTC show tumor cells with nuclear fea-
tures of papillary carcinoma arranged in nests 
and numerous psammoma bodies. Some cases 
may also demonstrate a brisk lymphocytic infil-
trate around the tumor cell groups and in the 
background. Squamous metaplasia is commonly 
seen in aspirates of this tumor [92, 93].

 Follicular Variant Papillary Carcinoma

Of all the variants of papillary thyroid carcinoma, 
none has elicited more controversy than the fol-
licular variant. Its definition varies from tumors 
which are totally follicular in pattern to those that 
have 20 or even 50% papillary growth [94]. 
Recent published studies have separated those 
lesions which have a nonencapsulated invasive 
growth pattern and those that show complete or 
partial encapsulation and/or circumscription [95].

The encapsulated lesions which show capsular 
and/or vascular invasion are considered true carci-
nomas, but despite nuclear features of papillary 
carcinoma, they rarely spread to regional nodes 
and metastasize via the hematogenous route par-
ticularly bone. Some pathologists in the past have 
considered these lesions a type of “follicular car-
cinoma” ignoring the nuclear morphology [94].

The results of extensive molecular analysis 
through the Cancer Genome Atlas Project have 
shown that at the molecular level, the encapsu-
lated follicular variant lesions are more closely 
related to true follicular tumors and not to papil-
lary carcinoma [96]. (Hence whereas the infiltra-
tive lesions can show Braf V600 E mutations and 
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ret/PTC translocations as do classic papillary car-
cinomas, the encapsulated lesions demonstrate 
mutations in RAS and translocations in PAX 8/
PPAR gamma.)

The most intense debate has centered on the 
totally encapsulated or circumscribed and noninva-
sive lesions which fall into the “follicular adenoma” 
group of tumors except for the presence of papil-
lary nuclear features which may be multifocally 
present within the lesion or diffusely distributed in 
the tumor. Many studies by endocrine pathologist 
“experts” have shown large interobserver diagnos-
tic variability [97–99]. Since many such noninva-
sive lesions show no aggressive behavior, a recent 
international study of such lesions recognized their 
indolent clinical course and suggested removing 
the “carcinoma” diagnosis from such cases. The 
proposed diagnostic term is NIFT-P (noninvasive 
follicular tumors with papillary-like nuclei) that is 
supported by the studied series of cases showing no 
metastasis or recurrence with a median follow-up 
of 14 years (even in the absence of total thyroidec-
tomy and radioiodine) [100]. The new diagnostic 
designation confirms the clinical behavior while 
recognizing the papillary carcinoma nuclear fea-
tures (Figs. 21 and 22).

The cytologic interpretation of follicular vari-
ant of PTC can be challenging due to a paucity of 
diagnostic nuclear features. The cytologic sam-
ples from FVPTC usually show enlarged follicu-
lar cells arranged in monolayer sheets and 
follicular groups in a background of thin and 
thick colloid. The individual tumor cells show 
nuclear elongation, chromatin clearing, and thick 
nuclear membranes. The intranuclear grooves in 
FVPTC are delicate and do not traverse the entire 
length of nucleus; however, nuclear grooves and 
inclusions are very scarce. Thus, a majority of 
cytologic samples of FVPTC are either diag-
nosed follicular neoplasm or as suspicious for 
papillary carcinoma [34].

 Other Variants with Similar Prognosis 
to Classic Papillary Carcinoma

A number of histological variants of papillary 
carcinoma share clinical behavior with classic 
papillary cancer of similar stage. These include 
Warthin-like variant a usually circumscribed 
lesion often arising in a thyroiditic gland and 
showing oncocytic cytology and extensive lym-

Fig. 21 Encapsulated 
follicular variant of 
papillary carcinoma. The 
capsule of the lesion is 
not invaded in this 
portion of the tumor, 
although invasion was 
noted in other areas. Not 
classic nuclei of 
papillary carcinoma
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phoplasmacytic infiltrate in the papillary cores of 
the tumor [101, 102]; Papillary carcinoma with 
fasciitis like stroma or spindle cell metaplasia in 
which part of the tumor is composed of a bland 
spindle cell proliferation which shows TTF1 pos-
itivity by immunostaining; rare mitotic activity 
and which blends with the epithelial component 
showing classic papillary cancer morphology 
[103–105]; and papillary carcinoma with lipoma-
tous stroma in the cores of the papillae [106]. 
Finally the macrofollicular variant of papillary 
carcinoma needs to be noted. Such lesions resem-
ble adenomatous or hyperplastic nodules but 
demonstrate multifocal nuclear features of papil-
lary carcinoma. These are extremely low-grade 
lesions, and although a few reported cases have 
shown regional node spread, none has been docu-
mented to show distant metastases [107, 108].

 Other Variants with Worse Prognosis 
than Classic Papillary Carcinoma

There are a few additional histologic variants of 
papillary carcinoma that have a more aggressive 
clinical course; these are very rare lesions and do 
not occur with the frequency that tall cell, 
 columnar, or even hobnail types do [109]. The 

trabecular variant was originally considered as a 
more aggressive lesion; however, too few cases 
are reported with long-term follow-up for a defin-
itive assessment [110]. In addition, pathologists 
must be aware that most trabecular patterned thy-
roid carcinomas are either of C cell derivation or 
are poorly differentiated carcinomas (see below).

The micropapillary variant has been described 
in fewer than eight patients. However, similar to 
histologically identical tumors occurring in the 
ovary, breast, and urinary bladder, these lesions 
avidly invade thyroid and lymphatics and spread 
throughout the body rapidly with an associated 
high mortality [111].

 Variants in Which Prognostic 
Influence Is Not Known

There are some papillary carcinoma types in 
which because of rarity or confusion over diag-
nostic criteria, data on outlook is not known.

The solid variant of papillary carcinoma is a 
common subtype in children, and its features 
have been elucidated and summarized by studies 
of the cases that were identified following the 
Chernobyl nuclear accident [63, 85, 112, 113]. 
Morphologically this tumor shows a nested pat-

Fig. 22 Center of an 
encapsulated follicular 
neoplasm. Nuclei are 
those of papillary 
carcinoma. If no 
invasion is present in the 
capsule, this would be 
diagnosed as 
“noninvasive follicular 
thyroid neoplasm with 
papillary like nuclei or 
NIFT-P”
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tern of growth with minute follicles, a prominent 
vascular capillary network, and weak expression 
of thyroglobulin by immunostaining. Vascular 
and extrathyroidal invasion have been noted in 
studies of pediatric cases. This tumor is associ-
ated with radiation exposure and is distinctive in 
its molecular signature showing translocation in 
ret/PTC 3 [114, 115]. In adults, this tumor almost 
always occurs in a thyroiditic gland, and in our 
experience, the patients often have systemic 
autoimmune disorders.

Rare tumors that are distinct from tall cell vari-
ant or the Warthin-like variant of papillary carci-
noma are oncocytic variant. These tumors are 
papillary and the lesional cells show oncocytic 
cytoplasm, but the other features of tall cell mor-
phology are not present. Because of their infre-
quent occurrence, their behavior is not known 
[116]. Clear cell variant may show coexistence 
with oncocytic tumor cells. These unusual lesions 
are not well characterized as to clinical behavior 
and prognosis; the pathologist must be certain that 
they do not represent metastasis to the thyroid 
from clear cell renal carcinomas [117–119].

 Immunohistochemistry of Papillary 
Carcinoma

It is beyond the purview of this chapter to exten-
sively review the immunohistochemistry of thy-
roid papillary carcinoma. Almost all stain strongly 
and diffusely for thyroglobulin (cytoplasmic) and 
thyroid transcription factor-1 (TTF-1) (nuclear 
staining). About 70% show cell membrane stain-
ing for HBME-1; CK19 and galectin-3 staining is 
less reliable in our experience and may give false-
positive results. Thyroid epithelium and its tumors 
stain for beta catenin (cytoplasmic) and PAX8 
(nuclear) [74, 120–123].

 Molecular Markers of Significance 
in Papillary Carcinoma

Characteristically papillary carcinomas of classic 
and tall cell type show a high frequency of Braf 
mutations (V600E); about 30–40% will show 

translocation or rearrangement in ret proto-onco-
gene; interestingly the two molecular changes are 
not seen in the same tumor—they apparently are 
mutually exclusive [72, 124].

Although some authors insist that the pres-
ence of Braf mutation indicates the tumor is a 
high-risk lesion, not all agree. It appears that if 
additional mutations such as TERT or p53 are 
present, it is these that predict a clinically aggres-
sive course [125–128].

The encapsulated forms of follicular variant of 
papillary carcinoma show a different molecular 
signature. Similar to follicular adenomas and car-
cinomas, the follicular variant lesions show 
mutations in the RAS family of genes or show 
translocation in PAX8/PPAR gamma [96].

 Follicular Carcinoma

True follicular carcinomas of the thyroid are rare 
lesions in countries with sufficient or excess iodide 
in the diet. In the United States, these tumors com-
prise 5–10% of all thyroid cancers [129].

Such tumor present as solitary masses and can 
occur in any part of the gland (including in sub-
sternal/mediastinal extensions of the thyroid). 
They are rarely microcarcinomas (1 cm or less) 
and range in size from 2 to several centimeters. 
Grossly, they most often appear as encapsulated 
tumors and can resemble adenomas. On occa-
sion, careful macroscopic examination will dis-
close foci of capsular invasion. The rare widely 
invasive subtype may show some nodules with 
partial encapsulation, but it usually displays mul-
tiple nodules within the gland or in extraglandu-
lar soft tissue. Gross vascular invasion may be 
noted intraoperatively.

Based on these appearances, follicular carci-
nomas have been divided into two or three 
groups: Minimally invasive versus widely inva-
sive or minimally invasive, grossly encapsulated, 
angioinvasive, and widely invasive types.

The encapsulated follicular carcinoma shows a 
thick capsule (1mm or thicker) that surrounds the 
lesional cells. The cells can be arranged in follicles 
(most commonly microfollicles although macro-
follicular variants are known to occur) admixed 
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with solid or even trabecular areas. The sine qua 
non of the diagnosis of follicular carcinoma is the 
presence of invasion. Controversy surrounds what 
constitutes sufficient invasion to diagnose follicu-
lar carcinoma: some authors indicate that there 
must be trans-capsular invasion and invasion into 
the capsule is insufficient for a malignant diagno-
sis [48]. Others believe any capsular invasion is 
sufficient although such cases rarely give rise to 
metastatic disease [26, 130]. It is imperative that 
the pathologist be aware of the changes that can 
occur after biopsy of thyroid nodules including 
“pseudoinvasion of the capsule”; this is a geo-
graphic (linear) extension of tissue (including 
tumor cells, histiocytes, lymphoid cells, and endo-
thelial cells usually with associated hemosiderin) 
through the capsule [131].

Studies have shown that lesions which show 
only capsular invasion rarely behave aggressively 
in the patients who have had at least 10 years of 
follow-up. However, tumors with vascular 
(venous) invasion are the group that shows hema-
togenous metastasis (most to the bone, lungs, 
brain, or liver). There is some dispute as to 
whether tumors that have four or fewer foci of 
venous invasion harbor high risk. It has been 
shown that follicular carcinomas with over four 
foci of venous involvement can metastasize and 
often this occurs within the first 5 years of diag-
nosis [95] (Fig. 23).

It is critical for pathologists to recognize that 
vascular invasion to be meaningful must be found 
in the capsule or in the neighboring thyroid (or 
even in extrathyroidal tissues); what may appear 
to represent vascular invasion within the sub-
stance of the tumor is not important since such a 
finding alone has not been shown to be associated 
with metastasis.

 Hürthle Cell Carcinoma

Although many pathologists including the pres-
ent authors believe that Hürthle cell tumors are 
different from non-Hürthle follicular counter-
parts, some authors group Hürthle cell carcino-
mas with follicular ones [129]. From the gross 
appearance and the histological criteria required 

to separate benign from malignant tumors, simi-
larity exists [132]. However, there is a correlation 
between tumor size and risk of malignancy in 
Hürthle cell lesions; some Hürthle cell tumor can 
metastasize to regional nodes; the tumors are 
often larger than usual follicular cancers and 
have more venous invasion. In addition, a pecu-
liar finding in Hürthle cell carcinomas is the find-
ing in extrathyroidal extension or in 
post-thyroidectomy neck recurrences to present 
as nodules mimicking lymph nodes but in reality 
representing intravenous tumor thrombi [133].

Finally, some pathologists do not separate 
tumors composed of Hürthle cells (eosinophilic 
tumor cells with granular cytoplasm) (Fig.  24), 
which at the ultrastructural level contain numer-
ous enlarged, abnormal mitochondria from onco-
cytic cells (delicate abundant eosinophilic 
minimally granular cytoplasm with modest num-
bers of mitochondria) [134–136]. It is unclear if 
oncocytic follicular carcinoma shares identical 
clinical risk with true Hürthle cell carcinomas.

It is important to remember that although 3–4 
decades ago much of the literature indicated that 
all Hürthle cell neoplasms were potentially clini-
cally malignant, numerous studies from various 
laboratories have shown that application of crite-
ria for invasion in these tumors separates benign 
lesions from carcinomas. The size of the neo-
plasm does matter, and in our experience, tumors 
4 cm or greater have an 80% risk of demonstrat-
ing invasion; the work of Chen et al. showed that 
tumors of 3.5 cm or larger harbored a 67% risk of 
malignancy [137]. However, we have also 
reported on the fact that small Hürthle cell can-
cers can be aggressive lesions as well [138].

The number of invaded vessels in the tumor 
capsule in Hürthle cell carcinoma correlates 
with molecular signatures for these lesions (4 or 
fewer vessels versus more than 4) has been 
reported [139].

 Poorly Differentiated Carcinoma

Until recently this group of tumors was poorly 
understood. Lesions from this group had been 
classified under the term “widely invasive 
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 follicular carcinoma.” Several studies predom-
inantly from Europe described the pathologi-
cal features of these lesions, and a proposal 
known as the “Turin classification” offers a 
system for the recognition and diagnosis of 
these lesions [140–143].

The tumors in this category are often large 
extrathyroidal lesions with grossly noted hem-

orrhage and necrosis. Microscopically they 
show one, or more commonly a combination of 
growth patterns including solid, trabecular, and 
insular (insular is now considered a pattern of 
growth, and most do not use this term as a diag-
nosis) [48, 142, 143]. In addition to the growth 
pattern, other findings that place a tumor in this 
category are the presence of mitotic figures (at 

Fig. 23 Encapsulated 
very cellular follicular 
lesion with vascular 
invasion as noted. This 
is angioinvasive 
follicular carcinoma

Fig. 24 Hürthle cell 
tumor. Note 
pleomorphism and 
multinucleation. This 
tumor showed vascular 
invasion and eventual 
lung metastases
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least 3/10 high-power fields), abnormal mito-
ses, and coagulative tumor necrosis (distinction 
of true necrosis from infarction following 
biopsy is a crucial one for the pathologist to 
make) [144–146].

These tumors often show invasion into the 
thyroid and periglandular soft tissues; promi-
nent vascular and lymphatic invasion is also 
present. The tumor cells are small to medium in 
size and do not show nuclei of papillary carci-
noma despite a possible temporal association 
with a lower-grade lesion. In fact, many of these 
tumors are associated with low-grade lesions 
either in the past or concurrently at the time of 
diagnosis. The low-grade tumors may be any of 
the follicular-derived carcinomas: classical pap-
illary carcinoma, follicular variant of papillary 
carcinoma, and follicular carcinoma/Hürthle 
cell carcinoma [142]. These examples strongly 
suggest that the poorly differentiated tumor is 
derived from the well-differentiated one 
(Fig. 25) [142]. A number of studies of poorly 
differentiated Hürthle cell carcinoma have been 
published and each has pointed out the finding 
of a small cell component in the tumors as they 

become poorly differentiated. It is important to 
recognize that these lesions may lose not only 
the ability to stain for thyroglobulin but also 
TTF-1 in metastatic sites; these results could be 
misinterpreted as the tumor not being of thyroid 
derivation and an incorrect diagnosis given 
[147].

The prognosis of poorly differentiated carci-
noma is poor with about 50–60% mortality at 5 
years after diagnosis from widely metastatic dis-
ease [148].

Aspirates of poorly differentiated thyroid car-
cinoma are usually cellular and demonstrate a 
monotonous population of cells arranged in large 
solid groups with cell crowding and overlapping, 
mitoses, and single-cell necrosis (apoptosis). On 
high-power examination, nuclear pleomorphism 
is readily evident. Endothelial wrapping of the 
tissue fragment can be seen in some cases. Since 
this growth pattern can also be encountered in 
MTC and secondary tumors of the thyroid such 
as metastatic neuroendocrine carcinoma, it is 
prudent to confirm the diagnosis of PDTC by per-
forming immunostains for TTF-1, thyroglobulin, 
and calcitonin [149].

Fig. 25 Poorly 
differentiated carcinoma 
with solid growth 
pattern. Tumor necrosis 
and vascular invasion 
were present
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 Grading of “Differentiated” Thyroid 
Carcinoma, So-Called High-Grade 
Carcinoma

This concept attributed in separate studies to Drs. 
Akslen [150] and Tallini [148] is defined as a 
group of tumors (usually papillary) in which the 
lesion is recognized as a papillary carcinoma 
(papillae, appropriate nuclei), but there are high-
grade features (mitoses, abnormal mitoses, and 
necrosis). Retention of recognizable well-differ-
entiated tumor throughout the lesion distin-
guished this group of tumors from the poorly 
differentiated carcinoma group. There is little to 
no data on follow-up of this group of cases 
although one study suggests they are biologically 
aggressive when compared to usual papillary car-
cinoma (Fig. 26).

 Anaplastic Carcinoma

One of the most virulent of all human tumors, 
anaplastic or undifferentiated carcinoma (similar 
in other systems to sarcomatoid carcinoma) is 
associated with a 90% 1-year mortality rate. 

Occurring in older patients, and showing massive 
extrathyroidal extension at presentation, most are 
unresectable, and diagnosis is accomplished by 
FNA, core, or wedge biopsy. These tumors which 
are believed to be derived from lower-grade dif-
ferentiated carcinomas (papillary, follicular, or 
Hürthle cell) grow very rapidly with numerous 
mitoses, vascular invasion, and necrosis. The 
tumors which may metastasize to distant sites 
often kill by local invasion of the trachea [151]. 
Molecular studies have shown that these lesions 
often maintain the underlying changes seen in the 
lower-grade tumors with which they are  associated 
but acquire additional mutations linked with 
aggressive biology (TERT, p53) [124, 152–156].

Hence there is a spectrum of thyroid cancers 
of follicular derivation ranging from tumors with 
an excellent prognosis to somewhat more aggres-
sive clinical subvariants, to higher-grade tumors, 
poorly differentiated lesions, and finally anaplas-
tic carcinoma (Fig. 27) (see Table 2).

The fine-needle aspiration biopsy specimens 
from anaplastic carcinoma usually do not pose any 
diagnostic difficulties; they can be readily classi-
fied as malignant due to extreme cellular pleomor-
phism and obvious malignant features [157, 158].

Fig. 26 High-grade 
papillary carcinoma. Not 
nuclear pleomorphism 
despite maintenance of 
papillary growth pattern. 
In upper right is focus of 
necrosis
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 Medullary Carcinoma

Medullary carcinoma (sometimes called C cell 
carcinoma) is a distinct tumor derived from non-
follicular cells in the thyroid—the parafollicular 
or C cells (Fig. 20). These cells secrete the hor-
mone calcitonin, a fact that can be used both diag-
nostically and to follow patients after therapy. 
These tumors occur as sporadic lesions (75%) or 
as familial tumors and some with multiple endo-
crine tumor syndromes (25%). In the familial 
cases, germline mutations in ret proto-oncogene 
are noted. Worldwide studies have identified spe-
cific clinical scenarios associated with certain 
mutations. Mutations at codon 918 in the intracel-
lular domain of ret are associated with multiple 
endocrine neoplasia type 2B (MEN2B) and 
aggressive medullary carcinomas. Such patients 
need to have surgical therapy at very young age 
(below age 2) so that tumors do not develop or are 
so small as to not have spread to regional nodes. 
The correlation of molecular signature and clini-
cal tumor behavior has allowed the development 
of guidelines for determining at what age(s) thera-
peutic intervention (usually surgical thyroidec-
tomy) needs to take place [159, 160].

Grossly medullary carcinoma is often circum-
scribed but rarely encapsulated and may be yel-
low-tan in color (as many neuroendocrine tumors 

from various organs tend to be). Microscopically 
the tumor can show a variety of patterns includ-
ing nested and epithelioid, spindled, papillary, 
follicular, giant cell, oncocytic, and clear cells. 
Unusual examples of melanin production by 
medullary carcinoma have been reported. About 
75% of the tumors produce stromal amyloid 
which is a product of procalcitonin (Fig. 28) [40].

The tumors produce calcitonin but also many 
other neuroendocrine markers such as chromo-
granin A, synaptophysin, and CD56 [40]. Other 
hormones of nonthyroid origin can be produced and 
may lead to associated metabolic syndromes, e.g., 
ACTH or CRF leading to Cushing syndrome [161].

In familial tumors, the C cells in the rest of the 
thyroid are usually hyperplastic and increased in 
numbers around follicles (Fig. 29). This can be a 
diffuse or show a micronodular pattern of prolif-
eration. C cell hyperplasia may be associated 
with micromedullary carcinomas (1.0  cm or 
smaller) and are often multifocal [162–165]. 
Some evidence exists that C cell hyperplasia of 
syndromic type is neoplastic and represents pre-
invasive neoplasia. Terms such as “medullary 
carcinoma in situ” or “thyroid intraepithelial neo-
plasia of C cells” (THINC) have not been 
accepted by the recent WHO endocrine book 
(personal communication).

Fig. 27 Anaplastic 
carcinoma with tumor 
giant cells. Tumor is 
invading preexisting 
thyroid follicles
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The definition of micromedullary carcinoma 
and distinction from C cell hyperplasia include 
size, total replacement of follicles, infiltrative 
growth at edge of the nodule, and the presence of 
amyloid in the stroma [165–167].

Familial medullary carcinoma occurs as part 
of at least three well-defined syndromes (see 
Table 4). In all of these, the medullary carcinoma 
is the most significant oncologic lesion and is the 
major cause of morbidity.

In sporadic cases, clinically evident tumors 
may show small metastases (especially early on 
in level 6 lymph nodes); the course for these 
patients may be indolent or rapidly fatal. Some 
pathologic features have been shown to correlate 
with rapid growth and metastasis; these include 
tumor necrosis, high mitotic count, paucity, or 
absence of amyloid and large tumor size. 
Alternatively, amyloid-rich tumors often with 
calcification in the amyloid, those with uniform 

Fig. 28 Medullary 
carcinoma, sporadic 
type. Note deeply 
eosinophilic areas 
representing amyloid

Fig. 29 C cell 
hyperplasia is shown. 
This focus was one of 
many in a thyroid 
removed 
prophylactically in a 
patient with MEN 2A

Pathology of the Thyroid: A Review



480

cytology either epithelioid, spindled, or both, cir-
cumscribed lesions, and those of small size, tend 
to do well with long-term survival. Patients in the 
former group may have a rapidly fatal course 
even if the tumor stage is low, and those in the 
second group may live a long time with recurrent 
and/or metastatic carcinoma [168–173].

FNA specimens of MTC display a spectrum 
of morphologic patterns similar to surgical 
pathology specimens. The majority of MTC 
FNA specimens are cellular consisting of round 
to oval cells arranged mainly as single cells or 
loosely cohesive groups. The tumor cells show 
ample granular cytoplasm with eccentric nuclei 
imparting a plasmacytoid appearance to the 
cells. The nuclear chromatin is similar to that 
seen in neuroendocrine tumors; intranuclear 
inclusions and multinucleated cells may be seen. 
Marked nuclear pleomorphism is uncommon; 
however, when present the cases are indistin-
guishable from aspirates of anaplastic thyroid 
carcinoma. The neoplastic cells can assume a 
“spindle shape” and appear mesenchymal in ori-
gin. Amyloid may be observed as acellular mate-
rial and can be distinguished from the thick 
colloid of papillary carcinoma by performing a 
Congo red stain. The diagnosis of MTC can be 
confirmed either by performing immunostains 
for calcitonin, correlating with serum calcitonin 

levels, or measuring calcitonin levels in the FNA 
aspirate specimen [174–178].

The cytomorphologic diagnosis of MTC can 
be challenging due to morphologic variability. 
The differential diagnosis of MTC includes hya-
linizing trabecular neoplasm, oncocytic follicular 
neoplasm (aka Hürthle cell neoplasm), papillary 
thyroid carcinoma, follicular neoplasm with solid 
and trabecular growth pattern, poorly differenti-
ated carcinoma/insular carcinoma, anaplastic 
carcinoma, plasmacytoma, and metastatic tumors 
to the thyroid especially melanoma [174].

 Noncarcinoma Malignancies 
of the Thyroid

 Hematopoietic and Related Lesions

The thyroid gland may be a site of involvement in 
disseminated hematologic/lymphoid malignan-
cies such as leukemias and lymphomas of any 
type. Rarely plasma cell myeloma may involve 
the gland.

However, lymphomas may arise primarily in 
the thyroid usually in glands affected by thyroid-
itis. These lymphomas are predominantly of B cell 
lineage and may be tumors of MALT-associated 
lymphoid tissue [179–181]. Histologically, immu-
nologically, and by genetic studies, these tumors 
are either large diffuse B cell lymphomas or small 
cell MALTomas. However, all lymphoma sub-
types including those of T cell lineage and Hodgkin 
disease have been described as primary thyroid 
tumors. The relationship between the underling 
autoimmune thyroiditis and the lymphoid neo-
plasm is very strong. Indeed, if a patient with 
known lymphocytic thyroiditis develops a mass 
lesion in the thyroid, the risk that nodule is a lym-
phoma 80 times greater than that it represents an 
epithelial tumor [180–182].

Some thyroiditic glands will develop a lym-
phoid lesion that appears exclusively composed 
of plasma cells. In a patient without systemic 
plasma cell dyscrasia, such as multiple 
myeloma, such a lesion likely represents a large 
B cell lymphoma with marked plasma cell dif-
ferentiation [183, 184].

Table 4 Multiple endocrine neoplasia syndromes with 
medullary thyroid carcinoma as primary lesion

1. MEN2A (aka Sipple syndrome) components:
(a)  Medullary thyroid carcinoma and C cell 

hyperplasia
(b)  Adrenal pheochromocytoma and adrenal 

medullary hyperplasia
(c) Parathyroid adenoma/hyperplasia

2. MEN2B or 3 (aka Gorlin syndrome) components:
(a)  Medullary thyroid carcinoma and C cell 

hyperplasia
(b)  Adrenal pheochromocytoma and adrenal 

medullary hyperplasia
(c) GI and mucosal neuromas
(d) Marfanoid habitus
(e) Ocular lens abnormalities

3. Familial medullary carcinomaa

aSome authors believe that the families with only medul-
lary carcinoma and (C cell hyperplasia) may have repre-
sented mild MEN2A syndromes
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Mycosis fungoides (i.e., T cell lymphoma 
originating in the skin) [185] and histiocytic 
lesions such as Rosai-Dorfman disease [186] and 
Langerhans histiocytosis [187] may manifest in 
the thyroid gland and on occasion may be the 
presenting symptom of the disease. Rare cases of 
Langerhans histiocytosis in the thyroid admixed 
with or coexisting with papillary thyroid carci-
noma have been reported [188].

The diagnosis of lymphoma can be made by 
FNA; if it is suspected, the entire FNA rinse can 
be sent for special studies including flow cytom-
etry and molecular analysis in order to character-
ize the subtype of lymphoma [189].

 Soft Tissue Tumors

Both benign and malignant tumors of soft tis-
sue are known to occur in the thyroid and are 
presumed to derive from stromal elements or 
vessels within the gland. Tumors of neural ori-
gin [190–193] (including schwannomas and 
granular cell tumors), smooth muscle, and 
venous or lymphatic lineage have been reported 
to have solitary fibrous tumors [194]. Sarcomas 
usually of neural or smooth muscle origin are 
documented [195]. One must be cognizant of 
the fact that extrathyroidal origin of sarcomas 
in the thyroid is more common than primary 
tumor, i.e., metastatic sarcoma. In our experi-
ence, gastrointestinal stromal tumor, uterine 
leiomyosarcoma, and malignant phyllodes 
tumor of the breast seem to be the mesenchy-
mal lesions that more commonly spread to the 
thyroid [196].

 Unusual Tumors of Thyroid

Tumors in the thyroid can be considered 
unusual because of their rarity of occurrence, 
because they are histologically unique, or 
because they are rare but occur in the setting of 
genetic/familial disease and should be consid-
ered “marker lesions.”

 Cribriform Morular Carcinoma

This tumor, still classified among the papillary 
carcinoma group, is histologically unusual and 
important to recognize because it is strongly 
associated with familial adenomatous polyposis 
(FAP aka Gardner syndrome) of the gastrointesti-
nal tract and adenocarcinomas of the colon and 
ampulla of Vater [197, 198].

From a histologic point of view, the tumor is 
often circumscribed and even partially encapsu-
lated and is composed of broad-based “papillae” 
with morules in the stroma resembling “squa-
mous morules” seen in endometrial hyperplasia/
metaplasia [199]. The tumor rarely makes folli-
cles but can assume a sieve-like appearance. On 
first glance, the pathologist who is unfamiliar 
with the appearance of these tumors may think of 
a metastatic tumor to the thyroid. This is further 
emphasized by the relative lack of immunostain-
ing for thyroglobulin (TTF-1 is strongly posi-
tive). In patients with the familial form, multifocal 
tumors may be found in the gland. In sporadic 
cases, the lesion is unifocal [197].

The familial cases often occur in young (teen-
age) females (very rarely in males), and the thy-
roid lesion may represent the initial event in 
identifying families at risk for gastrointestinal 
cancers. The thyroid tumor is indolent in most 
cases [197].

An important pathologic contribution to the 
identification of familial cases is the staining of 
the tumor with antibody to beta catenin [198, 
200]. In cases associated with FAP, there is trans-
location of beta catenin to the nucleus so that 
immunostains will demonstrate both cytoplasmic 
and nuclear staining. This does not occur in spo-
radic cases [198].

 Tumors Associated with Cowden 
(PTEN Mutation) Syndrome

Although not as histologically specific as the 
cribriform morular carcinoma, identifying 
patients with germline APC gene mutations, 
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there are other thyroid tumors that give clues to 
an underlying genetic disorder. Thyroids in 
patients with PTEN mutations (Cowden’s syn-
drome) are often multinodular, and almost all the 
nodules show oncocytic or even Hürthle cell 
cytology. If this histology is found in a young 
patient (under age 45), the pathologist should 
raise the possibility of Cowden-related syn-
drome. About 15% of the thyroids will also har-
bor a carcinoma, either papillary, follicular 
variant of papillary cancer, or follicular/Hürthle 
cell carcinoma [201].

The importance of recognizing these thyroid 
lesions as possibly part of this syndrome is that 
the risk for breast and uterine cancers is very high 
in these patients [202].

Attempts to utilize immunostaining for 
PTEN to assist the pathologist in defining these 
cases better have met with little success. In the-
ory, the stain for PTEN should be negative as 
the germline mutation results in loss of the pro-
tein. However, the results can be confusing with 
both false-positive and false-negative results 
reported [203].

In summary, the pathologist plays an impor-
tant role in identifying possible germline genetic 
changes and risk to family members of the patient 
whose thyroid is being studied. These major fam-
ily disorders include medullary carcinoma, crib-
riform morular carcinoma, and FAP and lesions 
suggestive of Cowden syndrome.

 Sclerosing Mucoepidermoid 
Carcinoma with Eosinophilia (SMECE)

This unusual tumor arises in the background of 
severe lymphocytic thyroiditis and often shows 
hyperplasia of solid cell nests (rests of ultimo-
branchial body (UBB) derived from the fourth-
fifth branchial pouch). These tumors occur in the 
lateral aspects of the thyroid lobes (where the 
UBB are located). Although still debated, many 
authors feel these tumors may develop from the 
UBB. The tumors do not stain for thyroglobulin 
or calcitonin, but show cytokeratins, and some 
have TTF-1 staining. Originally considered to be 

low-grade lesions, some authors have reported 
metastases [204, 205].

Microscopically the tumors are comprised of 
nests of squamoid cells intermixed with glan-
dular spaces lined in part by mucous containing 
cells (mucocytes). This histology is reminiscent 
of mucoepidermoid carcinoma of the salivary 
glands. The tumor nests are arranged in a 
fibrous stroma, and the latter is infiltrated by 
lymphocytes, plasma cells, and many eosino-
phils [205, 206].

 Mucoepidermoid Carcinoma

Different from the SMECE, the mucoepider-
moid carcinoma often shows admixture with 
classic or follicular variant papillary carcinoma 
[206]. Portions of the tumor show glands with 
mucous cells and squamoid metaplasia. The 
neoplasms can be found in any area of the gland 
including the isthmus. These tumors have a sim-
ilar prognosis to papillary carcinoma of similar 
stage. Occasional cases have been associated 
with anaplastic transformation [204, 207, 208].

The cytology FNAB specimens of both scle-
rosing mucoepidermoid carcinoma with eosino-
philia and mucoepidermoid carcinoma show 
epidermoid and glandular elements with stromal 
fragments. Eosinophils can be seen in the aspi-
rates of sclerosing mucoepidermoid carcinoma 
with eosinophilia. The squamous elements can 
be mistaken for a primary or secondary squa-
mous carcinoma and anaplastic carcinoma of the 
thyroid [204, 209].

 Mammary Analog Secretory 
Carcinoma (MASC)

These distinctly rare tumors (two reported cases) 
resemble MASC of salivary glands. They are partly 
papillary and have a secretory look. 
Immunohistochemistry shows lack of thyroglobulin, 
TTF-1, and calcitonin. As with the salivary gland 
counterpart, molecular analysis shows the character-
istic ETV6-NTRK3 t translocation [210–212].
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 Branchial-Related Tumors

A variety of tumors related to branchial-thymic 
tissues can occur in or around the thyroid. These 
include thymoma (benign, invasive, or malig-
nant) and the ectopic hamartomatous thymoma (a 
benign lesion usually of childhood) which arises 
in extrathyroidal soft tissue.

 Spindle Epithelial Tumor with Thymus-
Like Differentiation (SETTLE)
This tumor, which occurs in young individuals 
including children, may resemble synovial sar-
coma (which can occur in the neck) and involve 
the thyroid or medullary carcinoma. SETTLE 
lesions show spindle cells with associated epithe-
lial nests [213–217]. They may contain cytokera-
tin but are negative for calcitonin (which is 
helpful for excluding medullary carcinoma), thy-
roglobulin, and TTF-1. The characteristic trans-
location found in synovial sarcoma, t(X;18)
(p11;q11) SSX18, has been shown to be absent 
by fluorescent in situ hybridization studies 
(FISH) [215].

 Carcinoma Showing Thymus-Like 
Differentiation of the Thyroid (CASTLE)
This lesion is the most malignant of the thyroid 
branchial-related tumors with about a 50% mor-
tality. It resembles lymphoepithelial carcinoma 
of the nasopharynx and consists of large epithe-
lial cells with significant nuclear pleomorphism 
growing in a nested pattern surrounded by a 
dense lymphocytic infiltrate. Reports of these 
cases prior to their description in the branchial-
related group indicated that these tumors were 
diagnosed as anaplastic carcinoma (which had a 
much better survival rate). Despite its resem-
blance to nasopharyngeal carcinoma, the tumor 
shows no evidence of a relationship to Epstein-
Barr virus infection [217–222].

 Paraganglioma

Whether true paraganglioma occurs within the 
thyroid or whether the reported cases represent 
tumors arising in perithyroidal paraganglia 

remains controversial. Both benign and aggres-
sive paragangliomas have been described 
[223–226]. The major differential diagnoses 
include medullary carcinoma (calcitonin posi-
tive) and hyalinizing trabecular tumor (thyro-
globulin positive).

 Parathyroid Tumors Intrathyroidal

Parathyroid tissue including entire parathyroid 
glands may be found entirely within the thy-
roid. More frequently the parathyroid is 
located close to the thyroid tissue edge (“cap-
sule”) and may appear grossly to be intrathy-
roidal. Microscopically the true location is 
noted [227–232].

Parathyroid tissue actually embedded within 
the thyroid gland may give rise to adenomas and 
mimic clinically and radiologically thyroid neo-
plasms [228–231]. Many of these nodules are 
biopsied, and FNA diagnoses of “follicular neo-
plasm” or even “follicular lesion of undeter-
mined significance” may be rendered. The 
parathyroid adenoma cells are more uniform 
and have rounder smaller nuclei. These features 
may trigger the possible diagnosis of a parathy-
roid lesion, and the pathologist may suggest 
sending some of the FNA material for parathy-
roid hormone assay (which would verify the 
correct diagnosis) [233, 234].

Any disease that affects the parathyroid tissue 
can involve intrathyroidal parathyroids; hence 
multigland hyperplasia may lead to hyperplasia 
of the intrathyroidal tissue. Rare cases of para-
thyroid carcinoma arising within the thyroid are 
known [235, 236].

 Metastatic Tumors

Metastasis to the thyroid gland usually presents 
as multiple nodules in patients with known 
malignancies. The most common tumors that 
spread to the thyroid in this setting are lung and 
breast carcinomas [237].

However, it has been noted that the tumor 
which metastasizes to the thyroid and presents as 
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a solitary nodule mimicking a tumor of thyroid 
origin is clear cell renal carcinoma [237]. Such 
lesions may be the only site of metastasis in the 
affected patient. In some individuals, the thyroid 
metastasis is the initial evidence of a kidney can-
cer. The interval between the diagnosis of the 
renal lesion and the thyroid tumor may be many 
years including decades [238–240].

Other relatively common metastatic lesions 
(often numerically disproportionate to their fre-
quency in the cancer population) include malig-
nant melanoma and colonic adenocarcinoma 
[241].

Finally it is important to recognize that 
because patients with malignancies are surviving 
longer with modern therapies, the number of 
FNA specimens that represent metastases to the 
thyroid is increasing. Two series decades apart 
from the Mayo Clinic elegantly showed this clin-
ical change [241].

Similarly to histopathology, FNA of meta-
static tumors to the thyroid gland can also be dif-
ficult to differentiate from primary thyroid 
neoplasms, clear cell carcinoma of kidney vs. fol-
licular carcinoma or adenoma with clear cell 
change, metastatic neuroendocrine carcinoma vs. 
medullary thyroid carcinoma, and poorly differ-
entiated lung carcinoma vs. anaplastic or poorly 
differentiated thyroid carcinoma. However, 
immunohistochemistry and a detailed history are 
always helpful for differentiation between pri-
mary and secondary tumors of thyroid [242].

This chapter has summarized and illustrated 
pathologic lesions of the thyroid stressing neo-
plasms. Practical topics, including differential 
diagnoses, approaches to defining these lesions 
and differentiating them from mimics, and sum-
maries of the role of the pathologist in approaches 
to familial and genetically defined conditions 
have been included.
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Thyroid Nodule: Current 
Evaluation and Management

Alan A. Parsa and Hossein Gharib

 Introduction

The prevalence of palpable thyroid nodules has 
not changed significantly since the 1960s and 
remains around 3–7% [1–5]. The increase in nod-
ular thyroid detection is, therefore, predomi-
nantly incidental and correlates with the increased 
use of sensitive imaging. Each imaging modality 
has a different sensitivity to detect thyroid nod-
ules but also requires an experienced radiologist. 
For example, thyroid nodules discovered inci-
dentally with ultrasound (US) are around 30–70% 
[6, 7]; with computerized tomography (CT), 
16–18% [8–10]; with magnetic resonance imag-
ing (MRI), 6–16% [10, 11]; and with fluorode-
oxyglucose positron emission tomography 
(FDG-PET), 1–4% [12–16].

The overall incidence of thyroid nodules in 
the United States (USA) is around 100 cases per 
100,000 persons per year [17], with an annual 
incidence of thyroid cancer around 14.3 per 
100,000 individuals per year, nearly tripled from 
1975 [18]. It is projected that by 2019, papillary 
thyroid cancer (PTC) will become the third most 

common cancer in women in the USA, with an 
estimated incidence of 37 per 100,000 population 
[19]. Worldwide, during the past 30 years, thy-
roid cancer rates have increased by 48% in males 
and 67% in females [20]. This substantial 
increase in rates under lines the importance of 
new strategies for evaluation, surveillance, and 
treatment of thyroid nodules.

 Diagnosis

 History and Physical Exam

Clinical evaluation begins with a detailed history 
and physical exam. Thyroid nodules typically 
present asymptomatically as a mass discovered 
on neck palpation by a physician, by a patient, or 
by imaging for an unrelated condition. Once dis-
covered, familial conditions associated with a 
risk of thyroid malignancy such as multiple endo-
crine neoplasia 2 (MEN2) [21], familial nonmed-
ullary thyroid cancer (NMTC) [22, 23], Cowden 
syndrome (PTEN hamartoma tumor syndrome) 
[24], familial adenomatous polyposis (FAP) [25, 
26], and Gardner syndrome [27] should be con-
sidered (Table 1).

History of head and neck irradiation, female 
gender, iodine deficiency, age of puberty, and 
family or personal history of thyroid disease are 
associated with an increased risk for carcinoma 
and should be evaluated and documented [28]. A 
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focused thyroid exam should include and docu-
ment: growth rate of the thyroid and/or nodule(s) 
by ultrasound or palpation, tenderness, presence 
of cervical lymphadenopathy, voice changes, 
and compressive symptoms. Further evaluation 
may be required based on physical features or 
family history.

About 1.5% of children will have identifiable 
thyroid nodules that possess a 26% risk of malig-
nancy [29, 30], compared to 3–7% of adults with 
a 5–10% risk of cancer [4, 31–33]. Childhood 
thyroid malignancies tend to be more aggressive 
and present with lymph node metastasis in 90% 
of cases compared to 35% in adults [34]. Children 
with newly discovered nodules deserve full eval-
uation, and a more extensive surgical approach, 
because of high locoregional metastasis, realiz-
ing that long-term outcome still remains excel-
lent [35]. A recent report suggests that, while 
with advancing age the prevalence of thyroid 
nodule increases, the actual risk of malignancy 
decreases [36].

 Ultrasonography

Brightness-mode (B-mode) ultrasound is the most 
sensitive test available to detect and define thyroid 
parenchyma. Commercially available US 
machines are equipped with 7.5 MHz (for deep tis-
sue evaluation) to 15.0 MHz (for superficial tissue 
evaluation) linear or curvilinear array transducers. 
US allows for a clear and continuous real-time 
visualization of the thyroid gland [32, 37].

An US exam should identify and record the 
number of nodules, size, position, shape, mar-
gins, content, echogenicity, and the vascular pat-
terns of the gland and its nodules. This helps 
stratify risk of thyroid malignancy and require-
ments for further workup. If multiple nodules 
exist, the report should include all nodules with 
suspicious features of malignancy and not just 
the dominant (largest) nodule. Population screen-
ing for thyroid nodules by US is not recom-
mended due to the high likelihood of detecting 
nodules of doubtful clinical significance [38]. 
Thyroid US is indicated when palpation is suspi-
cious for, or confirms a nodule, for those at risk 
for thyroid malignancy (i.e., history of childhood 
head/neck irradiation, MEN2, familial thyroid 
cancer), for those with suspicious neck adenopa-
thy, as well as those with incidental nodular find-
ings by other imaging modalities.

 Ultrasound-Guided Fine Needle 
Aspiration

Once a thyroid nodule is confirmed, US-guided 
fine needle aspiration (US-FNA) follows. 
US-FNA is a safe, accurate, and cost-effective 
method of evaluating sonographically indetermi-
nate thyroid nodules [39, 40]. Real-time imaging 
allows direct visualization of the needle as it is 
guided to the desired location within a nodule 
while avoiding vital structures (i.e., carotid artery, 
trachea, jugular vein). US-FNA has an accuracy 
of 80% compared to 61% reported by palpation-
guided FNA (P-FNA) [41].

Two common techniques applied in US-FNA 
are the parallel approach (US-guided FNA), 
where the needle is inserted along the same plane 
of the transducer, or the perpendicular or out of 
plane approach (US-assisted FNA), where the 
needle is inserted at the center point of the trans-
ducer entering the skin perpendicularly to the 
transducer. Details of the different techniques 
have been described elsewhere [42–45].

Inadequate/nondiagnostic specimen rates 
decrease significantly from 9–17% with P-FNA 
to 4–7% using US-FNA [41, 46]. This improve-
ment in rate may be attributed to real-time visual-

Table 1 Risk of developing thyroid cancer and type 
based on familial syndromes [21, 22, 25, 27]

Condition
Risk of thyroid 
malignancy

Predominant 
thyroid cancer type

MEN2 90% ([23]) Medullary
FNMTC 3–15% ([24, 25]) FCD
Cowden 
syndrome

38% Follicular

FAP 0.4–12% Papillary
Gardner 
syndrome

2% (predominantly 
women)

Papillary

MEN2 multiple endocrine neoplasia type 2, FNMTC 
familial nonmedullary thyroid carcinoma, FCD follicular 
cell-derived, FAP familial adenomatous polyposis
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ization of needle placement, allowing the 
aspirating physician the ability to avoid areas of 
fibrosis, calcification, and cystic degeneration 
[42] while targeting the wall and solid portions of 
lesions [47, 48] to maximize sampling adequacy. 
For example, to prevent false-negative results in 
cystic carcinoma, the needle should be directed 
to the base of the cyst where tumor cells tend to 
reside [49] which without US would be an area 
difficult to target. Rates of inadequacy vary 
depending on the experience of the physician 
performing FNA and the cytopathologist reading 
the slides. In cytologically adequate samples, 
with an experienced cytopathologist, cancer 
prevalence is similar, around 5–7% in both pal-
pable and impalpable lesions [50, 51].

Thyroid cysts collapse after drainage (Fig. 1) 
but tend to recur in 10–80% of cases [52]. A 
hemorrhagic recurrence should raise suspicion 
of a cystic carcinoma [53]. To assist in minimiz-
ing delay of therapy, fluid drained from a cyst 
should always be sent to the lab for cytological 
analysis. In predominantly cystic complex nod-
ules (>50% cystic), cystic areas should be 
drained initially to remove necrotic debris and 
cells prior to sampling the potentially malignant 
solid components. This improves cytology 
reports by minimizing artifacts.

The most significant complication is mild 
hematoma at the biopsy site, especially in patients 
on aspirin or warfarin [42], although usually not 
an issue. Other rare but possible complications 
include transient localized pain, infection at 
puncture site, and slight ecchymosis. Seeding of 

tumor cells along the needle track has been 
described in head and neck cancers but appears 
exceedingly rare with either FNA or core needle 
biopsy [54].

Indications for US-FNA in adults are listed in 
Table  2. To avoid the inappropriate use of 
US-FNA, malignancy risk assessment based on 
US features or other imaging techniques is neces-
sary. In children, all nodules greater than 10 mm 
should undergo FNA regardless of US features, 
due to the higher risk of malignancy [55].

The reported incidence of false-positive 
results with FNA is about 1% but may be as high 
as 7%, according to some reports [56]. False-
negative results are also around 1% [57]. Most 
sampling errors occur from specimen inadequacy, 
inappropriate sampling site, degenerative 
changes, or cytopathologist inexperience [58].

 Ultrasound Prediction of Malignancy

Numerous reports have demonstrated that US 
features are useful in assessing malignancy risks, 
thereby necessitating FNA [31, 59, 60]. 
Guidelines assist in stratifying malignancy risks 
to make US reports more descriptive and consis-
tent. For example, the 2015 ATA guidelines cate-
gorize sonographic features into five patterns: 
benign, very low suspicion, low suspicion, inter-
mediate suspicion, and high suspicion [61]. FNA 
is strongly recommended for nodules in the high 
and intermediate suspicion categories, having 
malignancy rates of 70–90% and 10–20%, 

Fig. 1 Drainage and collapse of cystic component of a 
complex nodule before (upper left image), during (mid-
dle), and post (upper right) drainage using parallel 

approach. Arrow is pointing at the needle tip within the 
cystic portion of nodule. CA carotid artery
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respectively [61]. The 2016 AACE/AME guide-
lines suggest a simplified three-class system (% 
malignancy risk): low risk (1%), intermediate 
risk (5–15%), and high risk (50–90%) with FNA 
recommended in high-risk nodules if >  10  mm 
and intermediate-risk lesions if > 20 mm (Gharib 
et al., EP 2016 in print May) [62]. Radiology lit-
erature has adopted a ten sonographic feature 
system known as the TIRADS (thyroid imaging 
reporting and data systems) classification, with 
increasing risks based on increasing number of 
suspicious features [63]. The TIRADS system, 
while thorough, seems complex and impractical 
for most clinical practices.

US imaging allows for a detailed assessment 
of thyroid nodular features. Individually, each 
feature possesses a significant degree of diagnos-
tic uncertainty, but, together, posttest probability 
of malignancy increases dramatically [64].

Solitary versus multiple nodules. There are no 
significant differences in malignancy rates 
between patients with a single thyroid nodule and 
those with a multinodular goiter (MNG) [31, 50]. 
To avoid missing malignancy in MNG, identify-
ing an indeterminate or suspicious nodule for 
US-FNA is more important than identifying the 
dominant (largest) nodule [50, 65].

Size. With a high prevalence of nodules 
<10 mm (micronodule), difficulties in establish-
ing malignancy risks and fear of missing a malig-
nancy may lead to overtreatment. Recent ATA 

guidelines suggest active surveillance for nodules 
<10 mm [61], while AACE guidelines favor FNA 
for high-risk 5–10  mm lesions (e.g., young 
patients, invasive nodules, etc...) [66]. Regardless 
of size, all nodules should be thoroughly evalu-
ated for features suggestive of malignancy [67] 
allowing individualized decision-making based 
on risk factors (i.e., history of neck irradiation or 
familial history of thyroid malignancy).

The rationale for not performing FNA on nod-
ules <10  mm is based on observations that the 
majority of such nodules change little with time, 
even if malignant [68–70]. Also, the excellent 
oncological outcome associated with active sur-
veillance appears to outweigh complications 
associated with surgical resection (i.e., vocal 
cord paralysis, hypoparathyroidism) [71]. Ito and 
colleagues [72] monitored 340 patients with pap-
illary thyroid microcarcinoma (PTMC) for 
10 years. Tumor excision was carried out when 
signs of progression was noted (i.e., tumor 
enlargement, novel nodal metastasis) and demon-
strated no recurrence of tumors post resection. 
Active surveillance did not seem to adversely 
influence long-term outcome in PTMC.

This form of “active surveillance” is slowly 
becoming accepted as a clinical approach for 
low-risk microcarcinomas [61, 73, 74] while 
identifying those requiring a more aggressive 
treatment (i.e., biopsy or surgical resection) [75]. 
The risk of psychological stress associated with 
the perception of living with cancer may prevent 
some patients from accepting an active surveil-
lance protocol [76]. This emphasizes the impor-
tance of patient education, support, and patient 
selection for long-term follow-up.

Solid, echogenicity: The echogenicity of a 
thyroid nodule is assessed by comparing it to sur-
rounding normal thyroid parenchyma [77]. Thus, 
a hypoechogenic nodule is one which is less 
echogenic than the surrounding normal thyroid 
tissue. Approximately 50–90% of PTC and its 
variants are hypoechoic [78–80], while a benign 
nodule, typically, is isoechoic or slightly hyper-
echoic compared to surrounding normal tissue 
[77] (Fig.  2). Many studies identify 
 hypoechogenicity as a marker of malignancy 
with a sensitivity and specificity of 27–87% and 

Table 2 Indications to perform US-FNA adapted from 
AACE/AME 2016 clinical practice guidelines for the 
diagnosis and management of thyroid nodules

Indications for US-FNA
• Nodule 5–10 mm if:
   Subcapsular or paratracheal lesion
   Suspicious lymph nodes or extrathyroid spread
    Positive personal or family history of thyroid 

cancer
• Nodule >10 mm with high US risks
• Nodule >20 mm with intermediate US risks
•  Spongiform or predominantly cystic nodules 

>20 mm with growth
• Presence of abnormal cervical nodes
• Nondiagnostic palpation-guided FNA
• Incidentalomas noted on FDG-PET scan
• Complex (solid/cystic) nodule
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43–94%, respectively, and positive and negative 
predictive value of 11–68% and 74–94%, respec-
tively [50, 81, 82]. Thus, while a hypoechogenic 
nodule should raise suspicion, it should not be 
considered diagnostic, and other features should 
be evaluated and taken into consideration.

Color Doppler: US can examine the vascular 
flow of a nodule but holds limited value in deter-
mining malignancy risks. Most malignant nod-
ules have intranodular vascularity, also found in 
benign nodules [83, 84]. Most benign nodules 
possess a predominant peripheral flow pattern; 
however 20% of malignant nodules show a 
peripheral ring [79]. Studies suggest that flow is a 
poor predictor of malignancy [83, 84] but should 
be documented in US reports (Fig. 3).

Extracapsular growth. Capsular abutment, 
contour bulging, loss of echogenic thyroid cap-
sule, invasion into perithyroid muscles, and infil-
tration of the recurrent laryngeal nerve are 
features of extracapsular growth and increased 
risk of malignancy, warranting further cytologi-
cal evaluation [85, 86].

Complex or cystic lesions: Simple cystic 
lesions are almost never malignant (0.32 cancers 
per 1000) [31]. Nodules containing both cystic 
and solid components (complex cysts), with a 
predominantly cystic component (> 50% cystic), 
while typically benign, may contain PTC within 
the solid component, and US-FNA may be war-
ranted [77, 87]. A predominantly solid, complex 
nodule (>  50% solid) has a risk of malignancy 

similar to a pure solid nodule and should be man-
aged as such.

Nodule shape: Taller (anteroposterior)-than-
wide (transverse) shape (Fig. 4) as well as irregular 
borders are possible malignant features, while wider 
than tall is a suggestive benign finding [88, 89].

Suspicious cervical adenopathy: Normal and 
reactive lymph nodes are typically oval with an 
echogenic hilum. Suspicious cervical lymph 
nodes are rounded, possess cystic changes, 
microcalcifications, chaotic hypervascularity, 
and lack hilum [90]. If any or all of these features 
are present, the lymph node as well as ipsilateral 
thyroid nodule(s), irrespective of size or features, 
should undergo US-FNA [91].

Elastography: Two commonly used tech-
niques in thyroid elastography are real-time elas-
tography (RTE) and shear wave elastography 
(SWE), described in detail elsewhere [92–94]. 
Elastography uses the concept that stiffer or less 
elastic tissue correlates with malignancy, while 
softer, more elastic tissue is benign [93]. 
Repeatability and reliability are operator-depen-
dent, and excessive pressure or angle misalign-
ment may lead to misinterpretation [94]. 
Sensitivities with elastography range between 62 
and 93% [95–97], with positive predictive values 
ranging from 36 to 100% [98, 99]. Elastography 
is currently not widely available, and though it 
may be useful, neither the ATA nor AACE recom-
mends it as a useful routine test in nodular evalu-
ation [61, 66].

 Other Imaging Techniques
High costs combined with low specificity limit 
the application of MRI, CT, or FDG-PET for 
routine evaluation of nodular thyroid disease. 
Advantages include assessment of airway 
compromise, substernal extension, and posi-
tional relationship of the goiter to surrounding 
structures (Fig. 5). In general, use of CT con-
trast material in iodine-deficient geographic 
areas may trigger hyperthyroidism and/or 
decrease the gland’s sensitivity to radioiodine 
treatment [100]. Incidental findings of nodules 
by CT, MRI, or focal thyroid uptake by FDG-
PET scan usually warrant further US evalua-
tion [101, 102].

Fig. 2 Hypoechoic nodule. Arrow shows normal extra-
nodal thyroid tissue
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 Fine Needle Aspiration (FNA) Biopsy
The most accurate, cost-effective, and widely 
available method to determine thyroid malig-
nancy is FNA [103]. It is estimated that well over 
600,000 fine needle aspirations (FNA) are per-
formed yearly in the USA, with approximately 
70% labeled as “benign,” preventing over 
420,000 unnecessary surgeries annually. Thyroid 
FNA has a reported sensitivity and specificity of 
approximately 67–98% and 56–100%, with a 
positive and negative predictive value of 75–94% 
and 77–84%, respectively [104, 105]. This is 
higher than any other modality currently avail-
able making it the ideal method to “rule in” or 
“rule out” thyroid malignancy [55].

 Palpation-Guided Fine Needle 
Aspiration
P-FNA is no longer performed in clinical practice 
due to the wide availability and increased accu-
racy of US-FNA. Descriptions of P-FNA and its 
limitations have been published by us, and oth-
ers, elsewhere [106–109].

 Cytological Diagnosis
In 2007, the Bethesda System for Reporting 
Thyroid Cytopathology (BSRTC) was intro-
duced and has gained significant popularity 
[110, 111]. It is an extension of the conven-
tional thyroid cytological classification [109], 
based on sample adequacy. An adequate sample 
is defined as: no less than six groups of well-
preserved thyroid epithelial cells consisting of 
at least ten cells in each group. BSRTC catego-
rizes adequate samples into five groups based 
on risks of malignancy: unsatisfactory/nondi-
agnostic benign, indeterminate (further divided 
into atypia of undetermined significance (AUS)/
follicular lesion of undetermined significance 
(FLUS) or follicular neoplasm (FN)/suspicious 
for follicular neoplasm (SFN)), suspicious for 
malignancy, or malignant [110, 111]. 
Inadequate, nondiagnostic, or unsatisfactory 
samples are those containing fewer cells or 
groups that are defined as adequate and should 
be correlated with US reports, as re-biopsy is 
not always indicated. For instance, pure cystic 
nodules, a predominantly benign finding, are 

Fig. 3 Benign nodule with intranodular vascularity (left) and malignant PTC nodule with internal vascularity (right)

Fig. 4 Taller (1.3 cm)-than-wide (1.0 cm) nodule is sus-
picious for malignancy
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fairly acellular and reported cytologically as 
nondiagnostic and typically do not require re-
biopsy. Inadequacy rates are lower in US-FNA 
(6.4%) than in palpation-FNA (13%) [112]. 
The inadequate rates may vary between labs 
due to different standards set by each for defin-
ing adequate specimens.

The “malignant” category carries a high 
malignancy risk of 97–99% [111]. Papillary thy-
roid carcinoma (PTC), the most common thyroid 
cancer, accounts for 70–80% of the “malignant” 
category [19]. Cytologically, PTC is character-
ized by pale chromatin, linear chromatin ridges 
(grooves), intranuclear cytoplasmic inclusions, 
and nuclear crowding often overlapping. 
Medullary thyroid carcinoma (MTC), anaplastic 
carcinoma, lymphomas, poorly differentiated 
carcinoma, and metastatic cancers are cytologi-
cally distinguishable and are also categorized as 
“malignant” [32]. Since histological features and 
cancer type impact treatment, prognosis, and 
recurrence, they should reported by the cytopa-
thologist when possible.

“Suspicious for malignancy,” by the BSRTC, 
suggests that malignancy is strongly suspected 
on cytology but cannot be established with high 
certainty [110, 111]. This category carries a 
50–75% risk of malignancy; PTC dominates this 
category.

“Indeterminate” cytology is further subdi-
vided into AUS/FLUS and FN/SFN. If a benign 
follicular pattern with either cellular atypia 
(AUS) or follicular cells with architectural and/or 
nuclear atypia (FLUS) is identified, a 5–15% 
malignancy risk is expected [110, 111]. 
Depending on associated US features, re-biopsy 
is typically recommended rather than excision 
[113]. Cytological criteria for FN/SFN include 
high cellularity and altered follicular cell archi-
tecture (microfollicles) with scant or absent col-
loid. These lesions carry a 15–30% risk of 
malignancy, and based on US features, a more 
aggressive step may be required (i.e., hemithy-
roidectomy or total thyroidectomy) due to the 
inability to differentiate between benign and 
malignant follicular neoplasms by FNA [114]. 
For ease to the provider, the most recent AACE/
AME recommendations suggest re-categorizing 
indeterminate lesions to low-risk indeterminate 
lesion (AUS/FLUS) and high-risk indeterminate 
lesion (pure follicular patterned lesions; FN/
SFN) to stress the difference in malignancy rates 
and to help direct therapy [66]. Table 3 summa-
rizes the Bethesda categories with risks of associ-
ated malignancy.

“Benign” cytology has a < 3% risk of malig-
nancy based on the BSRTC [110]. Opinions 
vary as to if and when benign nodules should be 

Fig. 5 CT scan showing substernal extension of a huge multinodular goiter
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 re-aspirated. Some reports suggest that routine 
re-biopsy of benign lesions will significantly 
decrease false-negative rates [115, 116], 
whereas recent guidelines recommend re-
biopsy of cytologically benign nodules only if 
those nodules are enlarging and >4 cm in size, 
possess malignant features, or are recurrent 
cysts (Table 4) [117].

 Thyroglobulin in FNA of Cervical 
Lymph Nodes
Cervical lymph node (LN) involvement in thy-
roid cancer is indicative of metastatic disease. It 
is an integral component of cancer staging and 
determining treatment options. To improve detec-
tion of metastatic disease, Pacini and colleagues 
in 1992 reported thyroglobulin (Tg) measure-
ments in needle aspirates from nonthyroidal neck 
masses can increase sensitivity from 85 to 100% 
in the detection of LN metastasis [118]. This is 
consistent with current sensitivity reports of 
around 95–100% [119, 120]. This simple proce-
dure does not require additional punctures (wash-

out is performed after smear preparation). The 
lack of standardized Tg levels leads to possible 
increases in false-negative reports in a subset of 
samples (i.e., “hook effect,” dedifferentiated neo-
plastic tissue, or, in some studies, the interference 
with Tg antibody) [121].

 Immunohistochemical Markers
Assessment of malignancy risk of indeterminate 
nodules remains a clinical challenge. Several 
immunohistologic markers have been introduced 
to assist in differentiating between benign and 
malignant smears [122]. For example, specific 
transcript variants of Clusterin, involved in neo-
plastic transformation, have shown promise in 
detecting PTC [123]. HBME-1, a monoclonal 
antibody, is highly expressed in PTC and may 
serve as a potential biomarker for PTC with a 
sensitivity and specificity of 72% and 72%, 
respectively [124]. Currently, no single marker is 
sensitive or specific enough to be considered for 
routine use. Some centers use immunochemical 
panels to assist in the diagnosis of indeterminate 

Table 3 Bethesda system for reporting thyroid cytopathology

Diagnostic category Type
Malignancy risk 
(%) Management

Frequency 
reported (%)

Nondiagnostic/
unsatisfactory

Pure cyst poor sample quality 1–4 Repeat US-FNA <10

Benign Lymphocytic thyroiditis 
Adenomatoid nodule
Colloid nodule
Granulomatous thyroiditis

0–3 Clinical follow-up 54–74

Indeterminate Low risk (AUS/FLUS) 5–15 Repeat FNA 10–20
High risk (FN/SFN) 15–30 Lobectomy

Suspicious for 
malignancy

Suspicious for
PTC 2.5–5.0
MTC 60–75 Total thyroidectomy or 

lobectomy
Metastatic carcinoma
Lymphoma

Malignant PTC
MTC
Poorly differentiated 
carcinoma

95–99 Total thyroidectomy 4.0–5.4

Anaplastic
Lymphoma
Metastatic carcinoma

AUS atypia of undetermined significance, FLUS follicular lesion of undetermined significance, FN follicular neo-
plasm, SFN suspicious for follicular neoplasm, PTC papillary thyroid carcinoma, MTC medullary thyroid carcinoma 
[32, 63, 111–113]
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nodules [125] though the lack of standardization 
makes this method impractical for routine use at 
this time.

 MicroRNA
MicroRNAs (miRNAs) are short (no longer than 
24 nucleotides), noncoding, typically negative 
regulators of gene expression with a high speci-
ficity to a given cell and disease [122, 126, 127]. 
Several different miRNAs have been identified to 
be associated with thyroid cancer [128, 129], 
tumor aggressiveness [130, 131], and potential 
therapeutic use [132, 133]. Currently, there are 
no specific tumor markers available to regularly 
and reliably distinguish between a benign and a 
malignant thyroid lesion. As studies continue, 
miRNAs may prove to be valuable in the diagno-
sis and treatment of thyroid cancer.

 Molecular Markers
BRAFV600E (BRAF), an amino acid substitu-
tion at position 600 in BRAF, leads to increased 
kinase activity [134] and is found in approxi-
mately 45% of all PTCs [135]. Reportedly, BRAF 
predicts tumor aggressiveness with associated 
increased mortality [136, 137]. An independent 
association between BRAF mutation and tumor 
recurrence in all forms of PTC has also been 
reported [138]. BRAF mutations appear to acti-
vate various molecular mechanisms accelerating 
the tumors natural course [137]. With a 100% 
specificity for PTC, thyroidectomy is recom-
mended in FNA aspirates detecting BRAF muta-
tions. Since BRAF analysis is not widely 
available, current recommendations have not 
incorporated its routine use.

The three isoforms of RAS (NRAS, HRAS, 
KRAS) along with PAX8/PPARγ and RET/PTC 
rearrangements are detected at a lower fre-
quency than BRAF [122]. Some evidence sug-
gests that RAS, PAX8/PPARγ, or RET/PTC 

rearrangement-positive nodules may be histo-
logically benign but carry a high potential of 
becoming malignant [139] or are associated 
with distant metastasis [140].

Gene expression classifiers (GEC) have a 
reported 95% negative predictive value (NPV) 
[141] but a low positive predictive value (PPV) of 
15–38% [142], suggesting that GEC may be use-
ful to “rule out” malignancy [143]. The low PPV 
of 38%, though, makes it a poor predictor of can-
cer if GEC is positive [143]. A recent study eval-
uating a vast number of genomic markers found 
that they should not be used as a sole means of 
detecting thyroid cancer due to a poor 50% sensi-
tivity and 80% specificity [144]. Next-generation 
sequencing (NGS), testing for a 7-oncogenic 
panel, has recently reported a sensitivity and 
specificity of 90% and 93%, respectively, with a 
PPV and NPV of 83% and 96% for FN/FSN 
[145] and a sensitivity and specificity of 91% and 
92%, respectively, with a PPV and NPV of 77% 
and 97% for nodules with AUS/FLUS [146]. 
When positive, it is highly suggestive of malig-
nancy, a “rule in” test, and patients should thus be 
submitted for thyroidectomy.

Recommendations regarding the use of 
molecular markers in clinical practice differ 
between societies. For example, AACE guide-
lines are neither in favor of nor against use of 
molecular markers for cytologically indetermi-
nate nodules [61, 66], whereas the ATA guide-
lines favor molecular testing for nodules with 
low-risk (AUS/FLUS) cytology [61].

We realize that this is a very dynamic area of 
clinical research, with the usefulness of molecu-
lar markers in thyroid practice continually evolv-
ing. At this time, it seems reasonable that nodules 
with AUS/FLUS cytology and negative GEC be 
closely followed, whereas those with FN cytol-
ogy and positive NGS panel be surgically excised.

 Laboratory Evaluation
Serum TSH is an accurate and sensitive measure-
ment of thyroid function. Low TSH levels are 
suggestive of hyperthyroidism and should be fol-
lowed with a free thyroxine (FT4) and total triio-
dothyronine (T3) measurement. An elevated TSH 
is suggestive of hypothyroidism and warrants 

Table 4 When to repeat FNA

Enlarging nodule
Clinically suspicious, cytologically negative nodule
Initial FNA nondiagnostic
Large nodule (>4 cm)
Recurrent cyst
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measurement of FT4 and thyroperoxidase anti-
bodies (TPOAb) which, when positive, is highly 
suggestive of autoimmune disease. TPOAb 
should be measured whenever autoimmune thy-
roid disease (Hashimoto) is suspected, especially 
with a nodular goiter [61].

Recent data suggest that higher serum TSH 
levels, even within the normal range, may be 
associated with increased risk of thyroid malig-
nancy and can be considered an independent 
marker to assist in malignancy prediction when 
considering FNA [147–149]. This association 
has been also suggested in the pediatric popula-
tion [150].

The link between Hashimoto’s thyroiditis 
(HT) and PTC continues to be debated [151–
153]. Several studies have shown the expression 
of RET/PTC oncogenes in 68–95% of HT indi-
viduals [154, 155]. While the RET/PTC rear-
rangement is specific for PTC and is highly 
expressed in Hashimoto’s, HT continues to be 
considered a relatively benign condition. A clear 
association between the two seems doubtful 
[156, 157], and we do not consider HT as a risk 
factor in nodule evaluation and management.

Serum thyroglobulin (Tg) concentration cor-
relates with iodine intake and the size of the thy-
roid gland rather than the nature or function of a 
nodule [158]. It does not offer useful information 
in nodule diagnosis and should not be measured.

Serum calcitonin (Ct) is a marker of MTC and 
correlates with tumor burden [159]. Though 
MTC accounts for only 3–5% of all thyroid can-
cers, the prevalence of small MTC may range 
from 0.4 to 1.4% in those with nodular thyroid 
disease [160, 161], without clear evidence of 
clinical relevance of these medullary microcarci-
noma foci. Moreover, calcitonin elevations can 
be seen in a variety of nonthyroidal diseases such 
as pulmonary endocrine tumors, renal failure, 
hypergastrinemia, alcohol use, and smoking, 
which should be taken in consideration when Ct 
is measured [162, 163].

The recent US guidelines do not recommend 
routine Ct measurement in individuals with thy-
roid nodular disease [61, 66]. This is in contrast 
to the European Panel of Experts (EPE) which 
recommends routine serum Ct measurements in 

all patients with thyroid nodules [164]. We favor 
selective Ct determination in those at risk for 
MTC, including a positive family history of 
MTC, MEN2, pheochromocytoma, or when FNA 
suggests MTC.

 Radioisotope Scanning
Technetium-99  m pertechnetate (99mTc) and 
iodine-123 (123I) scintigraphy are the two most 
commonly used techniques to evaluate autono-
mous thyroid function. 99mTc, a monovalent anion 
trapped by the thyroid gland by an active trans-
port mechanism, is an inexpensive and readily 
available isotope administered intravenously. 123I, 
a relatively expensive cyclotron produced radio-
isotope of iodine given orally, permits the evalu-
ation of the entire metabolic iodine pathway 
including trapping, organification, coupling, hor-
mone storage, and secretion [165]. 123I is typi-
cally preferred over 99mTc due to better imaging 
quality in the mediastinum and for showing cel-
lular function rather than just trapping ability. 
Increased uptake of 123I or 99mTc is indicative of 
nodular hyperfunction, classified as “hot,” while 
the lack of uptake is considered “cold” or hypo-
functioning or indeterminate.

“Hot” nodules are considered benign, while 
“cold” or indeterminate nodules have a reported 
malignancy risk of 3–15% [166]. Of note, since 
hot nodules in children may be malignant, evalu-
ation with FNA is recommended. Occasionally, 
nodules appear “hot” on 99mTc while “cold” on 
123I scanning due to the trapping of 99mTc within 
the nodule while unable to organify 123I, exposing 
the true nonfunctioning (“cold”) nature of the 
nodule. This discordance occurs in less than 5% 
of thyroid carcinomas [167].

Scintigraphy, with a resolution limit of around 
1 cm, has a limited role in routine thyroid prac-
tice. With the majority of nodules being cold 
(80–85%), and only a small minority being 
malignant, the predictive value of cold or indeter-
minate nodules remains low [168]. Scintigraphy 
can provide useful information in the following 
settings: a single nodule with suppressed TSH, a 
large MNG with or without suppressed TSH to 
identify cold or indeterminate nodule requiring 
FNA, MNG with substernal extension, and in 
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congenital hypothyroidism and when searching 
for ectopic thyroid tissue, such as struma ovarii 
or sublingual thyroid [32].

 Management and Therapeutic 
Approaches

Clinical management and therapeutic approaches 
of thyroid nodules are based predominantly on 
FNA cytology and US characteristics.

 FNA-Malignant Nodule

With malignant FNA cytology, surgical resection 
is almost always indicated [61, 169, 170]. While 
the extent of surgery remains a matter of debate, 
recent trends favor a more limited approach for 
small, node-negative thyroid tumors. For exam-
ple, lobectomy is recommended for nodules 
1–4  cm with no extrathyroid extension or lym-
phovascular invasion [61].

The role of routine prophylactic central neck 
dissection for nonapparent lymphadenopathy 
(cN0) also continues to be debated [171, 172]. 
PTC is the most common thyroid malignancy, 
and approximately 30–90% of patients present 
with clinical or occult cervical LN involvement 
[173–175]. Recent guidelines recommend a 
detailed preoperative US evaluation to identify 
lymph node involvement to assist the surgeon’s 
clinical decision-making on the extent of surgical 
resection [61, 169]. In cases when a patient is 
unable to undergo surgical resection, active sur-
veillance is recommended.

 FNA-Benign Nodule

Benign FNA cytology warrants follow-up, and 
nodule(s) should be monitored with an US and 
TSH measurement in 1–2 years [66, 91]. Since a 
1–3% false-negative risk exists with benign 
cytology, a repeat FNA should be considered if: 
follow-up US is suspicious for malignancy [176, 

177], if >  50% nodule volume increase and/
or > 20% increase in at least two nodular dimen-
sions over a 12 month period [66, 178].

Recent data confirm that approximately 75% 
of benign nodules remain stable, while 10–15% 
spontaneously enlarge over a 5-year period with 
minimal risks of subsequent cancer develop-
ment [87, 179, 180]. Shrinkage of nodules with 
levothyroxine (LT4) suppressive therapy, though 
theoretically possible, is negligible in the vast 
majority of these patients [181, 182]. 
Additionally, LT4 suppressive therapy may lead 
to complications, including bone, heart, and 
quality of life issues [183–185]. Chronic low 
TSH in menopausal women decreases bone 
mineral density [186, 187] and increases frac-
ture risks. There is a threefold increase in atrial 
fibrillation [188], with increased morbidity and 
mortality from cardiovascular diseases [189, 
190]. For these reasons, neither ATA nor AACE 
guidelines recommend routine use of LT4 ther-
apy in FNA-benign nodules [61, 66].

Volume debulking surgery should be reserved 
for large, locally symptomatic goiters. Most large 
asymptomatic benign nodules or goiters may be 
followed with periodic thyroid palpation and 
imaging.

 FNA-Indeterminate Nodule

Lobectomy is the appropriate treatment for a sol-
itary, cytologically indeterminate nodule [61, 
66]. Total thyroidectomy may be preferred in 
those with sonographically suspicious features, 
large (>4 cm) lesions, bilateral nodules, or those 
with familial thyroid carcinoma history or per-
sonal history of neck irradiation. A repeat FNA 
may provide a definitive diagnosis in some cases 
[191, 192] but could also be problematic for the 
clinician who has to choose between two con-
flicting reports for a given patient. GEC or gene 
mutations (BRAF, RAS, RET/PTC, PAX8/
PPARγ) may adjust malignancy risks [193–195] 
but can be cost-restrictive and currently are not 
recommended for routine clinical use.
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 FNA-Suspicious Nodule

With an estimated cancer risk of 60–75% [110, 
111], total thyroidectomy is indicated. GEC 
(gene expression classifier) testing is not recom-
mended in this category as it often fails to change 
the treatment course.

 FNA-Nondiagnostic Nodule

An unsatisfactory specimen may result from a 
cystic nodule that yields few or no follicular 
cells; reaspiration yields satisfactory smears in 
about 50% of these cases [196]. Pure cysts, with 
a very low risk of malignancy, do not require 
FNA.  Complex or solid nodules with nondiag-
nostic initial FNA should be re-biopsied. Large 
nodules (>4  cm), recurrent cysts, or solid nod-
ules, with repeated nondiagnostic FNA, should 
be treated surgically due to a not-insignificant 
risk of malignancy [110].

 TSH-Suppressed Solitary Nodule or 
MNG

A patient presenting with a solitary thyroid nod-
ule, or a MNG, and a suppressed TSH, should 
undergo scintigraphy with technetium or radioio-
dine to evaluate for nodule autonomy. 
Autonomous nodules (hot) are rarely malignant 
in the adult patient and do not require FNA, but 
careful evaluation for suspicious features of 
malignancy should not be overlooked [197, 198]. 
By contrast, as many as 30% of children are 
reported to have incidental PTC in autonomous 
nodules, and FNA is needed when nodule is sus-
picious by US [199].

 Multinodular Goiter (MNG)

MNGs are common, frequently benign, and often 
asymptomatic [200]. When a goiter causes local 
compressive symptoms such as dysphagia, chok-
ing, or airway obstruction, surgical intervention 
becomes necessary [180, 201] (Fig.  5). 

Approximately 10–15% of patients with goiters 
require surgical intervention, with up to 12% 
requiring reoperations due to nodular recurrence 
when initial thyroidectomy was partial or subto-
tal [202, 203]. The use of T4 suppressive therapy 
postoperatively does not have a significant effect 
in reducing recurrence rates [203, 204], except in 
iodine-deficient areas [205]. Currently, experi-
enced surgical groups prefer total rather than sub-
total thyroidectomy as the procedure of choice 
due to the very low risk of recurrence and mini-
mal risk of permanent hypoparathyroidism or 
recurrent laryngeal nerve injury [202, 206, 207].

MNGs may become toxic (Plummer’s dis-
ease) and, while not malignant, require treatment 
for hyperthyroidism [208].

 Surgery

Surgical options for thyroid nodules include 
lobectomy, with or without isthmectomy, near-
total, or total thyroidectomy [61]. The type of 
surgery is dependent on FNA cytology (suspi-
cious vs. malignant), extent of disease (unilateral 
vs. bilateral disease), and presence of local symp-
toms. If presenting with dysphagia, choking, dys-
pnea, hoarseness, neck pressure, or pain caused 
by an enlarged thyroid gland, total thyroidectomy 
is preferred. Surgical complications include hem-
orrhage, vocal cord paralysis, and hypoparathy-
roidism [206], which are much less frequent with 
high-volume surgical practices [209].

 Medical Rx

 Radioiodine Therapy for Benign 
Nodular Goiter

The goals of radioiodine (131I, RAI) therapy are to 
ablate thyroid autonomy, restore normal thyroid 
function, and reduce thyroid volume [210]. 131I is 
a β- and γ-radiation emitter, which rapidly con-
centrates in the thyroid gland after oral ingestion 
[211, 212]. It is used for both hyperfunctioning 
and symptomatic nontoxic goiters. RAI therapy 
is effective and leads to an 80–90% euthyroid 
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state within 8 weeks posttreatment [213]; those 
with toxic MNG experience a 40% reduction in 
thyroid volume after 1  year and up to 60% by 
5 years [214]. Radioiodine doses vary from 25 to 
50 mCi, with approximately 80% of RAI-treated 
individuals at risk for hypothyroidism within 
25 years [215].

Although some authors suggest the use of 
methimazole prior to 131I ablation in toxic goiters 
[216, 217], randomized trials show lower effi-
cacy with lower cure rates with this approach 
[218, 219]. Transient hypersecretion of T4 may 
occur in 1–5% of those treated with RAI for non-
toxic MNG [220, 221]. RAI is otherwise well-
tolerated, and if TSH has not normalized within 
6  months, retreatment with RAI may be 
considered.

When malignancy is not a concern, RAI ther-
apy is preferred in patients with nodular goiters at 
risk for surgical intervention, those with previous 
surgical resection, and for small nontoxic goiters 
(volume  <  100  mL) [32]. RAI is not recom-
mended in those requiring immediate resolution 
of hyperthyroidism or with symptomatic airway 
compromise. We do not favor RAI use in children 
or adolescents due to long-term risks of malig-
nancy [222]. The only absolute contraindication 
of RAI therapy is pregnancy [223]; women of 
childbearing potential should have a pregnancy 
test prior to administration of radioiodine.

 Recombinant Human Thyroid-
Stimulating Hormone

In areas of mild iodine deficiency, 131I is easily 
taken up by the thyroid gland to successfully treat 
nontoxic goiters. In iodine-sufficient regions, 131I 
uptake in nontoxic goiters may be low or low-
normal, and significantly higher 131I doses are 
needed for ablation and thyroid volume reduction 
[224]. To minimize excessive dosing while maxi-
mizing efficacy, recombinant human TSH 
(rhTSH) has been used with increasing favor. Low 
doses (0.01 or 0.03 mg) of rhTSH given 24 h prior 
to 131I administration result in a twofold increase 
of RAI uptake to the thyroid gland compared to 
nontreated subjects [225] while requiring a mean 

36% reduction in 131I dose [226]. rhTSH works by 
intensifying radiation absorption to the thyroid 
gland as a consequence of increased TSH [227, 
228]. Thyroid volume reportedly decreases by 
around 40% [229]. Complications with rhTSH 
may include mild transient hyperthyroidism 
(40%), painful thyroiditis (30%), permanent 
hypothyroidism (65%), or transient goiter enlarge-
ment (24%) [230, 231]. Prior to any 131I treatment, 
all patients should undergo US evaluation and, if 
necessary, US-FNA to rule out malignancy requir-
ing thyroidectomy.

 Nonsurgical Minimally Invasive 
Procedures

 Percutaneous Ethanol Injection

Percutaneous ethanol injection (PEI) involves 
injecting 95–99% ethanol solution under US 
guidance into a cystic thyroid mass. It induces 
small vessel thrombosis, coagulative necrosis, 
interstitial edema, and granulomatous inflamma-
tion, followed by fibrotic changes leading to sig-
nificant volume reduction [232, 233]. 
Occasionally multiple treatments are required to 
permanently shrink the cystic mass.

Thyroid cysts. Cystic nodules tend to recur 
10–80% of the time post-percutaneous drainage 
and are dependent on the number aspirations, 
solid component, and cystic volume [52] (Fig. 1). 
The recurrence rate of cysts post PEI is much 
less, around 13–38% [234], with success rates of 
over 80% [52, 235, 236]. PEI has been reported 
to reduce symptoms in 75% of patients, whereas 
simple fluid aspiration reduced symptoms in only 
24% of treated patients [52]. Mean volume reduc-
tion is around 65% for cysts [237]. A retrospec-
tive study noted that PEI-treated cysts and cystic 
nodules develop US features of malignancy in 
75% of patients without real increased malig-
nancy compared to nontreated cysts [238]. Risks 
associated with the procedure include pain, etha-
nol leakage into surrounding tissues, and dyspho-
nia, which are typically mild and transient. We 
consider PEI as treatment of choice for symp-
tomatic or recurrent benign thyroid cysts [233].
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Autonomously functioning thyroid nodules. 
Use of PEI has shown variable results in autono-
mously functioning nodules. Larger nodules 
(>60 mL) tend to have higher failure rates [239], 
while smaller or pre-toxic nodules show more 
success [240, 241]. A study of 125 patients noted 
a mean shrinkage of 66% and normalization of 
thyroid function in over 90% of subjects [242]. 
Currently, 131I and surgery remain the better alter-
native therapy for hyperfunctioning nodules.

Cold solid nodules. Use of PEI in FNA-
benign, nonfunctioning solid nodules leads to a 
38% volume reduction [237]. The procedure 
appears to be more effective than T4 suppressive 
therapy in decreasing nodule volume and reliev-
ing local pressure symptoms. Complications 
include transient pain, and some nodules may 
require multiple treatments. Lack of long-term 
follow-up, and the fact that majority of benign 
nodules remain stable in size, mitigates against 
use of PEI for benign, solid nodules [233].

PTC malignant lymph nodes. PEI has been 
used in patients with PTC metastatic lymph 
nodes, who are unresponsive to 131I and/or non-
surgical candidates. PEI is well-tolerated and 
effective in limited nodal disease (1–5 involved 
lymph nodes) with initial therapy [243] and long-
term outcome [244]. It is considered to be both 
safe and an effective alternative to nodal dissec-
tion but sadly is not offered by many centers in 
the USA [244].

In summary, PEI is effective and should be the 
treatment of choice for recurrent, large, or symp-
tomatic benign thyroid cysts. It should seldom be 
used to treat autonomously functioning thyroid 
nodules; RAI remains the procedure of choice in 
most of these cases. PEI is not recommended for 
cold thyroid nodules but should be considered for 
malignant cervical nodes in some circumstances.

 Other Approaches

Laser thermal ablation (LTA). LTA involves 
using laser light transmitted through silica optical 
fibers guided through a 21G spinal needle into 
the desired location [233]. LTA is a safe and 
effective method of ablating cold, autonomous, 

and cystic nodules [245–247]. Though complica-
tion risks are minimal, they must not be ignored 
and include tracheal wall damage from operator 
lack of experience and vocal cord paralysis with 
recurrent laryngeal nerve damage. To minimize 
these risks, treatment should be performed by 
well-trained operators [248]. Other risks include 
transient cervical burning during the procedure 
with possible persistence for a few days post pro-
cedure or low-grade fever, controlled with acet-
aminophen [233].

Radio-frequency ablation (RFA). RFA uses 
electromagnetic energy to induce thermal injury 
to its target. Large 14G or 17G needles are used 
to deliver 30–50 Watts of radio-frequency power 
to large lesions under conscious sedation [233]. 
RFA has been shown to reduce benign nodules by 
50–90% with resolution of symptoms within 
6 months of treatment [249]. While RFA is very 
effective, it requires special equipment and expe-
rienced personnel [233]. RFA has also been 
described as effective in the management of 
locally recurrent thyroid cancer patients who are 
poor candidates for or refuse surgery. RFA has 
shown significant volume reduction, with low 
recurrence rates post treatment [250].

 Summary

We have witnessed a significant improvement in 
the management of patients with thyroid nodules 
over the last few decades. Not long ago, thyroid 
masses were detected by palpation, either by the 
patient or by an examining physician, evaluated 
by radioisotope scan, and mostly treated by sur-
gical excision. The majority of excised nodules 
were benign, meaning that most surgeries were 
unnecessary. Those not surgically treated were 
placed on chronic thyroxine (T4) therapy with 
TSH suppression.

Today, we use reliable techniques to identify 
benign nodules and medically manage most 
patients with nodular thyroid disease. We 
employ sensitive US machines, perform accu-
rate FNA guided by US, apply complex cyto-
logical classifications, and use nonsurgical 
approaches to treat and follow thyroid nodules. 
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Long-term T4 suppressive therapy is no longer 
used and must be avoided, because of lack of 
benefit and potential harmful complications. 
Identifying various molecular markers helps 
guide treatment to minimize or eliminate 
unnecessary surgery.

It should also be noted that the application of 
sensitive imaging to thyroid practice, while quite 
beneficial, has had unintended consequences. 
Discovery of small, incidental thyroid masses 
often creates a dilemma for the physician taking 
care of a patient who has no prior history of thy-
roid disease and now is faced with a new thyroid 
mass. Frequently, small incidentalomas are eval-
uated by FNA, and when cytology is abnormal, 
surgery follows. Many of these micronodules are 
clinically insignificant and may never become 
relevant in the patient’s lifetime. This scenario 
likely explains the significant rise in the inci-
dence of PTC in recent decades and should be 
considered a setback in the management of nodu-
lar thyroid disease.

This chapter describes advances, advantages, 
and future directions in thyroid nodular disease. 
The Bethesda system for reporting thyroid cyto-
pathology has improved our ability to further 
separate low- from high-risk indeterminate cytol-
ogy. At this time, the role of biomarkers to better 
classify indeterminate cytology is not well estab-
lished, though we remain hopeful that improving 
technology will lead to better clinical tests. 
Minimally invasive techniques offer a high 
degree of therapeutic promise, not only for 
benign nodules but also for limited, recurrent 
locoregional malignancy.
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Nontoxic Multinodular Goiter

Gilberto Paz-Filho and Hans Graf

 Introduction

Multinodular goiter (MNG) is defined as the 
enlargement of the thyroid gland, in the absence 
of inflammation, autoimmune thyroid disease, 
and malignancy. Furthermore, the term MNG 
refers to a thyroid gland that presents many nod-
ules, in the absence of thyroid dysfunction. The 
natural history of MNG is characterized by thy-
roid growth, followed by nodule formation, and 
the progression, in many cases, to nodule auton-
omy and overt hyperthyroidism (i.e., toxic MNG; 
TMNG) due to hyperfunctioning nodules that 
secrete thyroid hormones independent of TSH 
stimulation. Iodine deficiency is the most impor-
tant etiologic factor predisposing to the develop-
ment of MNG.

The clinical presentation of a patient with 
MNG is diverse. Some affected patients can be 
asymptomatic; on the other side of the spectrum, 
individuals with large goiters can present upper 
airway compression and respiratory insufficiency. 
MNG is more prevalent in females than in males, 
in a proportion of 6:1 to 15:1. The diagnostic eval-

uation includes thyroid function tests; imaging 
studies such as thyroid ultrasound (US), com-
puted tomography (CT), and magnetic resonance 
imaging (MRI); cytological studies of nodular 
samples obtained through US-guided fine-needle 
aspiration (US-FNAB); and assessment of radio-
active iodine uptake (RAIU). The management of 
a patient with MNG depends on the clinical pre-
sentation and preference, which includes surgery 
or radioiodine therapy in most cases.

 Epidemiology

Endemic nodular goiter is defined as thyroid 
enlargement that affects 5% or more of children 
from 6 to 12 years old [1]. The most importance 
etiological factor for MNG is iodine deficiency; it 
has been observed that the incidence of MNG is 
negatively correlated with the iodine intake of a 
population living in a given area. Besides iodine, 
other risk factors for the development of MNG 
include smoking, intake of natural goitrogens, 
age, sex, and heredity [1]. However, epidemio-
logic studies assessing the risk factors for the 
development of goiter, as well as its prevalence, 
have several limitations, such as different meth-
ods employed for the determination of thyroid 
volume, heterogeneous criteria defined for the 
selection of affected individuals (including 
 thyroid function), and interference of environ-
mental factors [2].
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Low environmental supply of iodine accounts 
for thyroid abnormalities such as increased nodular 
size and goiter, in which prevalence can be as low 
as 15% in case of mild iodine deficiency and as 
high as 23% in case of moderate iodine deficiency 
[3]. It is estimated that the prevalence of thyroid 
nodular disease is approximately 4% in iodine-
sufficient countries. This prevalence can be four- to 
fivefold higher in iodine-deficient areas [4].

Based on ultrasonographic studies conducted 
in iodine-deficient areas, the reported prevalence 
of nodular disease in adults is about 30–40% in 
women and 20–30% in men [2]. In the Wickham 
study (County Durham, UK), a survey of 2749 
individuals living in an iodine-sufficient area 
detected small goiters (palpable but not visible) 
in 8.6% of that sample and obvious goiters (pal-
pable and visible) in 6.9%. Goiters were four 
times more common in females [5].

In another survey conducted in Framingham 
(Massachusetts, USA), an iodine-sufficient 
area, the prevalence of MNG was 1% (diag-
nosed by palpation). By US, 3% of individuals 
older than age 60 and 36% of women aged 
49–58 had thyroid nodules [6]. As the disease 
progresses, thyroid volume and nodularity 
increase. Subclinical and overt hyperthyroidism 
develops in many cases, as a consequence of the 
overproduction of thyroid hormones due to the 
increase in functioning thyroid parenchyma and 
to thyroid autonomy [6].

 Etiology

The adaptive response of the thyroid follicles to 
endogenous and exogenous factors that impair 
thyroid hormone synthesis leads to the develop-
ment of goiter. Iodine insufficiency and persistent 
(even discrete) thyrotropin (TSH) elevation lead 
to thyrocyte proliferation and diffuse enlarge-
ment of the gland during childhood and adoles-
cence [7]. However, this traditional concept has 
to be challenged to contemplate the many aspects 
of goiter [8].

While the important roles of iodine deficiency 
and of the growth-promoting effect of TSH are, 
without any doubt, recognized as important fac-

tors in the MNG etiology, this hypothesis has 
been revised. The notion that iodine deficiency is 
the sole factor responsible for the development of 
goiter appears to be an oversimplification [8]. 
Endemic goiter has been described in countries 
with no iodine deficiency and even in some 
regions with iodine excess. Curiously, it has not 
been seen in some areas with severe iodine defi-
ciency [8]. MNG can develop as a consequence 
of an inherent predisposition of the thyroid gland 
to develop nodules during aging, amplified by the 
presence of additional factors further promoting 
thyrocyte proliferation and nodule formation [9]. 
Superimposed iodine deficiency, even at moder-
ate degrees, enhances the clinical presentation of 
MNG in younger individuals, with the additional 
influence of augmented TSH secretion [8].

Environmental factors associated with the 
development of goiter include cigarette smoking, 
infections, use of certain drugs, and exposition to 
goitrogens [10]. Several substances have been 
shown to have goitrogenic effects: cruciferous 
vegetables (such as cabbage, kale, cauliflower, 
broccoli, turnips, and rapeseed) contain gluco-
sinolates, which metabolites compete with iodine 
for thyroidal uptake. Similarly, cassava, lima 
beans, linseed, sorghum, and sweet potato con-
tain cyanogenic glucosides, which may be metab-
olized to thiocyanates and compete with iodine 
for thyroidal uptake. Cigarettes also contain thio-
cyanates. Other goitrogens include perchlorate, 
disulfides from coal processes, and flavonoids 
present in soy [11, 12].

Smoking is an unquestionable environmental 
factor that contributes to the development of 
MNG, especially in areas of mild iodine defi-
ciency. It has been confirmed that the thiocyanate 
present in tobacco competes with solute carrier 
family 5 sodium-iodide symporter, member 5 
(SLC5A5), also known as sodium-iodide sym-
porter (NIS) for the active uptake of iodine in the 
basal membrane of the thyrocyte [13, 14].

The effects of goitrogenic substances are 
attributed to their inhibitory action on iodine 
uptake and thyroperoxidase (TPO) activity, to 
their effect leading to the displacement of thyrox-
ine (T4) from the serum thyroid-binding protein 
transthyretin, and to their influence on reducing 
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T4 half-life [14]. Those changes lead to a slight 
state of hypothyroidism with an increase in TSH, 
which stimulates thyroid growth.

The deficiency of selenium, iron, and vitamin 
A predisposes to the development of goiter by (1) 
increasing peroxides that damage the thyroid 
gland and by impairing deiodinase activity (sele-
nium deficiency), by (2) reducing TPO activity 
(iron deficiency), or by (3) decreasing vitamin 
A-mediated suppression of the pituitary TSHβ 
gene [12]. On the other hand, iodine excess, 
observed in many countries such as Brazil, Chile, 
Algeria, Ivory Coast, Zimbabwe, and Uganda, 
also has a goitrogenic effects due to its action on 
decreasing the synthesis and secretion of thyroid 
hormones [15].

The effects of estrogens on the pathogenesis 
of goiter seem to be determined by several com-
plex pathways, depending on whether endoge-
nous or exogenous estrogens are involved [16]. 
Estradiol increases FRTL-5 cell growth in a time- 
and concentration-dependent manner in either 
the absence or presence of TSH [17]. Because 
iodine is known to inhibit thyroid cell growth, the 
effect of estradiol on the expression of NIS is 
considered as a potential target of estrogen action. 
Estradiol blocks TSH-induced NIS expression, 
demonstrating that the Fischer rat thyroid cell 
line 5 (FRTL-5) contains functional estrogen 
receptors that enhance cell growth and inhibit 
NIS expression [17]. Thus, there is a direct effect 
of female sex hormones on thyrocytes and conse-
quent thyroid growth, which explains the higher 
prevalence of MNG among women [2]. In addi-
tion, it has been suggested that 17β-estradiol 
amplifies the growth factor-induced signaling in 
the normal thyroid and in thyroid tumors [18].

Besides TSH, other growth factors are also 
involved in the pathogenesis of nodular goiter. 
Insulin-like growth factor-1 (IGF-1) levels are 
positively correlated with thyroid volume in both 
genders and with the presence of nodules in men 
[19, 20]. Increased levels of IGF-1, as seen in 
acromegalic patients [21] and in transgenic mice 
overexpressing IGF-1/IGF-1 receptor [22], are 
also associated with increased thyroid volume.

Genetic and environmental aspects may play 
an important role in the genesis of diffuse and 

nodular goiter, and some of these factors may act 
synergistically [23]. In a study that evaluated 
twins, it was demonstrated that genetic factors 
accounted for 67% and environmental factors for 
33% of the individual differences in the suscepti-
bility to the development of thyroid nodularity 
[24], suggesting that genetic factors are of etio-
logical importance for thyroid nodularity in clini-
cally healthy and euthyroid individuals [24]. The 
occurrence of familial cases of nodular goiter, at 
an early age in many cases, strengthens the 
hypothesis that genetic factors are involved in the 
pathogenesis of goiter [25]. Because of their 
important role in thyroid physiology and hor-
mone synthesis, genes involved in various aspects 
of thyroid physiology and hormone synthesis 
such as thyroglobulin (TG), TPO, NIS, dual oxi-
dase 2 (DUOX2), and TSH receptor (TSHR) are 
major candidate genes for familial euthyroid goi-
ters [16]. Besides the aforementioned genes, 
other candidate loci as determinants of nodular 
goiter are the multinodular goiter 1 (MNG) locus 
on chromosome 14 and loci on chromosomes 
Xp22 (MNG2), 2q, 3p, 3q (MNG3), 7q, and 8p 
[26]. In genome-wide association studies, four 
genetic loci were associated with thyroid vol-
ume: two independent loci located upstream of 
and within capping actin protein of muscle Z-line 
beta subunit (CAPZB), one within fibroblast 
growth factor 7 (FGF7), and one in chromosome 
16q23 [27]. A recent study combining genome-
wide linkage analysis with whole-exome 
sequencing identified gene variants (in multigen-
erational goiter families with an autosomal domi-
nant inheritance pattern) that may be involved in 
familial goiter (RGS12, GRPEL1, CLIC6, and 
WFS1) [28] (Table 1).

 Pathology

Histologic analysis reveals a broad range of mor-
phologies, from hypercellular regions to cystic 
areas filled with colloid. Fibrosis is frequently 
extensive, with areas of hemorrhage or lympho-
cytic infiltration. Using molecular techniques, 
most nodules within a MNG are polyclonal in 
origin, suggesting a hyperplastic response to 
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locally produced growth factors and cytokines. 
TSH, which is usually not elevated, may play a 
permissive or contributory role. Monoclonal 
lesions also occur within a MNG, reflecting 
mutations in genes that confer a selective growth 
advantage to the progenitor cells [29].

Thyroid glands in the early phase of develop-
ment of MNG show areas of hyperplasia with 
considerable variation in follicle size. Macroscopic 
examination shows nodular consistency and var-
ied appearance, with the normal homogeneous 
parenchymal structure deformed by the presence 
of nodules [30]. The nodules may vary consider-
ably in size (from a few millimeters to several 
centimeters), in borders (from sharp encapsula-
tion as seen in adenomas, to poorly defined mar-
gination), and in architecture (from solid follicular 
adenomas to gelatinous, colloid-rich nodules or 
degenerative cystic structures) [30].

Often, there is extensive fibrosis, and calcium 
may be deposited in internodular septae. Areas of 
normal thyroid tissue are scattered between the 
nodules, and there are often focal areas of lym-
phocytic infiltration. Radioautography shows a 
variety of appearance, with uptake localized 
sometimes in the adenomas and sometimes in the 
paranodular tissue. Occasionally, most of the 
radioactivity is confined to a few nodules that 

seem to dominate the metabolic activity of the 
gland [30].

 Clinical Manifestations

Patients with relatively small goiters and with nor-
mal thyroid function are usually asymptomatic. 
However, the goiter can gradually increase in size, 
leading to the development of multiple nodules, 
local compressive symptoms (such as difficulty in 
swallowing, cough, respiratory distress, and feel-
ing of a lump in the throat), and/or cosmetic com-
plaints. Almost 70% of patients with sporadic 
nontoxic goiter complain of neck discomfort; the 
remainder has cosmetic concerns or fear of possi-
ble malignancy [16]. Thyrotoxicosis may develop, 
particularly in older patients, and can present from 
asymptomatic subclinical hyperthyroidism to 
overt hyperthyroidism [31].

There are no specific parameters to predict, in 
a given patient, the natural history of 
MNG. Usually, the physician follows the patient, 
and further approaches are undertaken if clinical 
symptoms and signs arise. In some cases, treat-
ment can be chosen before the goiter grows any 
further, avoiding adverse clinical outcomes for 
the patient [10].

Table 1 Examples of situations predisposing to goitrogenesis [16]

Origin Substance Examples
Iodine intake Iodine deficiency Individuals living in Australia and certain European 

countries
Iodine excess Individuals living in Brazil and Japan

Chemicals Thiocyanate Cigarettes
Perchlorate Fertilizers, solid propellants, fireworks, road flares, 

matches, and airbag inflation systems
Disulfides Coal processes

Food substances Flavonoids Soy
Glucosinolates Cruciferous vegetables
Cyanogenic glucosides Cassava, lima beans, linseed, sorghum, and sweet 

potato
Drugs Lithium, aminoglutethimide Mood stabilizing and anti-steroid drugs
Pollutants Nitrates Nitrogen-rich fertilizers
Micronutrient 
deficiencies

Deficiency of selenium, iron, and 
vitamin A

Patients on total parenteral nutrition, iron deficiency 
anemia, cystic fibrosis

Hormonal 
alterations

IGF-1 excess, TGF decrease Acromegaly, systemic lupus erythematosus

Genetic factors Mutations and polymorphisms 
predisposing to goiter

Recessive or dominant mutations, polymorphisms on 
genes such as 16q23
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Younger patients tend to have smaller, diffuse 
goiters, with few or no nodules and without intra-
thoracic extension. Many times, the goiter grows 
gradually for a period of a few to many years, and 
then growth becomes stable with little tendency 
for further enlargement [16]. Patients with large 
goiters may develop compressive symptoms, and 
the clinical manifestations are influenced not 
only by the size of the goiter but also by its pos-
sible substernal extension. In that case, compres-
sion of the trachea, esophagus, and great vessels 
is more likely to occur in the confined space of 
the thoracic inlet. The close relationship of the 
thyroid gland with adjacent structures is the key 
factor that determines the most significant clini-
cal manifestations. Large goiters can compress 
the trachea, esophagus, and neck vessels and be 
associated with symptoms of inspiratory stridor 
and dysphagia [10, 16].

Rarely, compression of carotid arteries may 
cause carotid bruit, a systolic sound heard over 
the carotid artery area during auscultation [10]. 
Compression of the recurrent laryngeal nerves 
may lead to unilateral or bilateral vocal cord 
paralysis, with consequent transient or perma-
nent dyspnea and hoarseness [32]. Compression 
of the cervical sympathetic chain may cause 
paralysis of the phrenic nerve (which can be 
asymptomatic or cause dyspnea) [33]. Horner’s 
syndrome (ptosis, mitosis, and decreased sweat-
ing of the face on the same side) [34], thrombosis 
of the jugular vein, and superior vena cava syn-
drome have also been described [35].

Hemorrhage into a nodular cyst can provoke 
sudden increase in the size of the gland, associ-
ated with sharp pain and tenderness. In that case, 
US reveals a cystic nodule at the hemorrhage site, 
confirming this event. Within some days, the 
symptoms disappear; within a few weeks, the 
gland may revert to its previous dimensions [30]. 
Malignant nodules tend to be firm, irregular, and 
fixed to adjacent tissues. Regional lymphadenop-
athy also raises suspicion for malignancy [16].

In cases of goiter migration to the retroster-
nal and upper mediastinal regions, compres-
sion of the jugular and subclavian veins in the 
area around the superior vena cava may occur. 
Pemberton’s maneuver (extension of the arms 

above the head) leads to dislocation of the goi-
ter into the upper thoracic inlet, causing respi-
ratory difficulty, distension of the neck veins, 
facial congestion, and stridor due to increased 
pressure on the trachea (Pemberton’s sign) [36] 
(Table 2).

The management of substernal goiters has 
challenged surgeons for decades. Their treat-
ment is important, as they can represent up to 
7% of mediastinal tumors [37]. Huins et  al. 
commented on the diverse definitions used for 
retrosternal goiters [38] and concluded that the 
classification based on the anatomical location 
(1, above the aortic arch or above T4; 2, the aor-
tic arch to the pericardium; and 3, below the 
right atrium) provides a common standard for 
preoperative planning [38].

The CSI (CT scan cross-sectional imaging) 
classification system is useful for risk stratifica-
tion and defines substernal goiters based on (1) 
the craniocaudal extension, as grade 1 (above 
the aortic arch), grade 2 (at the level of the aortic 
arch), and grade 3 (below the aortic arch); (2) 
the anteroposterior extension, as type A (prevas-
cular), type B (retrovascular-paratracheal), and 
type C (retrotracheal); and (3) the latero-lateral 
extension, as monolateral or bilateral [39]. The 
prevalence of intrathoracic goiters, with sub-
sternal or mediastinal extension, ranges between 
2.6 and 30.4% [16].

Table 2 Possible clinical manifestation in patients with 
multinodular goiter and their causes [16]

Effect Clinical manifestation
Tracheal compression Dyspnea

Respiratory stridor
Cough
Choking sensation

Esophageal 
compression

Dysphagia

Recurrent laryngeal 
nerve compression

Hoarseness

Cervical sympathetic 
chain compression

Horner’s syndrome (ptosis, 
miosis, decreased facial 
sweating)
Phrenic nerve paralysis

Vascular compression Pemberton’s sign
Thyroid 
hyperfunction

Signs and symptoms of 
hyperthyroidism
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 Diagnostic Evaluation

 History and Physical Examination

Careful anamnesis and physical examination are 
crucial for the diagnostic evaluation of a patient 
with MNG.  The incidence of malignancy in 
MNG appears to be the same as in uninodular 
goiter and is one of the main concerns when eval-
uating MNG [40]. On the contrary, a recent sys-
tematic review and meta-analysis confirmed the 
slightly higher risk of malignancy in solitary nod-
ules, compared to MNG. This cancer incidence 
appears to be valid mainly in iodine-deficient 
populations [41]. Features suggesting benign dis-
ease include family history of Hashimoto’s thy-
roiditis, benign thyroid nodule, or goiter; 
symptoms of hypothyroidism or hyperthyroid-
ism; and a sudden increase of nodule size with 
pain or tenderness, which suggests a cystic hem-
orrhage or localized subacute thyroiditis [10].

Investigating the family history, comorbidi-
ties and potential exposure to goitrogens may 
help to determine the etiological factors. 
Thyroid nodules are generally benign colloid 
nodules, and only 5–10% of nodules coming to 
medical attention are carcinomas. With the 
widespread practice of medical checkups in 
healthy individuals, and the increasing use of 
imaging technology, this problem is likely to 
become more common [8]. High-resolution US 
studies suggest that the prevalence of nodular 
thyroid disease in healthy adults is greater than 
60% [42]. Many studies have shown that nodule 
size is not predictive of malignancy and that the 
incidence of cancer in incidentally identified or 
nonpalpable thyroid nodules is the same as in 
patients with palpable nodules [40, 42]. On the 
other side, some authors suggest that the inci-
dence of carcinoma in thyroid nodules equal to 
or larger than 4  cm is high, with an elevated 
false-negative rate for preoperative benign 
cytology [43]. Given the excellent prognosis of 
micropapillary carcinoma measuring less than 
1  cm in diameter, most authors recommend 
investigation of only those nodules larger than 
1 cm and of nonpalpable nodules with clinical 
or sonographic suspicious findings [40, 42, 44].

 Laboratory Investigation

In any patient with goiter, serum TSH is by far 
the most used test in the initial evaluation, which 
allows the determination of thyroid function. 
Patients with normal serum TSH are considered 
euthyroid and do not need further laboratory 
investigation [40].

A low or undetectable serum TSH is consis-
tent with thyroid hyperfunction due to autono-
mously functioning nodular areas and warrants 
thyroid scintigraphy [16, 40]. Serum thyroid hor-
mones must be measured in order to diagnose 
subclinical or overt hyperthyroidism. If clinical 
findings strongly raise suspicion of hyperthyroid-
ism, total triiodothyronine (T3), total T4, and free 
T4 could be measured concomitantly with TSH 
[16]. Patients with thyroid hyperfunction, espe-
cially elderly ones, should have additional car-
diac investigation, as the risk of atrial fibrillation 
may be increased as much as threefold when 
serum TSH levels are less than 0.1 mU/L [45].

A recent panel of the American Thyroid 
Association (ATA) could not recommend either 
for or against routine measurement of serum calci-
tonin in patients with thyroid nodules [40]. If mea-
sured, calcitonin levels must be interpreted with 
caution, since it has low positive predictive value 
and can lead to unnecessary surgery [46]. 
Thyroglobulin measurements are not recom-
mended in the evaluation of malignancy [40]. In 
patients with MNG and overt hyperthyroidism, the 
determination of the titers of TSH receptor anti-
bodies (TRAb) may be considered to support or 
exclude the diagnosis of Graves’ disease co-exist-
ing with multiple nonfunctioning thyroid nodules 
(the so-called Lenhart-Marine Syndrome). Also, 
elevated anti-TPO antibodies (TPOAb) are associ-
ated with an increased risk of post-radioiodine 
hypothyroidism [47] and of Graves’ hyperthyroid-
ism [48, 49].

 Imaging

The presence of MNG may be detected inciden-
tally during a chest X-ray done for other reasons 
as a mass occupying the upper mediastinum, fre-
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quently with tracheal deviation. Thyroid US is 
mandatory in the evaluation of a patient with 
MNG [40]. It is an inexpensive, easy to perform 
test and can be used to guide fine-needle aspira-
tion biopsy (US-FNAB). It provides an estimate 
of thyroid volume and also identifies and charac-
terizes benign-appearing and more suspicious 
thyroid nodules.

The US report should convey nodule size (in 
three dimensions), as well as areas adjacent to the 
carotid artery and the jugular vein, in search of 
suspicious cervical lymphadenopathy [40]. US 
may assess not only the characteristics of the thy-
roid nodules but is also used to follow those nod-
ules [42, 10]. The usefulness of US is very limited 
in patients with intrathoracic goiters, as the US 
beam cannot penetrate the bone. Cross-sectional 
imaging with computerized tomography (CT) or 
magnetic resonance imaging (MRI) are invalu-
able tools that fully characterize thyroid volume, 
degree of substernal extension, and compression 
of the trachea [16]. CT and MRI can also deter-
mine the cross-sectional area of the trachea, a 
useful measure of tracheal compression [16]. 
None of these methods have any advantages over 
sonography when it comes to detailed visualiza-
tion of the intrathyroidal structure [10].

The major strength of CT and MRI is the abil-
ity to diagnose and assess the extent of substernal 
goiters much more precisely than any other 
method. A comparative study between CT and 
MRI showed an accuracy of 85.7% for CT and 
100% for MRI regarding the correlation between 
anatomo-topographic and intraoperative find-
ings, without a significant statistical difference 
between these two diagnostic procedures [50]. 
Another advantage of CT and MRI is the possi-
bility to estimate planimetric volumes, especially 
useful in cases of irregularly enlarged goiters 
[16] (Fig. 1) [51].

Calculation of thyroid volume based on US 
recordings of cross-sectional areas is a repro-
ducible method in patients without substernal 
goiter extension [52]. Wide differences are 
observed in the size of nodular goiters mea-
sured by scintigraphy and US [53]. All of the 
methods described above have little value in the 
differentiation between malignant and benign 

thyroid lesions (Table  3), but new techniques 
are promising in this respect. Increased glucose 
metabolism, measured by [18F]2-deoxy-2-
fluoro-d-glucose positron emission tomography 
(FDG-PET), can, with high precision, differen-
tiate malignant from benign thyroid nodules 
[54]. Nearly 50% of thyroid nodules detected 
incidentally by FDG-PET harbor thyroid can-
cer [54].

 Fine-Needle Aspiration Biopsy 
(FNAB)

Patients with toxic MNG or atoxic MNG have the 
same risk of malignancy as the risk observed in 
those with single nodules [40, 55]. Patients with 
nodular goiter and low TSH levels appear to have 
a lower risk of papillary thyroid cancer [56]. The 
recommendations for US-FNAB in patients with 
MNG are the same as those for patients with sin-
gle nodules: the dominant nodule, as well as any 
sonographically suspicious nodules, should be 
biopsied [40, 57]. It is preferable that FNAB be 
performed under US guidance (US-FNAB), 
rather than without US. This procedure is cost-
effective and increases accuracy [58]. Nodules 
that are suspicious for malignancy are hypoechoic, 
have irregular margins, do not have a sonolucent 
halo, and have intranodular vascularity and 
microcalcifications [40, 59].

US-FNAB reports should follow the classifi-
cation proposed at the National Cancer Institute 
Thyroid Fine-Needle Aspiration State of the 
Science Conference, held in Bethesda: (1) non-
diagnostic or unsatisfactory, (2) benign, (3) 
atypia of undetermined significance or follicu-
lar lesion of undetermined significance, (4) fol-
licular neoplasm or suspicious for follicular 
neoplasm, (5) suspicious for malignancy, and 
(6) malignant [40, 60]. If the cytological find-
ings are indeterminate (Bethesda 3), a second 
cytologist opinion can be helpful. If the cyto-
logical analysis is the same, it is recommended 
to repeat fine-needle aspiration in 6–12 months, 
or to perform mutational analysis or molecular 
profiling, to better estimate the risk of cancer 
[40] (Table 4).
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 Pulmonary Function Tests

Although large MNG can lead to tracheal com-
pression and pulmonary function impairment, it 
is common that this aspect is not evaluated rou-
tinely in the clinical practice [61]. Pulmonary 
evaluation is fundamental in cases of large and/or 
intrathoracic goiters compressing the trachea, in 
order to determine the presence and degree of 
pulmonary functional impairment and to demon-
strate the efficacy of therapeutic approaches such 
as surgery and radioiodine therapy. The airflow 
rate, particularly in the inspiratory phase, is obvi-
ously critically compromised if the lumen of the 
trachea is reduced beyond a certain point [62]. 
Even asymptomatic patients may have abnormal 
results and therefore may benefit from this evalu-
ation [61, 62]. Improvement in pulmonary func-
tion after surgery or radioiodine therapy can be 
objectively quantified with pulmonary function 
tests [61] (Fig. 2).

 Management

The management of patients with MNG is guided 
by the clinical presentation and by the patients’ 
preference, which is comprised of expectant clin-
ical observation, surgery, or radioiodine therapy. 
Occasionally, long-term, low-dose treatment 
with methimazole is warranted to some patients 
with subclinical hyperthyroidism or toxic multi-
nodular goiter and with limited longevity, such as 
elderly or otherwise ill patients, provided they 
can be monitored regularly and they prefer this 

option [40]. Iodine supplementation and suppres-
sive therapy with levothyroxine are not recom-
mended therapeutic options. In spite of these 
observations, there is not a unique treatment for 
MNG. This can be confirmed by surveys involv-
ing European [63], American [64], and Latin-
American [65] endocrinologists, showing that 
there are different views in the treatment of 
patients with MNG.

 Clinical Observation

Clinical observation is a reasonable approach in 
the management of patients with nontoxic and 
asymptomatic benign MNG that do not cause any 
cosmetic issues to the patient. The natural history 
of goiters during menopause shows that thyroid 
growth is extremely slow, with no significant 
change in mean nodule volume over 5 years [66]. 
In a survey among European clinicians, one third 
of them would refrain from treating a patient with 
moderate discomfort due to a multinodular 
 nontoxic goiter of 50–80  μg, in which malig-
nancy had been ruled out [63]. A conservative 
approach was preferred, based on periodic assess-
ment of the thyroid hormonal status and on the 
monitoring of goiter and thyroid nodule sizes by 
US and CT scans [63].

For thyroid nodules, ATA suggests that moni-
toring should be conducted according to risk 
stratification: nodules with high suspicion, low to 
intermediate suspicion, and low suspicion sono-
graphic pattern should be evaluated every 12, 
12–24, and ≥24  months, respectively [40]. If a 

Fig. 1 CT scan showing the large substernal goiter compressing and deviating the trachea (Reproduced from [51])
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nodule has been submitted to a repeated 
US-FNAB with a second benign cytology result, 
US surveillance for malignancy is no longer indi-
cated [40]. In patients harboring intrathoracic or 
substernal goiters, US-FNAB is anatomically dif-
ficult and malignancy, while rare, cannot be 
always ruled out [67]. As surgery is almost 
always recommended for this particular goiter 
presentation, thyroid cancer can be confirmed or 
ruled out [67].

US-FNAB should be repeated only if charac-
teristics that raise suspicion for malignancy are 
newly identified, if a thyroid nodule volume 
increases by ≥50% in size or by ≥20% in at least 
two of the three diameters, or if other worrisome 

clinical features develop, such as persistent 
hoarseness, dysphagia, or adenopathy [40]. 
Ultrasonography altered the clinical management 
for 63% of the patients referred to a thyroid nod-
ule clinic after abnormal results on thyroid physi-
cal examination [68]. Routine follow-up FNAB 
has been shown not to be cost-effective in patients 
whose initial FNAB was benign [69].

 Iodine Supplementation

Iodine supplementation does not have sufficient 
therapeutic effect on MNG, in spite of the knowl-
edge that iodine deficiency is the most important 

Table 3 Advantages and disadvantages of the main imaging tools [16]

Tool Advantages Disadvantages
Ultrasound Widely available Operator-dependent

Has high resolution No information on thyroid function
No exposure to ionizing radiation Not useful for substernal goiters
Dynamic picture Poor prediction of malignancy
Ability to visualize blood flow (Doppler)
Moderate precision to estimate thyroid 
volume
Low patient discomfort
Bedside investigation

Scintigraphy Information on thyroid function Requires nuclear medicine units
Differentiates between destructive and 
hyperthyroid conditions

Ionizing radiation

Measures iodine uptake Poor resolution
Predicts feasibility of radioiodine therapy Poor differentiation between solid and cystic 

cold nodules
Detects ectopic tissue Inaccurate volume estimation

99mTc may falsely show nodular uptake
Affected by iodine contamination
Poor prediction of malignancy

CT scan Good availability Ionizing radiation
Has high resolution No information on thyroid function
Visualization of adjacent structures Poor prediction of malignancy
Useful for substernal goiter
Planimetric volume estimation
Accurate volume estimation

MRI No exposure to ionizing radiation Moderate availability, expensive
Has high resolution Long procedure time
Visualization of adjacent structures Contraindicated for patients with implanted 

metallic objects
Useful for substernal goiter No information on thyroid function
Planimetric volume estimation Poor prediction of malignancy
Highly accurate volume estimation Claustrophobia
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etiological factor for goiter development world-
wide. Even in iodine insufficient parts of the 
world, iodine therapy does not effectively 
decrease thyroid volume, once MNG is estab-
lished. In a recent study, a 1-year combination of 
iodine and levothyroxine leading to incomplete 
TSH suppression reduced thyroid nodule volume 
compared to either component alone or placebo. 

This finding may be explained by the fact that 
patients with thyroid nodules included in this 
trial were clearly iodine deficient (mean urinary 
iodine excretion 49.7–59.5 μg/L) [70]. Due to the 
risk of inducing hyperthyroidism (Jod-Basedow 
effect), iodine supplementation is not used a ther-
apeutic option in patients with MNG [71].

 Suppressive Therapy 
with Levothyroxine

Thyrotropin is well known as the most important 
thyroid growth factor, and its suppression by 
pharmacological doses of levothyroxine (LT4) 
supposedly could inhibit thyroid growth or even 
reduce its volume. Several studies have evaluated 
LT4 in patients with diffuse goiter, but few stud-
ies have involved euthyroid patients with MNG 
in a randomized placebo-controlled design [72, 
73]. In these studies, conducted mainly in iodine-
deficient regions, thyroid shrinkage ranged from 
7 to 32% after 1 year [16]. However, in a con-
trolled randomized clinical trial, treatment dis-
continuation was associated with thyroid volume 
increase in the responders, with catch-up thyroid 
growth to baseline values after 9 months of fol-
low-up [72]. Compared to radioactive iodine 
(131I) therapy, suppressive therapy is greatly infe-
rior: patients treated with 131I achieve 35% vol-
ume reduction in the first year, whereas goiter 
shrinkage in patients given suppressive treatment 
is approximately 7% [74].

Due to its low efficacy, the need for continu-
ous treatment, and its adverse effects,  suppressive 
therapy with LT4 is not recommended as a thera-
peutic option for MNG, in spite of being inexpen-
sive and easily applicable [75]. Suppressive 
therapy can lead to increased bone mineral turn-
over and to decreased bone mineral density, 
which can augment the risk of fractures [76]. It 
also has cardiac effects, leading to increased left 
ventricular mass and increased risk of atrial 
fibrillation [77]. Low serum TSH in individuals 
aged 60 or older is associated with increased 
mortality from all causes and, in particular, with 
increased mortality due to circulatory and cardio-
vascular diseases [78].

Table 4 The Bethesda System for Reporting Thyroid 
Cytopathology: Recommended Diagnostic Categories 
[60]

I. Nondiagnostic or 
unsatisfactory

Cyst fluid only
Virtually acellular specimen
Others (obscuring blood, 
clotting artifact, etc.)

II. Benign Consistent with a benign 
follicular nodule (includes 
adenomatoid nodule, colloid 
nodule, etc.)
Consistent with 
lymphocytic (Hashimoto) 
thyroiditis in the proper 
clinical context
Consistent with 
granulomatous (subacute) 
thyroiditis
Others

III. Atypia of undetermined significance or follicular 
lesion of undetermined significance
IV. Follicular neoplasm 
or suspicious for a 
follicular neoplasm

Specify if Hürthle cell 
(oncocytic) type

V. Suspicious for 
malignancy

Suspicious for papillary 
carcinoma
Suspicious for medullary 
carcinoma
Suspicious for metastatic 
carcinoma
Suspicious for lymphoma
Others

VI. Malignant Papillary thyroid carcinoma
Poorly differentiated 
carcinoma
Medullary thyroid 
carcinoma
Undifferentiated 
(anaplastic) carcinoma
Squamous cell carcinoma
Carcinoma with mixed 
features (specify)
Metastatic carcinoma
Non-Hodgkin lymphoma
Others
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 Surgery

Surgical management is considered by many 
groups as the main therapeutic option for patients 
with MNG, especially those with compressive 
symptoms [79, 80]. After thyroidectomy, 
improvements in breathing and swallowing are 
rapidly observed [16].

Preoperative evaluation is very important, 
allowing the determination of the most suitable 
type of anesthesia and intubation. In addition, 
planning the extent of surgery and postoperative 
care is necessary to achieve optimal results [79]. 
The surgical team must be aware of possible 
complications arising from massive goiter sur-
gery, such as bleeding, airway distress, recurrent 
laryngeal nerve injury, and transient hypopara-
thyroidism [79].

The advantage of surgery, in addition to the 
prompt relief of symptoms, is that it provides a 
definite histologic diagnosis [10, 16]. Total or 
near-total thyroidectomy has become the treat-
ment of choice because it eliminates the risk of 
recurrence, can detect the presence of cancer, 
cures co-existing hyperthyroidism (if present), 
and is not associated with an increase in surgical 
risk (when performed by experienced surgeons) 
[80–82]. Bilateral subtotal thyroidectomy is also 
an option, but the higher surgical risks that are 
associated with reoperation must be consid-

ered—reoperation results in a three to tenfold 
risk of hypoparathyroidism or permanent vocal 
cord paralysis [83, 84].

Specific complications related to thyroid sur-
gery are injury to the recurrent laryngeal nerve 
and to the parathyroid glands. Permanent lesions 
of these structures occur in less than 1% of the 
patients in specialized units. Patients with MNG 
and substernal extension requiring surgery should 
be referred to high-volume surgeons. Intrathoracic 
goiters can usually be managed by cervical inci-
sion, but 10–30% of the cases require sternotomy 
or thoracotomy [85]. More recently, minimally 
invasive thyroidectomy has been evaluated as a 
technique that is associated with less surgical 
risks [86], but the large thyroid volume excludes 
this technique as a therapeutic option in MNG.

Hyperthyroid patients must be rendered 
euthyroid prior to the procedure with methima-
zole, without iodine supplementation. Beta-
blockers can also be employed if necessary [87]. 
After total or near-total thyroidectomy, thyroid 
hormone replacement can be promptly initiated 
at 1.5–1.7  μg/kg/day or in lower doses in the 
elderly. If subtotal thyroidectomy is chosen, LT4 
replacement should be initiated only if hypothy-
roidism develops, and not as a prophylactic agent 
against thyroid regrowth, since evidence for this 
is lacking [1, 16]. A randomized prospective non-
placebo controlled study showed that LT4 did not 

Flow
(L/s)

Volume
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a b

Volume
(L)
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Fig. 2 Spirometry studies in patients with goiter 
(Reproduced from [16]). Flow-volume loops in a normal 
patient (a) and in a patient with substernal goiter (b). In 

(b), the expiratory part of the flow-volume loop is normal 
because the force of the expiration overcomes the obstruc-
tion. The inspiratory part of the loop is flattened due to a 
partial obstruction of the trachea
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prevent recurrence in a 9-year post-partial thy-
roidectomy follow-up [88]. Surgery is relatively 
contraindicated in patients with significant 
comorbidities and when a high-volume thyroid 
surgeon is not available. Surgery should also be 
avoided during pregnancy, but if it is necessary, it 
should be performed in the later portion of the 
second trimester [89].

 Radioactive Iodine

For more than seven decades, radioactive iodine 
(131I) therapy has been used to treat thyroid dis-
eases, mainly Graves’ disease [87]. 131I is not 
only effective for curing hyperthyroid states but 
also leads to shrinkage of the thyroid gland [90]. 
Owing to this effect on the gland volume, 131I has 
been used for a long time in the treatment of com-
pressive nontoxic nodular goiters. In 1988, 
Hegedus et al., using US, demonstrated that 131I 
treatment of nontoxic MNG leads to significant 
goiter volume reduction after 1 year of 131I admin-
istration [91].

Treatment with 131I is an option for patients 
with contraindications to surgery, for those who 
reject surgical procedures, and for patients who 
have had previous surgery or radiation to the 
neck (making further surgical procedures more 
difficult) [16]. Pretreatment with methimazole 
before 131I therapy is indicated to patients with 
subclinical hyperthyroidism that are at an 
increased risk for complications due to worsen-
ing of hyperthyroidism, including elderly and 
those with cardiovascular disease or severe 
hyperthyroidism [87].

A number of studies employing US or CT/MRI 
(for accurate measurements of thyroid volume) 
have shown that 131I therapy reduces the volume 
of MNG by 35–50% within 1 year [47, 74, 92–
97], with further reduction observed after 
3–5 years [92, 96, 98] and with improvement in 
obstructive symptoms in most patients [91, 92].

The therapeutic efficacy of radioiodine 
depends, to some extent, on the goiter radioactive 
iodine uptake (RAIU). Low isotope accumula-
tion in inactive and partially suppressed areas 
around the nodule is a limitation for radioiodine 

treatment in patients with MNG [16]. This low 
and heterogeneous RAIU in multinodular goiters 
requires higher activities and sometimes repeated 
administrations of 131I [16]. The improvement in 
compressive symptoms after therapeutic activi-
ties of 131I is accompanied by significant tracheal 
widening, as measured by CT or MRI [10, 16, 
96]. Treatment is usually accomplished by the 
administration of a single oral dose of radioio-
dine. An effective administered activity is calcu-
lated to deliver 100–150 μCi per gram of thyroid 
tissue, corrected for 24-h RAIU [16]. The calcu-
lated activity is directly proportional to the thy-
roid volume and inversely proportional to the 
radioiodine uptake, aiming at an absorbed thy-
roid dose of 100  Gy [10, 16]. Activities may 
range from 15 mCi for small goiters with normal/
high RAIU to 100 to 150 mCi for large glands 
with low RAIU and heterogeneous scintigraphic 
tracer distribution [10]. Higher 131I activities 
cause considerable irradiation of extrathyroidal 
organs and tissues [98, 99]. In most cases, patients 
require hospitalization and isolation [16]. A sur-
vey about safety practices among members of 
major societies of physicians and allied special-
ists who treat patients with thyroid disorders 
showed a diversity of responses related to 131I 
administration, suggesting the importance of a 
multispecialty collaboration in defining more 
uniform recommendations for patients receiving 
131I treatment [100].

Due to the usually low and heterogeneous 
RAIU seen in MNG, many strategies to enhance 
uptake have been evaluated, such as the use of 
recombinant human TSH [101].

 Radioiodine and Recombinant 
Human TSH (rhTSH)

In healthy subjects without thyroid disease, 
0.1 mg intramuscular injections of recombinant 
human TSH (rhTSH) significantly increase mean 
serum TSH after 2  h (2.4–40.7  mU/L), with a 
peak after 4  h (50.9  mU/L) [102]. TSH levels 
remain significantly elevated for 1  day and 
decrease significantly below baseline (0.8 mU/L) 
7  days after rhTSH administration. Serum T3 
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increases significantly after 4 h (115–190 ng/dL), 
peaks after 24 h (217 ng/dL), and remains signifi-
cantly elevated for 3  days (151  ng/dL). 
Conversely, serum T4 significantly increases 
after 8 h (7.3–9.8 ng/dL), peaks at 24 h (11.2 ng/
dL), and remains significantly elevated for 4 days 
(9.4 ng/dL) [102]. In another study, the adminis-
tration of 0.9 mg rhTSH increased the 24-h thy-
roid RAIU from 23.0% at baseline to 41.0%, 
showing that there are important interindividual 
variations regarding the RAIU increase after 
rhTSH administration [103]. In healthy individu-
als, rhTSH induces thyroid swelling in a dose-
dependent manner (0.1, 0.3, and 0.9  mg of 
rhTSH). Fast et  al. suggest that these adverse 
effects are probably without clinical significance 
following doses of rhTSH that are equal to or 
lower than 0.1 mg [104].

The use of rhTSH has changed the manage-
ment of patients with differentiated thyroid can-
cer (DTC) and is routinely used for diagnostic 
and therapeutic purposes in many centers [105, 
106]. After rhTSH stimulation, RAIU is increased 
in thyroid tumor cells [106]. After thyroidectomy, 
many patients with DTC receive adjunct 131I for 
thyroid remnant ablation [105], and it has been 
demonstrated that the two existing regimens 
(rhTSH stimulation vs. thyroid hormone with-
drawal) are equally effective for TSH stimulation 
and thyroid remnant ablation [107, 108]. Remnant 
thyroid ablation with rhTSH avoids the deteriora-
tion of quality of life that is caused by thyroid 
hormone withdrawal [109].

The administration of a single low dose of 
rhTSH in patients with MNG significantly 
enhances and homogenizes thyroid radioiodine 
uptake [110] (Fig.  3). Remarkable RAIU 
increases after rhTSH, from very low baseline 
RAIU, have been described, with large interindi-
vidual variations. This indicates that individual 
factors, most of which are yet unidentified, are 
involved. Much of the variation is explained by 
differences in the baseline thyroid RAIU, since 
the effect is highly negatively correlated with this 
variable [16]. Baseline serum TSH may be a con-
founding factor, since the increase in RAIU cor-
relates negatively with serum TSH. Since patients 
with MNG frequently present low serum TSH, 

radioiodine is only taken up by some “hot” areas 
encircled by suppressed thyroid tissue that is 
inactive on scintigraphy. After RAIU stimulation 
with rhTSH, these inactive thyroid areas concen-
trate, reactivate, and amplify the effect of 131I in 
the gland, with further thyroid reduction [111].

During the last decade, different rhTSH doses 
have been utilized: 0.2 mg or more in some stud-
ies [112–121], while 0.1 mg or less in others [99, 
122–127]. Few safety concerns have been 
observed with the latter doses. rhTSH has been 
shown to distribute the therapeutic radioiodine 
more homogeneously in the nodular goiter, 
allowing a decrease in the dose of 131I to be 
administered. Consequently, a major reduction of 
the radiation burden is achieved, with retained 
efficacy [124] (Fig. 4).

In a multicentric randomized controlled study, 
modified-release rhTSH (MRrhTSH) was used to 
treat patients with MNG [128]. MRrhTSH is an 
analog of rhTSH that has the same potency to 
increase thyroid RAIU and that determines a lower 
peak plasma TSH concentration. Potentially, 
MRrhTSH could reduce the side effects of rhTSH 
due to its altered pharmacokinetics, with a slightly 
delayed serum TSH peak after injection, compared 
to aqueous rhTSH [128]. In this study, the objec-
tive was to compare the efficacy and safety of 0.01 
and 0.03 mg MRrhTSH as an adjuvant to 131I ther-
apy, vs. 131I alone. Thyroid volume decreased sig-
nificantly in all groups after 6 months: by 23% in 
patients prestimulated with either placebo or 
0.01 mg MRrhTSH and by 33% in patients pre-
stimulated with 0.03 mg. The smallest cross-sec-
tional area of the trachea increased more in the 
latter group, without significant difference from 
the two other groups [128]. The long-term 
(36 months) results of the same trial demonstrated 
that patients who received 0.03 mg of MRrhTSH 
with baseline RAIU <20% achieved a greater 
reduction in goiter size [129].

 Side Effects of rhTSH Use in MNG

It is important to recognize that some side effects 
of rhTSH in MNG can occur [130, 131]. Nielsen 
et  al. demonstrated that patients with MNG can 
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report a sensation of thyroid swelling after admin-
istration of 0.3 mg rhTSH, but no acute compres-
sive effects have been observed [119]. In this 
study, patients with a rather small MNG (median 

volume of 40.0  mL) presented a 24% transient 
goiter enlargement [119]. Safety measures such as 
the use of beta-blockers should be considered in 
patients with MNG and subclinical hyperthyroid-

a b

Fig. 3 Radioiodine uptake in a patient with goiter. 
(Reproduced from [16]). Scintigraphy before (a) and 24 h 
after the administration of rhTSH 0.1 mg in a single dose 
(b). Besides making the uptake of 131I more homogeneous, 

rhTSH increased the 24-h uptake from 4.5 to 39.3%. From 
“Graf, H.  Multinodular Goiter: Pathogenesis and 
Management”

a1 a2

b1 b2

Fig. 4 Changes in thyroid volume after treatment with 
rhTSH plus 131I (Reproduced from [16]). Computerized 
tomography with multiplanar reconstruction of a patient 
with multinodular substernal goiter treated with 30 mCi 

radioiodine after 0.1 mg rhTSH. A1 and A2, baseline (thy-
roid volume 147 mL); B1 and B2, 1 year after treatment 
(thyroid volume 42 mL)
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ism submitted to 131I.  One study showed that 
hyperthyroid patients had higher increases in thy-
roid hormone levels after 0.1 mg rhTSH plus 131I, 
with a higher frequency of side effects [132]. 
Currently, the rhTSH adjunct therapy is not indi-
cated for patients with TMNG [87]. Glucocorticoid 
therapy is almost never necessary in patients 
receiving 131I for the treatment of MNG [105], but 
prophylactic glucocorticoid therapy should be 
considered in patients with critical tracheal nar-
rowing, to prevent thyroid swelling and further 
respiratory compromise [87]. Painful transient 
thyroiditis may occur within the first month after 
treatment [122], and the development of Graves’ 
disease (with high levels of TSH receptor antibod-
ies) is reported in euthyroid MNG patients with 
preexisting TPOAb [48, 49, 120].

The development of hypothyroidism is com-
mon and depends on the size of the treated goiter 
and on the administered rhTSH dose and 131I 
activity. However, this should not be seen as an 
adverse effect and is a rather common event [16, 
112–114, 119, 120, 125, 131, 133]. Based on the 
present knowledge, the optimal rhTSH dose for 
enhancing 131I therapy is most likely in the range 
of 0.03–0.1 mg. In this dose range, a significant 
improvement of thyroid RAIU is obtained while 
minimizing the risk of goiter swelling and tem-
porary thyrotoxicosis [16, 129].

A recent meta-analysis demonstrated that the 
administration of rhTSH before radioiodine ther-
apy resulted in a greater reduction in thyroid vol-
ume than radioiodine therapy alone and in an 
increased incidence of hypothyroidism in patients 
receiving high-dose rhTSH.  The authors con-
cluded that low-dose rhTSH before radioiodine 
therapy was more efficacious than radioiodine 
therapy alone, when used for treating nontoxic 
benign thyroid nodules [134].

As an alternative to rhTSH, recent studies 
showed that, in patients with MNG, methima-
zole-induced hypothyroidism increases endoge-
nous TSH levels, augmenting RAIU and allowing 
the administration of more effective activities of 
131I [135–138]. Albino et al. treated nine female 
patients with MNG with methimazole for 
2.8  ±  0.8  months (10–20  mg, with monthly 
adjusted doses based on thyroid hormone levels), 

leading to increases in mean serum TSH to to 
11.7 ± 5.4 mU/L, and to increases in mean 24-h 
RAIU, from 21.3 to 78.3%. One year after a fixed 
activity of 1.11 GBq (30 mCi) of 131I was given, 
median thyroid volume decreased from 97 to 
56 mL (mean reduction of 46.2%). Eight patients 
(89%) had initially subclinical hyperthyroidism, 
which was reversed in all patients after 1  year. 
Five patients (56%) developed overt hypothy-
roidism, and no clinical adverse events were 
observed [135]. Therefore, pretreatment with 
methimazole appears to be as effective as rhTSH 
in the treatment of MNG with subclinical hyper-
thyroidism. It does seem that a larger, longer, and 
more closely monitored prospective, randomized 
study comparing pretreatment with methimazole 
versus pretreatment with rhTSH would be of 
some value [138]. It is important to mention that 
the adjunct therapy of MNG with rhTSH and 131I 
is not approved by the FDA or EMEA. Moreover, 
the cost-effectiveness of the combined rhTSH 
therapy has not been demonstrated [131].
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Epidemiology of Thyroid Cancer

Athanasios Bikas and Kenneth D. Burman

 Incidence

Thyroid cancer is the most common endocrine 
malignancy, accounting for 2.1% of all new 
malignancies (excluding skin cancer and in situ 
carcinomas) diagnosed annually worldwide, 
while in the USA, it is even more common 
accounting for 3.2% of all new cancers [1]. The 
annual incidence of thyroid cancer has kept rising 
for the last decades; it has nearly tripled from 4.9 
per 100,000 in 1975 to 14.3 per 100,000 in 2009 
[2]. In 2018, approximately 53,990 new cases of 
thyroid cancer are expected to be diagnosed in the 
USA [3]. As shown in a study with cancer inci-
dence projections in the UK up to 2035, thyroid 
cancer is expected to be the most rapidly growing 
cancer [4]. Similarly, if the current trends persist, 
thyroid cancer may become the fourth most com-
mon cancer in the USA by 2030 [5].

The annual incidence varies by geographic 
area, age, and gender. Despite the fact that the 
increasing incidence rate is a common finding in 

all geographic regions, there are distinct area-
specific patterns [6]. In Denmark, the age-stan-
dardized incidence increased in both sexes from 
1943 to 2008: in men from 0.41 to 1.57 per 
100,000 and from 0.90 to 4.11 per 100,000  in 
women, corresponding to a significant average 
annual percentage change of 1.7 and 1.8%, 
respectively [7]. In Luxembourg, the overall age-
standardized incidence rate over the two 5-year 
periods 1990–1994 and 1995–1999 increased 
from 7.4 to 10.1 per 100,000 in females and from 
2.3 to 3.6 per 100,000  in males [8]. The highly 
variable and highly geographic-dependent inci-
dence rates of thyroid cancer have been described 
in multiple studies for Europe [9, 10], Australia 
[11], Asia [12–14], North America [15, 16], and 
South America [17].

Thyroid cancer is very rare among children 
under the age of 15. The annual US incidence is 
2.2/million girls and 0.7/million boys [18]. More 
recent data from the SEER registry reported a 
total of 1753 pediatric patients with thyroid can-
cer from 1973 to 2004, with an annual incidence 
of 0.54 cases per 100,000 people [19]. The annual 
incidence of thyroid cancer increases with age, 
peaking by the fifth through eighth decade of life 
[20]. Corroborating data from the USA, results 
from the UK showed that the number of thyroid 
cancer diagnoses in individuals under 20 years of 
age was low [21]. For women diagnosed with 
thyroid cancer between 2006 and 2010, the 
 incidence rate peaked for 40–44 years of age and 
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then remained stable, while for men, the inci-
dence rate increased steadily with age [21].

Females have approximately a threefold to 
fourfold higher incidence of thyroid cancer than 
men, a ratio consistently observed across coun-
tries that has remained fairly unchanged over 
time [22]. This overall increased incidence of 
thyroid cancer in females is observed across dif-
ferent geographic populations, with a female-to-
male ratio ranging from 1.44  in Australia to 
7.40 in Spain [23], as well as across ethnicities, 
ranging within the USA from 2.92 in Caucasians 
to 3.69  in Hispanics [3]. Multiple reasons have 
been proposed in an effort to explain this distinct 
difference in incidence, which range from purely 
behavioral [women’s greater tendency to seek 
medical advice and more active participation dur-
ing medical visits [24, 25]] to biological differ-
ences [increased exposure to higher TSH levels 
for a longer period of time, greater susceptibility 
to cancer development, sex steroid hormones 
[26]]. Interestingly, the increasing incidence of 
thyroid cancer is similar between racial and eth-
nic groups in the USA [27].

Recently, there has been an ongoing discus-
sion about the issue of overdiagnosis of thyroid 
cancer. Davies et al. in their very comprehensive 
analysis reported a marked increase in thyroid 
cancer incidence and a stable rate of thyroid can-
cer mortality over time and attribute these trends 
entirely to “increased diagnostic scrutiny” [2]. 
The widespread use and technical improvement 
of imaging modalities as well as fine-needle aspi-
ration biopsies certainly account for some of that 
increase, especially in cases like South Korea 
where these modalities are used as a screening 
tool and create the potential for observational 
bias with discovery of small, subclinical papil-
lary thyroid cancers (PTC) [14]. However, sub-
stantial increases were also observed for advanced 
stage and larger (>4  cm) size PTCs [16]. In 
California, the incidence of PTC increased 
regardless of size, stage, and socioeconomic sta-
tus [28]. Moreover, the molecular landscape of 
PTC has been changing with different mutations 
being identified. Thus, we believe that the 
increased incidence is likely the result of two 
coexisting processes: increased detection (appar-

ent increase) and increased number of cases (true 
increase) due to unrecognized thyroid-specific 
carcinogens [29].

 Prevalence

Given the increasing incidence and the good 
prognosis of thyroid cancer, the prevalence of the 
disease is also expected to be rising. In 2015, 
there were an estimated 765,547 people living 
with thyroid cancer in the USA [3]. Thyroid can-
cer prevalence rates, mimicking the incidence 
rates, vary widely by geographic area and patient 
population. Moreover, the prevalence rates are 
highly dependent on the method used to calculate 
them. Autopsy series have been used to calculate 
the thyroid cancer prevalence, and rates ranging 
from 0.03 to 36% have been reported in the lit-
erature [30–37]. In one of the largest series, 
Mortensen et  al. reported on 1000 consecutive 
routine biopsies and found a 2.8% prevalence 
rate of thyroid carcinoma [30]. In a study per-
formed in Helsinki, Finland, a prevalence of 36% 
of differentiated thyroid cancer was reported 
after examination of 101 consecutive necropsies 
[31]. Kanamori et al. recently published an excel-
lent meta-analysis of 35 studies including 12,834 
autopsies conducted from 1949 to 2007 [38]. The 
prevalence of incidental differentiated thyroid 
cancer was calculated to be 4.1% when partial 
thyroid autopsy was performed, while it was cal-
culated as 11.2% when the entire thyroid was 
examined irrespective of the evidence or the 
absence of macroscopic evidence of disease. 
Interestingly, the time period that the autopsy 
series was performed was not a major predicting 
factor of the differentiated thyroid cancer preva-
lence. Thus, despite the fact that the incidence of 
thyroid cancer has been increasing since the 
1980s, there has not been a concomitant increase 
in prevalence rates suggesting that the reservoir 
remains relatively stable, and we are diagnosing a 
lot of previously undiagnosed cancers. The issue 
of overdiagnosis of thyroid cancer is discussed 
separately in this chapter.

In a separate systematic review of 24 autopsy 
series from 1970 to 2011, PTC prevalence rate 
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was reported as 7.6%, while the rate of medullary 
thyroid cancer (MTC) was 0.14% [39]. This 
study demonstrated that a small percentage of the 
population has occult MTC without mortality 
and morbidity. The tumor size was virtually all 
sub-centimeter, and no aggressive characteristics 
(extrathyroidal extension, distant metastasis, 
lymph node involvement) were observed. This 
observation of the uncommon subclinical MTC 
can be especially useful for future prevalence 
studies.

As shown above, thyroid cancer prevalence 
rates are significantly higher than incidence rates, 
reflecting that a substantial number of patients 
survive several decades or longer since the 
diagnosis.

 Mortality

In 2018, it is estimated that approximately 2,060 
deaths from thyroid cancer will occur, account-
ing for 0.3% of all cancer deaths in the USA [3]. 
Ferlay et al. reported that the estimated number 
of deaths from thyroid cancer in Europe in 2012 
was 6300, with thyroid cancer having one of the 
lowest mortality age-standardized rates (0.6 per 
100,000) [40]. Mortality has remained seemingly 
unchanged in the USA since 1970, with 0.5 cases 
per 100,000 being reported [3]. However, from 
1992 to 2012, there has been an average annual 
percent increase in mortality of 0.82% [41]. The 
5-year survival rate is excellent reaching 98.1% 
in 2012 and improving from 92.3% in 1975 [3]. 
Age-specific mortality rates rise gradually from 
around age 40 to 44 and more sharply from 
around age 60 to 64, with the highest rates being 
reported in the 85–89 age group in females and 
the 90+ age group in males [42]. The same trend 
is also encountered around the world, with the 
most impressive example being that of South 
Korea where, despite the fact that the incidence 
of thyroid cancer has risen 15-fold from 1993 to 
2011, the mortality has remained stable [14]. 
Earlier diagnosis, improved treatment modalities, 
and decreased incidence of anaplastic carcinoma 
certainly account for the stabilization in mortality 
rates, even though the incidence has been rising 

exponentially. Sex, age, and distant metastases 
are some of the variables that can influence mor-
tality rates, with response to radioactive iodine 
being the strongest predictor of a good outcome 
in a study that examined the natural history of 
DTC [43]. However, an increasing number of 
investigators advocate in favor of active surveil-
lance for the low-risk micropapillary thyroid can-
cers [44]. Our opinion is congruent with the 
guidelines of the American Thyroid Association 
that, in general, nodules below 1 cm should not 
be biopsied but each case should be individual-
ized as there are reports of distant metastases 
from micropapillary thyroid cancers that can lead 
to increased mortality rates [45, 46].

 Distribution by Histological Type

Thyroid cancer can be further subcategorized in 
one of the three following major histologic sub-
types: differentiated thyroid cancer (DTC), med-
ullary thyroid cancer (MTC), and anaplastic 
thyroid cancer (ATC).

DTC comprises more than 90% of all thyroid 
cancer cases. DTC derives from epithelial thy-
roid cells and is classified histologically as papil-
lary, follicular, Hürthle cell and poorly 
differentiated [47]. PTC accounts for approxi-
mately 80% of thyroid cancers in the USA, while 
approximately 10% of the cases are follicular 
thyroid cancer (FTC) [48]. These two types of 
cancer, despite being grouped together, have dis-
tinct molecular backgrounds. The most common 
mutation in PTC is the BRAF V600E (present in 
45% of the cases), while the most prevalent muta-
tions in FTC are RAS mutations (present in 
40–50% of the cases) [49, 50]. Both histologic 
types are more common in women than in men, 
and their peak incidence is during the fourth and 
fifth decade of life. Dietary iodine intake is a 
major factor influencing the relative proportion 
of DTC in a given geographic area [51]. PTC are 
more predominant in iodine-sufficient areas, 
such as the USA or Iceland where the percent-
ages were 85% PTC and 15% FTC [52]. On the 
contrary, in iodine-deficient areas, the percentage 
of FTC increases to 30–40% [51].
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MTC is a neuroendocrine tumor that arises 
from the neural crest-derived parafollicular C 
cells [53]. MTC comprises approximately 3–5% 
of all thyroid cancers in the USA but accounts for 
15% of all thyroid cancer-induced deaths [54]. 
Approximately 25% occur as a hereditary dis-
ease, with most cases associated with multiple 
endocrine neoplasia syndrome (MEN) types 2A 
and 2B, while 75% of the cases occur in a spo-
radic form. The sporadic form presents mostly in 
the fifth and sixth decades of life and is more 
common in females with a ratio of 1.5:1 [55]. 
Patients with MEN2 develop clinically apparent 
MTC, often early in life [56]. In MEN2A-
associated MTC, the peak incidence is in the 
third decade of life, while it is usually earlier in 
MEN2B (often within the first year of life).

ATC is also derived from epithelial thyroid 
cells. It accounts for less than 2% of thyroid 
cancers, although it has been reported as high 
as 9.8% of thyroid cancers globally [57]. It is 
one of the most aggressive solid malignancies 
in humans, with a mean survival of less than 
6 months from the time of diagnosis and 1-year 
survival of 20% [58, 59]. At diagnosis, more 
than one-third of patients have extrathyroidal 
extension and/or regional nodal metastases, 
whereas distant metastases are present in more 
than 40% [59]. The incidence of ATC is decreas-
ing worldwide, and that is one reason why thy-
roid cancer mortality has been relatively stable 
despite the increasing incidence in general, as 
ATC accounts for 14–50% of the mortality 
[60]. Most patients at diagnosis are 65 years or 
older, and 60–70% of tumors occur in women 
[59, 60].

Finally, thyroid lymphomas should always be 
in the differential with a rapidly enlarging thy-
roid tumor. Thyroid lymphomas are almost 
always non-Hodgkin, as Hodgkin lymphomas 
are very rare [61]. The annual incidence is 
approximately 2.1 cases per million people, 
while they account for less than 2% of all thyroid 
cancers [62, 63]. The mean age of diagnosis is 
similar to ATC (between 65 and 75 years of age), 
while there is a clear female predominance with 
a female-to-male ratio ranging from 4:1 to 8:1 
[62, 64, 65].

 Risk Factors for Thyroid Cancer

The increasing incidence of thyroid cancer has 
triggered multiple efforts in order to identify 
potential risk factors for the development of thy-
roid cancer. However, there are only a few well-
established risk factors. Among them, radiation 
exposure of the thyroid during childhood is the 
most clearly defined environmental factor associ-
ated with benign and malignant thyroid tumors 
[66]. Potential sources of radiation exposure 
include nuclear power plant accidents (e.g., 
Chernobyl) or atomic weapons (Nagasaki, 
Hiroshima) and/or therapeutic uses of radiation 
(which was much more pronounced in the past). 
Pathophysiologically, a translocation of the RET 
gene has been found in patients that developed 
thyroid cancer after Chernobyl and after thera-
peutic radiation [67]. Female gender is also a risk 
factor for the development of thyroid cancer, 
although male gender is a risk factor for the 
development of more aggressive tumors [26]. 
Family history is certainly a well-established risk 
factor. Thyroid cancer may develop in the context 
of familial cancer syndromes (familial adenoma-
tous polyposis, Gardner’s syndrome, Cowden’s 
disease, Carney’s complex type 1, Werner’s syn-
drome, and papillary renal neoplasia) [54]. It can 
also develop in the context of familial non-med-
ullary thyroid cancer (FNMTC), which is defined 
as the presence of non-MTC thyroid cancer in 
two first degree relatives of the patient. The 
genetic inheritance of FNMTC remains unclear; 
but it is believed to be autosomal dominant with 
incomplete penetrance and variable expressivity 
with environmental factors also contributing 
[68]. Concerning MTC, MEN2A and MEN2B 
syndromes have been discussed above. The pres-
ence of Hashimoto’s thyroiditis is a very well-
defined risk factor for the development of thyroid 
lymphoma, with the risk being at least 60 times 
higher than in patients without thyroiditis [69].

In addition to the well-established risk factors, 
there are some postulated risk factors for which a 
definite causative relationship is yet to be proven. 
Iodine intake may influence the incidence and 
prevalence of thyroid malignancy, and more spe-
cifically it may increase the risk for PTC [70, 71]. 
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Moreover, excess consumption of carbohydrate 
and protein has been associated with increased 
risk for DTC [72]. Surprisingly, smoking has 
been found to have an inverse correlation with 
DTC in several studies [73, 74], but there are 
studies demonstrating the opposite [75], and the 
effect of the toxic compounds found in tobacco is 
not clearly understood. High incidence of thyroid 
cancer has been described in volcanic areas, with 
trace elements found in those areas being impli-
cated in thyroid tumorigenesis [76]. Viruses 
could also be implicated in thyroid tumorigenesis 
with data already existing on herpes viruses and 
Epstein-Barr virus [77, 78], but further studies 
are needed to confirm these preliminary results. 
Finally, the presence of Graves’ disease has been 
proposed as a risk factor for the development of 
thyroid cancer and indeed represents an intrigu-
ing hypothesis since the thyroid-stimulating 
immunoglobulins could have a TSH-like stimula-
tory effect. Some studies have suggested that 
Graves’ disease is associated with larger, multi-
focal, and potentially more aggressive thyroid 
cancer [79], but others have reported very low 
cancer rates (0.06%) in patients with Graves’ dis-
ease [80]. The data for the above risk factors 
remain inconclusive, and prospective studies are 
needed in order to evaluate the presence or 
absence of a causative relationship with thyroid 
cancer.
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Molecular Genetics 
and Diagnostics of Thyroid Cancer

Susan J. Hsiao and Yuri E. Nikiforov

 Introduction

In the age of personalized medicine, molecular 
markers are being increasingly utilized to pro-
vide diagnostic, prognostic, and therapeutic 
information. Thyroid cancer, in particular, is ide-
ally suited to incorporating molecular markers 
into clinical management. Several factors con-
tribute toward this: thyroid nodules are easily 
accessible for fine-needle aspiration (FNA) 
biopsy (which generates sufficient material for 
both diagnostic evaluation and ancillary testing 
on nearly all patients), a substantial proportion 
(20–30%) of thyroid nodules are diagnostically 
indeterminate by cytopathologic analysis, and 
thyroid cancer is well characterized with a rela-
tively smaller number of genomic alterations 
(many of which are highly specific for 
malignancy).

Ultrasound and cytologic examination of thy-
roid nodules is standard in the diagnostic evalua-
tion of thyroid nodules and reliably classifies the 
majority (70–80%) of thyroid nodules as benign 

or malignant [1, 2]. Those thyroid nodules classi-
fied as benign have a low risk (approximately 
0–3%) of malignancy, while those nodules classi-
fied as malignant have a high risk of malignancy 
(97–99%) [3]. The remaining thyroid nodules are 
classified cytologically using the Bethesda 
reporting system as fitting into one of three inde-
terminate categories: atypia of undetermined sig-
nificance/follicular lesion of undetermined 
significance (AUS/FLUS), follicular or oncocytic 
(Hürthle cell) neoplasm/suspicious for a follicu-
lar or oncocytic (Hürthle cell) neoplasm (FN/
SFN), and suspicious for malignant cells (SUSP) 
[4, 5]. The risk of malignancy for an indetermi-
nate cytology thyroid nodule ranges from 5 to 
75% (5–15% risk for AUS/FLUS nodules, 
15–30% risk for FN/SFN nodules, and 60–75% 
risk for SUSP nodules) [3]. Based on the Bethesda 
classification, recommended management is 
repeat FNA biopsy for AUS/FLUS, diagnostic 
lobectomy for FN/SFN, and thyroidectomy or 
lobectomy for SUSP nodules [3].

The majority of surgically resected nodules 
are benign and the remaining 10–40% of nodules 
are malignant [4, 6, 7]. Thus, for many patients, 
surgery is unnecessary. Furthermore, in the 
patients with malignant thyroid nodules greater 
than 1 cm in size who have undergone diagnostic 
lobectomy, a completion lobectomy is typically 
performed to remove the remaining thyroid lobe. 
These patients could have benefitted from an 
upfront thyroidectomy rather than two separate 
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surgeries. In addition, well-differentiated thyroid 
cancer is overall an indolent disease with a small 
proportion (5–10%) expected to have an aggres-
sive course. Many patients can be spared more 
aggressive therapy if cancer is low-risk, and con-
versely, high-risk cancers need appropriate treat-
ment. So, molecular markers may assist tumor 
prognostication.

To further refine the risk conferred by Bethesda 
classification, to reduce the need for diagnostic 
lobectomies and two-step surgeries, and to aid in 
tumor prognostication, several ancillary 
approaches have been pursued. These include the 
use of microRNAs, gene mutations/rearrange-
ments, and gene expression panels [8–11]. 
Several of these ancillary studies are being used 
in clinical management and will be discussed 
below.

 Molecular Alterations in Thyroid 
Cancer

The genomic alterations underlying thyroid can-
cer pathogenesis have been well characterized 
(Table  1). Studies from multiple laboratories 
have identified the driver mutations for the major-
ity of thyroid tumors, and recent large scale 
sequencing projects have identified genomic 
alterations in many of the remaining thyroid 
tumors as well as provided an overview of the 
landscape of alterations. These findings have 
been important in shaping and evolving the clas-
sification of thyroid tumors to reflect histologic, 
molecular, and behavioral features.

Recently, papillary thyroid carcinoma was 
extensively studied through The Cancer Genome 
Atlas (TCGA) initiative [12]. Using data on sin-
gle nucleotide variants, small indels, transloca-
tions, mRNA expression, miR expression, protein 
expression, DNA methylation, and copy number 
alterations from 496 papillary thyroid carcino-
mas, driver mutations were identified in 96.5% of 
cases [12]. Papillary thyroid carcinomas were 
found to have a low frequency of somatic vari-
ants, and most tumor genomes were “quiet,” with 
few copy number gains or losses [12]. Most of 
the alterations seen in the TCGA study as well as 

in previous studies involved genes that function 
in the mitogen-activated protein kinase (MAPK) 
and phosphatidylinositol-3 kinase (PI3K) 
pathways.

BRAF, a serine threonine kinase, is a key 
player in the MAPK pathway. Activating muta-
tions in BRAF are estimated to occur in approxi-
mately 40–45% of papillary thyroid cancers [13, 
14]. Most BRAF mutations are the activating 
V600E mutation, although other mutations such 
as K601E mutation or small in-frame insertions 
or deletions have also been reported [15–18]. An 
association of the BRAF V600E mutation with 
conventional and tall cell variant of papillary thy-
roid carcinoma has been reported, while the 
BRAF K601E mutation has been reported to be 
associated with follicular variant of papillary 

Table 1 Average frequency of main mutations and gene 
fusions in different types of thyroid cancer

Papillary thyroid carcinoma
RAF 40–45%
RET/PTC 10–20%
RAS 10–20%
TERT 10%
NTRK <5%
Follicular carcinoma
RAS 40–50%
PAX8-PPARG 30–35%
TERT 10–20%
PIK3CA <10%
PTEN <10%
Poorly differentiated carcinoma
TERT 40%
RAS 25–30%
CTNNB1 10–20%
TP53 20–30%
BRAF 10–15%
EIF1AX 10%
Anaplastic carcinoma
TP53 70–80%
CTNNB1 60–70%
TERT 70%
RAS 40–50%
BRAF 20–30%
EIF1AX 10%
Medullary carcinoma
RET 40–50%
RAS 20%
STK11 10–20%
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 thyroid cancer [19–23]. Alternate activation of 
BRAF and MAPK signaling in papillary thyroid 
carcinoma occurs through the generation of 
BRAF fusion proteins. Reported fusions such as 
AKAP9-BRAF, SND1-BRAF, or MKRN1-BRAF 
preserve the C-terminal kinase domain of BRAF 
while removing and replacing the N-terminal 
regulatory domain of BRAF with a fusion partner 
[12, 24].

Oncogenic mutations in NRAS, HRAS, or 
KRAS are also seen in papillary thyroid carci-
noma. These mutations most frequently occur at 
codon 61  in NRAS and HRAS, although muta-
tions at codons 12 and 13 are also seen. RAS gene 
mutations are primarily seen in the follicular 
variant of papillary thyroid cancer [19, 25, 26]. 
The observation that RAS mutations primarily 
occur in noninvasive follicular thyroid neoplasm 
with papillary-like nuclear features (NIFTP) and 
invasive follicular variant of papillary thyroid 
carcinoma has led to the suggestion that NIFTP 
may represent a precursor to invasive follicular 
variant of papillary thyroid carcinoma [25].

Driver fusion genes are also important in 
papillary thyroid carcinoma pathogenesis. The 
most common rearrangements are RET/PTC1 
(fusion of RET with CCDC6) and RET/PTC3 
(fusion of 47\RET with NCOA4). These fusions 
were previously observed at approximately 
20–30% frequency two decades ago and are 
now seen in approximately 10% of cases [27–
29]. In 5% of papillary thyroid carcinomas, 
rearrangements involving NTRK1 and NTRK3 
are seen [30–34], although a recent report sug-
gests that the frequency of NTRK rearrange-
ments in pediatric papillary thyroid carcinoma 
may be much higher [35]. Other fusions, such as 
those involving THADA and ALK genes, are 
observed in approximately 1% of papillary thy-
roid carcinomas [12, 36].

The TCGA study of papillary thyroid carci-
noma identified a novel significantly mutated 
gene, EIF1AX [12]. This gene encodes an essen-
tial eukaryotic translational initiation factor. 
Recurrent mutations in EIF1AX were observed, 
primarily in tumors lacking known MAPK path-
way driver mutations, suggesting a possible novel 
driver role for EIF1AX in papillary thyroid carci-

noma [12]. However, a subsequent study found 
that although EIF1AX mutations were seen in 
approximately 2% of papillary thyroid carcino-
mas, mutations were also seen in two follicular 
adenomas and one hyperplastic nodule, possibly 
limiting the utility of EIF1AX as a highly specific 
marker of papillary thyroid carcinoma [37].

For follicular adenomas and follicular carci-
nomas, the RAS genes have been implicated as 
major driver genes [38–40]. Approximately 
40–50% of follicular carcinomas and 20–40% of 
follicular adenomas have been reported to harbor 
RAS gene mutations [38–41]. Also seen at a sig-
nificant frequency (30–40%) in follicular carci-
noma is PAX8/PPARG rearrangement [42–44]. 
This rearrangement may also be seen, at lower 
frequencies, in follicular adenomas as well as in 
the follicular variant of papillary thyroid carci-
noma [42–46]. Another alteration that has been 
reported in both follicular adenoma and follicular 
carcinoma is mutation of PTEN, a tumor suppres-
sor gene that functions as a negative regulator of 
the PI3K/AKT pathway [34, 47–50].

Poorly differentiated and anaplastic thyroid 
carcinomas, as compared to well-differentiated 
follicular tumors, often harbor multiple driver 
mutations (Fig.  1). In addition to mutations in 
BRAF or RAS, these tumors typically acquire 
additional mutations in genes like TP53, PIK3CA, 
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Fig. 1 Driver mutation/fusion frequency in thyroid can-
cer. Number of driver mutations (in BRAF, NRAS, KRAS, 
HRAS, EIF1AX, or TP53 genes) or driver fusions across 
papillary thyroid carcinomas (PTC), poorly differentiated 
carcinomas (PD), and anaplastic thyroid carcinomas 
(ATC)
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and AKT1. TP53 is an important tumor suppres-
sor and, in many tumor types, including thyroid 
cancer, is associated with aggressive behavior 
and tumor progression. Approximately 20–30% 
of poorly differentiated carcinomas and 70–80% 
of anaplastic thyroid carcinomas are reported to 
harbor TP53 mutations [51–55]. Other genetic 
alterations that have been described in poorly dif-
ferentiated and anaplastic thyroid carcinomas 
involve activating mutations in the PIK3CA and 
AKT1 genes, both of which function in the PI3K/
AKT pathway [49, 56, 57].

Recurrent mutations in the telomerase (TERT) 
promoter have been described in the last few 
years and have been described in a multitude of 
tumors including melanoma, glioblastoma, blad-
der, and thyroid cancers. These mutations, 
located 124  bp (C228T) and 146  bp (C250T) 
upstream of the initiating ATG, are thought to 
increase TERT promoter activity [58, 59]. TERT 
promoter mutations have been reported in follic-
ular cell thyroid cancers, but have not been 
detected in benign thyroid lesions [60–63]. 
Although seen in well-differentiated papillary 
thyroid and follicular carcinomas, the fre-
quency of TERT promoter mutations is signifi-
cantly higher in aggressive tumors such as 
widely invasive oncocytic carcinoma, poorly 
differentiated carcinoma, and anaplastic thy-
roid carcinoma [60–63]. The presence of TERT 
promoter mutations is associated with increased 
risk for persistent disease, distant metastases, and 
disease-specific mortality for well-differentiated 
thyroid cancer [63].

Recently, two studies further characterized 
poorly differentiated and anaplastic thyroid car-
cinomas using either a 341-gene cancer panel or 
whole exome sequencing [64, 65]. Both studies 
confirmed previous findings of BRAF or RAS 
mutations, which often co-occurred with variants 
in TP53, TERT, or PI3K/AKT/mTOR pathway 
components. Interestingly, EIF1AX mutations 
were seen in 11% of poorly differentiated carci-
nomas and 9% of anaplastic carcinomas in one 
study and in 14% of anaplastic carcinomas in the 
other study [64, 65]. In both studies, a strong ten-
dency toward co-occurrence of EIF1AX and RAS 
mutations was seen, in contrast to papillary thy-

roid carcinoma, where EIF1AX mutations were 
mostly mutually exclusive with other driver 
mutations [12, 64, 65]. These findings raise the 
possibility of a cooperative effect of EIF1AX and 
RAS mutations in poorly differentiated and ana-
plastic carcinomas.

Medullary thyroid carcinomas are also pri-
marily driven by MAPK and PI3K/AKT pathway 
mutations. Mutation of RET, a receptor tyrosine 
kinase expressed in thyroid C cells, is seen in 
both familial and sporadic forms of medullary 
thyroid cancer. The activating tyrosine kinase 
domain M918T mutation in RET is the most 
common RET mutation seen in sporadic medul-
lary thyroid carcinomas and accounts for greater 
than 75% of RET mutations [66, 67]. The M918T 
mutation is also commonly seen in tumors aris-
ing in MEN2B syndrome [68–70]. In MEN2A 
syndrome and familial medullary thyroid carci-
noma, RET mutations typically do not occur in 
the tyrosine kinase domain and instead occur at 
one of five conserved cysteine residues in the 
extracellular domain [71, 72]. Mutation of the 
cysteine residues allows the mutant RET protein 
to undergo ligand-independent dimerization and 
activation. In addition to RET mutation, muta-
tion of the RAS genes has been described in spo-
radic medullary thyroid carcinomas [73–77]. 
These mutations are mutually exclusive and 
account for up to 90% of sporadic medullary thy-
roid carcinomas [73].

Recent work has shown the presence of ALK 
gene fusions in medullary thyroid carcinoma 
[75]. An EML4-ALK fusion, as well as a novel 
GFPT1-ALK fusion, was reported [75]. ALK 
fusions have not been previously observed in 
medullary thyroid carcinoma, but have been 
observed in approximately 1–2% of papillary 
thyroid carcinomas, 4–9% of poorly differenti-
ated carcinomas, and 4% of anaplastic thyroid 
carcinomas [36, 65].

Finally, other genetic alterations may be seen 
in benign lesions and may be of utility in differ-
entiating between benign and malignant lesions. 
Somatic activating mutations in TSHR have been 
reported to occur in approximately 50–80% of 
hyperfunctioning nodules. [78, 79] Activating 
mutations of GNAS occur in approximately 3–6% 
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of hyperfunctioning nodules [80–82]. Mutations 
in either gene are seen primarily in benign hyper-
functioning nodules and have only rarely been 
seen in follicular carcinomas [34].

 Gene Mutation/Rearrangement 
Testing

One approach is single-gene mutational testing 
of thyroid nodules. Several groups have reported 
experiences with the use of BRAF V600E muta-
tional analysis preoperatively. BRAF V600E 
mutation is seen in approximately 45% of papil-
lary thyroid cancers and is not seen in benign thy-
roid nodules [13, 14]. BRAF V600E mutation is 
detectable by a variety of molecular technolo-
gies, such as real-time PCR, sequencing (Sanger 
and next generation), or single-base (primer) 
extension assays, which contribute to ease of 
adoption and incorporation into routine diagnos-
tics and clinical management. Testing for BRAF 
V600E mutation has been reported to result in 
increased sensitivity in papillary thyroid cancer 
detection [83, 84]. In a recent meta-analysis of 
BRAF V600E mutation testing in thyroid FNA 
specimens, the addition of BRAF V600E testing 
to FNA cytology increased the sensitivity from 
81.4 to 87.4% [85]. However, although the speci-
ficity of BRAF V600E mutation testing is very 
high (86.1–99.7%), the sensitivity is low (19.5–
59.4%) [85]. Use of ultrasensitive techniques to 
detect BRAF V600E mutation may lead to false-
positive results [86]. Preoperative BRAF V600E 
mutation testing may also have utility in predict-
ing disease persistence and recurrence [87]. 
However, although BRAF V600E testing offers 
some utility in increasing sensitivity and predict-
ing disease recurrence, as a stand-alone test, it 
offers insufficient sensitivity and specificity for 
thyroid cancer.

To address this, a seven-gene panel of genetic 
mutations and gene rearrangements was devel-
oped. This panel includes the genes and rear-
rangements most frequently implicated in thyroid 
cancer (BRAF, NRAS, HRAS, KRAS, RET/PTC1, 
RET/PTC3, and PAX8/PPARG), which together 
account for driver genes of approximately 70% 

of thyroid cancers. Each of these genes and rear-
rangements shows a high specificity and positive 
predictive value (PPV) for cancer, although the 
positive predictive value for NRAS, HRAS, or 
KRAS mutations is lower at 74–87% [11, 88, 89]. 
This seven-gene panel, or a similar eight-gene 
panel that also includes TRK rearrangements, 
was initially described and validated at two insti-
tutions in three prospective studies [11, 88, 89]. 
These studies all showed this gene panel to have 
high specificity (97–100%) and high PPV (86–
100%) for cancer in indeterminate thyroid nod-
ules [11, 88, 89].

Subsequent validation of similar seven-gene 
mutational tests, either in one retrospective study 
at a single institution or in two prospective stud-
ies at multiple institutions of the commercially 
available offering of a seven-gene panel, the 
ThyGenX test (formerly the miRInform test) 
offered by Interpace Diagnostics, has shown sim-
ilar results [90–92]. In FN/SFN thyroid nodules, 
these studies showed a specificity of 86–92% and 
PPV of 71–80% [90–92].

To test variants that encompass a greater per-
centage of thyroid cancers and to further increase 
the sensitivity of mutational testing, next-genera-
tion sequencing (NGS) testing—either pan-can-
cer or thyroid specific panels—can be utilized 
[93, 94]. NGS technology is suited for high-
throughput, massively parallel sequencing needs 
and can interrogate multiple genes simultane-
ously. A large, thyroid cancer-specific next-gen-
eration sequencing-based assay was recently 
developed and characterized (ThyroSeq v2). The 
genes on the ThyroSeq v2 panel include the seven 
genes in the other mutational panels but addition-
ally include mutational hotspots in AKT1, PTEN, 
TP53, TSHR, GNAS, CTNNB1, RET, PIK3CA, 
EIF1AX, and TERT, as well as rearrangements of 
RET, BRAF, NTRK1, NTRK3, PPARG, and 
THADA [94]. Mutations or rearrangements 
involving the majority of these additional genes 
are primarily seen in thyroid carcinomas. A sub-
set of these genes, such as PTEN and EIF1AX, 
are mutated in both benign and malignant lesions 
[12, 34, 37, 47–50], and activating mutations of 
TSHR and GNAS are mostly seen in hyperfunc-
tioning nodules [78–82]. In the validation study 
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of ThyroSeq v2, a combined retrospective and 
prospective study at a single institution of 143 
FN/SFN thyroid nodules, the test performed well 
with good specificity (93%) and PPV (83%) and 
additionally, showed good sensitivity (90%) and 
NPV (96%) [94].

 Expression Classifier Testing

 mRNA Gene Expression Classifier

Another methodology widely used in testing 
indeterminate thyroid nodules is gene expression 
profiling. The mRNA expression profiles of thy-
roid nodules were used to train a molecular clas-
sifier [95]. By examining the pattern of expression 
of 142 genes, which are involved in diverse pro-
cesses such as energy metabolism or cell differ-
entiation/development, thyroid nodules are 
classified into benign or suspicious categories [8, 
95]. This test is currently offered commercially 
as the Afirma gene expression classifier 
(Veracyte).

The Afirma test was initially validated in a 
multi-institutional study of 265 indeterminate 
thyroid nodules and was found to have a high 
sensitivity (90%) and NPV (94%). The validation 
study was somewhat limited by small sample 
size, and some subsequent studies performed in 
institutions with higher disease prevalence, 
reported lower NPVs for the Afirma test [96–99]. 
Recently, a meta-analysis of seven studies of the 
Afirma test was performed [100]. In these stud-
ies, true negative and false negative rates were 
somewhat difficult to ascertain as many patients 
with benign results by the Afirma gene expres-
sion classifier did not undergo surgery. The prev-
alence of malignancy in the pooled cohort was 
37.1% [100]. The meta-analysis found a pooled 
sensitivity of 95.7% and pooled specificity of 
30.5% [100].

 miRNA Expression Classifier

The differential expression of miRNAs has also 
been used in the classification of indeterminate 

thyroid nodules. miRNAs are small, noncoding 
RNAs. miRNAs regulate gene expression by 
binding to the 3′ untranslated region of target 
mRNAs and result in mRNA degradation or 
translation inhibition. Many miRNAs have been 
characterized in thyroid carcinoma, and the 
expression of a subset has been associated with 
not only the presence of carcinoma but addition-
ally with prognostic features such as advanced 
disease or extrathyroidal extension [101, 102].

A panel of 10 miRNAs (miR-29-b-1-5p, miR-
31-5p, miR-138-1-3p, miR-139-5p, miR-
146b-5p, miR-155, miR-204-5p, miR-222-3p, 
miR-375, and miR-551-3p) is used to classify 
nodules as “positive” or “negative.” This testing 
is currently available commercially as the 
ThyraMIR test (Interpace Diagnostics) and is 
offered as reflex testing on thyroid nodules that 
are negative by the ThyGenX panel [92]. In the 
initial validation study of this miRNA classifier, 
the reported sensitivity was 57%, specificity 
92%, NPV 82%, and PPV 77% [92].

 Test Performance Comparisons 
and Potential Improvements

Evaluation of diagnostic tests typically involves 
comparisons of specificity, sensitivity, positive 
predictive value (PPV), and negative predictive 
value (NPV). Tests with clinical utility in ruling 
out malignancy should have high sensitivity and 
NPV, and tests with clinical utility in ruling in 
malignancy should have high specificity and 
PPV.  Sensitivity and specificity reflect test per-
formance characteristics, but NPV and PPV may 
vary significantly depending on the prevalence of 
disease. In the context of thyroid nodules, this 
may reflect differences in patient population 
demographics or institutional differences in the 
malignancy rates in each indeterminate cytology 
category.

Although there were institutional differences 
because of variability in disease prevalence, in 
general, available follow-up studies have sup-
ported the findings in the initial validation stud-
ies. Seven-gene mutation/rearrangement studies 
have high specificity and PPV and show utility in 
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“ruling in” malignancy, while the gene expres-
sion classifier has high sensitivity and NPV and 
shows utility in “ruling out” malignancy (Fig. 2). 
The ideal diagnostic test, however, would have 
high PPV, and high NPV would be able to both 
rule in and rule out malignancy. One possible 
approach would be to add-on or combine testing. 
Afirma, for example, in addition to the gene 
expression classifier, also offers two malignancy 
classifiers for nodules suspicious by GEC or 
cytopathology, Afirma MTC and Afirma 
BRAF. These are mRNA gene expression classi-
fiers specific for genes differentially expressed in 
either medullary thyroid cancer or BRAF V600E 
mutation-positive thyroid cancer. A positive 
result for the Afirma MTC or Afirma BRAF test 
may add additional specificity to the Afirma 
GEC, although data regarding this has not yet 
been published. Interpace Diagnostics combines 
the miRNA-based classifier (ThyraMIR) in thy-
roid nodules that are negative by the seven-gene 
mutational panel (ThyGenX). In their validation 
studies, they report that by combining tests, they 
are able to achieve a sensitivity of 89%, specific-
ity of 85%, NPV of 94%, and PPV of 74%. 
Further studies of this test are needed to explore 
this test.

Of the currently available tests, ThyroSeq v2 
with a sensitivity of 90%, specificity of 93%, 
NPV of 96%, and PPV of 83% in FN/SFN nod-

ules currently shows much promise as a potential 
test to both rule in and rule out malignancy. 
Potential increases in specificity and sensitivity 
may be both from further expanding the panel 
and from increased understanding of thyroid 
pathogenesis and “cooperating” genes that drive 
malignancy. For example, whereas BRAF muta-
tion and RET/PTC rearrangement are seen virtu-
ally exclusively in thyroid cancer, RAS mutations 
are also seen in benign or indolent neoplasms 
such as follicular adenomas or NIFTP, and thus 
the PPV of RAS mutations for malignancy ranges 
from 74 to 87% [11, 88, 89]. Recent studies, 
however, suggest that coexisting RAS and TP53 
or RAS and EIF1AX mutation may, with further 
study, prove to be associated with increased risk.

 Clinical Utility of Molecular Testing 
of Indeterminate Thyroid Nodules

Based on the performance characteristics of seven-
gene mutation/rearrangement panels (high speci-
ficity and high PPV) and gene expression 
classifiers (high sensitivity and high NPV), clini-
cal algorithms have been suggested to guide peri-
operative decision-making [103]. With seven-gene 
mutation/rearrangement panels, the suggested 
management for a positive result for AUS/FLUS, 
FN/SFN, or SUSP nodules is oncologic thyroidec-
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tomy. Negative results for AUS/FLUS nodules 
may be managed by observation or diagnostic thy-
roid lobectomy, whereas negative results for FN/
SFN or SUSP nodules should be managed by at 
least a diagnostic thyroid lobectomy. For gene 
expression classifier testing results, suspicious 
results for AUS/FLUS or FN/SFN nodules should 
be managed by at least a diagnostic thyroid lobec-
tomy, and benign results may be managed by 
observation or diagnostic thyroid lobectomy. 
Testing of SUSP nodules by gene expression clas-
sifier is generally not recommended as both benign 
and suspicious results should still be managed 
with at least a diagnostic thyroid lobectomy.

Initial results on application of molecular test-
ing results into the management of indeterminate 
thyroid nodules have been reported for both 
seven-gene mutation/rearrangement panels and 
gene expression classifiers [104, 105]. For the 
seven-gene mutation/rearrangement panel, in a 
series of 471 patients with AUS/FLUS or FN/SFN 
nodules at a single institution, patients who did 
not undergo seven-gene mutation/rearrangement 
panel testing were found to be 2.5-fold more 
likely to require a two-step (initial lobectomy fol-
lowed by completion thyroidectomy) surgery 
[105]. For gene expression classifier testing, a 
study of 273 patients at a single institution 
reported a change in clinical management in 8.4% 
of patients who underwent testing [104]. Further 
studies are needed to more fully assess the impact 
of molecular testing on clinical management.

 Prognostic Applications 
of Molecular Markers

Molecular profiling of mutations and gene rear-
rangements not only provides helpful diagnostic 
information that can help rule in malignancy but 
can also simultaneously identify molecular alter-
ations with prognostic and therapeutic applica-
tions. Molecular profiling may inform surgical 
management as some patient may benefit from a 
more extensive initial surgery, may affect post-
surgical surveillance for disease recurrence, and 
may provide therapeutic targets for metastatic or 
recurrent disease.

The BRAF V600E mutation has been exten-
sively characterized as a possible prognostic 
marker. Multiple studies have found an associa-
tion in papillary thyroid cancer between the 
BRAF V600E mutation and factors such as extra-
thyroidal invasion, metastatic disease, and dis-
ease recurrence. However, other studies did not 
show a strong association [106–108]. In a meta-
analysis of 14 studies, the BRAF V600E mutation 
was found to be associated with tumor recurrence 
and persistent disease (25% in BRAF mutation-
positive tumors vs. 13% in mutation-negative 
tumors). Furthermore, in a large, multicenter 
study, the BRAF V600E mutation was shown to 
be significantly associated with mortality (5% in 
mutation-positive patients vs. 1% in mutation-
negative patients) [109]. For both tumor recur-
rence and mortality, the increases were small but 
statistically significant, suggesting that BRAF 
V600E mutation alone is a relatively sensitive, 
but not specific marker of tumor recurrence and 
tumor-related mortality.

TP53 has been described as a prognostic marker 
in several tumors and, in thyroid cancer, is a well 
characterized genetic event governing thyroid 
tumor dedifferentiation. TP53 mutations occur in 
well-differentiated tumors but occur at highest fre-
quency in poorly differentiated and anaplastic thy-
roid cancers [51, 52]. Further studies are needed, 
but TP53 mutations in well-differentiated tumors 
may herald the potential for dedifferentiation or a 
more aggressive clinical course.

The recurrent mutations of the TERT promoter 
are seen more frequently in aggressive thyroid 
tumors such as widely invasive oncocytic carci-
noma and anaplastic thyroid carcinoma [60–63]. 
TERT promoter mutations have been reported to 
be an independent risk factor for poor prognostic 
factors such as persistent disease, distant metas-
tases, and disease-specific mortality for well-dif-
ferential thyroid cancer [63]. In addition, TERT 
promoter mutations were found to frequently co-
occur with BRAF V600E mutation, which sug-
gested a possible interplay between MAPK 
pathway and telomerase activation in aggressive 
tumors [60, 62]. Indeed, in a recent study of 551 
patients with differentiated thyroid cancer, the 
coexistence of BRAF or RAS mutations with 

S. J. Hsiao and Y. E. Nikiforov



557

TERT promoter mutations was found to be asso-
ciated with increased recurrence and mortality 
[110].

As we continue to elucidate the genomic 
landscape of thyroid cancer, it is likely that 
more markers of aggressive tumor behavior 
will be found. It is becoming clear that rather 
than the presence of a single biomarker, a pro-
file of genomic alterations may be more useful 
in predicting tumor behavior. Coexisting muta-
tions in driver genes such as BRAF or RAS with 
mutations in PIK3CA, AKT1, or TP53 occur in 
poorly differentiated and anaplastic tumors 
[49, 56, 111]. Multiple mutations have also 
been seen in a small number of well-differenti-
ated tumors, which were aggressive and pre-
sented with distant metastases [112]. Detection 
of multiple mutations can be achieved in FNA 
samples of even very small tumors, allowing 
for both diagnosis and prognostication prior to 
surgery [113].

 Summary

Improved diagnostic accuracy of thyroid nodules 
and clinical management decision support is 
achievable by incorporating molecular mutation/
rearrangement or gene expression information. 
Currently available tests excel in ruling in or rul-
ing out malignancy, and further improvements 
are expected with expanded panels that include 
more thyroid cancer markers. Gene mutation/
rearrangement panels additionally offer prognos-
tic information that can guide the extent of the 
initial surgical management as well as postsurgi-
cal management. With further improvements in 
technology and decreased costs of testing, rou-
tine molecular profiling of thyroid tumors can 
help achieve a personalized treatment and man-
agement plan for every patient.
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Thyroid Cancer in Children 
and Adolescents

Young Ah Lee and Andrew J. Bauer

 Introduction

The incidence of pediatric thyroid cancer has 
gradually increased over the last decades [1, 2]. 
Pediatric thyroid cancer most commonly pres-
ents as a visible or palpable thyroid nodule with 
or without cervical lymphadenopathy. Although 
the majority of pediatric thyroid nodules are 
likely to be benign, thyroid nodules diagnosed 
in the pediatric age carry a greater risk of malig-
nancy compared to those in adults (22%–26% 
vs. 7%–15%) [3, 4]. In pediatrics, differentiated 
thyroid carcinoma (DTC) is the most common 
form of thyroid malignancy, with 90% or more 
being papillary thyroid carcinoma (PTC). 

Follicular thyroid cancer (FTC) and medullary 
thyroid cancer (MTC) are less common, and 
poorly differentiated tumors, including anaplas-
tic thyroid carcinoma, are exceedingly rare in 
young patients. Recently, the American Thyroid 
Association (ATA) released the first consensus 
guidelines specific to pediatric patients with 
thyroid nodules and DTC [5]. This chapter 
reviews the practical evaluation of pediatric thy-
roid nodules as well as the management of pedi-
atric thyroid carcinoma.

 Presentation at Diagnosis

Pediatric thyroid cancer is most often detected by 
a visible nodule and/or a palpable neck mass [6]. 
Recently, with the prevalent use of radiologic 
imaging, the number of pediatric patients referred 
for the evaluation of incidentally detected thyroid 
nodules is increasing. The incidence of pediatric 
thyroid nodules ranges from 0.05 to 2% [4, 7, 8], 
but up to 18% of pediatric patients may have an 
incidental thyroid lesion discovered on non-thy-
roid-related neck ultrasound (US) studies [9]. 
Although cystic lesions are more commonly 
identified compared to nodules (57% vs. 1.5%) 
[8], there does not appear to be a correlation 
between how the nodule is discovered (incidental 
or purposeful exam of the thyroid) and the risk of 
malignancy.
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 Diagnostic Evaluation of Thyroid 
Nodule

 History Taking and Physical 
Examination

There are several risk factors associated with an 
increased risk for developing thyroid cancer, 
including a previous history of radiation expo-
sure [10, 11], coexisting autoimmune thyroid dis-
ease [12–14], family history of thyroid 
malignancy [15–18], and several genetic syn-
dromes [19–24] (Table 1). Although most patients 
are asymptomatic, a query of hoarseness and a 
sensation of a lump or obstruction with swallow-
ing should be evaluated.

A complete thyroid exam includes inspection 
and palpation of the thyroid gland as well as the 
lateral neck cervical lymph nodes (see https://
www.youtube.com/watch?v=Z9norsLPKfU). 
The size, symmetry, texture, and firmness of the 
thyroid gland, thyroid nodule(s), and lateral neck 
lymph nodes should be described. The presence 
of a thyroid nodule with cervical lymphadenopa-
thy is a significant predictor for malignancy, 
especially if lymphadenopathy is noted in levels 
III, IV, and V of the lateral neck [25, 26].

Physical findings related to genetic syndromes 
(Table  1) should be evaluated. PTEN hamartoma 
syndrome (PTHS) is associated with macrocephaly, 
trichilemmomas, lipomas, and genital freckling 
[20–22], Carney complex [24] and familial adeno-
matous polyposis [19] are associated with lentigi-

nes, and MEN2B is associated with alacrima, 
marfanoid facies, and mucosal neuromas [27].

 Laboratory Evaluation

A normal or elevated thyrotropin (TSH) level 
may confer an increased likelihood of thyroid 
malignancy [28, 29]; however, not all studies 
support this observation [30]. A suppressed TSH 
may be associated with the presence of an auton-
omously functioning thyroid nodule (AFTN), a 
nodule with a lower risk of malignancy in both 
adult (1–10%) and pediatric age patients [31]. In 
adult patients, there are mixed reports on the util-
ity of preoperative serum thyroglobulin (Tg) as a 
predictive factor of thyroid malignancy [32], as 
well as disease burden [33]. The utility of preop-
erative Tg in children and adolescents with thy-
roid nodules has not been established, and one 
needs to consider confounding variables that may 
be associated with an elevated Tg, including 
iodine deficiency and excess [34] and thyroiditis. 
In contrast, calcitonin needs to be measured if 
there is a family history of multiple endocrine 
neoplasia type 2 (MEN2) or clinical features sug-
gestive of MEN2B or if the cytology is suspicion 
for MTC [35].

 Radiologic Imaging

A thyroid and neck ultrasound (US) is the best 
imaging modality to assess thyroid tissue morphol-
ogy and lymphadenopathy. The US report should 
describe the size, location, composition (solid, cys-
tic, or spongiform), echogenicity (hypoechoic, 
isoechoic, hyperechoic, or mixed echogenicity), 
margins (regular, infiltrative, or microlobulated), 
presence of calcification, shape (taller than wide or 
not on transverse imaging), and vascularity of the 
thyroid nodule(s). US evaluation of the lateral neck 
should be performed for patients with suspicious 
nodules with documentation of shape, echo-
genicity, vascular pattern (central, peripheral, or 
both), and presence of microcalcifications of any 
suspicious cervical lymph nodes [36]. Thyroid 
nodules with solid composition, hypoechoic or 

Table 1 Risk factors for the development of thyroid nod-
ules and cancer

Family or personal history Genetic syndromesa

Exposure to radiation PTEN hamartoma 
syndrome

Autoimmune thyroid disease APC-associated 
polyposis

Familial multinodular goiter DICER1 syndrome
Familial non-medullary 
thyroid cancer

Carney complex

aAlthough DTC has also been reported to occur in patients 
with Beckwith-Wiedemann syndrome, the familial para-
ganglioma syndromes, McCune-Albright syndrome, and 
Peutz-Jeghers syndrome, it remains unclear if these 
tumors are a direct result of the underlying genetic defect
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mixed echogenicity, microlobulated or infiltrative 
margin, taller than wide shape of transverse imag-
ing, and the presence of microcalcification and 
lymph nodes with a rounded shape, increased 
echogenicity, microcalcifications, and peripheral 
blood flow are associated with an increased risk of 
malignancy [37–39].

For adults, the particular US pattern of the 
thyroid nodule correlates with the risk of malig-
nancy and may be used to stratify which nod-
ules should undergo fine needle aspiration 
(FNA) [35]. Adult criteria may be applicable to 
children, with the exceptions that (1) US fea-
tures and clinical context should be used rather 
than size alone to identify nodules that warrant 
FNA [5], (2) solid nodules may have an 
increased risk of malignancy in pediatric 
patients compared to adults, and (3) a widely 
invasive PTC, called diffuse sclerosing variant 
PTC (dsvPTC), is not associated with nodular 
disease [40, 41], but is associated with micro-
calcifications throughout the gland (“snow-
storm” appearance on US) and macroscopic 
metastasis to lateral neck lymph nodes [42–44]. 
Thyroid nodules with >50% cystic component 
are associated with a lower risk of malignancy 
[3]; however, while several US features are 
associated with an increased risk of malignancy, 
including an irregular margin, presence of calci-
fications, and presence of abnormal lymph node 
appearance, no US features have a diagnostic 
accuracy as high as FNA [38, 39, 45, 46].

US-guided FNA should be considered for nod-
ules >1 cm and for those 0.5 to 1 cm if US fea-
tures show suspicious findings [47]. The presence 
of cervical lymphadenopathy increases the likeli-
hood of malignancy for the primary thyroid lesion 
[25, 26] and complete assessment by US with 
confirmation by FNA is critical to optimize the 
surgical plan [36]. For patients undergoing FNA 
to confirm metastatic lymph node disease, mea-
surement of Tg in the FNA washout of the lymph 
node may help to confirm equivocal cytological 
evidence of regional metastasis [48, 49]. Axial 
imaging with neck computed tomography (CT) or 
magnetic resonance imaging (MRI) may increase 
the sensitivity of identifying lymph node metasta-
sis not readily visible by preoperative US, includ-

ing level VI (central neck), subclavicular, and 
upper mediastinum [50]. Although US elastogra-
phy may be a helpful tool to distinguish between 
benign and malignant nodules and lymph nodes, 
there is no consensus on universally incorporating 
this technique into clinical practice [35, 51, 52].

Thyroid scintigraphy may be considered for 
patients with a suppressed TSH (Fig. 1); however, 
there does not appear to be any benefit to obtaining 
preoperative studies with other radioisotope imag-
ing modalities, including [18F]-fluorodeoxyglucose 
positron emission tomography (18F-FDG-PET/CT). 
However, there is an approximate 20% risk of 
malignancy for a thyroid nodule that is inciden-
tally identified during 18F-FDG-PET/CT per-
formed during evaluation and management of 
non-thyroid disease [53].

 Fine Needle Aspiration

Similar to adults, The Bethesda System for 
Reporting Thyroid Cytopathology (TBSRTC) is 
used to classify the FNA results in pediatrics with 
equal sensitivity, specificity, and overall accuracy 
[3, 38]. The results of the FNA are then used to 
stratify an appropriate management plan [5].

 1. Nondiagnostic or unsatisfactory cytology has 
a 1–4% DTC risk in adults [54], with limited 
data in children. Repeat FNA is an option, but 
it should be delayed for at least 3 months (6 
weeks at minimum) to avoid potential post-
FNA reactive cellular atypia [55]. Cytological 
confirmation of sample adequacy at the bed-
side can decrease the rate of nondiagnostic 
results.

 2. Benign cytology has a 0–10% DTC risk 
according to recent pediatric studies [25, 56]. 
This is higher than a 0–3% risk in adults [54]. 
Thus, despite benign cytology, follow-up is 
mandatory. If nodule grows and develops 
compressive symptoms, surgery may be indi-
cated. If children have large thyroid nodule 
≥4  cm with benign cytology, lobectomy 
should be considered, because FNA of nodule 
≥4  cm may have decreased sensitivity with 
higher false-negative rates [57, 58].
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 3. The indeterminate categories include “atypia or 
follicular lesion of undetermined significance 
(AUS/FLUS)” and “follicular/Hürthle neo-
plasm” or “suspicious for follicular/Hürthle 
neoplasm (FN or SFN).” The limited pediatric 
data suggest the indeterminate FNA categories 
account for 35% of results and that there is a 
higher risk of malignancy within these catego-
ries with up to 28% of AUS/FLUS and 58% of 
FN ultimately found to be malignant [59, 60]. 
In adults, the risk of malignancy is approxi-
mately 5–15% in the AUS/FLUS category and 
15–30% in the FN or SFN group [61]. Based 
on the increased risk of DTC in children, sur-
gery is favored over repeat FNA for most nod-
ules with indeterminate cytology [5]. 
Lobectomy is recommended for children with 
low-risk US features and total thyroidectomy 
(TT) for those with US features suspicious for 
PTC or with bilateral thyroid nodules.

In an effort to decrease reliance on diagnostic 
surgery, there is increasing use of supplemental 
molecular profile testing in pediatrics [35] fol-
lowing the more widespread use of oncogene 
panels and gene expression classifier testing in 
adults [62, 63]. In children, the presence of a thy-
roid oncogene mutation or fusion (BRAF, RET/
PTC, NTRK fusion, and others) in an indetermi-
nate FNA specimen is associated with an 
increased risk of malignancy [25, 59, 64].

Based on current, limited data, the following 
approach is supported:

 1. Oncogene panels are the only tests that have 
clinical utility to predict an increased risk for 
malignancy in patients under 19 years of age 
[59, 65–67]. Gene expression classifiers have 
not been validated in patients <21 years of age 
and are highly influenced by the prevalence of 
disease within the test population.

Pediatric thyroid nodule 
detected by imaging or palpation

Radionuclide 

scan
TSH suppressed

Lobectomy
or RAI 
ablation

US -guided FNA

Nondiagnostic or 
unsatisfactory

Benign

Atypia of follicular 
lesion of undetermined 
significance (AUS/FLUS)

Follicular / Hürthle
neoplasm 

Suspicious for 
malignancy or 

malignant

Indeterminate cytology

Repeat FNA in 
3-6 months sooner 
if clinical and US 

suspicion for cancer 
is high

Repeat US in 
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and/or 
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FNA

Repeat US 
in 6-12 
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thyroidectomy
Benign Malignant

Completion
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Fig. 1 Initial evaluation, treatment, and follow-up of a thyroid nodule in a child or adolescent
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 2. Oncogene panels should only be ordered on 
samples with indeterminate cytology (TBSRTC 
categories III and IV). Oncogene panel testing 
may also be considered for nodules with benign 
cytology but suspicious ultrasound features 
(hypoechoic solid nodule, infiltrating or microl-
obulated border, increased intranodular blood 
flow, and/or microcalcifications).

 3. Only a few mutations or rearrangements 
appear to be associated with an increased risk 
for PTC with invasive disease (Table 2) [65–
70]. The presence of other mutations or 
fusions (RAS, PAX8-PPARg, and others) is 
associated with an increased risk of malig-
nancy; however, until further data is available, 
lobectomy may still be the surgery of choice 
as the associated variants often have a more 
indolent, less invasive phenotype.

 4. A low mutation level detected by next-genera-
tion sequencing (<10 of alleles, correspond-
ing to <20% of cells with a mutation or fusion) 
in RAS may be associated with benign nodules 
[63]. In these cases, diagnostic lobectomy 
should also be considered as the initial surgi-
cal approach.
• The recommendation for lobectomy is 

based on the absence of predisposing risk 
factors, including the absence of familial 
tumor predisposition syndrome or a history 

of previous radiation exposure, the pres-
ence of a unilateral nodule, the absence of 
pathologic lymphadenopathy, and the 
absence of autoimmune thyroid disease.

 5. Suspicious for malignancy (SUSP) and (6) 
malignant cytology correlate with a 75–100% 
risk of PTC [25, 56]. TT with prophylactic 
central neck lymph node dissection (CND) is 
recommended [5].

 DTC Variants

 Papillary Thyroid Cancer

At the time of diagnosis, pediatric patients with 
PTC have high rates of bilateral and multifocal 
disease [6, 71], regional lymph node metastasis 
(40–90%), and, for patients with lateral neck 
metastasis, an increased risk of lung metastasis 
(10–25%) [72–75]. Pediatric patients with PTC 
also have high recurrence rates [6, 73, 76, 77], 
and many children with lung metastasis show 
persistent, albeit stable, disease following 131I 
therapy [5, 78]. Despite these concerning charac-
teristics, pediatric patients with PTC have a more 
favorable prognosis and a significantly lower 
disease-specific mortality rate compared to adults 
[73, 79–81]. Irrespective of the tumor size, extra-

Table 2 Thyroid oncogene, risk of invasive disease, and anticipated surgical approach

Point mutation or 
oncogene fusion

Increased risk of DTC with 
invasive disease Surgical approach

BRAFV600E
RET-PTC fusion
NTRK fusion
AGK-BRAF
ALK fusion
TERT + (additional 
mutation)

Yes
Yes
Yes
Yes (very limited data)
No data in pediatrics

Total thyroidectomy with central neck dissection; lateral 
neck lymph node dissection based on clinical findings 
and FNA confirmation of metastasis

RAS
PAX8-PPARG

No
→ Increasing risk of FTC 
and fvPTC if >20% of cells 
with mutation
No

Lobectomy
→ Consider completion thyroidectomy if invasive 
histology

TSHR
THADA
GNAS

No
No
No

Surveillance or definitive treatment if associated with 
autonomous function (TSHR or GNAS)

AKT1, CTNNB1, 
EIF1AX, and others

Unknown No specific recommendation

Thyroid Cancer in Children and Adolescents



568

thyroidal extension, and lymph node or distant 
metastasis, the overall survival rate for pediatric 
patients with differentiated thyroid cancer (PTC 
and follicular thyroid cancer, FTC) is estimated 
to be greater than 95% [6, 82, 83], with appropri-
ate management.

There is ongoing debate whether differences 
in clinicopathological presentation and long-term 
outcome between children and adults result from 
differences in genetic alterations [84]. The low 
prevalence of the BRAFV600E mutation, the 
most common driver mutation in adult PTC and 
associated with a poorer prognosis [85, 86], was 
initially proposed as a potential explanation for 
why pediatric patients have lower disease-spe-
cific mortality compared to adults [87, 88]. With 
the development of more sensitive technologies 
[89], more recent studies report that between 30 
and 40% of pediatric PTC harbor a BRAFV600E 
mutation; however, in contrast to adults, the pres-
ence of a BRAF mutation does not correlate with 
increased invasive behavior or poor prognosis 
[65–69]. In children and adolescents, PTC with a 
fusion oncogene, specifically RET-PTC1, RET-
PTC3, ETV6-NTRK3, and TPR-NTRK1, present 
with more extensive disease and aggressive 
pathology, including diffuse sclerosing variant 
(dsvPTC), solid variant (sPTC), and diffuse or 
widely invasive follicular variant PTC [65, 67, 
70].

Further investigation is needed to confirm if 
these molecular markers are associated with spe-
cific variants of PTC as well as to determine if 
they can be used to predict clinical behavior. 
Ultimately, these driver mutations, as well as 
other alterations in the oncogenome, may be used 
to stratify surgery and select which patients have 
a higher likelihood of benefiting from radioio-
dine and whether a more or less intense surveil-
lance plan should be followed [90].

As the presence of RET-PTC and NTRK gene 
fusions appears to predict invasive variants of 
PTC, the presence of RAS, TSHR, GNAS muta-
tions and PAX8-PPARγ fusion may be associated 
with more indolent forms of PTC, to include 
encapsulated follicular variant PTC (enc-fvPTC) 
or FTC (PAX8-PPARγ) [84]. These lesions are 
typically associated with indeterminate cytology 

as well as increased intra- and interobserver vari-
ability in histological diagnosis [91, 92]. The 
recent change in nomenclature of encapsulated 
fvPTC to “noninvasive follicular thyroid neo-
plasm with papillary-like nuclear features” 
(NIFTP) reflects a recognition that some of these 
lesions have no risk for invasive behavior [93]. 
While only a subgroup of tumors will meet the 
strict diagnostic criteria for NIFTP, other tumors 
that continue to be considered carcinomas may 
also display very indolent behavior. The presence 
of one of these genetic alterations, combined 
with US features and histologic findings, includ-
ing the presence of a tumor capsule with the 
absence or minimal, partial invasion of the tumor 
into the capsule, and the absence or minimal lym-
phatic and vascular invasion (<4 vessels), may 
support for a less aggressive approach, with 
remission achieved by lobectomy alone.

 Follicular Thyroid Cancer

Pediatric FTC is uncommon malignancy and rep-
resents 10% or less of pediatric DTC patients. 
Although pediatric FTC remains unstudied, RAS 
point mutation and the PAX8-PPARγ rearrange-
ment have been implicated as genetic alterations 
in adult FTC [94, 95]. FTC may develop as part 
of PTEN hamartoma tumor syndrome; thus, there 
should be a high index of suspicion in children 
with FTC, particularly in those with macroceph-
aly, lipoma, penile freckling, or a suggestive fam-
ily history [20, 22, 23]. FTC may also be related 
to other genetic syndromes (Table 1).

The diagnosis of FTC is based on the patho-
logic identification of capsular and/or vascular 
invasion. Tumors with microscopic capsular 
invasion alone and/or very limited vascular inva-
sion are subdivided into minimally invasive FTC, 
whereas grossly invasive tumors that show wide-
spread invasion into blood vessels and/or adja-
cent thyroid tissue are classified into widely 
invasive FTC [96, 97]. Pediatric FTC may be less 
aggressive than PTC and is typically unifocal 
rarely metastasizing to regional lymph nodes [73, 
98–100]. However, FTC is prone to hematoge-
nous metastasis, usually the lung and bone, even 
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in the absence of lymph node metastasis [101, 
102]. Minimally invasive FTC has excellent 
prognosis, whereas widely invasive FTC is asso-
ciated with significant morbidity and mortality in 
adults [96, 97, 101]. Limited data suggest that 
pediatric patients with FTC may be at risk for 
recurrence but have low disease-specific mortal-
ity compared to adult patients [100].

Patients with clear evidence of vascular inva-
sion (more than three involved blood vessels), 
known distant metastasis, and/or tumor size 
>4 cm should be treated with TT and staged post-
operatively with 131I therapy [97, 101–103]. 
Minimally invasive FTC <4 cm in size and with 
no or minimal vascular invasion (three or fewer 
involved vessels) should be treated on a case-by-
case basis, but lobectomy alone rather than TT 
with 131I therapy may be sufficient [5]. Due to 
limited data regarding pediatric FTC, further 
studies are needed to risk-stratify children who 
would benefit from extensive surgery and 131I 
therapy. The surveillance and follow-up of pedi-
atric FTC is similar to PTC and includes serial 
serum Tg and TgAb measurements as well as 
TSH suppression. Routine neck US monitoring is 
less useful due to the low incidence of regional 
lymph node metastasis [5].

 Surgery and Radioiodine Treatment

The goals for the 2015 ATA pediatric consensus 
guidelines are to maintain the low disease-spe-
cific mortality currently experienced by children 
with DTC while reducing potential complica-
tions from therapy [5]. The first treatment is sur-
gery, ideally performed by a high-volume 
thyroid surgeon [104, 105] after complete pre-
operative assessment and FNA confirmation of 
cervical disease. The second treatment is TSH 
suppression with levothyroxine, to decrease the 
likelihood of TSH-induced tumor regrowth. 
TSH is a well-established growth factor of thy-
roid cancer cells, and TSH suppression has been 
an important cornerstone of therapy [106]. 
Third, therapeutic 131I therapy is considered 
based on the risk of persistent or recurrent dis-
ease as defined by the ATA pediatric risk levels 

(low, intermediate, and high) [5]. With increased 
awareness of the potential short- and long-term 
risks of 131I therapy, there are renewed efforts to 
identify which patients may (ATA pediatric 
intermediate and high risk) or may not (ATA 
pediatric low risk) benefit from 131I therapy [5, 
107, 108].

 Surgery

For the majority of patients with PTC, a total thy-
roidectomy (TT) with prophylactic central com-
partment lymph node dissection is recommended 
[5] secondary to the increased incidence of bilat-
eral/multifocal disease in pediatric PTC [6, 71], 
the increased risk for recurrence and subsequent 
second surgery when less than a near-TT or TT is 
performed [75, 79, 81, 109], and the high inci-
dence of lymph node metastasis. For patients 
with unifocal papillary microcarcinoma (<1 cm), 
lobectomy may be adequate with surveillance 
and counseling for the potential need for addi-
tional surgery if persistent or recurrent disease is 
found [110, 111].

Thyroid surgery should ideally be performed 
by a high-volume thyroid surgeon [5], defined as 
a surgeon who performs 30 or more cervical 
endocrine procedures annually, to minimize the 
risk of operative complications [104, 105]. While 
the exact number of surgeries performed annu-
ally may not reflect the quality of the surgeon, it 
increases the likelihood that the surgeon under-
stands the disease process in children and adoles-
cents in an effort to balance complete resection 
while minimizing the risk of incomplete surgical 
resection, permanent hypoparathyroidism, and 
recurrent laryngeal nerve damage. A prophylactic 
central lymph node dissection (CND), either ipsi-
lateral or bilateral, is recommended for children 
and adolescents with malignant cytology, and a 
therapeutic CND is recommended if there is evi-
dence of gross extrathyroidal extension (ETE) 
and/or regional lymph node metastasis on preop-
erative staging [5]. A compartment-based lateral 
neck dissection should only be pursued on 
patients with cytological evidence of metastases 
to the lateral neck on preoperative FNA [5]. 
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Routine prophylactic lateral neck dissection is 
not recommended.

The development of postsurgical complica-
tions such as hypoparathyrodism and recurrent 
laryngeal nerve damage, spinal accessory nerve 
injury, and Horner syndrome should be moni-
tored, although the risk is reduced in a high-vol-
ume surgical practice. The use of intraoperative 
parathyroid hormone levels may help identify 
patients at risk of hypoparathyroidism in an effort 
to ensure early administration of calcium and cal-
citriol. The perioperative calcium and phospho-
rus must be monitored to ensure stable values 
prior to discharge from the inpatient setting [112, 
113]. Early identification of hypoparathyroidism 
with subsequent initiation of calcitriol and cal-
cium decreases the risk of symptomatic hypocal-
cemia as well as shortens the duration of 
postoperative hospitalization [114].

 ATA Pediatric Risk Levels 
and Radioiodine Administration

In contrast to adults with thyroid cancer, there is 
no staging system for children and adolescents 
with PTC secondary to the extremely low dis-
ease-specific mortality [115]. However, the 
American Joint Committee on Cancer (AJCC) 
Tumor, Nodes, Metastases (TNM) classification 
system [116] is used to describe the extent of dis-
ease and stratify an approach to further evalua-
tion and management (Table 3) [5]. These three 
groups are excerpted from 2015 ATA pediatric 
guidelines as follows:

 1. ATA Pediatric Low Risk: Disease grossly 
confined to the thyroid with N0 (no lymph 
node metastasis) or NX (no lymph nodes 
assessed) disease or patients with inciden-
tal N1a metastasis in which “incidental” is 
defined as the presence of microscopic 
metastasis to a small number of central 
neck lymph nodes (typically, less than 3, 
although there is no consensus on the exact 
number). These patients appear to be at 
lowest risk for distant metastasis but may 
still be at risk for residual cervical disease, 

especially if the initial surgery did not 
include a CND.

 2. ATA Pediatric Intermediate Risk: Extensive 
N1a (level VI) or minimal N1b disease (levels 
II, III, IV, or V). These patients appear to be at 
low risk for distant metastasis but are at an 
increased risk for incomplete lymph node 
resection and persistent cervical disease. The 
impact of the pathologic identification of 
microscopic extrathyroidal extension (ETE; 
T3 disease) on management and outcomes has 
not been well studied in children with PTC, 
but patients with minimal ETE are likely 
either ATA pediatric low or intermediate risk, 
depending on other clinical factors.

Table 3 The American Joint Committee on Cancer TNM 
classification system for differentiated thyroid carcinoma

Primary tumor (T)
TX Size not assessed, limited to the thyroid
T1 T1a 

T1b
≤1 cm, limited to the thyroid
>1 cm but ≤2 cm, limited to the thyroid

T2 >2 cm but ≤4 cm, limited to the thyroid
T3 >4 cm, limited to the thyroid, or any 

tumor with minimal extrathyroid 
extension

T4 T4a Tumor extends beyond the thyroid 
capsule to invade subcutaneous soft 
tissues, larynx, trachea, esophagus, or 
recurrent laryngeal nerve

T4b Tumor invades prevertebral fascia or 
encases carotid artery or mediastinal 
vessels

Lymph nodes (N)
NX Regional lymph nodes not assessed
N0 No regional lymph node metastasis
N1 N1a Metastasis to level VI (pretracheal, 

paratracheal, and prelaryngeal/Delphian 
lymph nodes)

N1b Metastasis to unilateral, bilateral, or 
contralateral cervical levels I, II, III, IV, 
or V or retropharyngeal or superior 
mediastinal lymph nodes (level VII)

Distant metastasis (M)
MX Distant metastasis not assessed
M0 No distant metastasis
M1 Distant metastasis

Used with the permission of the American Joint 
Committee on Cancer (AJCC), Chicago, Illinois. The 
original source for this material is the AJCC Cancer 
Staging Manual, 7th edition (2010), published by Springer 
Science and Business Media LLC, www.springer.com 
[116]
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 3. ATA Pediatric High Risk: Regionally exten-
sive disease (extensive N1b) or locally inva-
sive disease (T4 tumors), with or without 
distant metastasis. Patients in this group are at 
the highest risk for incomplete resection, per-
sistent disease, and distant metastasis.

Postoperative evaluation for evidence of per-
sistent disease is typically performed within 
12  weeks of surgery to identify which patients 
may or may not benefit from further therapy, to 
include additional surgery or 131I therapy. For 
ATA low-risk patients, one may consider follow-
ing the TSH-suppressed Tg level with repeat 
neck US instead of pursuing a stimulated Tg level 
with diagnostic whole body scan (DxWBS) in 
the immediate postoperative time frame. The 
stimulated Tg and DxWBS can be performed at a 
later time if there is an elevated Tg and no evi-
dence of disease based on US and/or anatomic 
imaging (CT or MRI) [5, 107, 108].

For intermediate- and high-risk patients, a TSH-
stimulated Tg and a 123I- DxWBS are recommended 
to search for residual or metastatic disease in the 
neck, mediastinum, lungs, or elsewhere (Fig. 2) [72, 
117]. Two to three weeks before the DxWBS, lio-
thyronine (LT3) or levothyroxine (LT4) is withheld 
with a goal of achieving a TSH of at least or greater 
than 30  mIU/L.  The ability to achieve adequate 
TSH elevation using recombinant human TSH 
(rhTSH) has been studied in children using the typi-
cal adult dose (0.9 mg given 24 h apart), although 
pediatric data on the efficacy of rhTSH on treatment 
outcomes are limited [118, 119]. For selected 
patients who cannot tolerate endogenous hypothy-
roidism or have a pituitary TSH deficiency, rhTSH 
needs to be considered. The patient is also placed on 
a low-iodine diet over this time frame to optimize 
absorption of radioiodine (see www.ThyCa.org). 
For children who received iodinated contrast agents, 
it is recommended to wait 2–3 months or to confirm 
low 24-h urine iodine levels prior to administration 
of RAI [120].

Because the diagnostic activity of 131I may 
theoretically “stun” the iodine-avid tissue and 
reduce therapeutic 131I uptake, the lowest possible 
activity of 131I (2.7–4.0 mCi) or, preferably, 123I 
should be used for the DxWBS [121, 122]. The 

use of 123I is favored due to advantages including 
superior imaging quality, decreased radiation 
exposure, and prevention of stunning in children 
[121]. For patients with cervical uptake, neck US 
and/or single-photon emission computed tomog-
raphy with integrated conventional CT (SPECT/
CT) may provide more accurate anatomic local-
ization to differentiate metastatic regional lymph 
node from remnant thyroid tissue [123].

For patients with negative or only minimal thy-
roid bed uptake on DxWBS after initial surgery, 
131I therapy can be considered based on a TSH-
stimulated serum Tg level and a case-by-case 
basis (Fig.  2). A TSH-stimulated Tg <2  ng/mL 
has a predictive value of 94.9% for the absence of 
disease in adult patients, which is similarly con-
sidered to be disease-free in children [124]. If 
TSH-stimulated Tg is 2–10  ng/mL, 131I therapy 
should be considered for patients with thyroid bed 
uptake, invasive histology (dsvPTC, sPTC, and 
widely invasive follicular variant PTC), or tumors 
with extensive regional metastasis (extensive N1a 
or any N1b disease). If the TSH-stimulated Tg is 
>10 ng/mL, 131I therapy is indicated. Repeat sur-
gery prior to administration of 131I should be pur-
sued if there is evidence of “bulky,” macroscopic, 
persistent disease noted during this initial postop-
erative time frame (Fig. 2). FNA should always be 
considered prior to surgery to confirm the pres-
ence of persistent or recurrent disease. For treat-
ment of nodal or other locoregional disease that is 
not amenable to surgery, as well as known or pre-
sumed iodine-avid distant metastasis, 131I therapy 
is indicated (Fig. 2) [5].

There is no consensus on a standardized dose 
of 131I in children. Therapeutic 131I is commonly 
dosed empirically or determined based on bone 
marrow dose limited dosimetry. Empiric dosing is 
given as a fraction (child’s weight in kg divided 
by 70 kg) of a typical adult dose used to treat simi-
lar disease extent [125, 126] or based on weight 
(1.0–1.5 mCi/kg) [127]. Bone marrow dose lim-
ited dosimetry is targeted to limit lung retention to 
<80 mCi at 48 h and blood/bone marrow exposure 
to <200 cGy [128]. Dosimetry should be consid-
ered in younger children (<than 10 years), those 
with diffuse pulmonary metastases, and those 
who received radiation therapy for other malig-
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Low risk

Disease grossly 

confined to the 

thyroid with N0 

disease or patients 

with incidental N1a 

disease (< 4 LN)

Intermediate risk

Extensive N1a or 

minimal N1b 

disease

High risk

Regionally extensive 

disease (extensive N1b) 

or locally invasive 

disease (T4 tumors), 

with or without

distant metastasis

TSH-suppressed
Tg

DxWBS and TSH-stimulated Tg
(TSH > 30 mIU/L & negative TgAb1)

No or only minimal 

thyroid bed uptake
Distant

Metastasis 

(no cervical 
uptake outside 
of thyroid bed)

Cervical uptake 
outside of thyroid

bed (± distant
metastasis)

TSH-stimulated Tg

<2 ng/ml 2-10 ng/ml >10 ng/ml

131I is not 
Indicated2

131I therapy

and RxWBS

&/or  LT4 

Suppression2, 3

131I therapy

and

RxWBS

Neck US, SPECT/CT

Surgery 4

Significant 

residual 

disease 

amenable

to surgery

No or 

minimal 

residual 

disease 

not 

amenable 

to surgery

1 In positive TgAb patients (except in patients with T4 disease or clinical M1 
disease), consideration can be given to deferred evaluation to allow time for 
TgAb clearance.

2 Consider 131I in patients with thyroid bed uptake and T4 tumors or known 
residual microscopic cervical disease.

3 While there are no prospective studies in pediatric patients, the use of 131I 
remnant ablation may not decrease the risk for persistent or recurrent disease.

4 Re-evaluate to determine if 131I therapy would be beneficial (evidence of 
persistent, non-operable disease)

Fig. 2 Evaluation and management for the risk of persistent post-surgical disease using the American thyroid associa-
tion (ATA) pediatric risk stratification system
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nancies. A posttreatment WBS (RxWBS) should 
be obtained 4–7 days after all 131I treatments and 
is associated with a greater sensitivity for detect-
ing persistent disease when compared to the 
DxWBS [129]. The addition of SPECT/CT may 
help to localize residual cervical disease [5, 130].

The short-term side effects of radioiodine ther-
apy include salivary gland dysfunction (sialadeni-
tis, xerostomia, dental caries, and  stomatitis), 
ocular dryness, and nasolacrimal duct obstruction. 
Bone marrow suppression and gonadal toxicity 
may also occur, with an increased risk at higher 
131I cumulative doses and shorter intervals of 
administration. Males should avoid attempts at 
conception for at least 4 months and females for 
6–12  months after 131I therapy [131, 132]. 
Postpubertal males should be counseled, and 
sperm banking should be considered, for those 
receiving cumulative activities ≥400 mCi [5, 133]. 
Acute bone marrow suppression may develop, but 
all hematologic parameters usually normalize 
within 3  months’ post therapy [134]. Children 
with pulmonary metastasis may have diffuse 
micronodular disease and are at an increased risk 
of developing treatment-induced pulmonary fibro-
sis [78, 110]. Thus, pulmonary function testing 
and non-contrast chest CT should be monitored in 
all children with diffuse pulmonary metastasis, 
especially if multiple 131I therapies are considered 
[5]. Furthermore, long-term follow-up studies 
over the last decades have reported an increase in 
mortality attributed to second primary malignan-
cies (SPM) that appear to be possibly related to 131I 
therapy [6, 79, 135, 136]. Many of the SPMs are in 
iodine-avid glands (i.e., salivary glands) or in non-
avid tissues passively exposed to 131I during physi-
ologic clearance (bone marrow, colon, bladder, 
and others) [79, 137]. Thus, the challenge is to 
identify the children for whom the benefits of 131I 
therapy outweigh the risks. Families should be 
provided full information of the benefits and risks 
of 131I therapy [5].

 Surveillance, Restaging, 
and Follow-Up of PTC in Children

Serial serum thyroglobulin (Tg) levels and neck 
US are the most useful tests for monitoring patients 

with DTC. First-generation Tg assays have a func-
tional sensitivity of ~1.0 ng/mL, and newer sec-
ond-generation immuno-chemiluminescent assays 
(ICMA) have improved sensitivity down to 0.1 ng/
mL. Tg and TgAb levels should be simultaneously 
measured on all samples as up to 20–25% of 
patients with DTC have detectable TgAb that can 
interfere with Tg result with the direction of the 
false Tg value dependent on which assay is used 
[138]. For patients with TgAb, Tg will be underes-
timated using ICMA. For these patients, the trend 
in TgAb should be followed as a marker of disease 
status [138]. Many laboratories will reflexively run 
the Tg by radioimmunoassay (RIA) or liquid chro-
matography/tandem mass spectrometry (LC/
MS-MS) if TgAb is detected. One needs to remem-
ber that there is significant variance in the reliabil-
ity in detecting Tg and TgAb between different 
assays and that in the presence of TgAb the Tg 
may only be detected in 35% of samples run on 
RIA, with a high proportion of false-positive 
results, and that LC-MS/MS may have a false-
negative detection rate of approximately 40% 
[139]. One must be aware of the shortfalls in mea-
suring Tg in the presence of TgAb, and in an effort 
to obtain reliable results, it is critical to use the 
same assay and laboratory for serial surveillance 
laboratory monitoring to reduce inter-assay vari-
ance and improve assessment of the Tg and/or 
TgAb trend [140].

In the absence of TgAb, a basal (non-TSH-
stimulated) Tg level below 0.2 ng/mL is consis-
tent with remission from disease [141]. For 
patients that did not receive postsurgical 131I ther-
apy, the TSH-suppressed Tg should decrease to 
<0.5 ng/mL 6 to 12 months after total thyroidec-
tomy [141]. If the Tg remains mildly elevated, 
between 2 and 10 ng/mL, continued monitoring 
may be pursued depending on the trend in Tg 
over time as well as evidence of persistent or 
recurrent disease based on radiologic imaging. 
Increasing or frankly elevated levels of TSH-
stimulated Tg (>10 ng/mL) warrant further eval-
uation to localize disease and to decide whether 
additional surgery and/or 131I therapy would be 
beneficial [5].

Neck US is the most effective and efficient 
radiologic tool to monitor for persistent or 
recurrent anatomic disease. The first US 
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should be performed approximately 6 months 
after the initial surgery and then at 6- to 
12-month intervals for ATA pediatric interme-
diate- and high-risk patients and at annual 
intervals for ATA pediatric low-risk patients. 
Serial chest CT at 6- to 12-month intervals 
should be used to monitor patients with known 
pulmonary metastasis. A TSH-stimulated Tg 
and a DxWBS may be obtained in ATA pediat-
ric intermediate- and high-risk patients previ-
ously treated with 131I with known iodine-avid 
metastatic disease if the Tg level has plateaued 
or is increasing and anatomic disease is not 
detected on neck US or cross-sectional imag-
ing (chest CT or MRI) [5]. The use of 18F-FDG-
PET/CT should be limited to patients suspected 
to have persistent anatomic that is non-RAI 
avid based on previous RAI treatment and 
WBS imaging [142].

No evidence of disease (NED) is defined as 
the absence of structural abnormalities on radio-
logic imaging and undetectable Tg and TgAb 
levels. Persistent disease is defined by TSH-
suppressed >1  ng/mL or any evidence of ana-
tomic disease on neck US, cross-sectional (CT 
or MRI), or functional imaging (RAI whole 
body scan or 18F-FDG-PET/CT). Recurrent dis-
ease is characterized by the detection of new bio-
chemical or anatomic abnormalities in patients 
that were previously considered to have NED 
[108].

All pediatric patients with DTC should receive 
thyroid hormone replacement following surgery 
with or without 131I therapy dosed to achieve a 
TSH of <0.5 mIU/L. The degree of TSH suppres-
sion should be based on the extent of disease 
[143] adjusted to avoid signs and symptoms of 
hyperthyroidism. Based on ATA pediatric risk 
level and current disease status, ATA pediatric 
guidelines recommend that the goal of TSH sup-
pression is to achieve a TSH level 0.5–1.0 mIU/L 
for low-risk patients, 0.1–0.5 mIU/L for the inter-
mediate-risk patients, and <0.1  mIU/L for the 
high-risk patients [5]. In children with NED, 
TSH can be normalized to the low-normal range 
after an appropriate period of surveillance. 
Lifelong surveillance is indicated in all pediatric 
patients because recurrence has been reported in 

approximately 30% of children with DTC as long 
as 20–40 years after initial surgery [144].

 Children with Persistent/Recurrent 
Cervical Disease

Cervical lymph nodes are the most common 
location for residual and recurrent PTC [73, 81, 
144]. The decision to treat or to observe identifi-
able cervical disease should be individualized 
according to the size, anatomic location, prior 
treatment history, the iodine avidity of cervical 
disease, and the presence of distant metastasis. If 
macroscopic cervical disease (≥1 cm in size) is 
identified by imaging and confirmed via FNA, 
surgery is preferable to 131I therapy [145, 146]. 
Children with iodine-avid small-volume cervical 
disease (<1 cm) can be observed while continu-
ing TSH suppression or can be considered for 
therapeutic 131I therapy depending on the indi-
vidual risk-to-benefit ratio as well as the absence 
or presence of distant metastasis. [147]. 
US-guided percutaneous ethanol (UPEA) or 
radiofrequency ablation may be considered as 
nonsurgical treatment options in patients with a 
limited number of neck metastases from PTC 
depending on the location [147–149]. The thera-
peutic success rates of ethanol injection and RFA 
in adult studies have been reported to be 70.8–
98% and 75–91.6%, respectively [148].

 Children with Pulmonary Metastasis

The majority of children with pulmonary metas-
tasis have micronodular disease demonstrating 
excellent iodine avidity. Thus, in contrast to 
adults, children and adolescents with pulmonary 
metastasis have low disease-specific mortality 
[78, 150]. However, while many pediatric patients 
achieve remission from pulmonary disease [73, 
78, 150], at least 1/3 of children will have stable, 
persistent disease that will not respond to repeat 
doses of 131I [78]. Re-treatment of 131I iodine-avid 
pulmonary metastases should be considered in 
children who have demonstrated previous 
improvement but continue to have persistent dis-

Y. A. Lee and A. J. Bauer



575

ease based on a plateau in Tg and/or cross-sec-
tional imaging or evidence of disease progression. 
The timing of additional 131I should be at least 12 
or more months from the previous treatment with 
several studies demonstrating a continuous 
decline in serum Tg levels for 18 to 24 months, or 
longer, following the previous RAI therapy [150, 
151].

 Children with Detectable Tg but 
Negative Neck US or Cross-Sectional 
Chest Imaging

In children and adolescents with a detectable or 
increasing Tg or TgAb, but negative neck US and 
cross-sectional imaging of the chest, a DxWBS 
should be performed to look for persistent RAI-
avid disease. If disease is found, additional treat-
ment with surgical resection and/or 131I is 
indicated, based on extent, location, and previous 
treatment. If no disease is found, one can con-
sider a single empiric dose of 131I with a posttreat-
ment WBS (RxWBS) to assess for RAI-avid 
disease. If the RxWBS is negative and the Tg or 
TgAb continues to increase, then 18F-FDG-PET/
CT should be considered to determine the loca-
tion of disease; however, additional RAI treat-
ment is not warranted [152–154].

 New Approaches for Children 
with Progressive Disease

Most children with asymptomatic and nonprogres-
sive 131I refractory disease can be safely followed 
up while continuing TSH suppression. However, a 
very small proportion of children will have pro-
gressive disease refractory to 131I therapy. In adults, 
18F-FDG-avid lesions are associated with poor 
prognosis [155]. The prognostic value of 18F-FDG-
PET/CT scan in children remains unclear.

For adults with 131I refractory and progressive 
thyroid cancer, there are an increasing number of 
systemic therapies that target protein tyrosine 
kinase-dependent pathways (tyrosine kinase 
inhibitors, TKIs) [156]. For adults, where the 
mortality rate is higher than in children, the ben-

efit of extending progression-free survival is sig-
nificant [157, 158], and two TKIs, sorafenib and 
lenvatinib, have received FDA approval for use in 
adult patients with 131I refractory, progressive 
thyroid cancer [159].

A phase 2 trial was recently conducted to 
investigate the efficacy and safety of sorafenib in 
pediatric patients and young adults with refrac-
tory solid tumors or leukemias [160], but, unfor-
tunately no pediatric patients with thyroid cancer 
were recruited for participation. Thus, to date, the 
pediatric data are limited to case reports and 
anecdotal clinical experience [161, 162]. National 
clinical trials are needed to determine efficacy 
and toxicities in children with advanced thyroid 
cancer. In the rare and exceptional situation in 
which a child warrants systemic therapy, the use 
of systemic therapies should be carefully consid-
ered in consultation with experts in this area [5].

Additional agents are also being developed 
and studied in an effort to improve survival for 
adult patients with dedifferentiated disease. One 
example is selumetinib, a MEK1/MEK2 inhibi-
tor, that has been shown to increase expression of 
the sodium-iodine symporter with an associated 
increase in RAI uptake [163]. Data on the inci-
dence and association of oncogene mutations and 
rearrangements in relation to the clinical behav-
ior of DTC variants in children and adolescents 
with RAI-refractory disease is needed in an effort 
to determine which systemic therapy may be 
most beneficial for this uncommon situation in 
pediatrics.

 Medullary Thyroid Cancer

MTC is a rare neuroendocrine malignancy that 
derives from the neural crest originated parafol-
licular C-cells of the thyroid gland [164]. Thus, 
in contrast to follicular-cell-derived thyroid 
tumors, MTC cells are not responsive to TSH, do 
not express the sodium-iodine symporter, and do 
not produce Tg; rather they secrete calcitonin and 
carcinoembryonic antigen (CEA), both of which 
serve as tumor markers of MTC.  In children, 
MTC is a monogenic disorder caused by a domi-
nantly inherited or de novo gain-of-function 
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mutation in the RET proto-oncogene. With rare 
exception, MTC in children and adolescents is 
associated with multiple endocrine neoplasia 
type 2, either MEN2A or 2B, depending on the 
specific mutation [165, 166]. The development of 
MTC in children with MEN2A typically occurs 
after 5 years of age, especially for patients with 
ATA moderate-risk (M) mutations (Table  4) 
[164–167]. In contrast, in children with heredi-
tary MEN2B, macroscopic MTC may be detect-
able within the first year of life, and nodal 
metastases may occur prior to 5 years of age 
[168]. Sporadic MTC associated with somatic 
mutations of RET and RAS are very uncommon 
in the pediatric population [164].

There is a strong genotype and phenotype 
correlation in the RET proto-oncogene allowing 
for prediction of the rapidity with which an indi-
vidual may develop MTC as well as the risk and 
timing of the other MEN2-related diseases, 
including pheochromocytoma and hyperpara-
thyroidism [164–167]. The ATA divides the most 
common RET mutations into three risk catego-
ries, highest risk, high risk, and moderate risk, 
and bases the recommended age for initial 
screening and the timing of prophylactic thy-
roidectomy to coincide with the goal of achiev-
ing surgical remission from disease (Table  4) 

[164]. If a germline RET mutation is detected on 
genetic screening, TT is recommended as fol-
lows: within the first year of life for carriers of 
the highest-risk mutation (codon 918), at or 
before age 5  years for those with a high-risk 
mutation (codons 634 and 883), and for all other 
moderate-risk mutations when the serum calcito-
nin level shows an increasing upward trend, 
when a nodule is found on surveillance thyroid 
US, or if the parents do not wish to continue to 
embark on a long period of laboratory and radio-
logical surveillance (Table 4) [164].

For patients undergoing thyroidectomy, a cen-
tral lymph node dissection is recommended in 
children whose basal calcitonin is >40 pg/mL or 
with any evidence of lymph node metastasis 
[164, 169]. After initial surgery, levothyroxine 
medication is given to normalize, not suppress, 
the TSH. In contrast to the follicular cell in non-
medullary DTC, parafollicular C-cells do not 
accumulate iodine. Thus, postoperative 131I ther-
apy is not indicated following thyroidectomy for 
MTC [170]. Calcitonin and CEA levels should be 
monitored as tumor markers every 6–12 months, 
with decreasing frequency once remission is con-
firmed. Neck US should be followed up for 
patients with persistently detectable tumor mark-
ers or initial lymph node metastasis. If the tumor 
markers remain significantly elevated or show 
rapid doubling time, additional imaging such as 
chest CT, contrast-enhanced liver MRI/CT, bone 
scan, MRI of the axial skeleton, or 18F-FDG-
PET/CT should be performed. In pediatric 
patients with MEN2B, remission may not be an 
achievable goal secondary to an increased inci-
dence of de novo mutations associated with delay 
in diagnosis [27, 171].

Patients with hereditary MTC should receive 
continued and lifelong follow-up including 
genetic counseling, psychosocial support, and 
prospective screening of pheochromocytoma and 
primary hyperparathyroidism. Annual screening 
for pheochromocytoma with a urine or serum 
fractionated metanephrine panel is initiated at 
age 11 years for ATA highest-risk patients (918) 
and at 16 years for ATA high- and moderate-risk 
patients with the addition of annual screening for 
hyperparathyroidism for ATA high- and moder-
ate-risk patients at the same time.

Table 4 Risk levels and management based on common 
RET mutations detected on genetic screening [164]

MTC risk 
level RET mutation

Age for prophylactic 
thyroidectomy

Highest 
(MEN2B)

M918 T TT in the first year or 
the first months of 
life. Risk of 
metastasis increases 
after 5 years of age

High 
(MEN2A)

A883F and 
C634F/G/R/S/
W/Y

TT at or before 
5 years of age based 
on serum calcitonin 
levels

Moderate 
(MEN2A)

G533C, 
C609F/G/R/S/Y 
C611F/G/S/
Y/W, C618F/
R/S, C620F/R/S, 
C630R/Y, 
D631Y, K666E, 
E768D, L790F, 
V804L, V804M, 
S891A, R912P

TT to be performed 
when the serum 
calcitonin levels 
become elevated or in 
childhood if the 
parents do not wish to 
embark on a lengthy 
period evaluation, 
which might last for 
years or decades
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Metastatic MTC is generally incurable, but 
may show an indolent clinical course with stable 
disease over decades. A more aggressive progres-
sion and poorer prognosis can be predicted by the 
inability of the MTC cells to produce calcitonin, 
a rapidly rising CEA out of proportion to calcito-
nin, and a fast tumor marker doubling time [164, 
172]. For MTC patients with symptomatic or 
progressive metastatic disease, the treatment of 
molecular targeted therapies that inhibit RET and 
other receptor tyrosine kinases involved in angio-
genesis is indicated. Vandetanib and cabozantinib 
have been FDA-approved for the treatment of 
adults with progressive, metastatic MTC [156, 
159], and limited data suggests that vandetanib is 
effective and well-tolerated in children with 
advanced MTC in the setting of MEN2B [173].
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Thyroid Cancer Surgery

Brian R. Untch, Dipti Kamani, 
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 Well-Differentiated Thyroid Cancer

Well-differentiated thyroid cancer (WDTC) is the 
most common type of thyroid cancer and includes 
three histologic variants: papillary thyroid carci-
noma (PTC), follicular thyroid carcinoma (FTC), 
and Hurthle cell carcinoma (HCC). Localized 
WDTC has an excellent prognosis, and surgical 
resection remains the foundation of treatment for 
most patients. Survival of metastatic WDTC is 
often measured in years, and systemic treatments 
(radioactive iodine, chemotherapy, kinase inhibi-
tors) are often reserved for patients demonstrat-
ing significant progression or symptoms. The 
surgeon should be familiar with the pattern and 

propensity of the different subtypes to locore-
gional spread that influence the surgical proce-
dure. PTC initially spreads to central and lateral 
neck nodes, whereas FTC will often spread 
hematogenously to the lung and bone [1]. HCC is 
now recognized as distinct from PTC and FTC 
and often spreads hematogenously but rarely 
may involve lymph nodes as well [2].

 Dedifferentiated Thyroid Cancer

Poorly differentiated and anaplastic thyroid can-
cers (PDTC and ATC) have a high mortality rate 
as compared to WDTC. Disease-specific survival 
rates after resection of PDTC are approximately 
60% at 5  years, while patients presenting with 
ATC have one of the shortest median survival of 
all human cancers at approximately 3 months [3, 
4]. PDTC is defined histologically by tightly 
packed groups of cells that lack papillary or fol-
licular architecture, have frequent mitoses, and 
demonstrate necrosis [5]. When PDTC is local-
ized, surgery can effectively control disease. 
Primary and recurrent tumors can invade local 
structures in the neck and can require extended 
resections (trachea) and lymphadenectomy. 
Recurrences can occur quickly, and treatment 
options include radioactive iodine, tyrosine 
kinase inhibitors, targeted therapy, and surgery.

ATC classically presents as a rapidly expanding 
neck mass with metastatic disease. Biopsy demon-
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strates spindle or giant cells with frequent mitosis 
and at times can appear similar to sarcoma [6]. It is 
rare to come across a patient with ATC that is 
resectable and is without distant metastases. More 
commonly, ATC presents with locally advanced 
disease involving neck structures including the 
carotid and trachea. ATC is extremely rare with an 
incidence of 1–2/1,000,000 per year in the USA 
[7]. Several centers have developed significant 
experience with the disease, and every effort 
should be made to enroll patients in clinic trials. 
Multidisciplinary care is key and the surgeon can 
play an important role in palliation of symptoms 
particularly as it relates to timing of tracheostomy 
and feeding tubes in the setting of chemotherapy, 
radiation, and progressive tumor.

 Medullary Thyroid Cancer

Medullary thyroid cancer (MTC) originates from 
calcitonin secreting cells (c-cells) of the thyroid. 
MTC can be sporadic in 75% of cases, but the 
rest of the cases are familial and can be grouped 
into multiple endocrine neoplasia types IIA and 
IIB. These MEN syndrome subtypes are defined 
by their mutation in the RET oncogene. Families 
aware of their genetic status are recommended to 
have prophylactic thyroidectomy based on their 
RET mutation status [8]. Localized MTC has a 
survival rate of >80% at 5 years. Calcitonin and 
CEA measurements can help detect persistent/
recurrent or metastatic disease [9]. Calcitonin 
doubling time is a well-established prognostic 
factor [10]. Surgery for localized MTC includes a 
total thyroidectomy, a central neck dissection, 
and typically an ipsilateral lateral neck. 
Symptomatic or progressive metastatic disease 
can be treated with tyrosine kinase inhibitors.

 Papillary Microcarcinomas (PMC)

The frequent use of neck ultrasound has led to a 
dramatic increase in the diagnosis of thyroid can-
cer in the USA and many westernized countries 
[11]. This is attributed to increased incidence of 
papillary thyroid cancer as the incidence of other 
types of thyroid cancer has been found to be sta-

ble. On a closer look, it was realized that the 
increase was mainly due to increased detection of 
small papillary thyroid cancers that were <2 cm, 
49% of which were PMC (PTC < 1 cm). While the 
thyroid cancer incidence has increased 2.9-fold, 
the mortality has remained stable over the years 
[12]. Active surveillance program for PMC 
patients has demonstrated feasibility of this 
approach in Japanese patients [13]. Several centers 
in the USA have introduced clinical protocols to 
offer observation with careful monitoring of 
tumors as a management option for PMC; the 
decision to operate is based on evidence of tumor 
growth on serial ultrasounds. As this approach 
gains popularity, it is critical that surgeons play a 
role in decision-making [14]. Eligibility for active 
surveillance approach should be stringently 
defined; factors such as tumor proximity to adja-
cent structures on imaging studies should be con-
sidered. Further, the relative risks of surgery versus 
observation should be explained, and informed 
consent should be documented. Since PTCs tend 
to spread to local lymph nodes before distant sites, 
observation with careful serial imaging assess-
ment should be implemented. It should be noted 
that there are patients with PTCs <1 cm that dis-
play aggressiveness and have distant metastases. 
For this reason, surveillance program should be 
carefully structured with multidisciplinary group 
of physicians having expertise in thyroid cancer.

 Preoperative Assessment: Exam, 
Imaging, and Laryngoscopy

Prior to proceeding to surgery, a thorough preop-
erative assessment should be performed includ-
ing history and physical exam concentrating on 
the head and neck, appropriate imaging, and 
evaluation of the larynx. Disease extent should be 
carefully evaluated.

Preoperative laryngeal exam is increasingly 
recognized as essential procedure prior to thyroid 
surgery especially for patients with thyroid cancer 
and has been the subject of recent American 
Academy of Otolaryngology published guidelines 
[15]. Preoperative laryngoscopy is important as it 
can identify vocal cord dysfunction in the absence 
of voice complaints/changes and also can provide 
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a baseline for comparing postoperative laryngeal 
outcome. It can offer essential information about 
functionality of the RLN, so a surgeon is better 
equipped to address a RLN that is found to be 
invaded by the tumor intraoperatively. Examination 
of the vocal cords can be performed by mirror 
exam, laryngoscopy, or more recently with ultra-
sound [16, 17]. Laryngoscopy provides excellent 
visualization of the glottis and is well tolerated in 
the clinic with the use of topical anesthetics.

Imaging studies include high-resolution ultra-
sound and a CT scan with contrast; sometimes 
MRI can be employed as well. If a CT scan is 
performed, RAI is given in a delayed fashion. 
Ultrasound is excellent for evaluating lymph 
node involvement, particularly small nodes that 
may have abnormal morphology but not enlarged 
by CT scan criteria. Additionally, US can identify 
small contralateral thyroid nodules if relevant to 
the extent of thyroidectomy. However, US has 
limited ability to assess for tracheal invasion and 
cannot assess structures posterior to the trachea 
due to acoustic shadowing or in the extreme neck 
base. US and CT have complementary strengths 
and combined preoperative US and CT provides 
a complete preoperative macroscopic nodal 
metastasis map to design rational nodal surgery 
in primary as well as recurrent setting [18]. MRI 
of the neck can also be used to evaluate thyroid 
tumors. However, its use is primarily for patients 
with very large tumors for assessment of soft tis-
sue invasion and is often complimentary to other 
imaging tests. FDG-PET scans are not routinely 
used for preoperative evaluation of WDTC 
patients. However, for patients with aggressive 
thyroid cancer (PDTC/ATC) in long-term follow-
up, there is a reciprocal relationship between 
PET positivity and iodine uptake, and so FDG 
PET is an excellent test to determine the extent of 
disease and is an excellent baseline-imaging test 
prior to deciding on a therapeutic plan [19].

 Extent of Thyroidectomy

The extent of surgery (lobectomy versus total 
thyroidectomy) has been a long-standing contro-
versy in the field of thyroid cancer, particularly 
for smaller primaries. Proponents of total thy-

roidectomy for all patients point to the relatively 
high incidence of unknown contralateral thyroid 
cancers, the need for long-term imaging surveil-
lance of the contralateral gland, the increased dif-
ficulty of reoperation in the central compartment, 
the ability to give RAI, and controversial large 
database studies that suggest a survival benefit of 
total thyroidectomy over lobectomy [20]. 
Additionally, total thyroidectomy facilitates 
detection of recurrence with the thyroglobulin 
(Tg) levels; Tg elevation and rate of increases can 
be used to time and plan a therapeutic approach. 
Advocates of lobectomy cite increased rate of 
complications with total thyroidectomy (hypo-
parathyroidism, RLN injury) and excellent dis-
ease-specific outcomes for WDTC [21]. The 
most recent American Thyroid Association 
(ATA) guideline for thyroid cancer has attempted 
to increase the threshold for RAI use as an adju-
vant after resection, suggesting that it should be 
employed only in cases with significant risk of 
recurrence, typically when there is a large tumor 
(>4 cm), invasive histological features, or bulky 
lymph node metastases [22]. As such these guide-
lines suggest that lobectomy is reasonable for 
non-metastatic intrathyroid tumors given the 
state of the current evidence. The goals of these 
recommendations are to prevent medical and sur-
gical overtreatment for small thyroid cancers that 
are unlikely to become life threatening. Risk of 
RLN injury and permanent hypoparathyroidism 
is infrequent in experienced hands but can be 
considerably debilitating for affected patients 
[23]. The goal of treatment for small, intrathyroi-
dal cancers (<4 cm) is to avoid making the treat-
ment worse than the disease.

 Thyroidectomy for Thyroid Cancer

Once the patient has been assessed preoperatively 
(as described above), the surgical procedure has 
been planned, and informed consent obtained, the 
patient is brought to the operating room. After 
induction, the patient is positioned on the operat-
ing room table with neck extension. This can be 
facilitated by placing a shoulder roll at the level of 
the scapulae and placing the patient in a “beach 
chair” position (Fig.  1). Prior neck surgery or 
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injury should be noted and range of motion 
assessed in order to prevent overextension and 
injury. Sequential compression devices are placed 
on the calves, and a warming blanket covers the 
patients to maintain temperature. Venous throm-
bosis rates are low in thyroid surgery patients, and 
preoperative prophylaxis is only given to high-
risk patients [24]. Many surgeons selectively use 
preoperative antibiotics usually in reoperative 
cases, in patients with a history of neck radiation 
or with medical conditions placing them at high 
risk of infection (diabetes). The patient is prepped 
and draped from the chin to suprasternal notch 
with appropriate lateral neck exposure.

 Incision and Initial Dissection 
of the Strap Muscles

Incisions for total thyroidectomy are generally 
4–5 cm in length and typically 1–2 cm below the 
cricoid in the midline. However, the patient body 
habitus and the intended operation are variables 
that may require a different incision length. 
Optimally these incisions can be hidden well in one 
of creases of the neck. Symmetry can be assessed 
by finding the midline of the neck by examining the 
relationship of the suprasternal notch to the chin. 
Equidistant measurements from the lateral ends of 
the incision to the suprasternal notch can also help 
determine a symmetrical incision. After incision is 
made, the platysma is identified and divided. The 
platysma can be attenuated in the midline and 
attention should be paid to avoid injury to the ante-
rior jugular veins. Subplatysmal flaps are created 
with cautery directly under the muscle. Counter-
traction on the skin helps to identify this plane 
when the incision edges are retracted superiorly 
with skin hooks. After adequate flap creation, the 

midline strap muscle fascia is identified and dis-
sected. The relevant strap muscles of the neck dur-
ing thyroidectomy include the most ventral muscle, 
the sternohyoid, and the muscle that directly envel-
ops the thyroid, the sternothyroid. The plane in 
between these two muscles can be dissected to 
reveal the carotid sheath and jugular vein. 
Retractors can facilitate exposure of the thyroid 
lobe and the sternothyroid muscle carefully evalu-
ated. The thyroid is palpated through the muscle; 
any inflammatory changes or extrathyroidal exten-
sion is looked for. In case of extrathyroidal exten-
sion, the sternothyroid muscle can be divided to 
ensure an appropriate margin (Fig. 2). Some sur-
geons prefer to divide the sternothyroid routinely to 
facilitate exposure of the superior pole vessels and 

Fig. 1 “Beach chair” 
position for 
thyroidectomy

Sternohyoid muscle

Individual dissection
of superior thyroid
artery’s branches

Retracted superior
thyroid pole

Transected
edges of

sternothyroid
muscle

Fig. 2 Front view depicting left thyroid superior pole dis-
section with adequate exposure of the superior pole region 
to facilitate dissection of the branches of superior thyroid 
artery
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identification of the superior laryngeal nerve; divi-
sion of the muscle does not result in any functional 
deficit [25]. Prior to muscle division, the carotid 
sheath should be identified and the muscle dis-
sected away in order to prevent injury. If the muscle 
is not divided, it is reflected off the thyroid.

 Thyroid Dissection

The dissection of the thyroid lobe is dictated by 
the blood supply, the desire to protect the para-
thyroid glands and laryngeal nerves (both recur-
rent and superior), and the tumor characteristics.

The thyroid is retracted medially with a pea-
nut or finger with gauze, and the middle thyroid 
vein is identified and divided (Fig. 3). In general 
blood vessels of the thyroid can be isolated with 

ties, a vessel sealing device, or clips. Bleeding in 
and around the tracheoesophageal (TE) groove 
should be avoided, as thyroid surgeons must rely 
on anatomic landmarks and characteristic colors 
of parathyroid glands, normal thyroid tissue, 
lymph nodes, and nerves that can be altered with 
bleeding. Division of middle thyroid vein facili-
tates the exposure of the TE groove. At this point 
the trachea can be identified in the midline by 
division of the inferior pole vessels. The rings of 
the trachea and its characteristic white color are 
useful landmarks to assess the location of the TE 
groove. Additionally, the isthmus can be divided 
at this point to facilitate mobilization of the thy-
roid lobe. A clamp can be passed behind the thy-
roid along the trachea and then the thyroid 
divided with a vessel sealing device as long as the 
area is free of tumor. With the inferior pole ves-
sels divided attention is turned to identifying the 
inferior parathyroid gland and maintenance of its 
blood supply. This structure is swept inferiorly as 
the dissection is carried out cranially in the TE 
groove. RLN has a characteristic vascularized 
epineurium. If nerve monitoring is used, the 
nerve can be stimulated to confirm its function. 
Dissection along the nerve should be minimal at 
this inferior aspect so as not to inadvertently 
interrupt blood supply to the inferior parathyroid 
gland. The RLN courses behind the subclavian 
artery on the right and behind the aorta on the 
left, which affects the angle of entry into the glot-
tis (Fig.  4). On the right the nerve passes at a 
more oblique angle to the trachea given its more 
lateral origin and the right RLN courses parallel 
to the trachea through the TE groove. The RLN 
should be safely identified and preserved during 
the TE groove dissection, and careful manipula-
tion is well tolerated. As dissection progresses 
cranially in the TE groove, the inferior thyroid 
artery, a branch of the thyrocervical trunk, is 
identified and preserved. The RLN can be often 
found deep to the branching vessels of the artery, 
but this relationship can be variable. Dissection 
and ligation of the branching vessels distally at 
the capsule of the thyroid should be performed. 
As the dissection continues, the thyroid is gradu-
ally retracted away from the TE groove and 
toward the midline. A variety of techniques are 

Medial
retracted
thyroid
lobeCarotid

artery

Jugular
vein

Middle
thyroid

vein

Laterally
retracted

strap muscles

Inferior thyroid artery
and recurrent laryngeal
nerve, deep to plane of

middle thyroid vein

Fig. 3 Medial retraction of the thyroid gland with a sur-
geon’s hand to identify and divide the middle thyroid
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employed to retract from babcock clamps to 
small hemostats or finger retraction with gauze. 
If clamp retraction is carried out, retraction has to 
be gentle in order to avoid tearing of the thyroid 
capsule, and the clamp should be placed on 
benign thyroid tissue to avoid interruption of the 
tumor capsule.

The next step is to identify the superior para-
thyroid gland. This gland is typically located 
deep to the RLN. The parathyroid glands can be 
distinguished from lymph nodes and thyroid tis-
sue in this location by their distinct capsule and 
mobility in the fibro fatty tissue of the TE groove. 
The glands are typically flatter and are more tan/
brown in color than lymph nodes. The dissection 
should be meticulous, and every effort is made to 

preserve blood supply. One aim of the caudal to 
cranial dissection approach is to identify the 
superior parathyroid gland prior to superior pole 
vessel ligation. As the blood supply to the para-
thyroid glands is appreciated, the superior pole 
vessels can be taken more deliberately, avoiding 
devascularization of the parathyroid.

The ligament of berry is an area of dense fibrous 
tissue extending from the thyroid capsule to the 
trachea. It is often in close proximity to the RLN 
or the RLN travels through its fibers. Due to poten-
tial of nerve injury in this location, vessels and tis-
sue should be divided with bipolar cautery or 
divided using ties. If bleeding occurs around the 
RLN, cautery and excessive manipulation should 
be avoided. Often, simple digital pressure and time 
can control the bleeding. Hemostatic agents are 
another good alternative to further manipulation.

The superior pole vessels are divided as the 
last maneuver. The vessels can be separated from 
surrounding tissue with blunt dissection, which is 
recommended in order to avoid injury external 
branch of superior laryngeal nerve. This nerve 
travels in the fascia along the cricothyroid muscle 
as a branch of the vagus nerve. Injury to this 
nerve results in the inability to project the voice. 
As such, the superior pole vessels should be 
divided with a vessel sealer or ties directly at 
their point of entry into the thyroid. This also 
avoids interrupting any vessel that may provide 
blood supply to the superior parathyroid. With 
the entire thyroid lobe mobilized and retracted 
medially, the rest of the attachments on the tra-
chea are divided with cautery, avoiding injury to 
the trachea and cricothyroid muscle. Attention is 
then turned to the contralateral side if a total thy-
roidectomy is being performed and the steps 
repeated. At the completion of the case and if no 
central neck dissection is performed, the TE 
groove and the pretracheal lymphoid tissue are 
visually inspected and palpated to determine 
lymph node involvement. If none is detected, the 
parathyroid glands are visualized one last time to 
assess viability, and the RLNs are inspected 
along the course and tested if RLN monitoring is 
being used. It is some surgeons’ practice to mark 
the parathyroid glands with suture or clips in case 
of reoperation.

Fig. 4 Normal pathway of the left (L1) and right RLN 
(R1) through respective paratracheal regions
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If a parathyroid gland is thought to be devas-
cularized after careful inspection, it can be 
explanted and reimplanted in the sternocleido-
mastoid (SCM) after pathological confirmation. 
While awaiting frozen section, the parathyroid is 
maintained in cold saline. A bloodless muscle 
pocket within the SCM is created with gentle 
clamp spreading. After histologic confirmation, 
the parathyroid is divided with a scalpel into 
2–3  mm pieces and inserted into 1–3 muscle 
pockets followed by blue permanent suture clo-
sure of the SCM fascia. The central compartment 
is inspected carefully for hemostasis, and any 
remnant bleeding is dealt with appropriately. The 
strap muscle fascia is closed in the midline fol-
lowed by platysma reapproximation and dermal 
closure. Drains are not mandatory but are used by 
some surgeons. The skin closure can be per-
formed in a variety of different ways, but the ulti-
mate goal is to limit the inflammatory reaction 
that can result in more pronounced scarring. 
Placement of monofilament suture with a topical 
wound glue or dressing typically suffices.

 Central Neck Dissection

Central neck dissection (CND) refers to the 
removal of lymph nodes in the central compart-
ment (level VI). Level VI lymph nodes extend 
from the hyoid bone superiorly to the carotid 
sheaths to the innominate artery. Caudal to the 
artery but accessible through a cervical incision 
are level VII lymph nodes. Therapeutic lymph 
node dissection refers to the removal of lymph 
nodes that are clinically evident as oppose to pro-
phylactic dissection, which is to remove lymph 
nodes that are not obviously involved with tumor. 
For those surgeons that perform prophylactic 
lymph node dissection for WDTC, they cite 
reduced recurrence rates, improved staging, and 
avoidance of reoperative morbidity as consider-
ations [26, 27]. However, there are clear disad-
vantages such as greater risks of complications 
most notably increased rates of hypoparathyroid-
ism and RLN injury [28, 29].

CND can be performed unilaterally or bilater-
ally depending on the clinical presentation and 

type of thyroid cancer. For prophylactic CND in 
WDTC, randomized data to guide decision-mak-
ing is lacking and clinical trials are unlikely to be 
forthcoming given the power required demon-
strate a benefit [30]. The retrospective data that 
describes outcomes after CND is challenging to 
interpret given the various definitions and sta-
tions of lymph nodes within level IV [29]. Central 
neck lymph nodes can be divided into right and 
left paratracheal, prelaryngeal, and pretracheal. 
As the literature is difficult to interpret, there are 
a variety of practice patterns in regard to prophy-
lactic CND.  Some authors have suggested pro-
phylactic CND when larger primary tumors are 
present (T3/T4), while others perform the proce-
dure routinely. Yet others argue that it should not 
be performed as increased detection of micro-
metastatic disease is unlikely to become clini-
cally relevant which may result in overstaging 
and treatment with radioactive iodine [31]. It 
should be noted that prophylactic lateral neck 
dissection was performed routinely for WDTC 
but is no longer employed despite up to 50% of 
patients having micrometastatic lymph nodes. To 
further the argument against routine prophylactic 
CND, several high volume centers have sug-
gested that reoperative central neck dissection 
can be performed with minimal morbidity [32].

 CND Technique

There are four lymph node compartments that are 
addressed during CND.  Dissection of prelaryn-
geal nodes (typically performed at the time of 
thyroidectomy) is typically followed by pretra-
cheal and paratracheal dissections. Although the 
order of dissection can be variable from surgeon 
to surgeon, in general the CND is performed after 
removal of the thyroid specimen. The medial bor-
ders of the carotid sheaths are dissected down to 
the level of innominate artery bilaterally. The 
lymphoid tissue between the carotid arteries is 
dissected, but only after inferiorly tracing and 
protecting both the RLNs. Parathyroid gland 
blood supply should also be identified and pre-
served. The innominate should be noted on pre-
operative imaging studies in order to avoid injury 
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(particularly if coursing high in the mediasti-
num). The lymphoid tissue is removed en bloc 
and divided with a vessel sealing device or cau-
tery. Finally, the central compartment is evalu-
ated for any additional lymph nodes in the 
surgical bed, thorough visual inspection and pal-
pation. Drains are not typically used.

 Lateral Neck Dissection

For patients with clinically involved lymph nodes 
of the lateral neck (levels II, III, IV, V), lymph 
node dissection is carried out to remove gross 
macroscopic WDTC which is not effectively 
treated with RAI, and surgery represents the best 
opportunity for locoregional control. For patients 
with MTC, neck dissection is recommended for 
gross disease and in cases of high calcitonin lev-
els. Dissection of levels II through V is referred 
to as a modified radical neck dissection (MRND) 
or selective neck dissection (SND – II, III, IV) as 
opposed to the radical neck dissection that 
includes removal of the SCM, the internal jugular 
vein, and the accessary nerve. Removing only 
involved nodes (berry picking) should be avoided 
and has been associated with persistent disease 
and higher recurrence rates.

 Lateral Neck Dissection Technique

A cervical crease incision extending from the 
thyroidectomy incision laterally but keeping it 
low is adequate for an SND.  In most cases a 
hockey stick incision that extends parallel with 
the SCM can be avoided. The subplatysmal flaps 
are elevated to the clavicle, the mandible, and the 
trapezius posteriorly as needed for the extent of 
dissection. Removal of lymphoid tissue begins at 
level II with identification of the fascial vein and 
the posterior belly of the digastric muscle. The 
SCM fascia is entered and the accessory nerve 
identified. Injury to this nerve results in shoulder 
weakness which can result in permanent disabil-
ity. Levels IIA and IIB lymph nodes are dissected 
with the specimen being passed posterior to the 
accessory nerve. The SCM is dissected away 

from the specimen with identification and preser-
vation of the cervical roots. The lymph nodes are 
then removed in continuation down to level IV; 
dissection ends in proximity to the transverse cer-
vical artery and branches. The phrenic nerve lies 
on the floor of the dissection bed and is avoided. 
To dissect level V, the accessory nerve is dis-
sected as it enters the trapezius muscle. Lymphoid 
tissue is removed from superiorly/laterally, and 
the dissection proceeds toward the SCM/clavicle 
avoiding the brachial plexus.

 Lateral Neck Dissection 
Complications

Chyle leak (fistula) on the left and injury to vari-
ous nerves are the primary concerns during lat-
eral neck dissection. A chyle leak occurs when 
the thoracic duct is not completely tied off. 
During dissection of the left lower neck, surgeons 
will often use ties instead of cautery or a vessel-
sealing device in an attempt to avoid this compli-
cation. If a leak is observed during the case, 
administration of thick cream via NGT can help 
localize the leak. If it occurs postoperatively, the 
patient can either undergo conservative treatment 
with octreotide, medium chain triglyceride diet, 
and a pressure dressing or can be taken for re-
exploration. Nerves at risk during a lateral neck 
dissection include the hypoglossal nerve, the 
marginal mandibular nerve, the spinal accessory 
nerve, the phrenic nerve, the vagus nerve, and the 
cervical sympathetic chain in the carotid sheath. 
Injury to these nerves can be temporary or 
permanent.

 Recurrent Laryngeal Nerve 
Monitoring and Injury

Intraoperative neuromonitoring (IONM) is an 
adjunct to visualization of the nerve. IONM is used 
variably by thyroid surgeons. IONM shows a trend 
toward lower RLN injury rates, but there is lack of 
statistical proof in part due to inadequate statistical 
powering of most studies. IONM facilitates map-
ping the RLN course, assessment of nerve func-
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tionality, and identification of an injured nerve 
segment [33–35]. Adherence to the international 
nerve monitoring study group guidelines is key to 
accurate and uniform neural monitoring [33]. The 
ATA 2015 Management Guidelines for Patients 
with Thyroid Nodules and Differentiated Thyroid 
Cancer state that intraoperative neural stimulation 
(with or without monitoring) may be used to facili-
tate nerve identification and confirmation of neural 
function [37]. Although proving a benefit to RLN 
monitoring based on retrospective data is difficult, 
experience dictates that in certain instances it can 
assist the surgeon with intraoperative decision-
making. RLN anatomy can be highly variable 
in  location, size, and branching patterns. While 
most patients have a typical trajectory, the presence 
of a mass can result in the nerve resting in an abnor-
mal location being pushed either ventrally/laterally 
on the left or medially/ventrally on the right. In 

addition, abnormal embryology can lead to a non-
recurrent laryngeal nerve which is rare on the right 
(1%) and exceedingly infrequent on the left 
(0.04%) [36]. An anatomical and electrophysio-
logic algorithm based on IONM can help identify 
NRLN prior to proceeding with the dissection in 
the related area [37] (Fig. 5). RLN may be invaded 
or abutted by tumor creating challenging intraop-
erative circumstances. AAOHNS guidelines sug-
gest significant utility of IONM in cases of (1) 
bilateral thyroid surgery, (2) revision thyroid sur-
gery, and (3) surgery in the setting of an existing 
RLN paralysis [15]. IONM can serve to aid in dis-
section in difficult cases but can also help prognos-
ticate a nerve injury. If a nerve injury is suspected 
on one side and confirmed with the RLN monitor, 
the contralateral side surgery can be delayed as 
needed to allow for recovery and preventing the 
need for tracheostomy.

Left
laryngeal
nerve

Right
laryngeal

nerve

ba

Right
vagus
nerve

Fig. 5 (a) Left nonrecurrent laryngeal nerve (NRLN). (b) Right nonrecurrent laryngeal nerve (NRLN)
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RLN injuries can be the result of thermal 
injury, traction, or transection. Monopolar cau-
tery should be avoided near the RLN and liga-
ment of berry dissection and bipolar cautery 
should be used judicially. Suture ties and clips 
can be used to prevent thermal injury, but these 
can also result in nerve injury if not used care-
fully. Traction injury can occur as the gland is 
retracted medially and the RLN is pulled near the 
ligament of berry near its muscular insertion site 
as it travels to the glottis. A tumor in the proxim-
ity to the RLN can also entrap/abut the nerve, and 
distraction of the gland during dissection can 
result in injury. In general, if a tumor abuts or 
pushes against a nerve, the nerve does not need to 
be sacrificed, if all gross disease can be removed. 
However, if the tumor completely surrounds the 
nerve and/or gross disease is left behind, then the 
nerve should be resected. The surgeon should 
assess the TE groove carefully for these variables 
and proceed with an approach that limits RLN 
injury risk. If a transection injury occurs and is 
recognized immediately, primary anastomosis 
may improve long-term glottic function, although 
a complete recovery is variable [38]. If the RLN 
cannot be repaired, then an anastomosis with the 
ansa hypoglossi nerve can provide a resting tone 
that may also improve function over time, 
although normal function should not be expected.

Complete recovery of normal RLN is possible 
when the RLN remains intact but loses signal 
during surgery. A majority of patients will recover 
in 6  months. Swallowing and voice assessment 
and therapy can help clarify the severity of neuro-
logic deficit and provide the patient with strate-
gies as they adjust post-surgery. Once recovery is 
thought to be unlikely (post 6 months), interven-
tion aimed at improving glottic tone and function 
can be attempted. These include surgical manipu-
lation of the larynx and injection laryngoplasty.

 External Branch of Superior 
Laryngeal Nerve (EBSLN) 
Monitoring and Injury

EBSLN injury can be of great significance to 
patients, particularly to voice professionals. Lack 
of distinct laryngoscopy findings and variable 

and subtle voice changes associated with EBSLN 
injury are underlying reasons for difficulty in 
identification of EBSLN injury, and hence it is 
alleged to be the most commonly underestimated 
complication of thyroid surgery. The laryngeal 
head of the sternothyroid muscle is an important 
landmark for the EBSLN as it descends along the 
inferior constrictor to the cricothyroid muscle. A 
standardized approach for IONM can be a useful 
adjunct for intraoperative EBSLN identification, 
as up to 20% of EBSLN are subfacial and visu-
ally unidentifiable [39, 40]. The EBSLN is at a 
high risk of injury during dissection of the supe-
rior thyroid pole. Knowledge of EBSLN ana-
tomic variations, a precise surgical technique 
with meticulous superior pole dissection, and 
ligation of the superior pole vessels on the gland 
are important in avoiding the injury [41, 42].

 Surgery for Recurrent Thyroid 
Cancer

Recurrent thyroid cancer can be in the form of 
structural and/or biochemical recurrence. A sur-
gical approach requires presence of a structural 
recurrence; it is vital to clearly identify a struc-
tural disease on imaging studies, typically on 
ultrasound, axial CT, and MRI scan with contrast 
[41]. Factors that are considered for surgical 
intervention include primary tumor histology, the 
presence of extranodal extension, disease pro-
gression, presence of distant metastases, and 
comorbidities such as vocal cord paralysis from 
previous surgery. Surgery for recurrent thyroid 
cancer is typically associated with higher rate of 
complications, as it presents technical challenges 
due to altered anatomy, scarring, as well as 
altered natural history. Consequently surgery for 
recurrent thyroid cancer entails certain expertise. 
Use of IONM in reoperative and complex thyroid 
surgeries can help reduce associated rate of vocal 
cord paralysis [43, 44]. Meticulously performed 
revision thyroid surgeries can have good onco-
logical and surgical outcomes [45, 46].

A recent study of 181 revision surgeries per-
formed in a tertiary center reported occurrence of 
temporary and permanent hypocalcemia in 9% 
and 4.2% of the patients, respectively, and rate of 
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cervical node recurrence in 5% of patients 
(3.4 years of median follow-up). No permanent 
or temporary vocal cord palsy was reported; bio-
chemical complete remission was achieved in 
58% of all revision cases [46].
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Staging and Prognosis of Thyroid 
Cancer

Joanna Klubo-Gwiezdzinska

The incidence of thyroid cancer is rising faster 
than any other type of cancer and has increased 
by 5.1% per year from 2003 to 2012 in the USA 
and tripled over the past 20 years worldwide [1, 
2]. The increased detection of thyroid “inciden-
talomas” due to utilization of sensitive imaging 
techniques contributes significantly to the 
observed trend. Therefore, the identification of 
high-risk thyroid cancer patients among a large 
number of patients with indolent thyroid cancer 
is particularly important [1]. Despite the fact that 
differentiated thyroid cancer is associated with 
overall excellent prognosis with 5, 10, and 
15 years relative survival rate of 98%, 97%, and 
95%, respectively, there is a subgroup of high- 
risk patients characterized by 5  years survival 
rate of 45% and even larger subgroup of patients 
at risk of morbidities associated with thyroid can-
cer recurrence [3, 4]. Therefore, the optimal man-
agement plan requires accurate risk stratification 
both at diagnosis and throughout the disease 
course. Appropriate risk stratification guides the 

distinction between the candidates for conserva-
tive approach for patients with excellent progno-
sis and for aggressive therapy for individuals 
with increased risk of dying from thyroid cancer. 
Moreover, a unified staging system enables 
appropriate professional communication between 
clinicians.

There are several staging systems utilizing vari-
ous prognostic factors such as age, tumor size, 
presence of lymph node and distant metastases, 
gender, extrathyroid extension, multifocality, 
completeness of the surgical resection, presence of 
vascular and capsular invasion, histology subtype 
and grade, and DNA ploidy summarized in 
Table 1.

Of note, existence of numerous prognostic 
scoring systems suggests that the optimal and 
universally accepted one is still to be developed. 
One of the pitfalls of practical applications of 
prognostic scoring systems is the fact that they 
often require lengthy calculations that make indi-
vidualized risk prediction quite difficult in a busy 
clinical practice. The stratification methods uti-
lized by different prognostic systems are summa-
rized in Table  2. Some of the staging systems 
were developed and validated to evaluate the pre-
dictors of overall survival (OS) and disease- 
specific survival (DSS), while the other focus on 
the risk of thyroid cancer recurrence and disease- 
free survival (Table 2).
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Table 2 The methods utilized to estimate prognosis in thyroid cancer patients

Prognostic 
system Calculation risk groups OS DSS

Risk of 
recurrence

AJCC-
TNM 
seventh 
edition [7]

T0, no evidence of primary tumor; T1a, tumor ≤1 cm, without extrathyroidal 
extension; T1b, tumor >1 cm but ≤2 cm in greatest dimension, without 
extrathyroidal extension

+ +

T2, tumor >2 cm but ≤4 cm in greatest dimension, without extrathyroidal 
extension
T3, tumor >4 cm in greatest dimension limited to the thyroid or any size tumor 
with minimal extrathyroid extension
T4a, tumor of any size extending beyond the thyroid capsule to invade 
subcutaneous soft tissues, larynx, trachea, esophagus, or recurrent laryngeal 
nerve
T4b, tumor of any size invading prevertebral fascia or encasing carotid artery or 
mediastinal vessels
N0, no metastatic nodes; N1a, metastases to level VI; N1b, metastases to 
unilateral, bilateral, or contralateral cervical (levels I, II, III, IV, or V) or 
retropharyngeal or superior mediastinal lymph nodes (level VII)
M0, no distant metastases; M1, distant metastases
Age<45 years old Stage I Any T Any N M0; Stage II Any T Any N M1

Age≥45 years old
Stage I T1a N0M0; T1b N0M0; Stage II T2N0M0
Stage III T1a N1a M0; T1b N1a M0; T2 N1a M0; T3N0M0; T3 N1a M0
Stage Iva T1a N1b M0; T1b N1b M0; T2 N1b M0; T3 N1b M0; T4a N0M0; 
T4a N1a M0; T4a N1b M0
Stage Ivb T4b Any N M0; Stage Ivc Any T Any N M1

ATA [7] TNM Histology, response to treatment, ER excellent response, SIR structural 
incomplete response, BIR biochemical incomplete response, IR indeterminate 
response

+

Three groups
Low risk—T1, T2, N0 or ≤ 5 pathologic N1 micrometastases (<0.2 cm in 
largest dimension), M0; no aggressive cytology, no metastatic foci outside the 
thyroid bed; intrathyroidal FTC with <4 foci of capsular invasion, micro-PTC 
including the ones with BRAF mutation, ER to treatment
Intermediate risk—T2 with BRAF mutation, T3, N1— >5 pathologic N1 with 
all involved lymph nodes < 3 cm; M0; RAI avid metastatic foci in the; 
aggressive histology PTC with vascular invasion; IR or BIR—response to 
treatment

High risk T4, N1—with any metastatic lymph node ≥3 cm; M1; FTC >4 foci 
of vascular invasion; SIR—response to treatment

MACIS 
[52]

Total score = 3.1 (if aged ≤39 years), or 0.08 × age (if aged 
≥40 years), + 0.3 × tumor size in cm + 1 (if not completely resected) + 1 (if 
locally invasive) + 3 (if distant metastases)

+

Four risk groups:
Group 1 <6.0; Group 2—6.0−6.99; Group 3—7.0−7.99; Group 4 >8.0

AGES [17] Total score = 0.05 ×  age in years (if aged ≥40) or + 0 (if aged <40) + 1 if 
tumor grade 2 or + 3 if tumor grade 3 or 4 + 1 if extrathyroidal invasion + 3 if 
distant spread + 0.2 × tumor size (maximum diameter in cm)

+

Four risk groups
Group 1—score <4.00; Group 2—score 4.01–4.99; Group 3—score 
5.00–5.99; Group 4—score ≥6

(continued)
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Table 2 (continued)

AMES [8] Two groups +
Low risk—all younger patients without distant metastases (men <41 years, 
women <51 years) (b) all older patients with intrathyroidal papillary cancer or 
minor tumor capsular involvement follicular carcinoma and tumor size <5 cm, 
and no distant metastases
High risk—all patients with distant metastases; all older patients with major 
capsular involvement papillary cancer or major capsular involvement follicular 
carcinoma and tumor size ≥5 cm

DAMES 
[18]

Three risk groups + +
Low risk—patients in AMES low-risk group with euploid* tumors
Intermediate risk—patients in AMES high-risk group with euploid* tumors
High risk—patients in AMES high-risk group with 14 neuploidy* tumors

MSK 
(GAMES) 
[19]

Three risk groups +
Low risk—age <45, no distant metastases, tumor size <4 cm, and PTC on 
histology

Intermediate risk—age <45, with distant metastases, tumor size ≥4 cm or 
FTC on histology; age ≥45, with no distant metastases, tumor <4 cm, and PTC 
on histology

High risk—age ≥45, with distant metastases, tumor size ≥4 cm, or FTC on 
histology

EORTC [9] Total score = patient’s age + 12 if male + 10 if poorly differentiated FTC + 10 if 
invaded the thyroid capsule + 15 if one distant metastasis + 30 if 2 or more 
distant metastases

+

Five risk groups
Group 1—score <50; Group 2—score 50–65; Group 3—score 66–83, Group 
4—score 84–108, Group 5—score ≥108

Murcia 
[86]

Prognostic index = (3 × age score) + (2 × size score) + (6 × spread 
score) + (2 × histologic variant score)

+

Age score—1 if aged <50, 2 if aged ≥50

Size score—1 if tumor size from 1 to 4 cm, 2 if tumor size ≥4 cm
Spread score—1 if intrathyroidal, 2 if extrathyroidal
Histologic variant score—1 if well-differentiated, follicular variant or diffuse 
sclerosis variant PTC, 2 if solid or tall cell variant PTC, 3 if poorly 
differentiated PTC
Three risk groups
Low risk—index <18; medium risk—index 18–22; high risk—index ≥22

Ohio State 
[20]

Four stages + +
Stage 1—tumor <1.5 cm in diameter
Stage 2—tumor 1.5–4.4 cm, cervical lymph node metastases, or more than 
three intrathyroidal foci of tumor

Stage 3—tumor ≥4.5 cm or presence of extrathyroidal invasion
Stage 4—any tumor distant metastases

Prognostic 
system Calculation risk groups OS DSS

Risk of 
recurrence
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(continued)

Table 2 (continued)

NTCTCS 
[21]

Four tumor stages I, II, III, IV + +
Histology PTC FTC
Age <45 years ≥45 years <45 years ≥45 years
Tumor size (cm)<1 cm I I I II
   1–4 cm I II I III

   ≥4 cm II III II III

Microscopic multifocal I II I III
Macroscopic multifocal I II II III
Microscopic extrathyroidal I II I III
Macroscopic extrathyroidal II III II III
Poor differentiation n/a n/a III III
Cervical lymph node mets I III I II
Distant mets III IV III IV

UAB- 
MDACC 
[22]

Three risk groups +
Low risk—patients <50 years of age without distant metastases

Intermediate risk—patients ≥50 years of age without distant metastases
High risk—patients of any age with distant metastases within the risk groups; 
there is a further subdivision based on tumor size (≤3 cm and >3 cm)

Manitoba 
Nomogram 
[23, 24]

Probability of DSS correlates with total score in the nomogram incorporating: + +
Age 0–100 points + male gender 15 points + FTC 2 points or MTC 25 
points + distant metastases 35 points + tumor stage (T1 0 points, T2 10 points, 
T3 15 points, T4 20 points) + presence of residual tumor post-surgery 15 points
Probability of recurrence correlates with a total score of the nomogram 
incorporating:
Age 0–70 points + male gender 20 points + PTC 10 points or MTC 45 points or 
PD/Hurthle cell 50 points + distant metastases 100 points + LN metastases 40 
points + tumor stage T2 10 points, T3 30 points T4 40 points

Clinical 
Class [25]

Four classes + +
Class I—disease limited to the thyroid gland
Class II—locoregional lymph node involvement
Class III—extrathyroidal tumor invasion
Class IV—distant metastases

Munster 
[10]

T1, tumor size <1 cm; T2, size 1–4 cm; T3, size ≥4, limited to thyroid; T4, any 
size beyond capsule; M0, no distant metastases; M1, distant metastases

+

Two risk groups
Low risk—T1–3 and M0
High risk—T4 or M1

Noguchi 
[26]

Three risk groups + +
Men
Excellent group—age <45 years old or <60 without gross LN metastasis

Intermediate group—age ≥60 years old without gross LN mets and age 45–55 
years old with gross LN metastasis
Poor group—age >55 years old with gross LN metastasis
Women
Excellent group—all patients <50 years old and age 50–55  without metastases
Intermediate group—age 50–55 years old with gross LN metastasis, age 
>65 years old with primary tumor <3 cm
Poor group—remaining patients

Prognostic 
system Calculation risk groups OS DSS

Risk of 
recurrence
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 Prognostic Systems Assessing 
the Likelihood of Overall Survival 
(OS)

Approximately 85% of patients with differenti-
ated thyroid cancer have a normal life expectancy 
and are nearly twofold likely of dying from 
causes other than thyroid cancer [5]. However, 
patients who are at least 45 years of age and have 
extensive local tumor invasion, lateral lymph 
node, or distant metastases are characterized by 
significantly reduced life expectancy [6]. The 
risk factors affecting OS in thyroid cancer 
patients are summarized in four staging sys-
tems—AJCC-TNM seventh edition [7], AMES 
[8], EORTC [9], and Munster [10]. The most 
commonly used AJCC-TNM evaluates the asso-
ciation between the overall survival and patient’s 

age, tumor size and extrathyroid extension, and 
presence of central and lateral neck lymph node 
metastases and distant metastases (Table  2). It 
enables stratification of the patients into: stage I 
with 5 years OS of 100%, 10 years OS of 98.5%; 
stage II with 5 years OS of 100%, 10 years OS of 
98%; stage III with 5 years OS of 98%, 10 years 
OS of 98%; stage IVa with 5 years OS of 85%, 
10 years OS of 76%; stage IVb with 5 years OS 
of 76%, 10  years OS of 62%; stage IVc with 
5 years OS of 70% and 10 years OS of 50–63%.

The variables implemented in AJCC-TNM 
risk stratification were validated in the analysis of 
SEER database which documented that among 
9904 patients with papillary thyroid cancer 
(PTC), lymph node metastases, age>45  years, 
distant metastases, and large tumor size signifi-
cantly predicted decreased OS [11]. Some 

Table 2 (continued)

Yildrim 
[27]

Score = exp[(0.2 × tumor size in cm) + (1 if age more than 45 years) + (0.7 if 
angioinvasion in primary tumor) + (1 if distant metastasis at presentation)]

+ +

Probability of cancer-specific mortality = (score)/(1 + score)
0 risk groups
Very low risk—pretreatment probability <55%
Low risk—pretreatment probability 56% to 85%
High risk—pretreatment probability 86% to 95%
Very high risk—probability >96%
Posttreatment score = exp[(0.2 tumor size) + (0.8 if age>45 years) + (0.5 if 
angioinvasion) + (0.6 if distant metastasis) − (0.9 if total/near total 
thyroidectomy) − (0.7 if use of adjuvant radioiodine)]

SAG [28] Total score = 1 if male + 1 if aged >70 years + 1 if any one of the three 
microscopic features such as vascular invasion, marked nuclear atypia, and 
tumor necrosis are present

+

Three risk groups
SAG I—score is 1
SAG II—score is 2
SAG III—score is 3

Cancer 
Institute 
Hospital in 
Tokyo [29]

Two risk groups +
High risk—patients of any age with distant metastasis or patients >50 years 
with ≥3 cm nodal metastasis and/or extrathyroidal invasion
Low risk—those who did not meet the high-risk criteria

AJCC/TNM American Joint Committee on Cancer/tumor nodes metastases, ATA American Thyroid Association, MACIS 
metastasis, age, completeness of resection, invasion, and tumor size, AGES age, grade, extension, size, AMES age, 
metastasis, extrathyroidal extension, and size, DAMES DNA ploidy, age, metastasis, extrathyroidal extension, and size, 
MSK Memorial Sloan Kettering (GAMES grade, age, metastases, extension, size), EORTC European Organization for 
Research and Treatment of Cancer, NTCTCS National Thyroid Cancer Treatment Cooperative Study, UAB-MDACC 
University of Alabama (Birmingham) and M.D. Anderson Cancer Center, SAG sex, age, grade, PTC papillary thyroid 
cancer, FTC follicular thyroid cancer, LN lymph nodes

Prognostic 
system Calculation risk groups OS DSS

Risk of 
recurrence
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authors suggest that cervical lymph node metas-
tases are associated with decreased OS only in 
patients with follicular thyroid cancer (FTC) and 
older than 45-year-old patients with PTC [12], 
while others did find small but significantly 
increased risk of death for patients with meta-
static lymph nodes, who are younger than 
45 years, and that incrementally more metastatic 
lymph nodes (up to six involved) confer addi-
tional mortality risk in this age group [13].

AMES system stratifies patients to either low 
risk or high risk of death based on age, tumor 
size, extrathyroid extension, and distant metasta-
ses, without including lymph node metastases as 
additional variable. Low-risk patients are charac-
terized by the 20 years death rate of 1.8% while 
high-risk patients by 46% mortality rate.

EORTC system classifies patients to five 
groups based on score calculated from patient’s 
age, gender, poorly differentiated histology, cap-
sular invasion, as well as presence and number 
of distant metastases (Table 2). In a recent vali-
dation of EORTC system, 5 years OS was 98% 
for group 1, 94% for group 2, 79% for group 3, 
47% for group 4, and 33% for group 5 [14]. 
What is unique for EORTC system is the inclu-
sion of poorly differentiated histology as an 
important prognostic factor. Poorly differenti-
ated carcinomas have significantly worse out-
come as compared to well-differentiated PTC 
and FTC, with a 10-year survival of approxi-
mately 50% [7, 15].

Finally, very simplistic Munster system strati-
fies the patients into the low-risk group with 
5  years OS of 98% and high-risk group with 
5 years OS of 83% based on the tumor size and 
extent as well as presence of distant metastases 
(Table 2).

Importantly, prognostic systems predicting 
OS perform slightly differently in different popu-
lations; thus, it is difficult to assess which one is 
the most accurate. Nevertheless, a recent analysis 
of 2257 patients with DTC documented that 
AJCC-TNM seventh version was more accurate 
in prognostication of OS than Munster and 
AMES systems and is currently the most widely 
used by the clinicians to assess the risk of poor 
overall survival [16].

 Prognostic Systems Assessing 
the Likelihood of Disease-Specific 
Survival (DSS)

The majority of staging systems identify risk fac-
tors associated with disease-specific mortality—
AJCC-TNM seventh edition [7], MACIS [6], 
AGES [17], DAMES [18], MSK (GAMES) [19], 
Ohio State [20], NTCTCS [21], UAB-MDACC 
[22], Manitoba Nomogram [23, 24], Clinical 
Class [25], Noguchi [26], Yildrim [27], SAG 
[28], and Cancer Institute Hospital in Tokyo [29] 
(Table  2). The risk estimates for DSS derived 
from original studied cohorts are summarized in 
Table 3.

 DSS and Age

Most of prognostic systems, except from Ohio 
State and Clinical Class, include age as one of the 
key variables in predicting thyroid cancer-related 
mortality. The age is either treated as continuous 
variable (e.g., Manitoba Nomogram) or categori-
cal variable with different age thresholds utilized: 
40 years old for MACIS and AGES; 45 years old 
for AJCC-TNM, MSK (GAMES), NTCTCS, and 
Yildrim; 50  years old for UAB-MDACC and 
Cancer Institute Hospital in Tokyo; 50–55 years 
old for Ngoushi; and 70  years old for SAG 
system.

This discrepancy between different prognostic 
systems might be due to the different populations 
sampled to create and/or validate the risk stratifi-
cation. One of the exemplifications is a study of a 
cohort of 3664 thyroid cancer patients analyzed 
to determine the significance of age at diagnosis 
at a variety of age cutoffs (5-year intervals 
between 30 and 70  years of age). The study 
revealed that there was no specific cutoff, sug-
gesting that using age as a continuous variable 
may be the most appropriate tool for predicting 
the outcome [30]. In fact, a predictive nomogram 
using age as a continuous variable with other pre-
dictive variables had a high concordance index of 
96% in a study cohort and 73% in the external 
validation cohort [30]. Similarly, a SEER data-
base analysis including 53,581 patients revealed 
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an incremental continuum of increased disease- 
specific mortality with age [31].

A multicenter study including 9484 partici-
pants tested 45 years of age cutoff and 55 years 
cutoff in AJCC-TNM seventh edition predictive 
model. Interestingly, using age 45 years as a cut-
off, 10-year DSS rates for stage I–IV were 99.7%, 
97.3%, 96.6%, and 76.3%, respectively, while 
using age 55 years as a cutoff, 10-year DSS rates 
for stage I–IV were 99.5%, 94.7%, 94.1%, and 
67.6%, respectively. The increased age threshold 
resulted in downstaging of 12% of patients and 
improved the statistical validity of the model 
[32]. Similarly, Hendrickson-Rebizant et al. in a 
study including 2125 consecutive thyroid cancer 
patients found that the age threshold of 55 years 
was found to be the best for TNM stage grouping 
[33]. The 55-year-old cutoff was also the optimal 
risk stratification tool in another study of 2115 
consecutive DTC patients [34].

Table 3 Disease-specific mortality (DSS) and proportion 
of variance explained based on different staging systems

Staging system DSS PVE
AJCC-TNM 
[7]

Stage 1—99–100% 
5 years

4–33% 
[56]

Stage II—99–100% 
5 years
Stage III—93% 5 years
Stage IV—51% 5 years

MACIS [52] Group 1—99% 20 years 3.1–48% 
[21, 27, 
56, 59, 
87–90]

Group 2—89% 20 years
Group 3—56% 20 years
Group 4—24% 20 years

AGES [17] Group 1—1–2% 
20 years

23.1–46% 
[88, 90]

Group 2–4—35–65% 
20 years

DAMES [18] Low risk—100% 
10 years

n/a

Intermediate risk—92% 
10 years
High risk—0% 10 years

MSK 
(GAMES) 
[19]

Low risk—100% 
5 years

4.8–
19.2% 
[27, 59, 
87, 88]

Intermediate risk—96% 
5 years
High risk—72% 5 years

Ohio State 
[20]

Stage 1—100% 5 years 1.6–
22.9% 
[21, 56, 
59, 87, 
88]

Stage 2—94% 5 years

Stage 3—86% 5 years
Stage 4—35% 5 years

NTCTCS [21] Stage I—100% 5 years 3.5–
18.4% 
[21, 56, 
58, 91]

Stage II—100% 5 years
Stage III—93.8% 
5 years
Stage IV—78.5% 
5 years

UAB- 
MDACC [22]

Low risk—100% 
5 years

2.7–
18.7% 
[56, 58, 
87, 91]

Intermediate risk—90% 
5 years
High risk—40% 5 years

Manitoba 
Nomogram 
[23, 24]

n/a n/a

Clinical Class 
[25]

Class I—10% 10 years 1.3–
21.2% 
[21, 56, 
58, 87, 
88, 91]

Class II—100% 
10 years
Class III—87% 10 years
Class IV—35% 10 years

Table 3 (continued)

Staging system DSS PVE
Noguchi [26] Excellent—98.4% men, 

99.3% women 10 years
2.8–
14.3% 
[56, 58, 
91]

Intermediate—90.1% 
men, 96.4% women 
10 years
Poor—74.4% men, 
88.8% women 10 years

Yildrim [27] Very low—100% 
10 years

1.4–
23.4% 
[27, 56]Low—88% 10 years

High—30% 10 years
Very high—5% 10 years

SAG [28] n/a n/a
Cancer 
Institute 
Hospital in 
Tokyo [29]

Low—99% 10 years 0.7–
12.6% 
[58, 91]

High—69% 10 years

AJCC/TNM American Joint Committee on Cancer/tumor 
nodes metastases, MACIS metastasis, age, completeness 
of resection, invasion, and tumor size, AGES age, grade, 
extension, size, DAMES DNA ploidy, age, metastasis, 
extrathyroidal extension, and size, MSK Memorial Sloan 
Kettering (GAMES grade, age, metastases, extension, 
size), NTCTCS National Thyroid Cancer Treatment 
Cooperative Study, UAB-MDACC University of Alabama 
(Birmingham) and M.D.  Anderson Cancer Center, SAG 
sex, age, grade
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McLeod et  al. utilized a sample of 4721 
patients with thyroid cancer and tested different 
age cutoffs in a NTCTCS model. Among papil-
lary thyroid cancer the best model utilizing the 
age threshold of 50  years old did not signifi-
cantly outperform the model with 45-year-old 
age cutoff. However, for FTC utilizing the age 
cutoff of 50 years led to a significant improve-
ment in the risk stratification and resulted in 
downstaging of a significant proportion of 
patients [35].

To summarize, the increased age is associated 
with increased likelihood of death from thyroid 
cancer, but the arbitrary cutoffs utilized in differ-
ent staging systems might not be the most accu-
rate predictors of the outcome.

 DSS and Primary Tumor Extension

Another key variable utilized in the DSS risk 
stratification by almost all predictive models is 
the extent of the primary tumor (Table 2). The 
extrathyroid extension is uniformly and consis-
tently found to be a significant and indepen-
dent risk factor worsening the prognosis [7]. 
On the other hand, a lack of tumor invasion and 
specifically the encapsulated follicular variant 
of PTC (FVPTC) have such an indolent clini-
cal course that might not be even called “can-
cer” but “noninvasive follicular thyroid 
neoplasm with papillary- like nuclear features” 
(NIFTP) [36].

Several prognostic systems utilize capsular/
vascular invasion as an important prognostic 
variable (Table 1). Tumors without vascular inva-
sion are characterized by the mortality rate of less 
than 5%, while angioinvasive follicular carcino-
mas, depending on the number of invaded blood 
vessels, have a mortality ranging from 5 to 30% 
[37]. In fact, current requirements for pathology 
reporting necessitate inclusion of the number of 
invaded vessels as a part of tumor description as 
invasion of four or more blood vessels is associ-
ated with poorer outcomes, particularly in follic-
ular carcinomas [7].

 DSS and Histology Subtype

Several prognostic systems underscore the 
importance of histology subtype as an important 
variable independently affecting the outcome 
(Table  1). The variants with more unfavorable 
outcomes are the tall cell, columnar cell, and 
hobnail variants of PTC as well as a poorly dif-
ferentiated thyroid cancer [7].

The tall cell variant is characterized by pre-
dominance (>50%) of tall columnar tumor cells 
whose height is at least three times their width. 
Several studies documented that tall cell variant 
of PTC is associated with higher rate of extrathy-
roid extension and lymph node metastases and 
decreased DSS [38–40].

The columnar cell and hobnail variants of 
PTC are characterized by a higher risk of distant 
metastases, tumor-related mortality, specifically 
in patients with an advanced disease stage at 
diagnosis [7, 41, 42].

Consistently, recent data analysis from The 
Cancer Genome Atlas, including 6282 papillary 
thyroid cancer patients, revealed that a tall cell 
variant PTC is characterized by the worst progno-
sis (disease-specific mortality 9.1%), while the 
best prognosis is associated with the follicular 
variant of PTC (disease-specific mortality 0.6%). 
Classic variant PTC is characterized by the inter-
mediate risk of cancer-specific death (2.5%). 
Patients with classic PTC were 3 times more 
likely to die from thyroid cancer than patients 
with follicular variant PTC (HR 3.44; 95% CI, 
1.07–11.11), while patients with tall cell variant 
PTC were 15 times more likely to die from thy-
roid cancer (HR 14.96; 95% CI, 3.93–56.89) [43].

The poorly differentiated thyroid carcinoma 
has a much worse prognosis, with the 5-year DSS 
of 72% and 10-year DSS of 46% [44].

 DSS and Gender

Only few staging systems utilize gender as an 
independent predictor of DSS—Manitoba 
Nomogram, Noguchi, and SAG (Tables 1 and 2). 
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The reason behind is the fact that the influence of 
gender on DSS is controversial and studies test-
ing its prognostic value have inconsistent results.

Jonklaas et  al. based on the analysis of 
NTCTCS Registry (n = 3572) found that DSS of 
women was similar to men after adjusting for dis-
ease stage and age at presentation. Interestingly, 
the subgroup analysis revealed that women with 
stage I and II disease had better outcomes than 
men when comparing individuals diagnosed 
before age 55 years old [45]. Yang et al. analyzed 
a large cohort of patients from SEER database 
(n = 29,225) and found that male patients showed 
higher cumulative incidence of death from thy-
roid cancer than their female counterparts, while 
Nilubol et al. utilizing the larger cohort from the 
same SEER database (n  =  61,523) did not find 
gender to be a significant and independent prog-
nostic factor for DSS [5, 46]. At this point it’s 
unclear if thyroid cancer is characterized by more 
aggressive behavior in men than in women or if 
we are witnessing a gender-related ascertainment 
bias as men tend to reach medical attention at an 
older age and with more advanced disease [47].

 DSS and Lymph Node Metastases

Several staging systems include lymph node 
metastases as an independent prognostic variable 
(Table 1). However, in contrast to well- established 
association of clinically positive lymph node 
metastases with increased thyroid cancer recur-
rence rate, the role of lymph node metastases as 
prognostic variable affecting disease-specific 
survival is controversial. Importantly, a thorough 
inspection of lymph nodes reveal that up to 90% 
of patients have micrometastatic disease, which 
does not translate to a mortality in this group of 
patients as disease-specific mortality has never 
approached such a high value [7, 48]. Therefore, 
a very practical approach has been proposed by 
Schneider et  al. [49]. The authors analyzed the 
association between DSS and lymph nodes ratio, 
calculated as proportion of positive lymph node 
among all lymph nodes examined, excluding 
patients with less than three nodes examined. 
Based on analysis of 10,955 patients included in 

the SEER database, they found that patients with 
a lymph node ratio ≥0.42 experienced a 77% 
higher disease-specific mortality rate compared 
to all patients with metastatic lymph nodes [49].

On the other hand, another SEER database 
analysis of 11,453 thyroid cancer patients 
revealed that only patients aged 45 and more 
years old with lateral and/or mediastinal lymph 
node metastases have an increased risk of death 
from PTC [50]. Analysis of 20,357 patients with 
follicular variant of papillary thyroid cancer 
revealed that clinically significant lymph node 
metastases occur only in 10% of patients and do 
not affect the DSS [51].

To summarize, there is an ongoing contro-
versy regarding the association of lymph node 
involvement in DTC and survival and whether 
prophylactic central lymph node dissection 
should be performed in thyroid cancer patients. 
This controversy could be resolved by the well- 
designed randomized prospective controlled trial 
determining the prognostic role of prophylactic 
central lymph node dissection in the management 
of thyroid cancer patients.

 DSS and Distant Metastases

Presence of distant metastases is a variable uti-
lized in all prognostic systems (Table 1) and has 
been found to be an independent and significant 
variable affecting DSS uniformly in all staging 
systems [7, 18, 20–22, 24–28, 52].

 DSS and Multifocality

Multifocal tumor growth has been implemented 
as a prognostic variable in three predictive 
models—Ohio State, NTCTCS, and SAG 
(Table  1). One of the reasons for the lack of 
uniformed inclusion of tumor multifocality in 
different predictive models is the fact that the 
association of multifocality with poor progno-
sis remains controversial. Qu et al. documented 
that cancer- specific survival rates decreased 
significantly with increasing number of tumor 
foci (p = 0.041) [53].
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However, several studies suggested that the 
tumor multifocality do not have a prognostic 
value [54, 55]. Moreover, the incidence of tumor 
multifocality in PTC is relatively high (up to 40% 
of PTC cases)—the rate which does not corre-
spond nor correlate with a disease-specific mor-
tality rate.

Summarizing the impact of the prognostic 
systems estimating the risk of cancer-specific 
death, it’s worthwhile to underscore that none of 
the staging systems has been shown to be clearly 
superior over the other. The statistical tool used 
to compare different staging systems—propor-
tion of variance explained (PVE)—describes 
how well a staging system can predict the out-
come when applied to a broad range of patient 
cohorts. None of the staging system has exceeded 
PVE of 5–48%, leaving a significant uncertainty 
of the accurate prognostication of DSS (Table 3) 
[56]. Nevertheless, several studies have demon-
strated that the AJCC/TNM and the MACIS sys-
tem consistently provide the highest PVE [7, 16, 
27, 47, 56–63]. Interestingly, the nomograms 
tend to outperform traditional scoring systems 
but require external validation in large popula-
tions [5, 23, 24, 63].

 Prognostic Systems Assessing 
the Likelihood of Thyroid Cancer 
Recurrence

Several staging systems focus on the evaluation 
of prognostic factors affecting thyroid cancer 
recurrence rate and disease-free survival—ATA, 
DAMES, Murcia, Ohio State, NTCTCS, 
Manitoba Nomogram, Clinical Class, Noguchi, 
and Yildrim (Tables 2 and 4). Recent studies have 
emphasized the need for dynamic risk stratifica-
tion, in which the various clinical data obtained 
over time modify the prognosis. Two staging sys-
tems implement this dynamic model and evaluate 
the baseline and posttreatment patient status—
ATA and Yildrim risk stratification. The ATA sys-
tem has been found to outperform the remaining 
systems (Table 4).

The initial staging systems can be informative 
in guiding therapeutic and early diagnostic fol-

low- up strategy, but ongoing dynamic risk strati-
fication enables more tailored and individualized 
management of the patient [7]. Multiple studies 
have shown that many patients initially classified 

Table 4 Prognostication of persistent/recurrent disease 
and proportion of variance explained based on different 
staging systems

Staging system
Persistent/recurrent 
disease PVE

ATA [7] Low risk—1–14%% 62–84% 
[64, 65, 92]Intermediate 

risk—8–48%
High risk—69–86%

DAMES [18] Low risk—8% n/a
Intermediate 
risk—55%
High risk—100%

Murcia [64] Low risk—12% 11.4% [56]
Medium risk 30%
High risk—100%

Ohio State [20] Stage I—8% 5–18% [62]
Stage II—31%
Stage III—36%
Stage IV—62%

NTCTCS [21] Stage I—5.7% 18–20% 
[62]Stage II—6.9%

Stage III—22.2%
Stage IV—75.4%

Manitoba 
Nomogram [23, 
24]

n/a n/a

Clinical Class 
[25]

Class I—9.3% 12–20% 
[62]Class II—23.6%

Class III—89.5%
Class IV—90%

Noguchi [26] Excellent—men 
18%, women 15%

16–18% 
[62]

Intermediate—men 
35%, women 20%
Poor—men 65%, 
women 45%

Yildrim [27] Very low risk—0% 2–23.4% 
[27]Low risk—25%

Intermediate 
risk—84%
High risk—100%

ATA American Thyroid Association, DAMES DNA ploidy, 
age, metastasis, extrathyroidal extension, and size, 
NTCTCS National Thyroid Cancer Treatment Cooperative 
Study, UAB-MDACC University of Alabama 
(Birmingham) and M.D.  Anderson Cancer Center, SAG 
sex, age, grade
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as intermediate or high risk of recurrence can be 
reclassified as having a subsequent low risk of 
recurrence based on an excellent response to ini-
tial therapy [64–74]. Response to therapy is eval-
uated based on all clinical, biochemical, imaging 
(structural and functional), and cytopathologic 
findings obtained during the follow-up. Tuttle 
et  al. proposed the following definitions of the 
response to therapy [7, 62]:

 – Excellent response is defined as a TSH- 
stimulated thyroglobulin (Tg) of less than 
1 ng/mL in the absence of structural or func-
tional evidence of disease (for patients who 
underwent thyroidectomy and RAI therapy).

 – Biochemical incomplete response is defined 
as abnormal thyroglobulin values in the 
absence of localizable disease—non- 
stimulated Tg values >1  ng/mL or TSH- 
stimulated Tg values >10 ng/mL.

 – Structural incomplete response is defined as 
persistent or newly identified locoregional or 
distant metastases.

 – Indeterminate response or acceptable response 
is defined as biochemical or structural find-
ings which cannot be classified as either 
benign or malignant.

An excellent response to initial therapy is 
achieved in 86–91% of ATA low-risk patients, 
57–63% of ATA intermediate-risk patients, and 
14–16% of ATA high-risk patients [7]. Patients 
who obtain an excellent response to initial ther-
apy are characterized by very low 5–10  years 
recurrence rate, ranging between 1 and 4% [64–
74]. The potential impact of the reclassification 
to an excellent response group is particularly 
important for 57–63% of ATA intermediate-risk 
patients, whose risk of recurrence drops dramati-
cally from initially predicted 8–49% to 1–4% 
predicted by response to therapy reclassification. 
Furthermore, the reclassification holds truth also 
for the few high-risk patients that achieve an 
excellent response to initial therapy, as majority 
of the studies show that subsequent recurrence 
rates are in the 1–4% range with maximum recur-
rence rate documented in one study of 14% [64, 
66, 70, 71, 74, 75]. Thus, high-risk patients that 

achieve an excellent response to therapy may 
require more intense follow-up than ATA low- 
and intermediate-risk patients demonstrating an 
excellent response to therapy [7].

The patients characterized by the biochemical 
incomplete response have persistently abnormal 
suppressed and/or stimulated Tg values or rising 
anti-thyroglobulin antibodies without structural 
evidence of disease. A biochemical incomplete 
response to therapy has a prevalence of 11–19% 
in ATA low-risk group, 21–22% in ATA 
intermediate- risk group, and 16–18% in ATA 
high-risk patients [7]. Eventually, majority of the 
patients can be classified as “no evidence of dis-
ease” over the course of 5–10 years of follow-up, 
while 19–27% continue to have persistently 
abnormal Tg values without structural correlate, 
and the minority—8–17%—of patients pro-
gresses to a structurally identifiable disease [7, 
64, 65]. Patients who progress to a clinically sig-
nificant disease tend to be characterized by the 
thyroglobulin (Tg) doubling time of less than 
1–3 years or by the rise in unstimulated Tg level 
of more than 0.3 ng/mL per year [76, 77].

A structural incomplete response to initial 
therapy evident by either structural or functional 
imaging is observed only in 2–6% of ATA low- 
risk patients, 19–28% of ATA intermediate-risk 
patients, and as many as 67–75% of ATA high- 
risk patients [7]. Unfortunately, only minority of 
patients with distant metastases would respond to 
treatment and eventually obtain remission, while 
persistent locoregional disease tends to respond 
to surgical treatment in 29–51% of cases [7, 78].

The reminder of the patients is classified as 
obtaining the indeterminate response to therapy. 
Some authors suggest a synonym of “acceptable 
response” as this group of patients consists of 
individuals for whom biochemical, structural, or 
functional findings cannot confidently document 
either excellent response or persistent disease. 
This group includes patients with sub-centimeter 
avascular thyroid bed nodules, atypical cervical 
lymph nodes that have not been biopsied, faint 
uptake in the thyroid bed with undetectable Tg, 
non-stimulated Tg values that are detectable but 
<1 ng/mL, TSH-stimulated Tg values between 1 
and 10 ng/mL, and patients with stable or declin-
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ing Tg antibodies [7]. An indeterminate response 
to initial therapy is observed in 12–29% of ATA 
low-risk patients, 8–23% of ATA intermediate- 
risk patients, and 0–4% of ATA high-risk patients 
[7]. Importantly, only 13–20% of patients with an 
indeterminate response to therapy will eventually 
develop a structurally evident disease over 
10  years of follow-up [7]. In the remaining 
80–90% of patients, the non-specific findings 
either remain stable or resolve without an 
intervention.

To summarize, it’s important to underscore 
that initial risk estimates are used to guide initial 
therapeutic approach, while evaluation of the 
response to treatment helps in the establishment 
of the individual, patient-tailored approach to 
subsequent management and follow-up.

Although dynamic risk stratification defini-
tively improves the accuracy of the predictive 
model, there is still room for gaining more preci-
sion, as PVE does not even approach 100%. 
There are studies showing potential utility of 
incorporating molecular diagnostics in predictive 
models, as BRAFV600E, TERT promoter, and 
TP 53 mutations have been found to be associ-
ated with increased mortality and recurrence rate 
[79–85].

Further studies should also focus on assessing 
the utility of predictive models in guiding the 
intensity of the follow-up strategy.
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Radioiodine Therapy 
in Differentiated Thyroid 
Carcinoma

Jasna Mihailovic and Stanley J. Goldsmith

 Introduction

The adequacy and timeliness of initial treatment 
is the most important determinant of the outcome 
for patients with differentiated thyroid carcinoma 
(DTC). Currently, the most widely accepted ini-
tial treatment protocol includes total thyroidec-
tomy followed by ablation of remnant tissue with 
131I. Radioactive iodine [RAI] as sodium iodide 
was administered for the first time to a patient 
with metastatic DTC in 1943 by Dr. Sam Seidlin 
in the Bronx, NY, Montefiore Hospital in the 
USA. Based on Seidlin’s experience and the sub-
sequent observations of others that 131I uptake in 
metastases appeared to be enhanced in the 
absence of significant residual thyroid tissue, 
RAI ablation of remnant thyroid became estab-
lished worldwide as a routine part of the manage-
ment algorithm for DTC [1, 2].

Governmental and regulatory requirements, 
however, have a significant impact on the thera-
peutic use of RAI. Consequently, the treatment of 
DTC varies not only from country to country but 
even within countries and among medical centers 
as well.

There are two roles for the use of RAI in 
DTC. The first is ablative and adjuvant therapy, to 
eliminate normal thyroid remnants in the postop-
erative period as well as to eliminate microscopic 
or occult DTC which may not be demonstrable. 
The second role is curative or palliative therapy, to 
destroy persistent or recurrent tumor tissue (meta-
static lymph nodes and distant metastases).

 Radioactive Iodine Ablation 
and Adjuvant Therapy

Since, in general, the long-term prognosis of 
DTC is favorable, it is difficult to determine the 
efficacy of RAI as adjuvant therapy without ini-
tial evidence of residual tumor. Nevertheless, 
RAI therapeutic efficacy has been discussed for 
decades. Mazzaferri evaluated patients with pri-
mary tumors ≥1.5 cm and concluded that RAI is 
effective in reducing the recurrence of DTC in 
patients of all ages and reduces the risk of death 
from thyroid carcinoma in patients over age 40 at 
the time of diagnosis. However, there appears to 
be no incremental benefit in patients with iso-
lated tumors, tumors >1.5  cm, without lymph 
node metastasis or invasion of thyroid capsule 
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[3]. In a 30-year follow-up study, Mazzaferri 
later reported a significantly decreased recur-
rence rate in patients receiving RAI (for ablation 
or adjuvant treatment) versus thyroxine alone-
treated patients (16% vs. 38%, respectively). In 
addition, he reported reduction of cancer-related 
deaths in 131I-treated patients versus patients not 
receiving RAI (for ablation or adjuvant treat-
ment) (3% vs. 8%, respectively) [4].

Since those reports, RAI efficacy as adjuvant 
therapy has been evaluated in numerous studies 
[3–15]. In the low-risk category, most authors 
detect no beneficial role of RAI on survival [5–7, 
10] or recurrence [9, 10]. However, meta-analy-
ses and systematic literature reviews reported 
inconsistent data. The majority of studies did not 
confirm a decreased recurrence rate [8, 11, 12]. 
Hay et al. report no RAI effect in either low- or 
high-risk patients [9], while others observe sig-
nificant effects of RAI (lower recurrence rate, 
longer overall and disease-specific survival) [5, 
10, 13–15] (Table 1).

In a recent review, Goldsmith considers that 
low-risk patients still represent a dilemma after 
initial total thyroidectomy: whether to undergo 
RAI or not. In order to determine a statistically 
significant and valid effect of RAI on recurrence 
and mortality, randomized controlled trials are 
necessary. In the meantime, decision-making for 
RAI ablation should be based on an individual 
patient criteria, considering the benefits and risks, 
pros and cons, as well as the physician-patient 
relationship [16].

At present, two ongoing prospective random-
ized trials in Europe compare RAI ablation in 
treated and non-treated DTC patients. One is the 
British non-inferiority study—“the IoN study” 
(Is Ablative Radio-iodine Necessary for Low Risk 
Differentiated Thyroid Cancer Patients)—com-
paring low-risk and selected intermediate-risk 
patients treated with total thyroidectomy and 
RAI ablation versus patients treated with total 
thyroidectomy alone [17]. Another study is the 
French non-inferiority study “ESTIMABL2” 
(Differentiated Thyroid Cancer: Is There a Need 
for Radioiodine Ablation in Low Risk Patients) 
comparing low-risk patients treated with surgery 
(total thyroidectomy with or without neck dissec-

tion) followed by RAI ablation vs. patients 
treated with surgery alone. Completion of these 
two randomized clinical trials may clarify the 
effect of RAI ablation in low-risk DTC patients.

The treatment of microcarcinoma in the low-
risk category (patients with tumor size ≤1 cm) is 
controversial also. Some investigators report that 
RAI ablation does not improve disease-specific 
or disease-free survival [18–23] nor significantly 
decreases recurrence rates [24] in papillary 
microcarcinoma, uni- or multifocal disease, with-
out high-risk features. In contrast, others advo-
cate administration of RAI ablative therapy to 
this patient population [25–27] with reports of 
significantly lower probability of recurrence in 
treated patients compared to those who were not 
treated with RAI ablation: 18% vs. 3%, respec-
tively (p = 0.005) [25].

Currently, several guidelines provide recom-
mendations that make RAI ablation and adjuvant 
treatment of DTC patients uniform among differ-
ent centers and practitioners. This review 
addresses only the most cited and commonly 
used guidelines: European Thyroid Association 
(ETA), American Thyroid Association (ATA), 
European Association of Nuclear Medicine 
(EANM), and the Society of Nuclear Medicine 
and Molecular Imaging (SNMMI) [28–31]. In 
general, these guidelines support the statement 
that RAI ablation is not indicated in low-risk 
patients (pTNM stage I patients and pT1/pT2 
without extrathyroidal extension or regional or 
distant metastases). However, there are variations 
among the guidelines on this subject. The ATA 
Guidelines proposed a three-tiered clinic-patho-
logic risk stratification system that classifies 
DTC patients as having low, intermediate, or 
high risk of recurrence. Low-risk patients are 
defined with no evidence of extrathyroidal exten-
sion, vascular invasion, no clinically metastatic 
lymph node or ≤5 pathologic lymph node micro-
metastases (<0.2  cm in largest dimension), no 
aggressive histology (e.g., tall cell, hobnail vari-
ant, columnar cell carcinoma), and no RAI-avid 
disease outside the thyroid bed on the first post-
treatment whole-body RAI scan (if 131I is given). 
Intrathyroidal, papillary microcarcinoma, unifo-
cal or multifocal, including BRAFV600E mutated 
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(if known) is also included in this risk category. 
Intermediate-risk patients demonstrate either 
microscopic extrathyroidal extension, vascular 
invasion, clinically apparent lymph node metas-
tases or >5 pathologic lymph nodes with all 
involved lymph nodes <3  cm in largest dimen-
sion, RAI-avid disease in the neck outside the 
thyroid bed, or aggressive tumor histology. 
Multifocal papillary microcarcinoma with extra-
thyroidal extension and BRAFV600E mutated (if 
known) is also included. ATA high-risk patients 
present with gross extrathyroidal extension, 
incomplete tumor resection, distant metastases, 
inappropriate postoperative serum thyroglobulin 
(Tgb) values, and pathologic lymph nodes with 
any metastatic lymph node ≥3  cm in largest 
dimension. Follicular thyroid cancer with exten-
sive vascular invasion (>4 foci of vascular inva-
sion) is included in this category. The ATA 
Guidelines state that RAI is not indicated in low-
risk patients with tumor size ≤1  cm (so-called 
microcarcinoma, uni- or multifocal) and tumors 
>1–4 cm without local or distant metastases [29]. 
In addition, RAI adjuvant therapy should be con-
sidered after total thyroidectomy in ATA interme-
diate-risk level DTC patients.

The ETA Guidelines do not recommend RAI 
ablation in patients with unifocal microcarci-
noma without extrathyroidal extension and 
regional or distal metastasis [28]. The SNMMI 
Guidelines that support the decision not to ablate 
include the absence of unfavorable histology, 
lymphatic/vascular invasion, capsular invasion or 
penetration, and perithyroidal soft tissue involve-
ment as additional factors to consider 131I  in 
deciding whether or not to pursue RAI ablation 
[30]. The EANM Guidelines consider RAI abla-
tion as routine in DTC except for patients pre-
senting with unifocal microcarcinoma, without 
invasion of thyroid capsule, metastases, prior 
radiation exposure, or unfavorable histology 
(columnar cell, diffuse sclerosing, and tall cell 
subtype). In addition, low-risk patients who 
underwent less radical initial surgery need not 
undergo completion thyroidectomy; simple mon-
itoring may be sufficient [31]. In all guidelines, 
for high-risk DTC patients RAI ablation is rec-

ommended as a routine initial component of 
postoperative adjuvant therapy.

In addition to a variety of opinions about the 
utility of RAI ablation in low-risk patients, there 
are additional differences concerning the role of 
pretreatment whole-body imaging (WBS) and 
the amount of 131I activity to administer as the 
ablative dose.

 131I Ablation or Adjuvant Therapy 
Dose

There is general agreement among professional 
society guidelines concerning a range of RAI 
activities for patients without evidence of resid-
ual thyroid tumor or metastatic disease. Until 
recently, this range was from 1.85 to 5.55 GBq 
(50–150 mCi). There is, or has been, variation 
in the activity to be administered to each patient 
with some centers using 3.7 or 5.55 GBq (100 
or 150 mCi) 131I for all patients in this category, 
whereas other centers selected an activity 
within this range based upon an estimate of the 
risk of tumor recurrence. More recently, it has 
been demonstrated that a high degree of suc-
cessful ablation (approximately 80%) can be 
achieved with 1.1 GBq (30 mCi) [29–31].

Some authors advocate the administration of 
high activities, suggesting that administration of 
3.7 GBq  131I results in more effective ablation 
than treatment with lower activities (1.1 or 
1.85 GBq 131I) [32–34]. However, in recent years, 
in order to prevent potential side effects of RAI, 
there is an increasing initiative to use lower RAI 
activities [35, 36]. Several factors such as the 
duration and cost of hospital isolation and the 
level of radiation exposure to the patients, staff, 
and environment motivate this approach. There 
are reports that low-dose radioiodine achieves 
similar success rates for ablation (with either 
low- or high-dose 131I) [35–43], regardless of 
whether patients were prepared with thyroid hor-
mone withdrawal or with rhTSH [35, 41, 43]. A 
comparison of ablation success rate using the 
low- and high-dose radioiodine is presented in 
Table 2.
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The ATA, the EANM, and the SNMMI 
Guidelines provide similar recommendations 
regarding the activities of RAI ablation. 
Radioiodine-131 WBS with 111-185 MBq is usu-
ally performed 6–12 months after the RAI ablation 
to determine success. Successful ablation is 
achieved if there is negative thyroid bed uptake or 
thyroid bed uptake <0.1%, absence of focal uptake 
of 131I WBS, and undetectable level of stimulated 
Tgb in the absence of interfering Tgb antibodies 
[31](Fig. 1). In general, at the present time, if abla-
tion is not successful, patients are not re-ablated to 
remove minimal thyroid remnant tissue detected 
following the initial RAI ablation [16].

The activities in a range of 1.0 GBq–3.7 GBq 
131I are recommended for ablation of thyroid rem-
nants, while higher activities of RAI (3.7 GBq–
7.4  GBq) are suggested in patients with 
metastases (regional and/or distant) and aggres-
sive histology [29–31] (Figs. 2 and 3).

Remnant or lesion-based dosimetry estimates 
the radiation absorbed dose in order to destroy 
desired lesion or tissue remnant—to ablate thy-
roid remnant or to treat metastatic disease. Maxon 
et al. studied the relationship between the thyroid 
radiation absorbed dose and successful ablation 
of remnant thyroid tissue and noted a regular 
relationship between them. They observed that 
thyroid remnants were ablated in 81% of cases 
when a calculated dose of 300 Gy was delivered. 
They did not obtain better results with larger 
doses in excess of 300 Gy. In order to ablate the 
tissue focus, the number of GBq selected should 
deliver at least 300 Gy (30,000 rad) to the thyroid 
residues if there is no evidence of metastatic tis-
sue in the neck [44]. However, since the pretreat-
ment WBS may not identify all tumor sites, it is 
not always possible to determine the radiation 
absorbed dose to tumor sites before treatment. As 
a practical matter, the GBq or mCi activity used 

ANT POST ANT POST ANT POST

a b c

Fig. 1 Successful RAI Remnant Ablation; (a) Pre 131I 
Ablation: Dx 123I WBS (81.4 MBq) detects functioning 
residual thyroid tissue in the thyroid bed. Normal distribu-
tion of radiotracer is seen in the stomach (extraction by gas-
tric mucosa), some bowel activity (transit from gastric 
secretion) and bladder (renal excretion); (b) Rx 131I WBS 
performed one week after ablation radioiodine therapy (5.77 

GBq). Functioning residual thyroid tissue is seen in the thy-
roid bed. Note “Star Artefact”. No evidence of additional 
abnormal foci compared to the Dx 123I WBS; (c) One year 
following RAI ablation: Dx 131I WBS (185 MBq) detects no 
evidence of residual functioning thyroid tissue and no evi-
dence of cervical or distant metastases (successful remnant 
ablation). TgAb not detectable; Tgb < 2 μg/L
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Fig. 2 Identification of local nodal involvement (detected 
on Rx 131I WBS only, not on Dx 131I WBS); (a) Dx 131I WBS 
(185 MBq) identifies functioning residual thyroid tissue in 
the thyroid bed without evidence of cervical and distant 
metastases. Large mass in the right upper abdominal quad-
rant is dilated renal collecting system & pelvis. Right ingui-
nal focus is an artefact (radioisotope contamination); (b) Rx 
131I WBS scan performed one week after RAI therapy 
(13.06 GBq) reveals functioning residual thyroid tissue in 

the thyroid bed, multiple foci in the lower neck (cervical 
metastatic disease) not seen on the pre-therapy scan. 
Additionally, thymic tissue is identified in the anterior 
mediastinum.

This figure demonstrates that decision about dose selec-
tion cannot simply be made based on pretherapy scan. There 
are several factors that should be considered prior to dose 
selection such as: extent of surgery, tumor size, tumor capsule 
invasion, nodal involvement and evidence of metastases

a

b

ANT NECK ANT NECK MARKS

RTL NECK MARKS LTL NECK MARKS

ANT PELV. POST PELV.

ANT NECK ANT NECK MARK.

LLT NECK LLT NECK MARK.

RLT NECK RLT NECK MARK.
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Fig. 3 Identification of Distant Metastatic Disease; (a) Dx 131I 
WBS (185 MBq) detects functioning residual thyroid tissue in 
the thyroid bed and a midline focus at the level of the mid-
abdomen (likely in the lumbar spine); (b) Rx 131I WBS per-
formed seven days after RAI therapy (13.39 GBq) detects 
thyroid remnants and a midline focus, likely in the lumbar 
spine is again demonstrated; (c) 18F-FDG-PET/CT performed 

4 months after RAI therapy identifies a hypermetabolic focus, 
SUV 4.1, measuring 0.6 × 1.6 cm in a thoracic vertebral body; 
(d) Dx 131I WBS (185 MBq) performed one year after RAI 
therapy. No evidence of residual functioning thyroid tissue and 
no evidence of vertebral metastasis; (e) 18F-FDG-PET/CT per-
formed one year after RAI therapy. Stable non-hypermetabolic 
lytic lesion within the vertebral body

a b

c
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d
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Fig. 3 (continued)
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in the ablation/adjuvant setting is based upon the 
surgical pathology findings and assessment of 
other risk factors rather than tissue dosimetry.

 Preparation for RAI Ablation 
and Treatment

 Preablation Whole-Body Scan

131I WBS after primary surgery prior to RAI abla-
tive or therapeutic doses is also still a matter of 
debate. The role of pretreatment WBS is to assess 
the amount of remnant thyroid tissue and to detect 
previously unknown metastases that might result 
in adjusting the RAI activity. In recent years, pre-
therapy WBS has been abandoned in many cen-
ters. The guidelines suggest that preablation WBS 
may be useful if the extent of thyroid remnants or 
residual disease cannot be assessed from the sur-
gical report or neck ultrasonography and if the 
scan findings would alter the decision to treat or 
RAI activity selection [28–31].

There is concern by some that pretreatment 
WBS will produce “stunning.” This was first 
described by Rawson et al. Stunning is defined as 
a condition in which the first diagnostic dose of 
131I reduces subsequent trapping of RAI so that 
the uptake of the subsequent therapeutic dose of 
131I is impaired [45]. Others disagree or at least 
conclude that stunning does not occur if low 
diagnostic activity in range of 74–185  MBq is 
used [46]. An alternative to avoid stunning is the 
use of pure γ emitters (123I or 99mTc) with a shorter 
half-life. However, the disadvantages of 123I use 
include lower imaging sensitivity and higher cost 
of application [31].

 Patient Preparation

To increase the effectiveness of RAI ablation, 
patients should be prescribed a low-iodine diet 
before treatment. According to a recently pub-
lished systematic review, daily iodine intake 
≤50 μg of iodine for 1–2 weeks before treatment 
is associated with increased RAI uptake and 
reduced urinary iodine excretion [47]. Patients 

are advised to avoid food and medications con-
taining iodine (i.e., amiodarone, expectorants, 
topical antiseptics). Before discontinuing any 
medications, patients should contact their pre-
scribing physician. In addition, diagnostic proce-
dures using iodine-rich X-ray contrast media 
should be avoided for several weeks.

There are differences of opinions about the 
influence of a low-iodine diet on the efficacy of 
remnant ablation. Higher success rate for RAI 
ablation was reported in patients prepared with 
low-iodine diet compared to patients without 
low-iodine diet preparation [48]. Other authors, 
however, did not observe significant differences 
in effectiveness of remnant ablation between the 
two groups [49].

Prior to RAI ablation, thyrotropin stimulation 
has been established as a routine procedure. It has 
been suggested that TSH ≥30 mU/L is required 
for optimal uptake of RAI by remnant thyroid tis-
sue [50]. This can usually be achieved 4–6 weeks 
after a total or near-total thyroidectomy if thyroid 
hormone replacement is withheld. Patients receiv-
ing hormone replacement [levothyroxine (LT4)] 
must discontinue the treatment 4–6 weeks prior to 
ablation. Patient preparation is also possible by 
substituting T3 for LT4 and then stopping medica-
tion for at least 2 weeks, thus shortening the dis-
comfort. A modern and convenient alternative 
involves maintaining thyroid hormone replace-
ment and administering recombinant human thy-
rotropin (rhTSH, Thyrogen®), two 0.9  mg IM 
injections 24 h apart just prior to RAI administra-
tion. The use of rhTSH was approved in the USA 
by the Food and Drug Administration in 1998 and 
in Europe by the European Agency for the 
Evaluation of Medical Products in 2001. This 
technique is well tolerated; the main advantage is 
to increase TSH levels without inducing hypothy-
roidism. In addition, rhTSH is necessary for 
patients unable to produce TSH, particularly 
hypopituitary patients or those with a significant 
tumor burden producing thyroid hormone. The 
use of rhTSH is of particular importance in 
patients in whom hypothyroid-related complica-
tions might worsen associated comorbidity 
(unstable coronary artery disease, psychiatric dis-
ease, congestive heart failure, respiratory or cen-
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tral nervous system compromise) [51]. Since 
during the thyroid hormone withdrawal, patients 
suffer hypothyroid symptoms and are not able to 
resume work and physical activities, preparation 
with rhTSH for RAI ablation provides better qual-
ity of life [52, 53]. In a meta-analysis of pooled 
data from 1535 patients, similar remnant ablation 
success was observed in both groups comparing 
patients prepared with rhTSH and those who 
underwent thyroid hormone withdrawal [54].
However, high cost renders rhTSH unavailable 
for many countries.

 Regulations

In many countries, RAI therapy is performed in a 
special radiation-protected area of the hospital. 
This area usually includes single-bed shielded 
rooms with separate bathrooms (toilets) built and 
approved for this purpose by the radiation protec-
tion agency or local radiation protection 
 personnel. After the administration of RAI, 
patients remain hospitalized under the supervi-
sion of personnel qualified to work in a radiation 
zone. The duration of hospitalization depends on 
the administered RAI activity and local and state 
regulations. Patients should receive written and 
oral information prior to treatment. Patients are 
discharged when the total body radioactivity falls 
below the permitted level [55, 56]. In some coun-
tries, such as the USA, if permitted by local regu-
latory agencies, RAI therapy can be administered 
on an outpatient basis. In several studies monitor-
ing exposure of family and others involved in 
outpatient care of patients treated with activities 
of 131I between 2.8 and 5.6  GBq, no exposures 
above regulatory levels were detected. This 
method has been shown to be cost-effective [57].

 Precautions and Side Effects

Pregnancy should be excluded before administra-
tion of RAI therapy. Breast-feeding should be 
discontinued for at least  6–8  weeks before the 
treatment, to allow regression of the stimulated 
glandular tissue. After RAI treatment, contracep-

tion is recommended to avoid pregnancy for at 
least 6 months [31].

Radioactive iodine is administered as a sodium 
iodide either as a liquid or capsule, the latter 
being more convenient and safer for handling. 
Adequate hydration is suggested during hospital-
ization. To simulate salivary glands and minimize 
side effects, some practitioners prescribe diluted 
lemon juice for 2–4 days after the RAI treatment 
as well as sour sucking candies or chewing gum. 
Jentzen et al. evaluated the dosimetry of salivary 
glands by using 124I  PET/CT and detected that 
lemon juice shortly after RAI administration 
increased the radiation absorbed dose to the sali-
vary glands [58].

Patients scheduled for RAI ablation should 
have baseline complete blood count and assess-
ment of renal function. Special procedures are 
needed for patients with kidney malfunction. 
Renal failure reduces RAI clearance and results 
in retention of RAI in the patient’s body. 
Depression of bone marrow may appear if red 
marrow is exposed to excessive radiation doses 
during treatment of thyroid cancer. Radiation 
doses to red marrow depend upon the activity 
administered and the rate of RAI elimination 
from the body [59].

RAI therapy in patients requiring renal dialy-
sis involves several important issues: the RAI 
activity needs to be modified, the pre- and post-
therapeutic dialysis sessions need to be adjusted 
in regard to the RAI administration, and radiation 
safety issues need to be considered during and 
after the dialysis. Although some practitioners 
use empirically adjusted 131I activity (25–50% of 
that prescribed for patients with normal kidney 
function) [60–62], the best option is to use dosim-
etry when available. Dosimetry should be per-
formed to adjust RAI activity, so that red marrow 
and total body radiation absorbed dose does not 
exceed that in patients with normal renal function 
[59, 63]. All dosimetric methods for RAI treat-
ment depend on assessment of the kinetics of a 
tracer dose of 131I prior to treatment [64]. Since 
the dosimetry is a complex subject, it will not be 
reviewed in details in this chapter.

A pre-radioiodine treatment dialysis should be 
performed immediately before the RAI adminis-
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tration so that the patient’s plasma pool of stable 
iodine will be as low as possible. The timing of 
the first posttreatment dialysis session, however, 
varies among the different centers. Some suggest 
that optimal timing is 24  h following the RAI 
treatment in order to reduce the whole-body radi-
ation dose [61, 65]. Others however, in order to 
make sure that the thyroid radioiodine uptake 
will reach its maximum, recommend that the first 
post-RAI treatment dialysis be scheduled at 48 h 
[62, 66]. Only the first post-therapy dialysis ses-
sion needs to take place during the 131I therapy 
hospitalization.

RAI ablation is generally well tolerated and 
rarely brings complications. Short-term compli-
cations, if they occur, are often transitory and 
mild. The most common adverse effect is tran-
sient sialoadenitis during the first 72 h after the 
administration. Symptoms include salivary gland 
pain, swelling, dry mouth, and metallic taste, 
which may last for several weeks. Ample hydra-
tion and sour candy are given during the first 24 h 
to promote saliva secretion [67–70]. Although 
sialoadenitis is a transient complication in most 
of the cases, it may persist for months or appear 
as a long-term side effect. Chronic sialoadenitis 
associated with xerostomia depends on the 
administered RAI activity, increasing the risk 
with larger RAI doses [71]. In addition, some 
reported that chronic salivary gland toxicity was 
more common in patients receiving multiple RAI 
courses [72].

Painful thyroiditis is more likely to occur in 
patients with large postoperative thyroid rem-
nants and may be associated with neck swelling 
and recurrent laryngeal nerve paralysis. Nausea 
and sometimes vomiting may occur 2–8 h after 
the treatment but usually resolve after 1–3 days. 
Bone marrow toxicity develops in 5% of patients; 
it includes thrombocytopenia and leucopenia and 
is usually transient. It is dose dependent and most 
often appears after administration of large cumu-
lative activities and in patients with disseminated 
bone metastases [73].

Long-term complications are rare. Radiation 
pneumonitis can be avoided if the lungs localize 
less than 80 mCi at 48 h. This can be determined 
based on quantification following pre-therapeutic 

WBS with 5 mCi or less of 131I or 123I. Aside from 
the acute morbidity involved with radiation pneu-
monitis, there is concern that it could lead to pul-
monary fibrosis. Pulmonary fibrosis, in fact, 
presents as a serious long-term complication that 
may occur in patients with diffuse lung metasta-
ses receiving multiple RAI courses in a short 
time, those who receive high doses, or both [79].

Gonadal tissue is irradiated by the RAI pres-
ent in the blood, urine, and feces. However, radia-
tion exposure of gonads is reduced with adequate 
hydration, proper and frequent emptying of the 
bladder, and avoiding constipation [74]. 
Administration of a single RAI treatment usually 
has low gonadal irradiation. At higher activities, 
greater than 5.55 GBq (150 mCi), RAI treatment 
may result in transient hypospermia associated 
with increased serum follicle-stimulating hor-
mone (FSH) [75, 76]. Large RAI cumulative 
activities (18.2  GBq or 800  mCi), however, 
increase risk of permanent FSH elevation [77–
79]. In young males who may receive high cumu-
lative RAI activity >400 mCi (14.8 GBq), sperm 
banking is suggested before RAI treatment. Some 
advocate conception for 3  months, in order to 
prevent eventual temporary chromosomal dam-
age [76].

In women treated with RAI, transient amenor-
rhea/oligomenorrhea has been observed [80]. 
Results obtained on small number of patients 
indicate that long-term rates of infertility, miscar-
riage, and fetal abnormalities are not increased in 
women after RAI treatment [81–83]. Some 
authors suggest that pregnancy should be post-
poned for 1 year after the RAI treatment because 
of an increased miscarriage rate [84], although 
this was not confirmed in their recent study [85]. 
In addition, ovarian damage therapy may influ-
ence slightly earlier onset of menopause in 
women who received RAI therapy than in general 
population [80].

The risk of secondary  neoplasm of bone, 
breast, colorectal, kidney, salivary cancer and 
leukemia in long-term DTC survivors treated 
with RAI treatment is very low [86, 87]. Increased 
risk of leukemia is observed in patients younger 
than 45 years treated with RAI [88]. Although an 
early increased risk for thyroid carcinoma 
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patients to latter develop breast carcinoma is 
detected, the potential role of RAI treatment is 
still unresolved [89]. However, the risk (if any) is 
dose related and increases with larger adminis-
tered activities. Patients treated with cumulative 
131I activity above 22.2 GBq (600 mCi) have an 
increased risk of second malignancy [87]. In 
order to reduce radiation exposure of the bowel, 
laxatives are recommended and hydration to 
reduce exposure of the bladder and gonads [31].

 Follow-Up and Outcome of Disease

Post-therapy whole-body scans are performed 
3–7 days after the RAI ablation. In addition to the 
postoperative thyroid remnants, 131I  WBS may 
detect previously occult metastases. Large thy-
roid remnants may produce a “star” artifact at 
131I scintigraphy that can mask detection of cervi-
cal, less likely mediastinal or pulmonary involve-
ment. In about 20% of cases, the  post-therapy 
WBS upstages patients. Additionally, SPECT/CT 
increases the specificity of the post-therapy scan 
[55].

Ablation success is evaluated 6–12  months 
after the treatment. According to the ATA 
Guidelines, the criteria for successful ablation 
include no clinical or imaging evidence of tumor 
and low Tgb serum levels (on LT4 treatment, Tgb 
<0.2 ng/mL or stimulated Tgb, <1 ng/mL) [29].

 RAI Treatment in Children 
and Adolescents

Juvenile differentiated thyroid carcinoma is a 
rare neoplasm, accounting for 0.5–3% of all 
malignant tumors in childhood. DTC incidence 
of 7% and 10% is reported in prepubertal and 
adolescent period, respectively [90]. Juvenile 
DTC often has an aggressive initial presentation, 
with involvement of cervical lymph nodes and 
frequently distal metastases. Compared to the 
adult population, however, the overall mortality 
rate in children is not increased. Usually, juvenile 
DTC has a good clinical outcome. Statistical 
analysis of the overall 5-year survival rate and 

comparison between 1975 and 2010 revealed 
improvement, 97.5% vs. 99.6%, respectively, 
with only 0.1% of thyroid cancer deaths in 
patients <20 years old [91]. Disease-specific sur-
vival of 98% was reported 30 years following the 
initial surgery [92, 93]. However, the recurrence 
rate is high, with the probability of recurrence, 
16.7% at 5 years, 22.3% at 10 years, and 33.3% 
at 15 and 23  years after the primary treatment 
[92].

Several prognostic factors were reported to 
significantly influence the development of recur-
rence. The extent of surgery proved to be the 
most important prognostic factor for disease-free 
survival in children. Less radical primary surgery 
increases the relapse rate. The risk of recurrence 
was 10 times higher (range 2.3–39.1) among 
children who undergo less extensive surgery 
[94]. In another study, a significantly higher 
recurrence rate was obtained after hemithyroid-
ectomy than after total thyroidectomy (38% vs. 
7.5%, respectively) [95]. In addition, patients 
postoperatively treated with RAI show lower risk 
for recurrence than patients who did not receive 
RAI treatment [92, 94, 96]. Although some report 
that age is not a significant risk factor for recur-
rent disease [97, 98], there are opposing studies 
claiming that age at diagnosis is the significant 
patient-related factor in univariate analysis [92, 
94]. In general, younger children have a higher 
risk of relapse [94, 99, 100], particularly among 
patients ≤10 years old [92, 94, 101]. Tumor mul-
tifocality is reported as additional predicting fac-
tor—patients with multifocal tumors show higher 
recurrence rate than those with unifocal tumors 
[92, 102].

Differentiated thyroid cancer in children and 
adolescent is usually treated the same way as in 
adults. Until last year, there were no guidelines 
specifically addressing treatment of childhood 
DTC. In 2015, the American Thyroid Association 
Guidelines Task Force on pediatric thyroid can-
cer released management guidelines for children 
with thyroid nodules and differentiated thyroid 
cancer. The aim was to make recommendations 
for the optimal care for children and adolescent 
with DTC.  These guidelines, however, are not 
based on randomized double-blinded controlled 
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clinical trials. The guidelines are almost exclu-
sively based on retrospective studies with limited 
follow-up. The guidelines recommend a selective 
use of RAI in children with DTC because of con-
cern about the increased risk of second malignan-
cies. According to the guidelines, the AJCC TNM 
classification system should be used in pediatric 
patients with papillary thyroid cancer for postop-
erative stratification into the three risk levels: 
low, intermediate, and high. The aim of this strat-
ification is to select patients who may or may not 
benefit from additional treatment (surgery and/or 
RAI therapy) based on clinical presentation, 
tumor size, and metastases. ATA low-risk patients 
have disease limited to the thyroid gland and evi-
dence of microscopic tumor foci in the lymph 
nodes level VI. Ablation is not recommended for 
this category. Extensive extrathyroidal invasion 
and metastases are increased risk factors. 
Intermediate-risk level patients have extensive 
N1a or minimal N1b disease, while patients with 
extensive N1b or locally invasive disease (pT4 
tumors) with or without distant metastases are 
stratified into high-risk level category. Decision 
about RAI treatment in patients from the inter-
mediate- and high-risk categories should be 
based on TSH-stimulated Tgb and 123I WBS. RAI 
therapy should be considered in patients with 
thyroid bed uptake and T4 stage or known resid-
ual microscopic disease [103].

There are several rationales which are impor-
tant for selection of the amount of RAI used for 
ablation in childhood: longer life expectancy, 
higher sensitivity to possible complications after 
treatment, and smaller body and organ size 
resulting in greater bone marrow and extrathy-
roidal tissue radiation dose and higher cross-
radiation [31].

Some practitioners calculate the RAI activity 
adjusted for the body weight (1.85–7.4 MBq/kg) 
or the patient’s age (1/3 of the adult activity is 
administered to a 5-year-old; 1/2 of the adult 
activity in a 10-year-old; and 5/6 of the adult 
activity in a 15-year-old) or the surface area 
[104]. The German guidelines for RAI therapy in 
pediatric DTC patients suggest adjusted iodine 
activity by the 24-h thyroid bed uptake of an 
iodine test activity and by body weight: <5% 

uptake should be appropriate to 50  MBq/kg; 
5–10% uptake should be appropriate to 25 MBq/
kg; and 10–20% uptake should be appropriate to 
15 MBq/kg [105]. RAI ablation based on patient 
characteristics (weight, surface area, thyroid bed 
radioiodine uptake) seems to be an adequate 
strategy versus fixed dosing or flexible dosing 
based on age.

If RAI ablation is not successful, several 
approaches may be considered. In patients with 
small persistent residues without influence on 
the outcome, additional RAI treatment is not 
recommended—careful monitoring only may be 
sufficient. In patients with large persistent 
tumors, second surgery should be the first treat-
ment option [30]. In patients with extensive 
lung metastases, there is concern about high 
radiation absorbed dose to the lungs; dosimetry 
should be performed. If retained radioiodine 
activity in the lung would exceed 3  GBq, the 
dose is reduced to avoid the risk of RAI-induced 
lung fibrosis [106, 107].

RAI treatment in juvenile DTC appears other-
wise to be safe without complications. In a 
30-year follow-up study, there were no effects on 
subsequent fertility and pregnancy outcome and 
no secondary malignancies [96, 100].
Nevertheless, there remains concern about sec-
ond malignancies in children after the adminis-
tration of RAI therapy. A study combining 
patients of all ages indicated that RAI therapy is 
associated with an increased risk for second 
malignancies and an increased mortality for DTC 
patients [87]. After a review of data collected on 
30,000 subjects, a significant increase in second 
malignancies in patients treated with RAI was 
reported, particularly in patients younger than 
45 years [86]. In a report of children treated with 
external radiation therapy, radium implants, or 
131I, a variety of secondary malignancies was 
detected, such as leukemia and salivary gland, 
breast, colon, and bladder tumors including an 
isolated case of acute myelogenous leukemia 
after 3.1 GBq, lung cancer after 5.55 GBq 131I, 
and adenocarcinoma after 7.4 GBq 131I [93]. 
Since the number of reported sporadic cases of 
secondary malignancies is very low, it is impos-
sible to determine if they are related to RAI treat-
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ment or not. Nevertheless, some authors suggest 
a limit of 7.4 GBq or 11.1 GBq cumulative activ-
ity, beyond which the risk for second malignancy 
may increase [87, 108]. However, a safe cumula-
tive exposure to RAI has not exactly determined; 
additional studies are needed.

 Treatment of Metastatic DTC

In patients with functioning residual, recurrent, 
or metastatic thyroid carcinoma, with detectable 
Tgb levels and RAI uptake on WBS, additional 
RAI treatment is recommended. “Wait and see” 
strategy is, however, considered in patients with 
small residual or persistent tumor tissue and 
stable disease. Patients with large persistent 
tumors should be evaluated for surgical tumor 
excision [31].

The most frequently so-called fixed method is 
recommended with the use of standard fixed 
activities in the range 3.7–7.4  GBq (100–
200 mCi). Beierwaltes chooses an adjusted activ-
ity based on the involvement site: tumor in the 
thyroid bed is treated with up to 5.55  GBq 
(150 mCi), lymph node metastases with 6.5 GBq 
(175  mCi), and metastases outside of the neck 
with 7.4 GBq (200 mCi) [109].

Metastatic disease in DTC may be detected at 
presentation; however, 5–20% of patients develop 
local or regional recurrences during the follow-
up period. In general, papillary thyroid carci-
noma extends via lymph node to the lungs, while 
follicular thyroid cancer spreads hematoge-
neously to the lungs and bones [56].

In patients with known or suspected of meta-
static disease beyond cervical lymph node 
involvement, the largest safe dose is consid-
ered. The term “maximum tolerated dose” 
describes the largest safe dose in terms of bone 
marrow toxicity. In order to determine the radi-
ation absorbed dose to a specific site, it is nec-
essary to measure the uptake and clearance of 
131I in each lesion and the mass of the lesion or 
volume of distribution. The WBS images are 
obtained at different time points, up to 96  h 
after tracer administration, but later images 
might be necessary in some cases. Selected 

ROIs (regions of interests) on gamma camera 
(planar, SPECT, or 124I PET) are required to 
determine the activity in the lesion. Additionally, 
the attenuation and scatter correction is sug-
gested, obtained through transmission or scat-
ter images [110].

The final calculations of the activity required 
to achieve the certain absorbed dose are usually 
based on modifications of the generic MIRD 
equation for the absorbed dose [111]:

 
D

xSxm

m

A
=


r

t  

where D  is the remnant or lesion absorbed 
dose, A  is the cumulative activity, mr is the refer-
ence tissue mass and mt is the remnant or lesion 
mass, and S is the MIRD-defined value for thy-
roid self-irradiation.

Bone marrow (blood) dosimetry was origi-
nally described by Benua et al. suggesting the use 
of maximum tolerated dose with the blood as the 
critical organ in order to avoid myelotoxic radia-
tion effects on the bone marrow. This method is 
based on the clinical observation that there are no 
permanent adverse bone marrow effects if 
patients receive <2 Gy to the blood. This approach 
includes the measurement of radiation counts of 
serial blood samples and uptake probe measure-
ments of the patient’s whole-body activity during 
the 4- or more-day examination after administra-
tion of 131I tracer. This method permits adminis-
tration of doses >5.55 GBq (150 mCi) and even 
12.95–18.5  GBq (350–500  mCi) or greater. 
Moreover, blood dosimetry identifies patients 
who cannot receive even 5.55 GBq safely [106]. 
Additionally, the whole-body retention at 48  h 
after the administration of 131I should not exceed 
2.96  GBq in patients with iodine-avid diffuse 
pulmonary metastases or 4.44  GBq if these 
lesions are absent [112].

In order to determine the activity of 131I that 
will not exceed 2 Gy of blood absorbed dose, the 
EANM Dosimetry Committee has recently pub-
lished guidelines for standard procedure in 
dosimetry. The detailed measurements and cal-
culations are described in detail in the guidelines 
[107].
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Regional metastatic disease is located in cervi-
cal lymph nodes and accounts for 60–75% of all 
neck recurrences. Metastatic lymph nodes are 
usually located in the lower part of the jugulo-
carotid chains or in the central compartment. 
Involved regional lymph nodes in the central 
compartment of the neck and mediastinum may 
be associated with lung metastases. The incidence 
of recurrent disease as regional metastases 
depends on the extent of initial lymph node sur-
gery. Locoregional recurrent disease is detected 
by elevated Tgb levels and ultrasonography. Fine-
needle aspiration biopsy of suspicious lymph 
nodes should be performed under ultrasound or 
CT guidance, for cytological analysis and Tgb 
measurements on the aspirate. About 20% of 
DTC patients on thyroxine treatment having iso-
lated metastatic lymph nodes do not show raising 
Tgb serum levels. However, Tgb levels following 
TSH stimulation remain undetectable in about 5% 
of patients with small metastases or previously 
treated with RAI. Pathologic foci are detected on 
131I WBS in 60–80% of DTC patients with clinical 
lymph node metastases particularly if higher 
activities of 131I are used [113].

Regional metastases detected on WBS may be 
treated by RAI therapy alone or as adjuvant therapy 
following surgical removal. In patients with macro-
scopic bulky malignant nodal disease, surgery 
should be the first-line treatment. In patients with 
small metastatic lymph nodes, RAI therapy should 
be administered due to the ability of 131I to eradi-
cate tumor foci <1 cm in diameter [29, 113].

Other options include external beam therapy or 
localized treatment—including thermal ablation, 
ethanol ablation or chemo-embolization, and thy-
roid hormone suppressive treatment for patients 
with stable disease or slowly progressive disease 
[114–116]. In patients with reduced NIS (natrium 
iodine symporter) expression and loss of capacity 
for iodine uptake, further RAI treatment is not rec-
ommended. Recently, there has been progress in 
pharmacological manipulation of the iodide trans-
port mechanism. A class of drugs called tyrosine 
kinase inhibitors has shown promise in reversing 
the loss of the ability to trap iodine [117, 118]. 
This is a complex subject that is still evolving and 
is discussed in greater detail in another chapter.

Metastatic disease at distant sites appears in 
about 10–21% of DTC patients [113, 119]. The 
most frequent location of distant metastases is 
the lungs (49–57%), while other sites are less fre-
quently involved: skeletal metastases in 24–25%, 
lung and bone metastases in 15%–16%, and brain 
or other soft tissues in 10% [120, 121].

It is important to consider several criteria for 
treatment of DTC patients with pulmonary 
metastases, such as the size of metastases (micro- 
or macronodular metastatic disease), avidity for 
RAI, and the patient response to previous RAI 
treatment. It is recommended to treat patients 
with RAI-avid pulmonary micrometastases 
(<2 mm, often not detected on anatomic imaging) 
with repeated activities of 131I every 6–12 months. 
The RAI activity for treating patients with lung 
micrometastases may be selected empirically 
(100–200 mCi or 100–150 mCi for patients older 
than 70  years) or be estimated by dosimetry to 
limit whole-body retention to 80 mCi at 48 h and 
200 cGy to the bone marrow [29]. Some authors 
report that DTC patients with iodine-avid lung 
micrometastases achieve the best rates of com-
plete remission after RAI treatment [122–125].

Macronodular RAI-avid pulmonary metasta-
ses are preferably also treated with RAI.  The 
decision about the number of RAI courses is 
made based on the patient’s response to treat-
ment, the patient’s age, and general condition 
[121, 122]. Complete remission, however, in 
these patients is rare and the outcome is poor. 
Radioiodine  therapy may be performed using 
empirical fixed activities or blood and whole body 
(blood or bone marrow) dosimetry.

While metastatic lymph node, lung, and soft 
tissue metastases show high rates of remission, 
bone and brain metastases are seldomly cured. 
Bone metastases are rarely curable with RAI ther-
apy, but there are reports about beneficial effects 
on some patients. Other therapeutic options also 
may include external beam therapy or systematic 
treatment [113]. Surgery is the treatment of choice 
for bone and brain metastases [121].

Distant metastatic disease shortens the life 
duration of DTC patients, with reported disease-
specific survival of 63% after 5 years and 49% 
after 10 years and 38% after 15 years [126, 127]. 
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In addition, patients with multiple sites of distant 
metastases have a poorer prognosis, with none 
alive after 10 years [128]. The iodine avidity of 
metastases is an important prognostic factor. It 
has been reported that there is a significant reduc-
tion of disease-specific survival in patients with 
non-iodine-avid tumors. A 10-year disease-spe-
cific survival was significantly reduced in patients 
with non-iodine-avid lung metastases compared 
to patients with iodine-avid metastatic disease 
(55% vs. 18%, respectively) [129].
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Dosimetry for Iodine-131 Therapy 
for Metastatic Differentiated 
Thyroid Cancer

Douglas Van Nostrand

 Definitions of Terms Used 
in Dosimetry and 131I Therapy

To understand dosimetry in the selection of 
prescribed activity of 131I for treatment of 
patients with differentiated thyroid cancer, the 
definitions of terms are important to reduce 
misunderstandings.

 Remnant Ablation, Adjuvant 
Treatment, and Treatment of Distant 
Metastases

In differentiated thyroid cancer, 131I therapy may 
be for remnant ablation, adjuvant treatment, or 
treatment of distant metastases. The objective of 
remnant ablation is to destroy normal thyroid tis-
sue remaining after initial thyroid surgery with 
the objectives of maximizing the utility of serum 
thyroglobulin levels as a tumor marker for fol-
lowing the patient with DTC and maximizing any 
future radioiodine scan and/or 131I therapy. The 
objective of adjuvant treatment is to treat sus-

pected but unproven residual DTC to reduce 
recurrence, increase progression-free survival, 
and/or increase cure. The objective of treatment 
of metastases is to treat known residual local or 
distant thyroid cancer to increase survival and/or 
palliation.

 Dosimetry

The term dosimetry is used in many different 
ways. In radiation oncology, it is used to refer to 
the determination of a treatment plan to deliver 
a specific amount of radiation to the patient’s 
tumor using external radiotherapy. Within radia-
tion safety programs for radiation safety work-
ers or individuals in the public, dosimetry is 
used to refer to the monitoring of the exposure 
of radiation workers and/or individuals in the 
public to internal or external radiation sources. 
In nuclear medicine and specifically for the 
treatment with 131I for differentiated thyroid 
cancer, it is used in two ways: (1) for the calcu-
lation of a maximum tolerated activity (MTA) 
of 131I that can be administered to a given patient 
and that would not exceed some specified radia-
tion-absorbed dose to the blood (e.g., bone mar-
row) and (2) for radiation dose that would be 
delivered to a metastatic lesion. This usage of 
the term is identical to its traditional usage in 
external radiotherapy.
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 Dose

The term dose is used in two ways: the amount 
of radioactivity administered to a patient or the 
amount of radiation exposure. They are related 
but are distinctly different. Using the former def-
inition, the amount of radioactivity administered 
to the patient is measured using international 
units of becquerel or, in the United States, milli-
curies. One becquerel is defined as the activity of 
a quantity of radioactive material in which one 
nucleus decays per second [1]. The second use 
of dose is very important in the understanding of 
the objectives of dosimetry, and it is measured 
using international units of gray (Gy) or, in the 
United States, rad. Because it is important to dis-
tinguish whether one is speaking about the 
amount of radioactivity or the amount of radia-
tion exposure, the terms prescribed activity and 
dosage are frequently used in formal writing and 
scientific discussions in place of the term dose, 
for the amount of radioactivity, with dose 
reserved for the amount of radiation exposure. 
These terms will be used in this chapter, helping 
to reduce the confusion that results when the 
term dose is used in relation to two very different 
concepts. Radiation exposure, or more correctly 
phrased absorbed dose, is the concentration of 
energy deposited in the tissue as a result of an 
exposure to ionizing radiation. In this case, it 
means the energy absorbed by human tissue.

Of note, even though the exact same amount 
of prescribed activity (dosages) of 131I may be 
administered to two patients for a therapy for 
DTC, the dose (absorbed dose) to each patient’s 
tumor and/or normal organs may be significantly 
different and a result of many factors (see 
Table  1). The units of prescribed activity (dos-
age) and dose and the international to the United 
States conversions are noted in Table 2.

Dose may also be subdivided into radiation-
absorbed dose, equivalent dose, or effective dose, 
terms beyond the scope of this chapter; informa-
tion of increased detail is available from Vetter 
et al. [2].

Table 1 Factors that may result in different absorbed 
doses to normal organs and/or tumors for the same admin-
istered prescribed activity in two different patients

  – Absorption of 131I
  – Size of patient
  – Uptake of 131I by normal thyroid tissue
  – Residence time of 131I in normal thyroid tissue
  – Uptake of 131I in thyroid cancer
  – Residence time of 131I in thyroid cancer
  – Renal function
  – Rate of clearance of 131I from the whole body
  – Patient’s thyroid hormone levels
  –  Aggressiveness to reduce side effects by 

increasing clearance of 131I from normal tissue 
prior to, during, and after 131I treatment

  – Others

Table 2 Units of 131I prescribed activity (dosage) and 
radiation-absorbed dose

Prescribed activity (dosage)
   Standard international units
    • Becquerels (Bq): 1 disintegration per second
    • Megabecquerels (MBq): 106 Bq
    • Gigabecquerels (GBq): 109 Bq)
   Non-international units
    •  Millicuries (mCi): 3.7·1010 disintegrations per 

second
    • Curies (ci) = 103 mCi
   Conversions of Bq vs. mCi”

    • 1 Bq = 2.7 × 10−11 ci = 2.7 × 10−5 μCi
    • 1 MBq = 0.027 mCi

    • 1 μCi = 37,000 Bq = 37 kBq
    • Ci: 3.7 × 1010 Bq = 37 GBq
Radiation-absorbed dose (dose)
   Standard international units
    •  Grays (Gy):  the absorption of one joule of 

energy in the form of ionizing radiation, per 
kilogram of matter

    • 1 gray = 1000 milligray (mGy)
   Non-international units
    • 1 rad = 1000 millirad (mrad)
   Conversion of rad vs. gray
    • 1 Gy = 100 rad
    • 1 cGy = 1 rad

*Equivalent dose and effective dose are not discussed here
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 Dosimetry

 Fundamentals of External 
Radiotherapy

The two fundamentals of external radiotherapy are 
to (1) determine and minimize the absorbed dose to 
the normal tissues and (2) determine and deliver an 
absorbed dose to the tumor that is effective in con-
trolling the tumor with an objective such as cure, 
adjunctive therapy, or palliation. Although these 
fundamentals also apply to internal radiotherapy 
when radioisotopes (e.g., 131I) are administered into 
a patient, calculating the absorbed dose to normal 
tissues and tumor(s) prior to actually administering 
the radioisotope internally is more problematic. As 
a result, facilities and nuclear medicine physicians 
employ two approaches to select the prescribed 
activity of 131I to be administered.

 Empiric Vs. Dosimetrically 
Determined Prescribed Activity of 131I 
for Treatment of DTC

The two approaches for determining the pre-
scribed activity (dosage) of 131I for the treatment 
of metastatic DTC are the empiric and the dosi-
metric. The empiric approach is based on the 
experience of one individual or a group of indi-
viduals such as at a specific facility, and fre-
quently these empiric approaches have been 
“handed down” over the years with or without 
various modifications. Several empiric 
approaches are shown in Table 3 [3–8]. Of note, 
the empiric approaches listed in Table 3 do not 
necessarily imply that the respective authors 
continue to use these approaches. Rather, Table 3 
data demonstrate the wide spectrum of empiri-
cally prescribed activities that have been and/or 
are continuing to be used for the determination 
of the prescribed activity of 131I for the treatment 
of DTC.  The dosimetric approach is based on 
either or both objectives: calculating the maxi-
mum prescribed activity that will not exceed 
more than a predetermined maximal tolerable 
absorbed dose to a specific normal organ, the lat-
ter frequently called the critical organ, and/or 
calculating the minimum prescribed activity to 

deliver an effective therapeutic absorbed dose to 
the patient’s tumor(s). There are also several 
approaches to performing the whole body and 
lesional dosimetries, which are discussed in 
Sects. “Whole Body Dosimetry” and “Lesional 
Dosimetry,” but the objectives and concepts are 
essentially the same.

 The Fundamentals of 131I Dosimetry

To perform radioiodine dosimetry, we need to 
know (1) the types of radiation that had been 
emitted in each disintegration such as a beta par-
ticle (e.g., electron) and/or a photon (e.g., gamma 
ray), (2) the number of disintegrations that 
occurred in each organ over time, and (3) the frac-
tion of the total energy of each type of radiation 
that had been released in a given organ that is 
absorbed in another organ or itself. The data for 
the first item is obtained from the physics litera-

Table 3 Examples of empiric approaches for 131I pre-
scribed activity for treatment of distant metastases

Beierwaltes [3] For the lung, 6.58 GBq 
(175 mCi); for the bone, 7.3 GBq 
(200 mCi)

Schlumberger 
et al. [4]

3.6 GBq (100 mCi) every 
2–6 months until post-therapy 
scan is negative

Petrich et al. [5] If metastases identified on 
post-therapy scan after ablation 
with 3.7 GBq (100 mCi), then 
immediately retreat with 7.4 GBq 
(200 mCi) Next follow-up 
treatment at 4–6 months with 
mean activity of 1.11 GBq 
(300 mCi)

Brown et al. [6] 5.55 GBq (150 mCi) every 3 to 
4 months until scan is negative or 
there is evidence of progression

Menzel et al. [7] 11.1 GBq (300 mCi)
Hindié et al. [8] If + lung uptake and neg 

chest-X-ray: 3.7 GBq (100 mCi) 
every 6 months. If uptake is 
present in lungs after cumulative 
dosage of 18.5 GBq (500 mCi), 
reduce to 1 year and then every 
2 years

*This table does not necessarily mean that these authors 
do or do not continue to use the empiric prescribed activi-
ties noted herein; rather the data are included to demon-
strate the spectrum of empiric prescribed activities that 
have been, and/or are continuing, to be used
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ture [9], and the data for the second item is from 
measurements of the uptake and clearance of the 
radioactivity within a specific patient, which is 
discussed in Sect. “Whole Body Dosimetry.” For 
the third item, one needs to know not only the 
absorption and penetration characteristics of the 
various radiations emitted but also the size, shape, 
volume, and geometry of the various organs 
within that specific patient. Ideally, one would 
want to perform direct measurements of the 
absorbed dose at selected points or organs within 
each specific patient. However, as an alternative, 
we use theoretical estimates from models and 
measurements performed in standardized human-
oid phantoms. More detailed discussions of dosi-
metric calculations are beyond the scope of this 
chapter but are available [10, 11]. The following 
is an overview of the acquisition of the patient-
specific data to calculate the maximum tolerated 
activity to the whole body and lesion dosimetry, 
display of data, and additional restrictions.

 Whole Body Dosimetry

Patient Preparation and Data Acquisition
In order to gather the data to perform the patient’s 
131I dosimetry, the patient is started on a low-
iodine diet, and the patient’s thyroid-stimulating 
hormone (TSH) levels are increased either by 
withdrawing the patient’s thyroid hormone 
(THW) or by injecting the recombinant human 
thyroid-stimulating hormone (rhTSH). After the 
TSH levels are increased, the patient is adminis-
tered orally a low diagnostic prescribed activity 
of 131I, typically in the range of 37–74  MBq 
(1–2  mCi) or, in some facilities, as high as 
148 MBq (4 mCi). At periodic times, such as 2, 
24, 48, 72, and 96 hours after that administration, 
blood samples and counts of the radioactivity in 
the whole body of a specific patient are obtained 
(see Fig.  1). The whole body counts may be 
obtained with either an uptake probe or a gamma 
camera. If a gamma camera is used, the length of 

Example of One Radioiodine Dosimetry Protocol 

1-2 mCi of 131I po

Following standard
preparation

(e.g. withdrawal of thyroid
hormone, low iodine diet, etc.)

Imaging dose Therapeutic activity

Mon Tues Wed Thurs Fri Sat Sun Mon

Blood
obtained
K-Scans*

performed

Optional

2-4 hours

Optional

Equal or less than
dosimetrically determined

activity

Activity is modified by items such
as absolute neutrophil count, 

platelet count,
previous total activity, patient

desires, etc.  

Whole body
scans performed

Fig. 1 It is an example of one dosimetric protocol, and 
there are variations thereof, including preparation with 
recombinant human thyroid-stimulating hormone, 

(rhTSH), prescribed activity of 131I, urine collections, etc. 
(Reproduced with permission from Keystone Press, Inc.)
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acquisition of the whole body count is signifi-
cantly less than the length of acquisition of a 
diagnostic scan (e.g., 10 min vs. 30 min to 1 h). 
In our facility, these scans for whole body counts 
are called kinetic scans or K-scans. At approxi-
mately 48  h, a diagnostic whole body scan is 
obtained and again longer acquisition time is 
used. Typically, additional pinhole images of the 
thyroid bed, selected regional (“spot”) scans, 
and/or SPECT-CT scans (single-photon emission 
computer tomography scans) are obtained. All of 
the blood samples that are obtained are counted 
together at the end of the procedure, and the 
whole body and blood counts are all corrected for 
decay of the radioisotope. Figure  2 provides a 
copy of the printed data. The 48-h images are 
used for identifying sites of possible metastases.

The dosimetry protocols at various facilities 
are for the most part conceptually the same, but 
over the years, these facilities have implemented 

various modifications with the objectives of sim-
plification and/or improvement. These modifica-
tions include (1) elimination of the urine 
collection; (2) replacement of the use of an 
uptake probe with a gamma camera for whole 
body counting; (3) use of geometric means for 
whole body counting, timing, and number of data 
points; (4) analytical curve fitting techniques; (5) 
reduction of the number of blood samples 
obtained; (6) transition from the classical model 
(e.g., Marinelli et al. [12]) to the MIRD (Medical 
Internal Radiation Dose) schema; (7) biphasic 
model rather than a mono-exponential model; 
and (8) “mock” 131I standard for the prior stan-
dard (e.g., Ba-133; 10.6-year half-life) [10].

Data Display
With these data, the time activity curves (TACs) 
are obtained, and examples of TACs representing 
the level of activity in the whole body and blood 

Fig. 2 It demonstrates the display of the data obtained as part of dosimetry (Reproduced with permission from Keystone 
Press, Inc.)
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over time are shown in Fig. 3a, b. Figure 3a dem-
onstrates a patient with very rapid clearance; 
Fig. 3b demonstrates a patient with much slower 
clearance. The patient in Fig. 3a with the rapid 
clearance will typically receive a less absorbed 
dose (e.g., cGy or rad) to the whole body, blood 
(e.g., bone marrow), and other normal organs per 
GBq (mCi) of 131I administered; therefore, this 

patient’s maximum tolerated prescribed activity 
will typically be higher than the patient in Fig. 3b.

Critical Organ
The critical organ is “ … that part of the body 
that is most susceptible to radiation damage 
resulting from the specific exposure conditions 
under consideration, taking into account the dose 
the various parts of the body receive under the 
exposure conditions [13].” For 131I therapy, the 
critical organ is the bone marrow, and the maxi-
mum tolerated absorbed dose is 200 cGy (rad). 
The latter was established based on studies on 
animals (e.g., mice, rats, pigs), accidental expo-
sure to radiation workers, and atomic bomb sur-
vivors. Although the bone marrow is the critical 
organ, this does not mean that other organs are 
not susceptible to significant absorbed doses. The 
salivary gland is one such organ, but a maximum 
tolerated absorbed dose to the salivary gland has 
not been established. Although studies are ongo-
ing, determining a threshold for maximum 
absorbed dose for the salivary gland is problem-
atic as the calculation of an estimate of absorbed 
dose to the salivary gland per GBq (mCi) of 131I 
administered is very complicated. The radiophar-
macokinetics of iodine within the salivary gland 
changes minute by minute and significantly over 
time depending on stimuli [14]. In addition, the 
sodium iodine symporter is not uniformly distrib-
uted throughout the salivary gland but appears to 
be predominantly located in the striated ducts 
[15]. Again, further study is ongoing.

Data Calculations
A detailed discussion of the calculations and for-
mulas to determine the maximum tolerated activ-
ity (maximum prescribed activity that will not 
exceed 200  cGy [rad]) to the blood (e.g., bone 
marrow) from the above data exceeds the scope 
of this chapter, but examples of some of the for-
mulas that have been used and are still used are 
noted in Fig. 4.

In addition to the calculation of the maxi-
mum tolerated activity to the blood (e.g., bone 
marrow), Rall et al. [16], Benua et al. [17], and 
Leeper [18, 19] implemented additional restric-
tions. Based on their experiences, patients 

100

90

80

70

60

50

40

30

20

10

0
0 1 2

Whole Body

Blood

Time (Days)

%
 In

je
ct

ed
 A

ct
iv

it
y

%
 In

j D
o

se/m
l

3 4 5

10

9

8

7

6

5

4

3

2

1

0

100

90

80

70

60

50

40

30

20

10

0
0 1 2

Time (Days)

%
 In

je
ct

ed
 A

ct
iv

it
y

%
 In

j D
o

se/m
l

3 4 5

10

9

8

7

6

5

4

3

2

1

0

Whole Body

Blood

a

b

Fig. 3 (a) and (b) demonstrate time activity curves 
(TAGs) with activity on the Y axis and time on the X axis. 
The whole body counts are shown in blue, and the blood 
counts are shown in red. These TACs represent the clear-
ance (e.g., washout) of radioactivity from the whole body 
and blood (e.g., bone marrow), respectively. The areas 
under the blue and red curves are proportional to the 
absorbed dose to the whole body and blood. The patient 
shown in a has relatively faster clearance than the patient 
in b, and the faster clearance typically results in lower 
absorbed dose to the whole body and blood (e.g., bone 
marrow) per MBq of 131I administered. In turn, this typi-
cally allows the administration of a potentially larger 
therapeutic prescribed activity relative to the patient in b 
(Reproduced with permission from Keystone Press, Inc.)
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without pulmonary metastases had an increase 
of bone marrow side effects when the patient’s 
percent of 48-hour whole body retention 
exceeded 4.44  GBq (120  mCi), and when the 
patient had pulmonary metastases, pneumonitis 
and pulmonary fibrosis increased when the per-
cent 48-hour body retention exceeded 2.96 GBq 
(80  mCi). Accordingly, these two additional 
restrictions were recommended, and with the 
implementation of these restrictions over the 
last approximately 60  years, the frequency of 
bone marrow or pulmonary complications has 
been very low [20].

 Lesional Dosimetry
Presently, tumor (e.g., lesional) dosimetry is 
infrequently performed because of the difficulties 
inherent in performing dosimetry with either 131I 
or 123I. However, with the increasing availability 
of 124I, research is increasingly being performed 
in the area of lesional dosimetry (discussed in 
Section “Outcomes”). As for whole body dosim-
etry, lesional dosimetry requires the same infor-
mation but is in the latter case about the tumor. 
This is more problematic because unlike organs 
that have humanoid phantoms, lesions vary 
in  location, have significantly varying sizes and 
shapes, and have significant inhomogeneous 
uptake and clearance within the lesion itself. 
Additional software has been developed to 
improve the calculation of the absorbed dose to 
the lesions. See the detailed discussions that are 
available [11].

 Advantages and Disadvantages 
of Empiric and Dosimetrically 
Determined Prescribed Activity for 131I 
Therapy for DTC
The many advantages and disadvantages of the 
empiric and dosimetric approaches are noted in 
Table 4.

 Simplified Dosimetry

As noted in Sect. “Lesional Dosimetry,” one of the 
major disadvantages with dosimetry is the increased 
complexity and inconvenience to the patient and 

staff. However, multiple researchers over the years 
have been evaluating alternative dosimetric 
approaches that simplify the process of dosimetry 
and may be performed within any nuclear medi-
cine facility with a gamma camera [21–27]. Several 
of the earlier reports to simplify whole body dosim-
etry were by Thomas et al. [20, 21], who evaluated 
one blood sample and performed measurements on 
the patient’s thigh with a collimated probe 20 cm 
from the thigh. Sisson et al. [22] proposed the use of 
thyroid hormone levels and a single measurement 
of the relative whole body retention of 131I at 48 h. 
Van Nostrand et al. [23] and Hänscheid et al. [24] 
further evaluated the percent whole body retention 
of 131I at 48 h, and Atkins et al. [25] validated the 
former method of the percent whole body retention 
of 131I at 48 h. Subsequently, Jentzen et al. [26] pro-
posed multiple potential parameters, which, if vali-
dated, would be very useful. A discussion of these 
various alternative simplified dosimetries are 
beyond the scope of this manuscript, and further 
reading is available [28] (Table 5).

With the validated method of Dr. Atkins, any 
nuclear medicine facility with a gamma camera 
can perform simplified dosimetry as an alterna-
tive to full dosimetry, thus allowing physicians to 
more appropriately identify which patients may 
tolerate more prescribed activity of 131I or, in fact, 
may need to have their planned empiric pre-
scribed activity reduced.

Retention(t)

TreatmentDose(MBq) = 200cGy/(b(cGy/MBq) + g(cGy/MBq))

b(cGy/MBq) = 0.00259 × [AreaUnderBloodCurve]

PatientCounts(t)

g(cGy/MBq) = 0.0000141 g

PatientCounts@MaxTime
x x100%

StandardCounts(t)

StandardCounts@MaxTime=

1
Weight(kg) [AreaUnder BodyCurve]

] ×
× [

D
g  = 0.0346CGg T

e

~

D b 
= 73.8C < E b 

> T e

D t =
 Â s

A s
S(t Æ

S)

Dose(cGy) = 0.63C0 T1/2lesion

Fig. 4 It demonstrates multiple formulas that have been 
or continue to be used for dosimetric calculations. 
However, and as noted, in-depth discussions of the dosi-
metric calculations are beyond the scope of this chapter 
(Reproduced with permission from Keystone Press, Inc.)
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 Literature

 Outcomes

A detailed review is available regarding the out-
comes of the use of 131I in the treatment of meta-
static differentiated thyroid cancer [29]. However, 
a major problem with selecting prescribed activ-
ity of 131I for treatment of metastatic DTC is that 
despite the use of 131I for 60 years, no prospective 
study is available comparing empiric approaches 
to dosimetric approaches. Likewise, no prospec-

Table 5 Advantages and disadvantages of empiric vs. dosimetric approach for determining prescribed activity for the 
131I treatment of distant metastases of differentiated thyroid cancer

Advantages Disadvantages
Empiric approach
Convenient No attempt is made to determine either the absorb dose to the 

lesion(s) or the critical organ (e.g., the bone marrow)
60+ year history of use Patients may exceed 200 cGy (rad) to the bone marrow
Acceptable rate and severity of complications 
of the lower empiric prescribed activity 
approaches (but not necessarily true for 
higher prescribed activities approaches)

Patient may receive a lower prescribed activity than the patient 
could have tolerated, and hence, the patient has a higher likelihood 
of a less effective absorbed dose to the lesion than if a dosimetric-
guided prescribed activity was administered

Permits treating without having to use 131I 
diagnostically or dosimetrically, thereby 
avoiding any theoretical or real risk of 
stunning from 131I

Multiple prior lower therapeutic prescribed activities may reduce 
efficacy of subsequent 131I therapies

Empiric approaches that fractionated prescribed activity to reduce 
side effects may reduce efficacy of subsequent 131I therapies
No prospective studies comparing outcomes from the many 
different empiric prescribed activities, which can be quite variable
No prospective studies comparing outcomes from the many 
different empiric approaches to the several dosimetric approaches

Dosimetric approach
60+ year history of use Increased cost
Identification of as many as 1 in 10 to 1 in 5 
patients whose maximal treatment dose is 
less than the empiric dose

Increased inconvenience to staff and patients

Determination of maximal treatment dose 
specific for the patient

Does not estimate the radiation dose to the metastasis and thus one 
may be giving the maximal treatment dose, but it is not having any 
therapeutic effect

Reasonable complication rate relative to the 
severity of the disease (with implementation 
of the restrictions)

Present dosimetric approaches use 131I diagnostically, which has the 
potential for stunning and thus reduced therapeutic effect

Less therapeutic effect because of previous 
therapy treatments and less “fractionation”*

Only modest third-party payment is available through the radiation 
therapy dosimetry codes
Inadequate reimbursement
No prospective studies comparing outcomes from the several 
dosimetric approaches
No prospective studies comparing outcomes from the many 
different empiric approaches to the several dosimetric approaches

Table 4 Potential problems and limitations of lesion-
based dosimetry

  •  A single-exponential model may not accurately 
reflect the kinetics of the radioiodine in the lesion

  •  Assumption of instantaneous uptake and 
maximum at time zero

  • Estimation of the lesion mass
  •  Assumption of uniform distribution of 131I in the 

lesion
  • Statistical errors in the measurements
  • Therapeutic response relative to dose rate
  •  Prescribed activity reduction for lesions <5 mm in 

diameter
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tive study is available comparing the many differ-
ent empiric approaches for distant metastases. 
The studies are retrospective and predominantly 
report results on either empiric or dosimetrically 
guided prescribed activities of 131I alone. 
However, Klubo et al. [30] evaluated outcomes in 
a retrospective study which compared empiric vs. 
dosimetrically guided 131I prescribed activities 
used in patients with lymph node metastases and 
distant metastases. Eighty-seven patients were 
followed for a mean of 51 ± 35 months. Forty-
four and 43 patients were treated with empiric 
and dosimetrically guided prescribed activity of 
131I,  respectively. By multivariate analysis, the 
patients receiving a dosimetrically guided pre-
scribed activity of 131I were 70% less likely to 
progress (odds ratio, 0.29; 95% confidence inter-
val, 0.087–1.02; p  <  0.052) and more likely to 
obtain complete response compared to the 
patients receiving an empirically selected pre-
scribed activity (odds ratio, 8.2; 95% confidence 
interval, 1.2–53.5; p  <  0.029). In patients with 
locoregionally advanced disease, complete 
remission was significantly higher in the patients 
receiving dosimetrically guided prescribed activ-
ity vs. empiric prescribed activity (35.7 vs. 3.3%; 
p < 0.009). The rates of partial response, stable 
disease, and progression-free survival, as well as 
the frequency of side effects, were not signifi-
cantly different between the two groups.

In regard to good prospective studies in the 
near future comparing empiric vs. dosimetrically 
guided prescribed activities of 131I for the treat-
ment of metastatic DTC, I believe such will be 
unlikely. The difficulties lie in (1) the increasing 
use and variability use of additional non-131I 
treatment modalities such as surgery, external 
beam radiotherapy, CyberKnife®, radiofrequency 
ablation, cryotherapy, embolization, and radiola-
beled embolization and (2) new developments 
such as radioiodine redifferentiating agents. 
Instead, I believe additional data will be available 
from 124I dosimetry that will help with lesional 
dosimetry, which in time will be compared, not 
with empiric prescribed activities but with com-
parison of specific lesional calculated absorbed 
dose with specific patient outcomes such as 
RECIST criteria [31] and progression-free sur-

vival. With dosimetric results correlated to these 
various biological metrics, I believe we will be 
better able to determine whether a particular pre-
scribed activity of 131I will be effective or not for 
a specific lesion. In fact, that has already started 
such as by Maxon et al. [32, 33] using 131I and 
now Sgouros et  al. [34], Freudenberg [35], 
Khorjekar et al. [36], and Jentzen et al. [37] using 
124I.

In several earlier studies, Maxon et al. [31, 32] 
reported that the rate of successfully treated 
metastases to the lymph nodes significantly 
increased in those lesions that received over 
8000 cGy (rad), as determined by his 131I dosimet-
ric approach, and the success of treatment was 
low when the calculated absorbed dose to the 
lymph nodes was less than 3500  cGy (rad). 
Sgouros et al. [33] evaluated 15 patients with met-
astatic DTC using 124I PET dosimetry and 3D-ID 
software demonstrating not only the feasibility of 
using a 3D PET-based approach to 3D-absorbed 
dose estimations but also the substantial variabil-
ity of absorbed dose between lesions and within 
individual lesions. Freudenberg et al. [34] reported 
on 28 patients using 124I PET to determine the 
absorbed dose for prescribed activities of 131I for 
the treatment of metastatic lesions, and in nearly 
one third of their patients, the patients’ manage-
ment was altered to include alternative multimo-
dality treatments because of anticipated 
insufficient treatment with 131I. In a preliminary 
study, Khorjekar et al. [35] evaluated 15 lesions 
using 124I PET and 3D-RD software and demon-
strated that three pulmonary lesions receiving less 
than 8 Gy (8000 rad) progressed, while 11 lesions 
receiving ≥8 Gy (8000 rad) remained stable (5), 
had partial improvement (2), or achieved com-
plete remission (4). Jentzen et al. [36] evaluated 34 
patients with 227 lesions and concluded that a min-
imum absorbed dose of ~10 Gy (10,000 rad) was 
associated with a high response rate for treatment 
of lymph node metastases. Although significantly 
more research is warranted and is underway, 
regardless of what particular dosimetric procedures 
are used or thresholds established, these studies 
indicate that the approach for determining the pre-
scribed activity for the treatment of locoregional 
and distant metastases with 131I is in the determi-
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nation of absorbed dose to a specific lesion and 
not an empirically chosen prescribed activity. 
With the dosimetrically determined information, 
the treating team and patient will have to reflect 
and decide whether the administration of the nec-
essary prescribed activity to achieve their treat-
ment objective(s) warrants the risk of the potential 
side effects for that prescribed activity of 131I.

 Side Effects

In regard to side effects, a detailed review is 
available [19]. Again, no good prospective 
study is available comparing the various side 
effects secondary to empiric vs. dosimetrically 
guided prescribed activities of 131I for the treat-
ment of DTC.  However, multiple authors, 
including Leeper [19], Tuttle et  al. [38], 
Kulkarni et  al. [39], and Esposito et  al. [40], 
have demonstrated that the likelihood that vari-
ous empiric prescribed activities, if adminis-
tered, would have exceeded 200  cGy (rad) to 
the blood (e.g., bone marrow) in as many as 
20% of patients. This in turn would increase the 
frequency and severity of complications such as 
bone marrow suppression, pulmonary pneumo-
nitis, and/or fibrosis.

 Recommendations

When selecting a prescribed activity for 131I for 
treatment of metastatic differentiated thyroid can-
cer, one may choose either an empiric or dosimet-
ric approach. In regard to selecting an empiric 
approach, many alternatives have been noted in 
Table 3. A frequent argument for choosing one of 
the many empiric approaches is that “Until there is 
a prospective study demonstrating that the out-
comes are superior for dosimetrically-guided pre-
scribed activity of 131I for treatment of metastatic 
DTC relative to empiric approaches, one should 
choose an empiric approach.” Although I certainly 
agree with this argument for selecting 131I for rem-
nant ablations and selected adjuvant treatments as 
defined earlier in this chapter, I do not agree with 
this argument for patient with extensive locore-

gional disease or distant metastases. I propose that 
until there is a prospective study demonstrating 
that the outcomes are superior for empirically cho-
sen prescribed activity of 131I for treatment of met-
astatic DTC relative to empiric approaches, one 
should choose a dosimetric approach. The dosi-
metric approaches are based on at least one, if not 
two, of the fundamental principles of radiation 
therapy, which, again, are either determining a 
maximum tolerated activity that one should not 
exceed and/or determining an effective prescribed 
activity to deliver, if possible, the desired number 
of cGy (rad) to the tumor for the desired therapeu-
tic objective. The empiric approaches use neither 
of these fundamental principles to determine pre-
scribed activity; as discussed in Sect. “Empiric vs. 
Dosimetrically Determined Prescribed Activity of 
131I for Treatment of DTC,” the empiric approaches 
use the “experiences” or opinions of one or more 
individuals that may have been “handed down” 
over the years. In fact, if one uses the argument 
that one should not use dosimetrically guided pre-
scribed activities of 131I for the treatment of meta-
static DTC until a prospective study has shown 
that such dosimetrically determined activities are 
superior to empirically chosen prescribed activi-
ties, should one avoid the use any empiric pre-
scribed activity until one of the many different 
empiric activities has been shown in a prospective 
study to be superior to the other empiric 
approaches? An additional argument presented to 
choose an empiric activity is that one’s facility 
cannot do or does not want to perform dosimetry. 
Again, it is time consuming for patients and staff 
as well as expensive, with insufficient, if any, 
reimbursement. However, that facility indeed has 
two other choices: send the patient to a facility that 
does perform full dosimetry or perform one of the 
simplified alternative dosimetric approaches that 
has been validated and that can be performed in 
any nuclear medicine facility with a gamma 
camera.

Although a significant number of publications 
have reported that “less is as effective as more” 
when selecting the prescribed activity of 131I for 
remnant ablation, when one is approaching the 
treatment of a patient who has distant metastases 
and/or extensive locoregional disease with 
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increased morbidity and mortality, I do not 
believe that one should approach this with a con-
cept that “less will be as effective as more.” 
Rather, I submit that one should pursue the fol-
lowing concepts to maximize the potential of an 
131I treatment to achieve one’s therapeutic 
objective:

• Administer the maximum tolerable activity 
possible guided by dosimetry in order to pres-
ent the maximum amount of 131I for the tumor 
to take up while not exceeding a tolerable 
absorbed dose to the blood (e.g., bone 
marrow).

• Do everything reasonable to maximize the 
percent uptake by the tumor of the 131I pre-
sented to it (e.g., patient preparation such as 
low-iodine diet with documentation of low 
24-h urine excretion, adequate TSH stimula-
tion, and, possibly in the future, administra-
tion of drugs that stimulate uptake).

• Do everything reasonable to maximize the 
cGy (rad) delivered to the tumor per MBq 
(mCi) taken up by the tumor (e.g., lithium, 
post-therapy “cold” iodine loading).

• Do everything reasonable to minimize side 
effects (e.g., continuous sialagogues, hydra-
tion, frequent urination, etc.).

• Modify the dosimetrically guided prescribed 
activity based on patient factors such as low 
blood counts, patterns of pulmonary findings 
on radiographs, a high likelihood of poor 
compliance in following recommendations to 
minimize side effects, etc.).

• Pursue all of these concepts, but modify the 
finally determined prescribed activity based 
on the objectives and desires of the patient.

• Pursue all of these concepts with the patient’s 
informed consent.

Based on the principle that one must exceed a 
threshold of delivering enough cGy (rad) in order 
to achieve the desire therapeutic effect, one 
should maximize the likelihood that one is deliv-
ering those necessary cGy (rad)—rather than 
believing “less will be as effective as more” in the 
treatment of metastatic DTC and/or extensive 
locoregional disease.

 Summary

In summary, whole body and lesional dosimetry 
are founded on the principles of external radia-
tion therapy, which are to (1) determine and mini-
mize the absorbed dose to the normal tissues and 
(2) determine and deliver an absorbed dose to the 
tumor that is effective in controlling the tumor 
with the predetermined physician and patient 
objective such as cure, adjunctive therapy, or pal-
liation. 131I whole body dosimetry has helped 
guide the selection of prescribed activity of 131I 
for the treatment of functioning metastatic differ-
entiated thyroid cancer for over 60  years. 
Specifically, whole body dosimetry can help 
identify many patients who may be administered 
not only higher prescribed activities than many 
empiric approaches but can also help determine 
how much higher prescribed activity may be. In 
turn, this allows a potentially higher absorbed 
dose to the tumor while maintaining an  acceptable 
absorbed dose to the critical organ (e.g., the 
blood/bone marrow). In addition, whole body 
dosimetry can help identify approximately 
5–20% of patients who may have exceeded 
200 cGy (rad) to the blood (e.g., bone marrow) 
when a “one-size-fits-all” empiric prescribed 
activity would have been administered to the 
patient. Although dosimetry is time consuming 
and complex, the patient can be referred to a site 
that performs full dosimetry, or one’s facility 
may adopt an alternative simplified dosimetric 
approach, which has been published, validated, 
and can be performed in any nuclear medicine 
facility with a gamma camera. I anticipate the 
future validation of additional simplified dosi-
metric approaches, thereby allowing even more 
options for nuclear medicine facilities to perform 
alternate simplified dosimetry for their patients. 
Although lesional dosimetry with 131I and 123I 
remains difficult to perform, research is in prog-
ress with 124I, which holds significant promise 
because of the superiority of PET for 
quantitation.

For the selection of patients for full dosimetry 
or validated, simplified dosimetry to help guide 
the selection of 131I prescribed activity, I recom-
mend patients with differentiated thyroid cancer 
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who have functioning distant metastatic and/or 
extensive locoregional disease. This is especially 
important in pediatric and adolescent patients. 
Choosing dosimetry in other patients should be 
managed on an individual basis.

Finally, with the research underway evaluating 
(1) whole body and lesional dosimetry with 124I, 
PET-CT, and more sophisticated software such as 
3D-RD, (2) methods to increase the uptake of 
131I  in the tumor (e.g., redifferentiating agents), 
(3) maximizing the number of cGy (rad) delivered 
to the tumor for the number of MBq (mCi) admin-
istered (e.g., lithium, large post-therapy “cold” 
iodine loads), and (4) methods to reduce absorbed 
dose to other organs (e.g., salivary gland), I antici-
pate that whole body and lesional dosimetry for 
guiding the selection of the prescribed activity of 
131I for the treatment of functioning metastatic-
differentiated thyroid cancer and locoregional dis-
ease will become widely available in those 
institutions’ management of these patients.

Acknowledgments I would like to acknowledge the late 
Dr. Robert Leeper and Dr. Frank Atkins. Dr. Leeper per-
sonally helped Dr. Atkins and I establish whole body 
radioiodine dosimetry at Walter Reed Army Medical 
Center in 1980, and all of my work within radioiodine 
dosimetry could not have been possible without the exten-
sive and outstanding collaboration of Dr. Atkins for the 
better part of 35 years, who was my physicist, colleague, 
and friend.

References

 1. Wikipedia. https://en.wikipedia.org/wiki/Becquerel, 
Accessed 5–7 May 2016.

 2. Vetter R, Glen J.  Radiation and radioactivity. In: 
Wartofsky L, Van Nostrand D, editors. Thyroid can-
cer: a comprehensive guide to clinical management. 
3rd ed. New York: Springer; 2016, pages will be out 
shortly.

 3. Beierwaltes WH.  The treatment of thyroid carci-
noma with radioactive iodine. Semin Nucl Med. 
1978;8:79–94.

 4. Schlumberger M, Tubiana M, DeVathaire F, et  al. 
Long-term results of treatment of 283 patients with 
lung and bone metastases from differentiated thyroid 
carcinoma. J Clin Endocrinol Metab. 1986;63:960–7.

 5. Petrich T, Widjaja A, Musholt TJ, et  al. Outcome 
after radioiodine therapy in 107 patients with bone 
metastases of differentiated thyroid carcinomas. J Cin 
Endocrinol Metab. 2001;86:1568–473.

 6. Brown AP, Geening WP, McCready VR, et  al. 
Radioiodine treatment of metastatic thyroid carci-
noma: the Royal Marsden hospital experience. Br J 
Radiol. 1984;57:323–7.

 7. Menzel C, Grunwald A, Palmedo H, et  al. “High-
dose” 131I therapy in advanced differentiated thyroid 
carcinoma. J Nucl Med. 1996;37:1496–503.

 8. Hindié E, Melliere D, Lange F, et  al. Functioning 
pulmonary metastases of thyroid cancer: does radio-
iodine influence the prognosis? Eur J Nucl Med. 
2003;30:974–81.

 9. International Commission on Radiological Protection. 
Radionuclide transformations. Energy and intensity 
of emissions. ICRP Publication 38. Ann ICRP 1983, 
vol 11–13.

 10. Van Nostrand D, Atkins F, Yeganeh F, Acio E, Bursaw 
R, Wartofsky L. Dosimetrically determined doses of 
radioiodine for the treatment of metastatic thyroid 
carcinoma. Thyroid. 2002;12:121–34.

 11. Atkins A, Van Nostrand D, Wartofsky 
L.  Dosimetrically-determined prescribed activity of 
radioiodine for the treatment of metastatic thyroid 
carcinoma. In: Wartofsky L, Van Nostrand D, editors. 
Thyroid cancer: a comprehensive guide to  clinical 
management. 3rd ed. New  York: Springer; 2016, 
pages will be out shortly.

 12. Marinelli LD, Quimby EH, Hine GJ.  Prescribed 
activity determination with radioactive isotopes. 
II. Practical considerations in therapy and protection. 
Am J Roentgenol. 1948;59:260–81.

 13. Health Physicians Society. http://hps.org/publicin-
formation/radterms/radfact48.html. Accessed 7 May 
2016.

 14. Van Nostrand D, Bandaru V, Chennupati V, 
Kulkarni K, Wexler J, Atkins F, Mete M, Gadwale 
G.  Radiopharmacokinetics of radioiodine in the 
parotid glands after the administration of lemon juice. 
Thyroid. 2010;20:1113–9.

 15. La Perle K, Kim DC, Hall NC, et al. Modulation of 
sodium/iodine symporter expression in the salivary 
gland. Thyroid. 2013;23(8):1029–37.

 16. Rall JE, Alpers JB, Lewallen CG, Sonenberg M, 
Berman M, Rawson RW. Radiation pneumonitis and 
fibrosis: a complication of radioiodine treatment of 
pulmonary metastases from cancer of the thyroid. J 
Cin Endocrinol Metab. 1957;17:1263–76.

 17. Benua RS, Cicale NR, Sonenberg M, Rawson 
RW.  The relation of 131I dosimetry to results and 
complications in the treatment of metastatic thyroid 
cancer. Am J Roentgenol Radium Therapy Nucl Med. 
1962;87:171–82.

 18. Leeper RD, Shimaoka K.  Treatment of meta-
static thyroid cancer. Clin Endocrinol Metab. 
1980;9:383–404.

 19. Leeper RD.  Thyroid cancer. Med Clin North Am. 
1985;69:1079–96.

 20. Van Nostrand D, Freitas JE, Sawka AM, Tsang 
RW. Side effects of 131I for therapy of differentiated 
thyroid carcinoma. In: Wartofsky L, Van Nostrand 
D, editors. Thyroid cancer: a comprehensive guide 

D. Van Nostrand

https://en.wikipedia.org/wiki/Becquerel
http://hps.org/publicinformation/radterms/radfact48.html
http://hps.org/publicinformation/radterms/radfact48.html


645

to clinical management. 3rd ed. New York: Springer; 
2016, pages will be out shortly.

 21. Thomas SR, Maxon HR, Fritz KM, et al. A compari-
son of methods for assessing patient body burden fol-
lowing I-131 therapy for thyroid cancer. Radiology. 
1980;137:839–42.

 22. Thomas SR, Maxon HR, Kereiakes JG, Saenger 
E. Quantitative external counting techniques enabling 
improved diagnostic and therapeutic decisions in 
patients with differentiated thyroid cancer. Radiology. 
1977;122:731–7.

 23. Sisson J, Shulkin B, Lawson S.  Increasing efficacy 
and safety of treatments of patients with well-differ-
entiated thyroid carcinoma by measuring body reten-
tions of 131I. J Nucl Med. 2003;44:898–903.

 24. Van Nostrand D, Atkins F, Moreau S, Aiken M, 
Kulkarni K, Wu JS, Burman K, Wartofsky L. Utility 
of the radioiodine whole body retention at 48 hours 
for modifying empiric activity of 131-iodine for the 
treatment of metastatic well-differentiated thyroid 
carcinoma. Thyroid. 2009;19:1093–8.

 25. Hänscheid H, Lassmann M, Luster M, et  al. Blood 
dosimetry from a single measurement of the whole 
body radioiodine retention in patients with differ-
entiated thyroid carcinoma. Endocr Relat Cancer. 
2009;16:1283–9.

 26. Atkins F, Van Nostrand D, Moreau S, Burman K, 
Wartofsky L.  Validation of a simple thyroid can-
cer dosimetry model based on the fractional whole-
body retention at 48 hours post-administration of 
131I. Thyroid. 2015;25:1347–50.

 27. Jentzen W, Bockisch A, Ruhlmann M.  Assessment 
of simplified blood dose protocols for the estimation 
of the maximum tolerable activity in thyroid cancer 
patients undergoing radioiodine therapy using 124I.  J 
Nucl Med. 2015;56:832–83.

 28. Atkins F, Van Nostrand D.  Simplified methods of 
dosimetry. In: Wartofsky L, Van Nostrand D, edi-
tors. Thyroid cancer: a comprehensive guide to clini-
cal management. 3rd ed. New York: Springer; 2016. 
pages will be out shortly.

 29. Van Nostrand D. Treatment of distant metastases. In: 
Wartofsky L, Van Nostrand D, editors. Thyroid can-
cer: a comprehensive guide to clinical management. 
3rd ed. New York: Springer; 2016. pages will be out 
shortly.

 30. Klubo-Gwiezdzinska J, Van Nostrand D, Atkins F, 
Burman K, Jonklaas J, Mete M, Wartofsky L. Efficacy 
of dosimetric versus empiric prescribed activity of 

131I for therapy of differentiated thyroid cancer. 
Thyroid. 2011;96:3217–25.

 31. Eisenhauera EA, Therasseb P, Bogaertsc J, Schwartzd 
LH, Sargente D, Fordf R, Danceyg J, Arbuckh S, 
Gwytheri S, Mooneyg M, Rubinsteing L, Shankarg L, 
Doddg L, Kaplanj R, Lacombec D, Verweijk J. New 
response evaluation criteria in solid tumours: revised 
RECIST guideline (version 1.1). Euro J Cancer. 
2009;45:228–47.

 32. Maxon HR, Thomas SR, Hertzbert VS, et al. Relation 
between effective radiation dose and outcome 
of 131I therapy for thyroid cancer. N Engl J Med. 
1983;309:937–41.

 33. Maxon HR, Englaro EE, Thomas SR, et al. 131I therapy 
for well differentiated thyroid cancer—a quantitative 
radiation dosimetric approach: outcome and valida-
tion in 85 patients. J Nucl Med. 1992;33:1132–6.

 34. Sgouros G, Kolbert KS, Sheikh A, et  al. Patient-
specific dosimetry for I-131 thyroid cancer therapy 
using I-124 PET and 3-dimensional internal dosime-
try (3D-ID) software. J Nucl Med. 2004;45:1366–72.

 35. Freudenberg LS, Jentzen W, Görges R, Petrich T, 
Marlowe RJ, Knust J, Bockisch A. 124I-PET dosim-
etry in advanced differentiated thyroid cancer: thera-
peutic impact. Nucklearmedizin. 2007;4:121–8.

 36. Khorjekar G, Senthamizhchelvan S, Van Nostrand D, 
et al. Correlation of 124I PET dosimetry with clinical 
response of 131I therapy for metastatic differentiated 
thyroid cancer. J Nucl Med. 2013;54(Suppl):52.

 37. Jentzen W, Hoppenbrouwers J, van Leeuwn P, et al. 
Assessment of lesion response in the initial radioio-
dine treatment of differentiated thyroid cancer using 
124I PET imaging. J Nucl Med. 2014;55:1759–65.

 38. Tuttle RM, Leboeuf R, Robbins RJ, Qualey R, 
Pentlow K, Larson SM, Chan CY. Empiric  radioactive 
iodine dosing regimens frequently exceed maximum 
tolerated activity levels in elderly patients with thy-
roid cancer. J Nucl Med. 2006;47:1587–91.

 39. Kulkarni K, Van Nostrand D, Atkins FB, Aiken MJ, 
Burman K, Wartofsky L. The frequency with which 
empiric amounts of radioiodine “over-” or “under-” 
treat patients with metastatic well-differentiated thy-
roid cancer. Thyroid. 2006;47:1019–23.

 40. Esposito G, Van Nostrand D, Atkins F, Burman K, 
Wartofsky L, Kulkarni K. Frequency of “over” And 
“under” treatment with empiric prescribed activity 
of i-131  in patients with and without lung metasta-
sis secondary to well-differentiated thyroid cancer. J 
Nucl Med. 2006;47(1):238P.

Dosimetry for Iodine-131 Therapy for Metastatic Differentiated Thyroid Cancer



647© Springer International Publishing AG, part of Springer Nature 2019 
M. Luster et al. (eds.), The Thyroid and Its Diseases, https://doi.org/10.1007/978-3-319-72102-6_42

Targeted Molecular Therapy

Arabella Hunt and Kate L. Newbold

 Introduction

Thyroid cancer represents the most common type 
of endocrine malignancy. It can be divided into 
three broad categories, differentiated (including 
papillary, follicular and poorly differentiated 
variants), medullary and anaplastic. With the 
exception of anaplastic disease, thyroid cancer 
can generally be regarded as having a good prog-
nosis with the vast majority of patients cured by 
surgical resection and in the case of differentiated 
disease, radioactive iodine (RAI) treatments and 
thyroid-stimulating hormone (TSH) suppression. 
However, a proportion of patients will present 
with extensive metastatic disease or progress 
despite standard treatment. Traditional cytotoxic 
and radiotherapy treatments have been poorly 
efficacious for this patient cohort with disap-
pointing outcomes. However, in recent years, 
increasing attention has been paid to ‘targeted 
molecular therapies’ in particular small molecule 
multikinase inhibitors (MKIs).

This chapter will focus on the rationale behind 
the use of these agents in thyroid cancer, with 
particular attention paid to the four approved 
drugs in this setting. Future directions in this field 
will also be discussed.

 Molecular Alterations in Thyroid 
Cancer and Small Molecule 
Multikinase Inhibitors

In recent years increasing focus has been paid to 
the molecular alterations that enable the develop-
ment of cancer. Within the context of thyroid can-
cer, two pathways, in particular the MAPK 
pathway and PI3k/Akt pathway, appear to be of 
particular importance [1]. These pathways are 
both activated via the intracellular transducer 
RAS and are responsible for expression of genes 
needed for growth, proliferation, cell migration 
and inhibition of apoptosis.

 Genetic Alterations Found in Thyroid 
Cancer

Genetic alterations to these pathways take on 
many forms. Individual gene mutations, amplifi-
cation and copy number gains and gene translo-
cations have all been implicated in the 
development of thyroid cancer.

In differentiated disease, key mutations include 
BRAFV600E, found in approximately 45% of 
papillary thyroid cancer [2] and up to 80–100% of 
the tall cell variant, conferring a poor prognosis; 
RAS mutations (either H, K or N) found in 
30–45% of follicular variants and 20–40% of 
poorly differentiated tumours; and PTEN dele-
tions found in 30% of follicular tumours [1]. 
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Common copy number gains include EGFR, 
VEGFR1, PIK3CA or B [3]. More recently the 
importance of IQGAP-1 amplification has also 
become apparent [4]. The most well-characterised 
gene translocations involve RET-PTC, of which 
over ten different combinations are known [1]. 
These translocations cause ligand-independent 
dimerisation resulting in the persistent activation 
of RET. Translocations of PAX8-PPARG are also 
common in papillary thyroid cancers, in particular 
the follicular subtype [5].

Medullary thyroid cancer (MTC) can occur 
spontaneously or as an inherited condition form-
ing part of the type 2 multiple endocrine neopla-
sia syndromes, MEN2A and 2B, or the familial 
MTC syndrome [6]. The inherited form is caused 
by a germline RET mutation in almost 100% of 
cases, whilst 50% of sporadic cases also demon-
strate somatic RET mutations [7]. Mutations at 
codon M918 T are associated with a particularly 

poor prognosis. Those sporadic cases lacking 
RET mutations tend to have mutations to RAS 
(H, K or N) instead [7].

Small molecular multikinase inhibitors 
(MKIs) have been designed to target the MAPK 
and PI3k/Akt pathways through inhibition of cell 
surface receptors such as EGFR or VEGFR or 
intracellular kinases such as RAF or MEK 
(Fig. 1). Disruption of these pathways leads to a 
reduction in downstream phosphorylation events 
and a slowing of tumour growth.

The use of MKIs has been investigated in 
many tumour types, in particular, melanoma, 
renal cell and hepatocellular carcinomas where 
their use is now well established. Similarly 
there is now a growing body of evidence 
around their use in differentiated and medul-
lary thyroid cancer, and in recent years four of 
these drugs have gained approval in the thyroid 
cancer setting.
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AKT
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Receptor Tyrosine
Kinase

-RET, RET-PTC, VEGFR
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Fig. 1 Key signalling cascades, MAPK and PI3K-AKT pathways, important in the development of thyroid carcinoma 
and the sites of drug inhibition
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 Approved Drugs

 Vandetanib

Vandetanib was the first small molecule kinase 
inhibitor licensed for use in advanced MTC. It is 
an oral tyrosine kinase inhibitor with activity 
against RET, VEGF and EGFR [8]. Approval was 
gained from the Food and Drug Administration 
(FDA) and European Medicines Agency (EMA) 
based on the results of the ZETA trial [9]. This 
phase III international placebo-controlled study 
compared vandetanib (300 mg/day) to placebo in 
331 patients randomised in a 2:1 fashion. All 
patients had advanced MTC, either sporadic 
(90%) or hereditary (10%), with a serum calcito-
nin level of ≥500 pg/mL. Patients continued on 
their allocated drug until objective disease pro-
gression at which point, following unblinding, 
those on the placebo arm were offered the chance 
to begin open-label vandetanib. The primary end-
point was progression-free survival (PFS), with 
secondary endpoints including objective response 
rates (ORR) and overall survival (OS). Median 
follow-up was 24 months, with 139 patients con-
tinuing to received blinded treatment at this point, 
111 (48%) of the vandetanib and 28 (28%) of the 
placebo groups. Ninety-three percent of eligible 
placebo patients entered into open-label use of 
vandetanib at the time of unblinding. Vandetanib 
produced a statistically significant improvement 
in PFS compared to placebo, with a predicted 
median of 30.5  months vs. 19.3  months (HR 
0.46, 95% CI 0.31–0.69, p  < 0.001). ORR was 
45% vs. 13%. An OS benefit was not seen 
although this is likely to be strongly influenced 
by the high rates of crossover in the placebo 
group and the immaturity of the data.

With respect to safety and tolerability, the 
drug was felt to be well tolerated with a median 
duration of treatment of 90.1 weeks for the van-
detanib group vs. 39.9 weeks for placebo. Thirty-
one patients discontinued treatment due to 
adverse events, 12% in the vandetanib arm and 
3% in placebo. The most common side effects for 
vandetanib were diarrhoea, rash, nausea and 
hypertension occurring in >30% of patients. 
Grade 3/4 toxicities occurring in >10% of patients 

included diarrhoea, hypertension and fatigue. 
QTc prolongation occurred in 8% of patients 
although there were no reports of torsades de 
pointes. Five deaths were reported in the vande-
tanib arm as a result of adverse events. These 
included aspiration pneumonia, respiratory 
 failure, respiratory arrest, staphylococcal sepsis 
and arrhythmia followed by acute cardiac failure. 
The study team did not comment on whether 
these deaths were likely to be directly related to 
vandetanib. On the whole the drug was well toler-
ated with most side effects managed with dose 
reductions (35% in the vandetanib arm) and sup-
portive measures.

The role of vandetanib in the treatment of dif-
ferentiated thyroid cancer (DTC) is currently 
under investigation. A phase II trial by Leboulleux 
et  al. [10] showed evidence of efficacy in this 
patient group with a PFS advantage over placebo 
(11.1  months vs. 5.9  months). A phase III trial 
(VERIFY) of vandetanib vs. placebo in the con-
text of differentiated disease has completed 
recruitment; the results are currently awaited.

 Cabozantinib

Cabozantinib was approved for use in metastatic/
locally advanced MTC in the USA in 2012 and in 
Europe in 2014. A small molecule kinase inhibi-
tor, it has potent activity against VEGFR2 and 
MET as well as RET, KIT, AXL and FLT3 [11]. 
Approval was gained following the results of the 
phase III EXAM trial [12]. This international 
double-blind placebo-controlled trial recruited 
patients with histologically confirmed, unresect-
able, metastatic or locally advanced MTC.  In 
contrast to the ZETA trial, participants needed 
radiological evidence of disease progression 
within the last 14 months to be eligible. Patients 
could have sporadic or inherited disease and were 
allowed to have had prior exposure to tyrosine 
kinase inhibitors. They were randomised in a 2:1 
fashion (cabozantinib 140  mg vs. placebo) and 
stratified according to age, mutation status and 
prior MKI use. Dose reductions down to a mini-
mum dose of 60 mg/day were allowed, but cross-
over at time of progression was not. 330 patients 
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were enrolled, 21% had prior MKI exposure and 
48% were known to be RET mutation positive.

The study’s primary endpoint of PFS reached 
statistical significance at an estimated 
11.2 months vs. 4.0 months in the cabozantinib 
and placebo groups, respectively (hazard ratio 
0.28, 95% CI 0.19–0.40; p < 0.001). This prolon-
gation of PFS was seen across all prespecified 
subgroups including all RET mutation sub-
groups. With respect to secondary endpoints, 
there was an ORR of 28% in the cabozantinib 
group compared to 0% in the placebo group 
(p < 0.001) and a median estimated duration of 
response of 14.6  months (95% CI 11.1–
17.5  months). OS did not reach statistical 
significance.

The drug was reasonably well tolerated with 
the majority of adverse events managed with 
either dose reductions (79%) or dose interrup-
tions (65%); adverse events were noted as the 
primary reason to stop the drug in 16% of cases. 
Grade 3/4 toxicity was reported in 69% of cabo-
zantinib patients and 33% of placebo patients 
(reflecting a generally unwell population). In the 
cabozantinib arm, the most frequent grade 3/4 
toxicities were diarrhoea (15.9%), palmar-plan-
tar erythrodysesthesia (12.6%) and fatigue 
(9.3%). As might be expected, side effects com-
mon to VEGF inhibition such as hypertension, 
perforation and haemorrhage were also more 
common in the cabozantinib group. Grade 5 
adverse events were noted in 7.9% of the cabo-
zantinib group; this was similar to the placebo 
group (7.3%). Grade 5 events, including three 
episodes of fistula formation, felt likely to be 
drug related, two episodes of respiratory failure 
of which one was felt likely to be caused by 
cabozantinib, two episodes of multi-organ fail-
ure (not felt to be related), two cases of haemor-
rhage (one felt to be related), one case of 
unrelated sepsis, one case of hepatic failure (not 
related), one pneumonia (unrelated), one general 
health deterioration not felt to be related, one 
cardiopulmonary failure, one sudden death and 
one death not otherwise specified all felt to be 
related.

Unlike vandetanib, cabozantinib was not asso-
ciated with QTc prolongation.

Although the PFS for cabozantinib appears 
shorter than that of vandetanib in this setting, the 
EXAM and ZETA populations are not compara-
ble. The PFS for the placebo group was consider-
ably shorter in EXAM compared to ZETA 
suggesting a population with more advanced or 
aggressive disease. As a result it is not possible to 
draw conclusions regarding which drug is better. 
Instead decisions regarding which drug to com-
mence first should be based on individual patient 
comorbidities (and funding considerations) with 
particular attention being paid to the different 
toxicity profiles.

 Sorafenib

Sorafenib gained approval by the EMA in 2013 
for use in progressing radioiodine refractory 
DTC. It had gained previous approval for use in 
renal cell and hepatocellular carcinoma. An oral 
tyrosine kinase inhibitor, it has activity against 
Raf-1, BRAF, VEGFR2 and 3, PDGFR β, Flt-3 
and C-Kit [13]. Approval in DTC was achieved 
based on the results of the phase III DECISION 
trial [14]. This multinational, randomised, dou-
ble-blind placebo-controlled trial recruited 
patients with progressing, radioiodine refractory, 
differentiated thyroid cancer without prior MKI 
use. Patients were randomised to receive 400 mg 
twice daily of sorafenib vs. placebo; dose reduc-
tions and crossover at the time of progression 
were allowed. 419 patients were enrolled, across 
18 countries. The study’s primary endpoint of 
PFS reached statistical significance with a median 
of 10.8  months for the sorafenib arm vs. 
5.8 months for placebo (HR 0.59, 95% CI 0.45–
0.86; p  <  0.0001). The ORR for sorafenib was 
12.2%. Overall survival did not significantly dif-
fer, although median overall survival had not 
been reached by the time of data cut-off. 71.4% 
of patients crossed over to sorafenib at 
progression.

Adverse events were experienced by 98.6% of 
sorafenib patients although it should be noted 
that 87.6% of the placebo arm also showed side 
effects reflecting the poor health of the study 
population. The most common adverse events 
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were hand-foot skin reaction, diarrhoea, alope-
cia, rash, fatigue, weight loss, hypertension and 
hypocalcaemia. Dose interruptions, reductions 
and withdrawals occurred in 66.2, 64.3 and 
18.8% of patients, respectively. There was one 
death (caused by a myocardial infarction), which 
was felt to be directly related to sorafenib use. A 
higher rate of skin cancers (mostly squamous cell 
carcinomas) was also noted.

 Lenvatinib

Lenvatinib is an oral tyrosine kinase inhibitor 
with activity against VEGFR1–3, FGFR1–4, 
PDGFR α, RET and KIT [15]. It is currently 
licensed for use in advanced radioiodine refrac-
tory DTC following approval from the FDA and 
EMA in 2015. Approval was granted based on 
the results of the SELECT trial [16]. This was a 
phase III, randomised, double-blind, placebo-
controlled, multicentre trial that recruited 392 
patients from 21 countries. Patients required a 
diagnosis of metastatic or locally advanced DTC 
with evidence of radioiodine resistance and 
radiological progressive disease within the last 
13  months. One line of prior MKI use was 
allowed. Patients were randomised in a 2:1 fash-
ion to receive lenvatinib at 24 mg per day taken 
continuously vs. placebo. At the time of progres-
sion, crossover to the lenvatinib arm was allowed; 
95.6% of eligible patients opted for this. The 
study’s primary endpoint of PFS reached statisti-
cal significance with a median of 18.3 months for 
lenvatinib vs. 3.6 months for placebo (HR 0.21, 
99%; CI 0.14–0.31; p < 0.001). Response rates 
were seen in 64% of lenvatinib users vs. 1.5% of 
placebo. The secondary endpoint of OS did not 
reach significance (HR 0.73, 95% CI 0.50–1.07; 
p = 0.10); however the effect of crossover must 
be remembered, and when this was considered, 
the HR improved to 0.62 (95% CI 0.4–1.00, 
p = 0.05).

As might be expected, patients experienced 
many of the side effects common to this drug 
class. 75.9% within the lenvatinib group and 
9.9% of the placebo group experienced ≥ grade 3 
toxicity. The most common side effects were 

hypertension, diarrhoea, fatigue, weight loss, 
decreased appetite and rash. Greater than or equal 
to grade 3 toxicity rates of ≥10% were seen for 
hypertension (42.4%) and proteinuria (10%). 118 
deaths were reported at data cut-off, 27.2% of the 
lenvatinib group and 35.9% of the placebo group. 
The majority of deaths were due to disease pro-
gression, with 6 (2.3%) deaths in the lenvatinib 
group felt to be treatment related. These included 
three deaths not otherwise specified, one pulmo-
nary embolism, one deterioration of general 
health and one haemorrhagic stroke. 67.8% of the 
lenvatinib group required a dose reduction; 
adverse events causing a termination of treatment 
were experienced by 14.2% of this group, most 
commonly due to hypertension and fatigue. A 
subsequent further analysis [17] showed that 
most adverse events occurred early and were 
responsive to dose reductions.

Although not currently licensed for these indi-
cations, lenvatinib has also been evaluated in 
phase II trials of patients with medullary and ana-
plastic thyroid cancer. Schlumberger et  al. [18] 
reported 59 patients with progressive MTC. They 
found a response rate of 30% with a median PFS 
of 9.0 months. Rates of ≥grade 3 toxicity were 
63%. Tahara et al. [19] have also shown activity 
of lenvatinib in anaplastic thyroid cancer; 17 
patients were recruited, with a median PFS 
7.4  months and a median overall survival of 
10.6  months. There were no treatment-related 
deaths. Although only a small number were 
enrolled, this seems promising considering the 
usual poor prognosis of this group.

Summary Table of 1 licensed MKIs.

 Toxicity Management

Given that MKIs are administered continuously, 
prompt management of side effects is essential to 
ensure treatment can continue with the minimal 
negative and maximum positive impact to the 
patient. Review prior to commencement of drug 
by other specialities such as cardiology can ensure 
medical optimisation prior to MKI use. Whilst on 
treatment, patients should initially be seen on a 
regular basis in order for an early review of toxic-
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ity and to implement dose reductions or concomi-
tant, supportive medication if necessary. Once 
established on a manageable regimen, clinic 
reviews can become less frequent.

There are several review articles available 
which give advice on toxicity management [20, 
21]. Grande et al. [22] have produced a paper on 
management of vandetanib side effects that is 
particularly detailed. Although focussing on van-
detanib, many of the management recommenda-
tions would be pertinent to the other MKIs.

 Future Directions

At the time of writing, there are several ongoing 
phase III trials looking at MKI efficacy in thyroid 
cancer.

The EXAMINER trial (NCT01896479) is 
investigating the effectiveness of a lower starting 
dose of cabozantinib in progressive medullary 

thyroid cancer. Patients are randomised to either 
60 or 140 mg daily in an attempt to improve tox-
icity without sacrificing significant efficacy. This 
trial is currently recruiting.

The VERIFY study (NCT01876784) aims to 
assess the efficacy and safety of vandetanib in 
DTC.  Recruitment is complete and full results 
are awaited.

Apatinib (DTC) and anlotinib (DTC and 
MTC) are currently under evaluation in phase III 
studies.

Although not yet in phase III, there is increas-
ing interest in the use of the MEK inhibitor 
 selumetinib in DTC.  Phase II studies failed to 
reach significance when selumetinib was used 
as a single agent [23]; however, there is now an 
increasing body of evidence suggesting that it 
may be used to re-sensitise iodine refractory 
DTC to radioactive iodine. Work on mouse 
models [24] found that use of MEK inhibitors in 
BRAF mutant mice could convert previously 

Table 1 Summary of the key design features and results of these four studies

Sorafenib Lenvatinib Vandetanib Cabozantinib
Indication DTC DTC MTC MTC
Main molecular 
targets

Raf-1, BRAF, VEGFR2 
and 3, PDGFR β, Flt-3, 
C-Kit

VEGFR1–3, 
FGFR1–4, PDGFR 
α, RET, KIT

RET, VEGFR, 
EGFR, KIT

VEGFR2, MET, 
RET, KIT, AXL, 
FLT3

Trial evidence DECISION
Phase III

SELECT
Phase III

ZETA
Phase III

EXAM
Phase III

Number of patients 
involved

417 392 331 330

Progressive disease 
required for eligibility

Yes Yes No Yes

Prior MKI use allowed No Yes (25%) Yes (39%) Yes (21%)
Median progression-
free survival vs. 
placebo (months)

10.8 vs. 5.8 18.3 vs. 3.6 30.5 vs. 19.3 11.2 vs. 4.0

Objective response 
rate

12.2% 64.8% 45% 28%

Starting dose 800 mg/day (2 divided 
doses)

24 mg/day 300 mg/day 140 mg/day

Median daily dosing 651 mg/day 17.2 mg/day Not recorded Not recorded
Important adverse 
events

Hand-foot skin reaction
Diarrhoea
Alopecia
Rash
Fatigue
Weight loss
Hypertension
Hypocalcaemia
Skin cancers

Hypertension
Proteinuria
Diarrhoea
Fatigue
Weight loss
Decreased appetite
Rash

Diarrhoea
Rash
Nausea
Hypertension
Fatigue
Prolongation of 
QTc

Diarrhoea
Hand-foot skin 
reaction
Fatigue
Hypertension
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iodine-resistant tumours into tumours respon-
sive to further radioactive iodine treatments. A 
pilot study in humans has subsequently been 
performed [25] where of the 20 evaluable 
patients, 12 showed increased uptake of 124I fol-
lowing 4 weeks of selumetinib, with 8 patients 
reaching the dosimetric threshold for further 
radioiodine treatment. In those patients, five had 
a partial response on imaging and three had sta-
ble disease. All patients demonstrated a decrease 
in thyroglobulin levels. Genetic analysis of the 
patients’ tumours showed greatest response in 
those with NRAS mutations. Toxicity levels 
were acceptable. Based on these results, phase 
II trials are currently recruiting in the UK (SEL-
I-METRY) and the USA (NCT02393690).

 Conclusion

The treatment of advanced thyroid cancer has 
developed with evidence of efficacy of multiki-
nase inhibitors in improving progression-free 
survival. However an impact on overall sur-
vival has yet to be proven. An increased under-
standing of predictive biomarkers including 
histopathological, molecular and demographic 
factors has the potential to guide the most 
effective treatment selection for individual 
patients. Continued enrolment of patients into 
clinical trials is encouraged to further improve 
the outcomes for patients with advanced thy-
roid cancer.
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Thyroglobulin and Tg Antibodies

Ulla Feldt-Rasmussen and Luca Giovanella

 Introduction

Thyroid malignancies are rare endocrine cancers 
consisting of on the one hand very rare and highly 
malignant tumours with poor prognosis and on 
the other the more prevalent differentiated thy-
roid carcinomas of papillary, follicular or mixed 
papillary–follicular forms where treatment glob-
ally leaves a high number of survivors for follow-
up [1]. In differentiated thyroid cancers, the 
general 10-year survival exceeds 95%, while 
papillary forms alone have a better prognosis 
with a 10-year survival of more than 99% [2].

Thyroglobulin (Tg) is a large protein, which 
forms the backbone for production and storage of 
thyroid hormones, and thus specific for the thy-
roid gland. It is released into the bloodstream 
together with thyroid hormones upon both physi-
ological and pathophysiological stimulations but 
also upon destruction of the thyroid gland 
(Table 1) [3]. Thyroglobulin in serum is therefore 

a specific and useful marker of thyroid tissue in, 
e.g. differentiated thyroid cancer (residual thy-
roid tissue or recurrent tumour tissue) in patients 
having had total thyroid ablation (total thyroidec-
tomy and 131I ablation therapy). Measurement of 
serum Tg has thus become the cornerstone in the 
follow-up algorithms in current guidelines for 
management of thyroid carcinomas after success-
ful treatment [4, 5].

The presence of antithyroglobulin antibodies 
(TgAb), which are markers of thyroid autoim-
mune disease, however, interferes with Tg mea-
surements in vitro and gives rise to false results 
[6, 7]. The prevalence of these antibodies has been 
described in at least 10% of most female popula-
tions and more prevalent, 15–25%, in patients 
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Table 1 Factors increasing release of thyroglobulin (Tg) 
into serum

    • Thyrotropin stimulation
    •  Other stimulation of the thyrotropin receptor (e.g. 

thyrotropin receptor antibodies, human 
choriongonadotropic hormone)

    • Thyroid surgery
    • Radioactive iodine therapy
    •  Destructive thyroiditis (e.g. subacute thyroiditis 

De Quervain, postpartum thyroiditis, silent 
thyroiditis, Hashitoxicosis)

    • Fine needle biopsy of thyroid nodule
    •  Other serious manipulation of the thyroid gland 

(e.g. strangulation)

Feldt-Rasmussen, et  al. Cancer 1983, Spencer, JCEM 
2011 [13], Clark and Franklyn, ACB 2012 [81]
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with differentiated thyroid cancer [7, 8]. The cur-
rent management guidelines for using serum Tg 
as tumour marker have not taken these aspects 
into account, although recent publications have 
indicated that quantifying TgAb may act as sur-
rogate tumour markers on their own [9–13].

Finally, the increased incidence of diagnosed 
thyroid cancers over the past decades, with 
mainly small papillary thyroid cancers adding to 
the increased incidence, also puts a greater chal-
lenge on the efficacy of both Tg and TgAb as bio-
markers. The current chapter will only deal with 
the most incident and prevalent differentiated 
thyroid cancers and not all other thyroid cancer 
types such as anaplastic and medullary cancers, 
lymphomas and metastases.

 Characteristics of Thyroid Cancer

The annual incidence of thyroid cancer varies 
considerably in different registries, ranging from 
1.2 to 2.6 per 100,000 individuals in men and 
from 2.0 to 3.8 per 100,000 in women (reviewed 
in [14–16]). It is particularly elevated in Iceland 
and Hawaii (reviewed in [16, 17]). In Hawaii, the 
incidence rate of thyroid cancer in each ethnic 
group is higher than that registered in their coun-
try of origin. Ethnic or environmental factors 
(such as spontaneous volcanic background radia-
tion) or dietary habits [16] probably play a role, 
but different healthcare systems may also be 
important in the efficiency of cancer detection and 
thus earlier treatment. In 2003, the American 
Cancer Society indicated an incidence in the USA 
of nearly 10/100,000 population, and the reported 
incidence has been increasing by more than 5%/
year for a decade [16]. In Denmark, the age-stan-
dardized incidence of papillary thyroid cancer 
from 1943 to 2008 increased in both sexes, in men 
from 0.41 to 1.57 per 100,000 and from 0.90 to 
4.11 per 100,000  in women, corresponding to a 
significant average annual percentage change of 
1.7 and 1.8%, respectively. Iodine supplementa-
tion started in Denmark in the year 2000, which 
might be one of the explanations for the increased 
incidence, but small cancers accounted for most 
of the increase, and therefore the increased inci-

dence was more likely to arise from higher ascer-
tainment due to frequent ultrasound and other 
imaging performances discovering small nonclin-
ically significant malignancies [14]. This might 
comply with the prevalence of thyroid carcinoma 
found in autopsy series or screening programmes. 
Autopsy studies indicate a much higher frequency 
ranging from 0.01 to over 2.0% [16, 18] and a sur-
vey of consecutive autopsies found as high as 
2.7% of thyroids to harbour unsuspected thyroid 
cancer [18]. This high prevalence may be attrib-
uted to careful examination of the gland but prob-
ably also reflects a highly selected group of older 
patients dying in a hospital. Up to 6% of thyroid 
glands in autopsied adults in the United States, 
and over 20% in Japan, also harbour microscopi-
cally detectable foci of thyroid carcinoma, which 
are believed to be of no biologic significance but 
sometimes discovered as incidentalomas. 
Altogether autopsy studies suggest that thyroid 
cancer is in most instances an incidental finding, 
not diagnosed during life and often not the cause 
of death. The annual mortality from thyroid can-
cer in 2003 was 5 per million for men and 6 per 
million for women [16]. The discrepancy between 
incidence and mortality is reflected by the good 
prognosis for most differentiated thyroid cancers. 
Recent statistics suggest about six deaths/million 
in the USA, and the cause-specific survival for 
papillary cancers was recently described nation-
wide in Denmark to be 99.5% [19], which is in 
keeping with previous reports [2]. Above circum-
stances pose big challenges both to the treatment 
strategies for differentiated thyroid cancers, since 
many of the incidentally discovered microcarci-
nomas would never proceed to clinical disease, 
and treating those along the lines of the previous 
international guidelines for thyroid cancer would 
cause serious overtreatment of these patients. 
Accordingly, guidelines for treatment are chang-
ing towards more conservative ablation in cases of 
carcinomas classified of low risk for recurrence or 
relapse at diagnosis [4, 5]. However, the evidence 
may not be quite clear on this procedure yet, as 
one recent large study indicated excellent follow-
up results when using conservative ablation [20], 
while results of a recent meta-analysis were not 
equally optimistic [21]. The choice of ablative 
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procedure, on the other hand, has a major influ-
ence on the optimal follow-up strategy of long-
term survivors after thyroid carcinoma therapy, 
which will be described below. While total abla-
tion for thyroid carcinoma of any thyroid tissue by 
surgery and radioiodine should leave no thyroid 
cells to produce Tg, this is not the case of, e.g. 
lobectomy, where one normal lobe is left in situ. 
This remaining lobe will thus produce Tg both in 
the basal situation but in particular if stimulated 
with endogenous or recombinant (Thyrogen®) 
TSH as part of the follow-up procedure.

 Serum Thyroglobulin as Tumour 
Marker in Differentiated Thyroid 
Cancer

Tg is a very large glycoprotein of 660 kD, nor-
mally stored in the follicular colloid of the thyroid 
gland where it acts as a substrate for thyroid hor-
mone biosynthesis. It consists of two identical 
helices and folded in a three-dimensional structure 
[22]. Immunoassay has been the main analytical 
technique used for the measurement of serum Tg, 
at first by competitive radioimmunoassay (RIA). 
Over the last few decades, immunometric assays 
(IMAs) have widely replaced radioimmunoassays 
for measuring peptides and proteins such as Tg. 
Immunometric assays (with either radioactive or 
non-radioactive tracers) are consistently more sen-
sitive than radioimmunoassays and, additionally, 
have a shorter incubation time, wider working 
range and a more stable labelled antibody reagent 
that is less prone to labelling damage [23]. More 
recently fully automated non-radioactive immuno-
metric assays become available, further improving 
the sensitivity of the Tg measurement with a fast 
“turnaround time”.

 Analytical Issues

 Analytical Sensitivity

The sensitivity of the assay is critical when using 
serum Tg measurement to detect small amounts 
of thyroid tissue and small changes in concentra-

tion over long time periods. The analytical sensi-
tivity of an assay should not be confused with the 
clinical sensitivity, i.e. the probability that a test 
will correctly identify an illness when present. 
Analytical sensitivity can be defined as the low-
est concentration that can be reliably distin-
guished from zero [24, 25] and determined 
experimentally in a number of ways, each with 
advantages and limitations [26–29]. In the first 
instance, analytical sensitivity has often been 
determined by repeat analysis of the zero calibra-
tor and determination of the apparent concentra-
tion equal to the zero plus (for immunometric 
assays) 2 or 3 standard deviations of the signal 
(i.e. minus for competitive RIA assays), when it 
is known as the limit of blank (LOB). There are 
significant limitations to this approach. In the 
majority of cases, the measured sensitivity will 
be below the concentration of the lowest concen-
tration calibrator. The assumption is often made 
that the fitted standard curve is close to the mea-
sured dose response curve. This may not be the 
case and can be difficult to assess for automated 
immunoassays leading to a misleading estimate 
of the LOB [30]. Although of limited use in 
understanding the precision of low-concentration 
samples, the LOB can be useful when optimizing 
assay conditions during assay development.

The limit of detection (LOD)  is defined as the 
lowest analyte concentration that can be distin-
guished from the LOB using replicate analysis of 
a sample of known low concentration. It has sim-
ilar limitations to those of LOB. Currently, func-
tional sensitivity (FS) is widely used to define the 
clinical utility of Tg assays. It is a measure of the 
imprecision of an assay at low analyte concentra-
tion and involves variation due to measurement 
imprecision and not to biological variations. In 
essence, it is the variation that would be observed 
in many repeated measures of a single biological 
sample under unchanging conditions and is 
defined as the concentration resulting in a coeffi-
cient of variation of 20%. The difference in FS 
between Tg assays has created a “generational” 
nomenclature system with each subsequent gen-
eration exhibiting a substantial improvement (i.e. 
tenfold). According to the recommendations of 
National Academy of Clinical Biochemistry 
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(NACB), FS should be determined from between 
batch precision of measurement of patient pools, 
in the same test mode (singleton or duplicate) as 
patient samples over the clinically relevant con-
centration range over two different lots of 
reagents and calibrators and over a period of 
6 months [26].

The patient pools should be TgAb-negative 
and should cover the clinically relevant concen-
tration range with three different concentration 
ranges. However, this method is difficult and 
demanding, and the data cited by the manufac-
turer for different Tg assays may not follow this 
definition. In addition, assays may be adapted 
over time (e.g. through reagent changes or recali-
brations) even though they keep the same brand 
name [31].

Lastly, the limit of quantification (LOQ) is an 
alternative method for determining the character-
istics of an assay at low analyte concentration, 
and it is increasingly used as a measure of sensi-
tivity for Tg assays [32]. Basically, LOQ is simi-
lar to the FS but does have an additional 
requirement for predefined goals for bias and 
imprecision, such as the total allowable error (i.e. 
often defined as ≤30%) as determined by regula-
tory authorities and national guidelines (i.e. 
Clinical and Laboratory Standards Institute 
EP17-A2) [29]. Anyway, since FS and LOQ are 
not the same, laboratories and clinicians should 
be aware of how the analytical sensitivity of the 
assay they use was assessed [32, 33]. Laboratories 
should, therefore, verify these parameters as part 
of their evaluation process [31].

 Standardization and Harmonization

Circulating Tg is heterogeneous in serum due to 
differential splicing of Tg mRNA and both carbo-
hydrate and iodide heterogeneity [22]. Moreover, 
Tg biosynthesis may become deregulated in thy-
roid tumour cells resulting in differences in the 
structure of circulating Tg protein. These changes 
can lead to exposure or masking of epitopes and 
hence differences in Tg immunoreactivity [34]. 
Different Tg assays employ a number of antibod-
ies against Tg with varying specificity for differ-

ent epitopes, potentially resulting in a variable 
measurement of different Tg isoforms in the 
patient’s specimen and ultimately to differences 
in Tg concentration reported by the assays. The 
introduction and use of the international refer-
ence material BCR® 457 has significantly reduced 
inter-method variability to about 30%, but has 
not eliminated it completely [35–37]. Then, a 
change in Tg assay still has the potential to dis-
rupt serial monitoring and prompt inappropriate 
clinical decisions. In clinical practice, these 
between-method biases necessitate that postop-
erative Tg monitoring be made using the same 
manufacturer’s method and preferably the same 
laboratory. If an assay change is unavoidable, a 
new baseline of a patient’s serum Tg concentra-
tions should be established through parallel Tg 
measurements using both the old and the new 
assay [32, 38]. Internal and external quality con-
trol programmes, including samples at low and 
very low Tg concentrations, are of pivotal impor-
tance for checking the precision, reproducibility 
(internal quality control) and accuracy (e.g. lack 
of bias of analytical results) of assays to ensure 
optimal patient care. Thus, laboratories providing 
Tg measurement are required to participate in a 
certified national or international programme of 
quality assurance [22, 32, 38].

 Clinical Role of Tg Measurement

Tg is an important, sensitive method for monitor-
ing DTC patients for the presence of residual or 
recurrent disease after total thyroidectomy and 
131I remnant ablation. For a long time, all guide-
lines recommended TSH stimulation in order to 
achieve optimal sensitivity. It is generally 
assumed that “negative” TSH-stimulated Tg 
measurement in combination with a negative 
clinical examination, negative neck US and, 
when indicated, negative additional imaging pro-
cedures predicts a very low risk of recurrence in 
both low-risk and high-risk patients [5, 39]. Once 
these findings have been established, routine 
DTC follow-up should therefore consist of peri-
odic clinical examination combined with neck 
ultrasound and Tg measurement on thyroxine 
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(LT4) medication [5, 32, 33, 39]. Using Tg assays 
with a functional sensitivity of about 0.5 μg/L, 
different authors showed limited additional value 
of stimulated Tg when basal levels are not mea-
surable [40–43]. More recently, Tg assays with a 
functional sensitivity of about 0.1–0.2 μg/L (i.e. 
highly sensitive or 2nd-generation assays) have 
been developed and are now commercially avail-
able. Spencer and colleagues have pointed out 
that there may be a direct proportional relation-
ship between the basal and stimulated Tg levels 
measured by a highly sensitive assay [44]. 
Indeed, a number of studies were performed to 
investigate the diagnostic performance of new 
highly sensitive Tg measurements in the follow-
up of patients with DTC, mostly using the Access 
Tg assay (Beckmann Coulter, Fullerton, CA, 
USA; functional sensitivity 0.1 μg/L) [45–51]. In 
a systematic meta-analysis of the available litera-
ture, including 9 studies and 3178 DTC patients, 
Giovanella et  al. [52] confirmed the very high 
negative predictive value (98–100%) of an unde-
tectable basal Tg (e.g. <0.1 μg/L). Nonetheless, 
these assays also have an adequate sensitivity for 
detection of recurrent disease (88–98%). 
However, the improved sensitivity is associated 
with an unsatisfactory clinical specificity and 
positive predictive value using FS as cutoff value, 
and TSH stimulation was proposed to clarify 
basal Tg levels ranging from 0.1 to 1 μg/L [53]. 
In these cases, patients are generally considered 
as “disease-free” after a negative TSH-stimulated 
Tg measurement. However, diagnostic specificity 
of basal serum Tg measurements can also be 
improved by using optimized thresholds and 
evaluating Tg kinetic. While FS and LOQ are 
analytical parameters, different clinical decision 
limits may be defined by appropriate methods. 
Using ROC curves analysis, Schlumberger et al. 
[47] found a higher clinical threshold of 0.27 μg/L 
and 0.22  μg/L for basal Tg measured by the 
Access Tg assay and the EIASON TgCa assay 
(Iason GmbH, Graz-Seisberg, Austria; functional 
sensitivity 0.02 μg/L), respectively. In a further 
extension of this study, Brassard et al. found that 
32 of 715 DTC patients had a recurrence during 
the median follow-up of 6.2 years [54]. Assuming 
a cutoff level at 1.4 μg/L for stimulated Tg mea-

sured by the Access method, sensitivity, specific-
ity and positive and negative predictive values 
were 78%, 90%, 26% and 99%, respectively. 
Similarly, using the cutoff level at 0.27 μg/L, sen-
sitivity, specificity and predictive positive and 
negative values for basal Tg were 72%, 86%, 
20% and 99%, respectively. Overall, including a 
stimulated Tg measurement does not provide fur-
ther information when basal Tg levels <0.27 μg/L 
are found at early follow-up [54]. Similar results 
were obtained by Malandrino et  al. using the 
same assay: when post-ablation basal Tg was 
<0.15  μg/L, a very low risk of recurrence 
occurred, even in patients with intermediate- or 
high-risk DTC [51].

Measuring basal Tg trend, with TSH at con-
stant level, should reflect changes in thyroid tis-
sue mass, providing a sensitive variable for 
disease detection [27, 55]. This is also supported 
by a growing number of studies showing the 
prognostic utility of monitoring the basal Tg 
trend and doubling time [56–58].

Importantly, limitations to the available evi-
dence are that most patients who were enrolled in 
the studies were affected by low-risk DTC and 
were treated by thyroidectomy and subsequent 
radioiodine ablation. Indeed, data on patients 
with intermediate- and high-risk tumours are less 
robust, indicating that the above-described 
approach should be restricted to low-risk DTC 
patients while according to current guidelines, 
early follow-up should be based on stimulated Tg 
and diagnostic whole-body scan in addition to 
neck US in patients with intermediate- and high-
risk DTC [6]. Finally, Tg may be a significantly 
less useful marker in patients treated by lobec-
tomy and in those not receiving radioiodine after 
a total thyroidectomy [22, 59].

Current guidelines incorporate the four 
response-to-therapy categories firstly described 
by Tuttle et  al. [60] and modified in Vaisman 
et  al. [61] (Table  2). These clinical outcomes 
originally described the best response to initial 
therapy during the first 2 years of follow-up, but 
they are now being used to describe the clinical 
status at any point during follow-up.

However, as mentioned above, both basal and 
stimulated Tg thresholds were obtained, and 
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response to therapy assessment for dynamic risk 
stratification was validated in patients with DTC 
treated with total thyroidectomy and radioiodine 
ablation. Accordingly, current clinical guidelines 
provide unclear guidance with regard to serum 
Tg measurements in patients whose initial treat-
ment comprised a less extensive ablative proce-
dure than total thyroidectomy, or who did not 
receive radioiodine ablation.

 Serum Tg Levels in DTC Patients 
Treated by Lobectomy

Momesso et al. [62] found an excellent outcome 
in 187 patients treated with lobectomy and hav-
ing a post-surgery Tg <30 μg/L after lobectomy. 
However, the criteria to define Tg thresholds 
were not reported, and, notably, serum Tg levels 
are likely not dependent on the presence or 
absence of tumour foci but, instead, on the 
remaining thyroid lobe volume, current iodine 
status and TSH concentration. Thus, fine varia-
tions in Tg levels will be easily masked by basal 
Tg secretion from cells forming the remnant 
lobe, and measuring Tg is essentially useless in 
these cases. The only options for DTC follow-up 
in patients treated by lobectomy alone are to per-
form cervical US and, if recurrence or metastasis 
are suspected, to secure the diagnosis through a 
fine-needle biopsy [26].

 Serum Tg Levels in DTC Patients 
Treated by Total Thyroidectomy 
Without Radioiodine Ablation

Durante et al. [63] compared the evolution of Tg 
levels over time in 290 low-risk patients with 
DTC treated by total or near-total thyroidectomy 
without 131I ablation and 495 matched patients 
treated by additional 131I ablation. After a median 
follow-up of 5  years, the final Tg levels 
were  <  1   μg/L in 274 out of 290 non-ablated 
patients (95%) and 492 out of 495 ablated patients 
(99%). In a subgroup of 78 patients, serum Tg 
levels were measured serially, and 47 patients 
(60%) had a serum Tg <0.4  μg/L at the first post-
operative examination (3–12  months). In 77 
cases (98.7%), Tg concentrations remained sta-
ble or declined spontaneously over time, and 
patients remained disease-free; the remaining 
patient was the only one to develop recurrent dis-
ease. Similarly, Nascimento et  al. [64] found 
unstimulated Tg level <0.3 and ≤2  μg/L in 86% 
and 96% of 86 low-risk DTC patients non-ablated 
after total thyroidectomy. However, they also 
emphasized that the results were strictly depen-
dent on the completeness of surgery by a dedi-
cated surgeon in a referral centre. More recently, 
Momesso et al. [62] evaluated 320 DTC patients 
treated with thyroidectomy without radioiodine 
ablation RAI and found an excellent outcome in 
patients having a Tg <0.2 μg/L after thyroidec-
tomy. However, the abovementioned studies were 
retrospective with significant selection biases. In 
fact the mean largest diameter of primary DTC 
was 4 and 12  mm in non-ablated and ablated 
patients evaluated by Durante and colleagues, 
and 208 of 507 patients evaluated by Momesso 
and colleagues harboured primary carcinomas 
<10 mm in largest diameter (i.e. pT1a). Therefore, 
serum Tg results should be interpreted with cau-
tion in non-ablated patients taking into account 
both the TSH concentration and remnant thyroid 
volume (Table 3). Indeed, more sophisticated Tg 
reference intervals will have to be established for 
patients treated by conservative surgery and no 
radioiodine ablation. Mathematical normaliza-
tion of Tg levels to TSH level and residual thy-
roid tissue tailored to individual patients should 

Table 2 Response to treatment in DTC patients: assess-
ment criteria

Excellent response: no clinical, biochemical or 
structural evidence of disease. Definition: negative 
imaging and either suppressed Tg <0.2 μg/L or 
stimulated Tg <1 μg/L
Biochemical incomplete response: abnormal Tg or 
rising anti-Tg antibody (see the specific section) levels 
in the absence of localizable disease. Definition: 
negative imaging and suppressed Tg <1 μg/L or 
stimulated Tg <10 μg/L or rising TgAb levels
Structural incomplete response: persistent or newly 
identified loco-regional or distant metastases
Indeterminate response: nonspecific biochemical or 
structural findings that cannot be confidently classified 
as either benign or malignant. This includes patients 
with stable or declining anti-Tg antibody levels 
without definitive structural evidence of disease
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be useful for the purpose, but it is extremely chal-
lenging to have highly precise and reproducible 
Tg and TSH assays and to standardize estimation 
of residual thyroid mass [22].

 General Confounding Factors 
in Interpretation of Tg 
Measurements

The use of serum Tg as a tumour marker in DTC 
is hampered by a number of confounding factors 
(Table  3), i.e. the ablative procedure (total vs. 
non-total ablation) and thus amount of remaining 
normal thyroid tissue, as mentioned previously; 
the adequacy of the subsequent substitution ther-
apy (serum TSH not elevated); time after destruc-
tive therapy, which releases Tg into the circulation 
and stays high for a long period due to the long 
half-life of the protein [65]; and not least pres-
ence of TgAb [3, 8, 66].

The important general demands to assays 
measuring Tg in serum are the following: first, 
the accuracy and sensitivity of serum Tg essential 
can be improved by using the CRM-457 interna-
tional standard [35, 36, 59] as also mentioned 
previously. Furthermore, a high inter-assay preci-
sion across monitoring intervals up to 12 months 
is important, and “hook effects” should be dimin-
ished (an excessive amount of antigen over-
whelming the binding capacity of the capture 
antibody) in order to avoid false lowering of very 
high Tg concentrations. Finally and very impor-
tantly, quantification of Tg can only be performed 
correctly in the absence of TgAb, which should 

therefore be measured in each individual sample. 
The analytical interference takes place “in vitro” 
(i.e. in the tube), and the direction of interference 
by presence of TgAb can give rise to either falsely 
low or falsely high serum Tg concentrations (see 
below for details) [3, 7, 59].

 Influence of Thyroglobulin 
Antibodies on Serum Tg 
Measurements

Together with thyroperoxidase antibodies, TgAb 
are important pathogenic markers of thyroid 
autoimmune disease, present in approximately 
10% of most female populations, depending on, 
e.g. the iodine intake [4, 8, 9, 67]. In differenti-
ated thyroid carcinoma, on the other hand, TgAb 
are detected in 15–40% of patients, i.e. roughly 
twice or more as often as in the general popula-
tion [4, 8, 9, 34]. Epitope recognition patterns of 
TgAb were recently shown to be restricted to 
immunodominant clusters in 58% of patients 
with different thyroid cancer, whereas the rest 
were either broadly heterogeneous (16%) or non-
reactive (26%). However, median Tg recovery 
did not differ between sera with restricted and 
unrestricted specificities (69% vs. 80%; 
P > 0.05). Tg recovery in these sera was inversely 
correlated with the total number of epitopes rec-
ognized by sera (r = −0.66; P < 0.001). TgAbs 
with both restricted and broad specificities were 
present in patients with differentiated thyroid 
cancer. TgAb interference was related to the 
number of epitopes recognized by sera rather 
than the pattern of epitope recognition [68]. In an 
earlier study, Ruf et al. [69] showed that Tg epit-
ope specificity of thyroid cancer TgAbs was sim-
ilar to that of normal persons with low TgAb 
concentrations and unlike in that of patients with 
overt thyroid autoimmune thyroid diseases such 
as Graves’ disease and Hashimoto’s thyroiditis. 
This might also have a consequence for the TgAb 
interference in Tg assays of serum from different 
patient groups.

So, independently on whether the presence of 
thyroglobulin antibodies is due to true autoim-
mune disease or not, the challenge of potentially 

Table 3 Factors influencing use and interpretation of 
serum Tg as tumour marker

    • Ablative procedure (total vs. non-total)
    • Substitution therapy
    •  Adequacy of substitution (concentration of serum 

thyrotropin)
    •  Time after destructive therapy (surgery, 

radioiodine)
    • Presence of thyroglobulin antibodies
    •  Methods for measurement of thyroglobulin and 

thyroglobulin autoantibodies

Feldt-Rasmussen, et  al. Cancer 1983, Spencer, JCEM 
2011 [13], Clark and Franklyn, ACB 2012 [81]
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compromising serum Tg measurements as 
tumour marker in differentiated thyroid carci-
noma is not negligible, although TgAb together 
with the other thyroid autoantibodies do decrease 
after removal of the thyroid tissue by total abla-
tion [70] while probably not disappearing after 
only lobectomy, since autoimmunity will be con-
tinuously stimulated by presence of thyroid auto-
antigens as well as by intra-thyroid lymphocytes. 
Notably, it took several years before TgAb disap-
peared after ablation, a fact which has to be kept 
in mind when interpreting Tg and TgAb results.

The initially established radioimmunoassays 
for measurement of serum Tg used double anti-
body techniques which could result in either 
falsely high or falsely low serum Tg quantifica-
tion depending on the nature of the second anti-
body in the assay [7, 34, 59, 71]. Current assays 
for Tg measurement, however, generally use 
immunometric designs, where the influence from 
presence of TgAb in the sample will always be 
unidirectional resulting in a false lowering of the 
Tg concentration [7, 10, 34, 59].

Before mentioning the requirements for TgAb 
methods to reveal amounts liable to hamper Tg 
results, it must be mentioned that heterophilic 
antibodies can also give rise to interference and 
false results of serum Tg measurements [10, 72–
74]. Both falsely elevated and decreased serum 
Tg measurement in the current assays can be seen 
in presence of heterophilic antibodies in current 
assays [10, 71–73], but the effect is usually elimi-
nated by the manufacturers by adding blocking 
agents to the assay [73] and is anyway rare [75].

Interference in the serum Tg measurements 
by, e.g. TgAb leading to misinterpretation of the 
serum Tg concentrations will lead to errors with 
different consequences. A false-positive result 
will result in unnecessary further investigations 
and/or treatment for thyroid cancer on the basis 
of an inappropriately high serum Tg caused by 
TgAb interference measured by radioimmunoas-
say and cause unnecessary anxiety for the patient. 
Conversely, a false-negative result will lead to 
failure to recognize recurrent or metastatic dis-
ease in a thyroid cancer patient because serum 
thyroglobulin is inappropriately low or undetect-
able due to interference from TgAb causing delay 

in the detection of recurrent disease [59]. The 
term “undetectable” refers here to below the limit 
of sensitivity whether or not functional sensitiv-
ity or limit of quantification is used for the Tg 
assay, depending on local laboratory practice [4, 
10, 59]. The impact from the TgAb method on 
the quality of the interpretation will be described 
further below.

 Thyroglobulin Antibody Methods 
to Assess Interference in Tg Assays

To measure TgAb in serum of patients with dif-
ferentiated thyroid carcinoma in order to avoid 
misinterpretation of Tg results in the long-term 
follow-up puts more demand on the TgAb meth-
ods than has previously been effective, nor recog-
nized to be necessary [5]. A variety of different 
means to detect possible interference have been 
suggested and tested over the years. Some com-
panies and researchers have previously been 
mostly devoted to a Tg recovery test, one reason 
being that it is simple and can easily be included 
in the Tg measurement kit. However, since the 
reliability of Tg recovery depends very much on 
the amounts of each of the components in serum 
(Tg and TgAb), which is largely unknown, the 
method is not universally reliable at any concen-
tration range of added Tg [7]. Furthermore, it has 
become more clear from newer studies that a 
quantification of TgAb is necessary in the follow-
up of thyroid cancer patients, also to reveal inter-
ference from TgAb, although some studies have 
indicated an additional value from different types 
of recovery tests [66, 76–78]. Finally, the recov-
ery test may capture heterophilic antibodies [10, 
23, 72–74], but most companies have taken pre-
cautions against interference from these 
 antibodies by adding blocking reagents [73], and 
therefore this interference is far less prevalent 
than the one from presence of TgAb [75].

The second approach to assessing TgAb inter-
ference has been to apply assessment of discor-
dant results between radioimmunoassay and 
immunometric assay results for serum Tg mea-
surement [13, 34, 59, 67]. This method has 
recently been reappraised [70]. Only 3 of the 
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group of 433 patients included in the study were 
TgAb positive without demonstrating evidence 
of Tg assay discordance. No definitive histologi-
cal evidence of tumour recurrence was reported 
in any of the three cases, although equivocal FNA 
of a neck node with positive Thyrogen® stimula-
tion was obtained in one. Irrespectively, in all 
cases TgAb titre subsequently declined to unde-
tectable concentrations. Even though this 
approach seems to demonstrate both high sensi-
tivity and accuracy and therefore could be very 
appealing, it is impractical in modern laboratory 
settings [10, 13, 34, 79]. Since more evidence is 
pointing towards the use also of TgAb as surro-
gate markers for recurrence/relapse on its own, it 
may be more convenient and cost-effective in the 
future to rely entirely on sensitive Tg and TgAb 
methods.

The third approach to reveal interference in 
the Tg assays is direct measurement of TgAb in 
serum [13, 80–83]. In the early days of discovery 
of thyroid autoimmunity, the diagnosis of the 
condition relied on very crude methods and often 
only semiquantitative for measurement of thy-
roid autoantibodies, including TgAb (reviewed in 
[3]). Modern techniques have improved the tech-
nology for measuring these autoantibodies, and 
both increased sensitivity, precision and accuracy 
[34]. Current strategies to measure TgAb in dif-
ferentiated thyroid cancer, but also in clinical 
management of modern thyroid autoimmunity 
unrelated to cancer, have increased the demand 
for sufficiently sensitive TgAb methods (Table 4). 
In thyroid cancer management, the sensitivity is 
particularly important, since even very low levels 
of TgAb may induce false results in the thyro-
globulin assays [7, 10, 34, 68]. It is furthermore 
important for the TgAb methods to cover a broad 
epitope specificity in order to avoid missing 
interfering antibodies not captured by a more 
restricted method [7, 10, 59].

In a recent position paper, which will be men-
tioned in more detail later, it was stated that TgAb 
concentrations, like Tg concentrations, are best 
assessed by immunometric assays [10], although 
very little evidence is available on this issue [80], 
and other studies did not support this [81]. It was 
also recommended to use an assay that is stan-

dardized against the international reference prep-
aration 65/93, which is the only globally available 
reference preparation, but it has to be realized 
that the preparation is very old, and most assays 
use local reference preparations for the kits and 
only calibrate their own standard towards the IRP 
65/93 [34]. For longitudinal consistency of clini-
cal care, consecutive measurements of TgAb 
concentrations should be performed in the same 
laboratory and consistently using the same assay 
[10, 34]. Furthermore, it cannot be overempha-
sized that the TgAb concentration must be mea-
sured in all patient sera prior to Tg analysis, 
because the TgAb of the patient can change over 
time, with treatment or with progression of dis-
ease (see later). Finally, no current Tg method 
used in general clinical routine overcomes inter-
ference from TgAb antibodies that result in both 
sufficient accuracy and sensitivity of Tg mea-
surements for clinical use [10, 34].

However, a promising new methodology for 
Tg quantification has become available [78], and 
this liquid chromatography-tandem mass spec-
trometry method (LC-MS/MS) seemed to be 
superior to immunoassays in terms of avoiding 
interference from TgAb [84, 85]. Although these 
methods have been described to be more accurate 
and may have improved in functional sensitivity 
compared to the first ones, it still remains to be 
proven in a larger context [10]. The LC-MS/MS 

Table 4 Analytical requirements to thyroglobulin anti-
body (TgAb) measurements in differentiated thyroid 
cancer

    •  TgAb methods should be sensitive immunoassays, 
as very low levels may induce false results in the 
serum thyroglobulin (Tg) assays

    •  Extremely high serum Tg concentrations as in 
metastatic thyroid carcinoma may compromise 
correct quantification of TgAb

    •  The TgAb concentration should be measured in all 
patient sera prior to thyroglobulin analysis, i.e. 
TgAb status of the patient can change

    •  The epitope specificity of TgAb methods should 
be broad

    •  Changes in serum TgAb concentrations can be 
used as a surrogate marker for remaining or 
relapsing thyroid tissue

Feldt-Rasmussen, et al. Hormones 2010 [9]; www.nacb.
org; Feldt-Rasmussen et al. 1986 [92]
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methodology is thus very promising, but not 
widely available partly due to the lack of evi-
dence for its clinical efficacy but also due to the 
technical requirements and costs.

 Serum Antithyroglobulin 
Antibodies as Surrogate Biomarkers 
in Patients with Differentiated 
Thyroid Carcinoma

Recent studies have found that patients with thy-
roid cancer, who are positive for TgAb before thy-
roid ablation, retain detectable TgAb if they have 
persistent malignancy after treatment [4, 8, 10, 
34, 86–91], although TgAb concentrations do not 
correlate with the tumour load [87]. Thus, serial 
measurements of TgAb seem to have prognostic 
significance for monitoring the outcome response 
after treatment for differentiated thyroid carci-
noma, i.e. a rise or de novo occurrence of TgAb is 
often the first sign of recurrence in such patients 
[87, 90]. Therefore, changes in serum TgAb con-
centrations can be used as a surrogate, yet impre-
cise, marker of residual benign or malignant 
thyroid tissue [9, 34, 59, 86–91]. A few caveats 
should be mentioned: (1) a very abrupt and 
extreme rise in serum thyroglobulin as in rapid 
development of metastatic thyroid carcinoma may 
compromise correct quantification of TgAb mea-
surements by immune complex formation and 
lowering of the measured concentrations through 
tumour release of Tg [92]; (2) a rapid decrease in 
measured TgAb concentration is also seen shortly 
after thyroidectomy of patients with prior positive 
TgAb, due to the acute release of thyroglobulin 
[93]; (3) a similar but slower reaction is seen after 
radioactive iodine treatment [94, 95].

Unlike using serum Tg as tumour marker, 
which has been the subject of many publications 
over the past several decades, using TgAb concen-
trations is in its beginning of capturing evidence-
based information as to the usefulness, and it will 
require many more long-term prospective studies 
on TgAb changes in relation to thyroid cancer out-
come. There is no good evidence to advice on a 
specific “rising” or “falling” serum thyroglobulin 
antibody concentration, fraction or percentage. 

Some authors have suggested that disease-free 
patients typically display a 50% drop in thyroglob-
ulin antibodies in the first postoperative year [34, 
87]. However, this figure is very likely to depend 
on the initial pretreatment concentration, and more 
studies and evidence are thus required to be able to 
use this as early risk assessment in clinical practice 
in order to avoid uncertainty and expensive imag-
ing. The study by Chiovato et  al. [70] demon-
strated very convincingly that the concentration of 
TgAb after thyroid ablation for thyroid carcinoma 
of 182 patients with thyroid autoimmune manifes-
tations before treatment had a mean disappearance 
time of 3  years, indicating that the actual TgAb 
concentration is not very useful during that period 
for outcome prediction, and only lack of decrease 
or increasing concentrations could indicate persis-
tent disease. Since all of these patients were sub-
jected to total thyroidectomy and radioiodine 
ablation, they must all have started out with an 
immune stimulation from released antigens, 
acutely after surgery but prolonged after radioio-
dine, which might also explain the prolonged dis-
appearance of TgAb [93, 94], which then does not 
necessarily indicate persistence of thyroid cancer.

It is also important to agree upon how to define 
a “positive” TgAb concentration in patients with 
differentiated thyroid cancer, which is a com-
pletely different diagnostic challenge compared 
to diagnosing benign thyroid autoimmune dis-
eases. In the mentioned position paper [10], it is 
recommended that laboratories should report two 
reference ranges for TgAb: one based on TgAb in 
a population free of thyroid disease meant for 
diagnosis of autoimmune thyroid disorders, so-
called manufacturer cut-off, while the limit of 
quantification should be regarded as the upper 
limit of normal in patients with differentiated 
thyroid carcinoma [4], while some would prefer 
to use functional sensitivity [34, 59]. Importantly, 
laboratories should verify the limit of detection, 
limit of quantification and reference range in 
their own population, and they should provide the 
information to clinicians on the various cut-offs 
and collaborate with clinicians to establish own 
reference ranges and cut-offs based on own pop-
ulation-based references. Using TgAb measure-
ments as surrogate tumour marker, the trend is 

U. Feldt-Rasmussen and L. Giovanella



665

more important than the absolute level, such that 
a consistent reduction in the serum TgAb concen-
tration seems to indicate that the patient is likely 
free of disease, a consistent rise or de novo 
appearance of serum thyroglobulin antibodies 
raises suspicion of recurrence, while an 
unchanged serum TgAb concentration must be 
regarded as indeterminate [10, 81].

It should be emphasized that the recommen-
dation to use serial TgAb concentrations as a sur-
rogate tumour marker necessitates continuity of 
the method in the laboratory. Different methods 
for TgAb measurements report different numeric 
values despite claiming standardization against 
the same international reference preparation. 
Thus, changing methods disrupts TgAb monitor-
ing. In this context it is worth noting that despite 
numeric differences between methods, the ratio 
between any two different TgAb methods appears 
constant for a given patient but different for dif-
ferent patients—reflecting TgAb heterogeneity. 
Establishing the ratio between an old and pro-
posed new method on a specimen from the patient 
can be used to rebaseline to the new method [13, 
34, 96], which is an important approach to avoid 
misinterpretation of the long-term outcomes but 
rarely done in clinical practice, which is a prob-
lem in many laboratories.

It also has to be realized that currently the data 
on TgAb use for outcome of thyroid cancer, like 
serum Tg, is based on an initial treatment strategy 
of total ablation, since insufficient ablation from 
a follow-up point of view will hamper both Tg 
and TgAb as tumour markers. For TgAb the 
important issue is continued presence of autoan-
tigen as long as remnant thyroid cells are still 
present [10].

 Remaining Controversies Using 
Serum Tg and TgAb as Combined 
Biomarkers in the Follow-Up 
of Differentiated Carcinoma 
Patients

Current ideal long-term management of differen-
tiated thyroid carcinoma patients would in view 
of the above be a strategy of continuous follow-

up measurement of both Tg and TgAb as bio-
markers. However, there are no evidence-based 
guidelines and thus no defined strategy. 
Furthermore, there are several unsolved evidence 
issues to be solved before guidelines can be 
decided upon. One of them is whether or not 
LC-MSS can solve the methodological biases of 
TgAb interference in the Tg assays and if its per-
formance can be sufficiently sensitive as well as 
cost-effective.

The current literature does not provide suffi-
cient data for the provision of definite and conclu-
sive answers and recommendations in the care of 
TgAb-positive patients with differentiated thyroid 
cancer. In the assessment of Tg and TgAb assays, 
the optimal strategy is likely to be dependent on 
the available assays and the feasibility and costs 
involved [59, 71, 80]. In the paper by Clark and 
Franklyn, it was emphasized that clinicians, labo-
ratory specialists and assay manufacturers should 
collaborate, in agreement with previous state-
ments [59]. The consensus statement in the posi-
tion paper [10] provided an overview of the 
available evidence, and thus, the resulting consen-
sus’ expert opinion and the 25 clinical recommen-
dations were soundly based on a meticulous 
discussion of the evidence by a group of experts.

Based on available evidence, a flow diagram 
was suggested for management of TgAb-positive 
patients with differentiated thyroid carcinoma, 
displayed as Fig.  1 in a modified version. This 
resulted in suggestions for personalized tailored 
follow-up of patients with differentiated thyroid 
cancer and TgAb after thyroid gland ablation.

There is very limited evidence to support 
whether or not to base serum TgAb as tumour 
marker on basal levels or concentrations after 
TSH/Thyrogen stimulation. In one study Nam 
et  al. [97] looked at TgAb in totally ablated 
patients with differentiated cancer before and 
after rTSH, and they concluded that the changes 
in serum TgAb concentrations after TSH stimula-
tion were different in patients with recurrence 
compared to those without evidence of residual 
disease. The number of patients was however low 
(n  =  53) and the study thus inconclusive and 
needs confirmation from larger case control 
studies.
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However, some of the suggestions in this 
paper are liable to change in the near future 
depending on future methodology and evidence. 
In general, fewer patients will have had a total 
thyroidectomy and radioablation, and more will 
receive limited surgery and no radioablation due 
to the increase in low-risk thyroid carcinomas; 
fewer patients will need TSH-stimulated Tg/
TgAb measurements and whole-body scan, if 
sensitive measurements of serum thyroglobulin 
are available [26, 52]. The mainstay will proba-
bly still be serum Tg and TgAb measurements, 

but further follow-up studies of low-risk patients 
and TgAb-positive patients are needed to verify 
the evidence for new guidelines.

Hopefully, these suggestions will stimulate 
clinicians to collaborate closer with their local 
laboratories and subsequently stimulate labo-
ratories to collaborate closer with assay manu-
facturers—to the long-term benefit of the 
patients.
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Imaging: negative
TgAb decreased

Imaging: negative
TgAb stable or

increased

Imaging: positive
Any TgAb

Aim TSH 0.5-2 mUI/L
periodic* TSH (FT4),

Tg, TgAb and neck US

Imaging work-up
e.g. 18F-FDG-PET/CT,

MR, ceCT, RxWBS

FNAC/biopsy.
Surgery and/or RAI
therapy

Imaging negative
TgAb decreased

Imaging negative TgAb
stable/increased

Monitor TgAb repeat
imaging in 1-3 years

Imaging: positive
Any TgAb

6-12 months: neck-US, RAI-DxWBS (SPECT/CT), TSH, TgAb, stimulated Tg

Fig. 1 Proposed 
algorithm for 
management of 
antithyroglobulin-
antibody-positive 
patients with 
differentiated thyroid 
carcinoma after total 
thyroid ablation. WBS 
whole-body 
scintigraphy, LT4 
levothyroxine, TSH 
thyrotropin, FT4 free 
thyroxine estimate, 
TgAb antithyroglobulin 
antibody, Tg 
thyroglobulin, dxWBS 
diagnostic radioiodine 
whole-body 
scintigraphy, US 
ultrasound, PET/CT 
positron emission 
tomography combined 
with computed X-ray 
tomography (adapted 
from Thyroid [10], and 
CMC [4]
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Medullary Thyroid Cancer

Rossella Elisei and Cristina Romei

 Introduction

Medullary thyroid cancer (MTC) is a well-differ-
entiated thyroid tumor which maintains the bio-
logical and pathological features of the 
parafollicular C cells which represent 0.1% of all 
thyroid cells. These cells are dispersed in the thy-
roid and characteristically located at the periph-
ery of the thyroid follicles (Fig. 1). At variance 
with thyroid follicular cells, which derive from 
the endoderm, C cells are neuroendocrine cells 
since they originate from the neural crest and 
migrate to their final location along with the ulti-
mobranchial body, during the embryonic devel-
opment. However, recent genetic studies in mice 
indicate that the real progenitors to C cells, or at 
least to some of them, arise in the endoderm. 
According to these experiments, the neural crest 
theory fails in justifying the evolution and devel-
opment of C cells in the chordate family [1–3]. 
Independently from the theories about the C cell 
origin, it is a matter of fact that there are at least 
four features that make the C cells different from 
follicular cells: (a) the prevalent distribution at 
the junction of the upper third and the lower two-
thirds as well as along the central vertical axis of 

each thyroid lobe; (b) the thyrotropin-stimulating 
hormone (TSH) independent growth and func-
tion; (c) the inability to take up and concentrate 
iodine; and (d) the production and secretion of 
calcitonin (Ct), a biogenic amine which is almost 
exclusively produced by both normal and malig-
nant C cells. The MTC origin from parafollicular 
C cells makes it a biological, pathological, and 
clinical different entity from the other differenti-
ated thyroid tumors.

This chapter is aimed to give an overview of 
all biological, pathological, and clinical aspects 
of this rare tumor which still represents a medical 
challenge for its diagnosis, management, and 
therapy.

 Epidemiology and Risk Factors

MTC is a rare tumor and it accounts for only 
3–5% of all thyroid cancer and 0.4–1.5% of all 
thyroid nodules. When considering that, accord-
ing to the Surveillance, Epidemiology, and End 
Results (SEER) program of the National Cancer 
Institute, the thyroid tumors prevalence among 
all human tumors is 3.8%, that one of MTC is 
less than 0.2% (https://seer.cancer.gov/). Because 
of its rarity, the overall frequency is unknown, but 
autoptic studies show an average prevalence of 
0.14% in thyroids of subjects died for other rea-
sons [4]. MTC is sporadic in about 75% of cases 
and familial in the other 25%. The familial cases 
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are inherited as an autosomal dominant trait, and 
they can be classified into three different pheno-
types: (a) the multiple endocrine neoplasia type 
IIA (MEN IIA) in which the MTC can be associ-
ated with pheochromocytoma (PHEO) (50% of 
cases) and/or parathyroid adenomas (PTHomas) 
(30% of cases) and also, in a 10% of cases, with 
a cutaneous lichen amyloidosis (CLA) (Fig. 2a); 
(b) the multiple endocrine neoplasia type II B 
(MEN IIB) in which the MTC can be associated 
with a PHEO (45% of cases) and almost invari-
ably accompanied by a marfanoid habitus, intes-
tinal neurinomas and/or megacolon, scheletric 
abnormalities, corneal hypertrophy, and mucosal 
neurinomas (in the tongue and in the buccal 
mucosa and/or in the congiuntivas) (Fig. 2b); and 
(c) the familial medullary thyroid cancer (FMTC) 
in which the hereditary MTC is the only disease 
present in the family. While in the past it was 
reported that MEN IIA was the most frequent 
form of MEN II, nowadays, as effect of the intro-
duction of the genetic screening for RET germ-
line mutation, it has been demonstrated [5] that 
the FMTC is the most prevalent form, followed 
by MEN IIA and MEN IIB (Fig. 3).

At variance with the other well-differentiated 
thyroid cancer, papillary (PTC) and follicular 
(FTC), women and men are equally affected, 
both in the sporadic and hereditary form. 

Although the mean age at diagnosis is 
45–50 years, a wide range in age at onset is pres-
ent, but children are affected only in the heredi-
tary form.

Up to date, neither environmental factors 
nor life or food styles have been demonstrated 
to be associated with the development of spo-
radic MTC.  Nevertheless, associations with 
preexisting thyroid diseases and other disor-
ders such as hypertension, allergies, and gall-
bladder disease have been reported in a pooled 
analysis of epidemiological studies [6]. The 
hypothesis that the development of MTC could 
be correlated to sunshine exposure has been 
postulated several years ago [7] but never con-
firmed in other series [8].

Fig. 1 Normal C cells (here indicated with the arrows) 
can be detected only by immunohistochemistry for calci-
tonin. They are rare (0.1% of all thyroid cells) and located 
at the periphery of the thyroid follicles

a
b

cd

a

b

Fig. 2 Non-endocrine diseases associated to endocrine 
neoplasia in MEN II. Panel (a) cutaneous lichen amyloi-
dosis, which is characteristically located in the interscapu-
lar region, is an itchy lesion of the skin typical of MEN 
IIA present in about 10% of cases; panel (b) neurinomas 
of the buccal mucosa (arrow a) and of the tongue (arrows 
b, c, and d) are typical of MEN IIB and present in 100% 
of cases. Similar lesions can be present also in the con-
junctiva. Tick lips are also characteristic of the phenotype 
of MEN IIB patients
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The biological behavior of MTC is much less 
favorable when compared with that of PTC and 
FTC, but not as unfavorable as that of anaplastic 
thyroid cancer (ATC).  A 10-year survival of 
about 50% for patients with MTC is reported in 
several series, and it is evident that both the cure 
and survival are positively affected by an early 
diagnosis [9]. Recently, an improvement of the 
survival of these patients, likely correlated with a 
better performance of both the diagnosis and the 
therapy of the disease, has been reported [10, 11].

 Histological Diagnosis

At histology, the macroscopic appearance of 
MTC is of a hard and firm, red or chalky-white 
nodule. MTC microscopic appearance is pleio-
morphic with spindle-shaped or rounded cells 
typically organized in a nested pattern (Fig.  4). 
Mitoses are uncommon, nuclei are usually uni-
form and characteristic secretory granules are 
present in the cytoplasm. Typically, amyloid sub-
stance is present among MTC cells, and when 
present it allows the specific diagnosis. MTC 
diagnosis can be confused with that of an ATC, or 
a Hürthle cell or an insular DTC, especially when 
pseudopapillary elements or giant cells are pres-
ent. The positive immunohistochemistry for Ct, 
and also that for chromogranin A and carcinoem-
bryonic antigen (CEA), is diagnostic of MTC 

[12]. The histological description of MTC should 
include the number and distribution of tumoral 
foci as well as the concomitant presence of C cell 
hyperplasia (CCH). C cell hyperplasia can be dif-
fuse or focal and is considered the histological 
hallmarks of the hereditary forms even if nowa-
days it is known that about 30% of sporadic cases 
are also accompanied by CCH [13, 14]. The dis-
tinction between “neoplastic” and “benign/reac-
tive” CCH is still undefined [15]. Nevertheless, a 
recent multicentric study demonstrated that spo-
radic MTC are multifocal (i.e., with >1 focal 
lesion) and bilateral in 17% and 5.6% of cases, 
respectively [16]. With the exception of the prev-
alence of CCH, no other major differences have 
been observed at histological level between the 
sporadic and the hereditary forms of MTC 
(authors’ institutional observation).

 Pathogenesis

In 1994, after discovering the transforming role 
of RET oncogene, it was demonstrated that 
germline activating point mutations of RET were 
present in the vast majority of a big series of 
hereditary MTCs [17]. In the same context, 
somatic RET mutations were found in about 
40% of sporadic MTCs [18]. In vitro and in vivo 
studies confirmed the driver role of RET muta-
tions in the development of MTC [19, 20]. 

MTC

SPORADIC
(75%)

FAMILIAL
(25%)

FMTC
(60%)

MTC
(100%)

MEN IIA
(30%)

MTC (100%)
PHEO (50%)

PTH ADENOMAS (30%)
Cutaneous lichen amyloidosis (10%)

MEN IIB
(10%)

MTC (100%)
PHEO (45%)

Mucosal neurinomas (100%)
Habitus Marphanoide (85%)

Corneal nerve ipertrophy (65%)
Intestinal neuromas and/or

megacolon (90%)

Fig. 3 Prevalences of 
the different forms of 
medullary thyroid 
cancer (MTC) and of the 
different endocrine 
(pheochromocytoma 
(PHEO) and parathyroid 
(PTH) adenomas) and 
non-endocrine diseases 
associated in the 
multiple endocrine 
neoplasia (MEN II) 
syndromes

Medullary Thyroid Cancer



676

Germline RET point mutations are mainly local-
ized in exons 10–11, 13–16, but other rare muta-
tions have been reported also in other exons such 
as 5 and 8 [21, 22]. A significant genotype-phe-
notype correlation has been reported over the 
years with some RET mutation almost exclu-
sively associated with a specific MEN II syn-
drome [23] (Table  1). Somatic RET mutations 
are mainly concentrated in exon 16, while only 
few cases have been reported in other exons 
[24]. Moreover, RET somatic mutation preva-
lence is significantly higher in bigger MTC 
tumors than in smaller [25], and particularly 
high in advanced and progressive MTC [26]. 
With a few exceptions, named “variant of 

unknown significance” (VUS) [27], the pene-
trance of RET mutations is complete in terms 
that all gene carriers sooner or later will develop 
the disease. At variance, the level of expressivity 
is different in terms that MTC due to different 
RET mutations can have different degree of 
aggressiveness and it is related to the transform-
ing ability which is the highest for M918T muta-
tion [27]. According to these differences, three 
risk levels (i.e., moderate, high, highest) have 
been suggested in the recently published 
“American Thyroid Association guidelines for 
the diagnosis and treatment of MTC” to classify 
the different RET mutations and to time surgical 
treatment of RET gene carrier [28].

Fig. 4 Typical nested 
pattern of malignant C 
cells in a medullary 
thyroid cancer 
(immunohistochemistry 
for calcitonin)

Table 1 Genotype/phenotype correlation for the most common RET germline mutations

MEN IIB MEN IIA FMTC MEN IIA/FMTC
M918 C634 G533 C609
A883 Y635 C630 C611
V804 + Y806 D631 C618
V804 + S904 K666 C620

V804 L790
R844 S891
R912
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Although not yet introduced in the routine 
clinical practice, it would be worth to know if a 
sporadic MTC is carrying a RET somatic 
 mutation, since the mutated cases have a worse 
prognosis [29]; thus, a more aggressive therapeu-
tic strategy or a more stringent follow-up could 
be reserved to these patients. Moreover, all cases 
of apparently sporadic MTC should be screened 
for a germline RET mutation, since about 5–10% 
of them are misdiagnosed hereditary forms [18].

RAS oncogene mutations, in particular H-RAS 
and K-RAS, are present in about 10–20% of spo-
radic MTC, and they are mutually exclusive with 
RET mutations [30]. No other driver mutations 
have been discovered in RET- and RAS-negative 
MTC even when tissues were analyzed with next 
generation sequencing techniques [31–33]. 
Nevertheless this approach allowed the identifi-
cation of two MTC cases with a somatic rear-
rangement of ALK [33] and RET [34]. Some very 
rare mutations have been described, but their 
prevalence is so low to be considered as “private” 
mutation likely relevant only in that specific case 
[35]. A similar finding has been reported for 
hereditary cases: the ESR2 gene, which encodes 
the beta subunit of the estrogen receptor (ERβ), 
has been found to be mutated in members with 
MTC but not in their unaffected relatives in one 
familial case. However, the same ESR2 mutation 
was not found when it was looked for in other 
RET-negative familial cases, thus suggesting that 
it was a “private mutation” of the first family ana-
lyzed [36].

The challenge of the next future is to find the 
driver mutations of both the RET-negative famil-
ial cases and RET- and RAS-negative sporadic 
cases. This research is fundamental in the era of 
the new developing therapies which require a 
well-characterized molecular profile to be tar-
geted [37].

 Presurgical Diagnosis

From 0.4 to 1.5% of all thyroid nodules can be an 
MTC, and the challenge is to make both an early 
diagnosis and a presurgical correct diagnosis to 
plan the right surgical treatment. At neck ultra-

sound the thyroid nodule can be suspicious for 
malignancy but no specific echographic features 
for MTC have been identified so far [38].

Serum Ct is the most specific and sensitive 
marker for MTC both before and after thyroidec-
tomy. It is a small polypeptide hormone (32 
amino acids) physiologically produced almost 
exclusively by the parafollicular C cells. Ten 
years after the recognition of MTC as a distinct 
histological type of thyroid cancer, high levels of 
Ct were demonstrated to be present both in the 
tumoral tissue and in the serum of patients with 
MTC [39, 40]. Elevated baseline serum levels of 
Ct are strongly suggestive for MTC, especially 
when >100  pg/mL.  Routine measurement of 
serum Ct in patients with nodular thyroid disease 
allows the preoperative diagnosis of unsuspected 
sporadic MTC [41]. In this regard, assaying 
serum Ct facilitates the early diagnosis of MTC, 
usually when the tumor is still at stage I, thus 
favoring successful surgical treatment [9]. 
Despite these evidences, there are still controver-
sial opinions about the routine measurement of 
serum Ct in all cases of thyroid nodules. Two are 
the major concerns: (a) the false-positive cases 
and (b) the cost-benefit. As far as the false posi-
tivity of serum Ct is concerned, it should be taken 
into account that there are some rare clinical con-
ditions in which serum Ct can be detectable such 
as in some neuroendocrine tumors, renal failure, 
hyperparathyroidism (hyperPTH), and some 
advanced carcinoma (i.e., lung and breast) which 
can be rather easily ruled out. Moreover, hyper-
calcitoninemia may be observed in isolated CCH 
surrounding either lymphocytic thyroiditis or 
microPTC [42]. Finally, the possibility to have 
false-positive results for the presence of hetero-
philic antibodies or low specificity of the Ct assay 
should be discussed with the referral laboratory. 
In any case, these confounding conditions can be 
ruled out with a Ct stimulation test since the peak 
Ct is much lower or even absent respect to that 
observed in the presence of MTC.  Pentagastrin 
stimulation was used for many years in the clini-
cal practice, but nowadays pentagastrin is not 
more available and the Ct stimulation is per-
formed by a rapid e.v. infusion of 2.5 mg/Kg of 
calcium. Although high-dose calcium is a more 
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potent and better-tolerated Ct stimulator than 
pentagastrin [43, 44], some doubts about the 
specificity of this test have been arisen recently 
[45]. Regarding the cost-benefit concern, which 
is mainly due to the low prevalence of MTC 
among thyroid nodules, an American study 
clearly demonstrated that the benefit of this pro-
cedure can be compared to that obtained with the 
mammography and colonoscopy for breast and 
colon cancer, respectively [46], thus eliminating 
any doubts on this regard.

The problem of the presurgical diagnosis of 
MTC is still a matter of discussion. If the serum 
Ct routine screening of all thyroid nodules is not 
widely accepted and even not recommended by 
several international guidelines, the measure-
ment of serum Ct should be performed at least in 
those cases with nodules suspicious for malig-
nancy at neck ultrasound and in those cases for 
which the surgical treatment has been already 
planned. The reason to suggest this practice is 
related to the low sensitivity of the fine needle 
aspiration cytology (FNAC) for MTC. An inter-
national multicentric study has unequivocally 
demonstrated that the FNAC sensitivity for MTC 
is rather low since only 46% of MTC were 
revealed as MTC by FNAC and thus submitted to 
the right surgical treatment [47]. Another practice 
that can be useful in reaching a presurgical diag-
nosis of MTC is the measuring of Ct concentra-
tion in the washout of the needle used for FNAC 
of a suspected thyroid nodule [48]. This approach 
is of particular diagnostic utility also to ascertain 
the nature of enlarged neck lymph nodes, espe-
cially before thyroidectomy, in order to better 
plan the surgical approach or the most appropri-
ate therapeutic strategies [48].

The presurgical diagnosis is similar in spo-
radic cases and in the index case of the familial 
forms while it is based on genetic screening for 
the relatives of index cases. In fact, after the iden-
tification of the germline RET mutation, all first-
degree relatives should undergo the RET genetic 
screening for the same mutation [49]. This 
screening will allow the early identification of 
those relatives who will develop the MTC. The 
challenge is “when” to submit the gene carriers to 
surgical treatment. Nowadays we are aware that 

not all RET mutations have the same degree of 
aggressiveness and transforming ability and the 
age of development of MTC is strictly correlated 
with this degree. On this regard it is useful to 
recall that serum Ct is a very sensitive and spe-
cific marker of MTC and a periodic monitoring 
of this marker in gene carriers, especially in those 
with “moderate” RET mutation [50], will allow 
the early discovery of the tumor and the possibil-
ity to perform the thyroidectomy when the dis-
ease is still curable [51]. Moreover, the level of 
serum Ct can also guide the extension of thyroid-
ectomy; in fact gene carriers with serum 
Ct < 30–40 pg/mL, according to the local cutoff, 
may avoid central node neck dissection [50–52] 
which represents the biggest risk factor for post-
surgical hypoparathyroidism, especially in chil-
dren [53].

 Initial Treatment

It is worldwide recognized that total thyroidec-
tomy and central neck nodes compartment dis-
section is the treatment of choice for MTC; 
therefore, an accurate presurgical diagnosis of 
MTC is fundamental for planning the correct sur-
gical approach [41]. The opportunity or necessity 
to perform an elective ipsi- or bilateral neck dis-
section is still controversial. Nowadays this 
extensive surgery is better suggested in cases 
with serum Ct > 200 pg/mL because of the high 
risk to have neck node metastases [54]. However, 
since an accurate neck ultrasound can identify 
suspicious lymph nodes in the laterocervical 
compartment(s) [55], many surgeons prefer to 
perform the laterocervical dissection only in the 
presence of well-documented lymph node metas-
tases. As matter of fact, when the lymph nodes of 
the neck are already metastatic, the biochemical 
cure of the disease is very unlikely to be obtained 
despite an extensive surgical treatment [56].

To avoid the risk of an unexpected hyperten-
sive crisis during the surgical treatment, all MTC 
patients who should undergo thyroidectomy must 
be screened for the presence of PHEO by mea-
suring plasma-free levels of metanephrine and 
normetanephrine [57]. The only possibility to 
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avoid this procedure is to have a negative result of 
the genetic screening before the thyroidectomy 
which is confirmatory that the case is sporadic.

The only recognized poor prognostic factors 
for both the cure and survival of patients with 
MTC are the advanced stage at diagnosis and the 
presence of a somatic RET mutation [29]. 
Although a positive correlation of preoperative 
serum levels of Ct has been correlated with the 
extension of the disease, there are cases less dif-
ferentiated in which this correlation is lost and Ct 
values can be very low despite the spread of the 
disease [58]. At variance, preoperative elevated 
serum CEA levels are correlated with a bigger 
tumor size and greater number of lymph node 
metastases, thus reflecting the burden of disease. 
Moreover, serum CEA may be used as a surro-
gate tumor-associated marker in those MTCs that 
do not secrete Ct [59]. In cases with high levels of 
serum CEA, associated or not to elevated serum 
Ct, a computerized tomography (CT) scan with 
iodine contrast medium can be indicated to guide 
the extent of surgery.

 Follow-Up

MTC patients are followed by monitoring the 
serum Ct and CEA levels and by neck US exami-
nation. Evaluating these diagnostic parameters 
every 6–12 months allows the clinicians to assess 
the clinical status of the patients and to early dis-
cover those who need medical treatment.

Because of the half-live(s) of serum Ct [60], 
the first monitoring after surgery is indicated at 
3 months when the basal serum Ct levels can be 
reliable, not more affected by the presurgical 
values and reflecting the real clinical status of 
the patient. A postoperative elevated serum level 
of Ct is diagnostic of the persistence of the 
MTC, which occurs in 30–55% of cases after 
primary surgical treatment, particularly when 
the tumor is already extrathyroidal [61]. At vari-
ance, undetectable postoperative basal values of 
serum Ct indicate the cure of the disease with a 
risk of recurrence of 10%. This risk is even 
lower (about 3.0%) if also stimulated Ct is unde-
tectable [62]. Cured patients can be followed up 

with 12–18  months clinical and biochemical 
controls, while those with detectable levels of 
serum Ct must be checked every 6 months with 
a clinical and biochemical control and at least a 
neck ultrasound since the neck is the most likely 
region for recurrence. When the value of basal 
serum Ct is less than 150 pg/mL also CEA level 
is low, likely normal, and it is very uncommon 
to find the lesion(s) producing and secreting Ct 
even with CT scan and other imaging tech-
niques. No major efforts should be done to find 
these lesions, and an active surveillance with 
clinical and biochemical controls every 
6–12  months is the most appropriate attitude 
(Fig.  5). However, if serum Ct is detectable, 
independently from its value, a total body CT 
scan with iodine contrast medium is indicated 
for both making a “starting point” for the follow 
up and discovering those cases, but existing, 
with low levels of serum Ct and advanced dis-
ease because of the dedifferentiation of the 
tumoral C cells [63].

The most sensitive biomarkers of MTC pro-
gression are the doubling times (DT) of serum Ct 
and CEA values, and when shorter than 1  year 
they represent poor prognostic factors for both 
the rapid progression of the disease and patient’s 
death [64, 65]. There are some new evidences 
that elevated levels of serum Ca 19.9 in advanced 
MTC patients may represent a very bad prognos-
tic factor for survival [66, 67].

The accurate identification of sites of recur-
rences is essential for patient management as 
well as their growth monitoring. The most appro-
priate diagnostic imaging work-up for both the 
localization and growth rate of the metastatic 
lesions includes US of the cervical region, CT 
scan of the chest, magnetic resonance imaging 
(MRI) for the liver and brain, and bone scintiscan 
[68]. These imaging techniques are preferred in 
clinical practice since, at variance with radionu-
clide imaging, they allow the correct identifica-
tion and measurement of the lesions whose 
growth will be calculated according to the 
response evaluation criteria in solid tumors 
(RECIST) [69]. The schedule of their execution 
should take into account the Ct and CEA DT to 
avoid unnecessary radiation exposure to those 
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patients with a long DT and, at the same time, to 
early intercept the tumor growth (Fig. 5).

Radionuclide imaging (RNI) techniques can 
play a role in recurrent MTC especially to detect 
residual or recurrent tumor that might be treated 
with radiopharmaceuticals. The most conven-
tional RNI is the scintigraphy with the somatosta-
tin analog 111In-Pentetreotide (Octreoscan®), but 
nowadays its use for the evaluation of MTC 
patients is very limited, because the inhomoge-
neous distribution of somatostatin (SMS) recep-
tors among different tumor lesions of the same 
patient are generally lower than in other neuroen-
docrine tumors [70]. The highest sensitivity is 
reported in MTC patients with neck and mediasti-
nal lymph node metastases, while it is lower for 
distant metastases [71]. The real practical indica-
tion for this RNI is the evaluation of the presence 
of SMS receptors in patients candidate to therapy 
with radiolabeled SMS analogs.

123I-metaiodobenzylguanidine (123I-MIBG, 
structurally similar to norepinephrine) accumu-
lates in tumors deriving from the neural crest. 
Scintigraphy with 123I-MIBG can be positive in 
patients with MTC [72], but its sensitivity is 
rather low (38%) in patients with medium-low 
levels of serum Ct and no lesions detected with 
conventional imaging techniques [73].

Immunoscintigraphy with radiolabeled mono-
clonal anti-CEA antibody shows high sensitivity 
(75–100%) to detect MTC metastatic lesions in 
patients with aggressive and rapidly growing 
tumors [74]. However, this radiopharmaceutical 
is not commercially available.

Ligands for the gastrin/cholecystokinin B 
receptor (CCK-BR) constitute a new class of 
peptides that can be radiolabeled and utilized for 
diagnosis or therapy of CCK-BR-expressing 
tumors; among these, MTCs express the CCK-BR 
in almost 90% of the cases [75]. 111In-labeled 

negative

6-8 months clinical biochemical
and neck US  control and repeat
imaging if serum Ct and/or CEA

increasing

positive

Consider local treatment or
wait and see or systemic

therapy according with the
progression of the disease

2-3 months after
surgery:

serum Ct and CEA
measurements

Neck US

All negative

Cured with a
10% risk of
recurrence

Stimulation
test for serum

Ct

Negative stimulation test
Cured with a 3% risk of

recurrence

Positive stimulation test Elevated
serum Ct

and/or CEA
with either
positive or
negative
neck US

Imaging (TB CT scan)
starting point

12-18 months clinical,
biochemical and US control:
imaging only if increasing of

serum markers

Fig. 5 Algorithm of follow-up of MTC patients after ini-
tial surgical treatment: measurement of serum calcitonin 
(Ct) and carcinoembryonic antigen (CEA) together with 

neck ultrasound (US) are the basic management tools, and 
their results represent the guide for both the schedule and 
the type of controls to be performed thereafter
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derivatives of gastrin (111In-DTPA-d-Glu1-
minigastrin) showed excellent targeting of CCK-
BR-expressing tumors, with 94% sensitivity [76, 
77]. However, the technique is restricted to very 
specialized centers, and its clinical usefulness is 
not yet demonstrated [78].

At variance with many other types of human 
tumors, [18F] fludeoxyglucose (FDG) positron 
emission tomography (PET) suffers from the 
fact that the metabolic activity of MTC cells is 
only slightly increased with respect to normal 
cells. Indeed, 18F-FDG-PET sensitivity in 
patients with MTC is correlated with Ct serum 
levels higher than 500  pg/mL, Ki-67 scores 
higher than 2.0%, and shorter Ct DT [79]. In par-
ticular, sensitivity of 18F-FDG-PET is less than 
20%, in patients with Ct levels <500 pg/mL and 
about 80% in patients with high levels of serum 
Ct (>1000  pg/mL) [80]. PET with 
18F-dihydroxyphenylalanine (DOPA) or with 
68Ga-labeled SMS analogs has more recently 
been proposed for patients with MTC.  Indeed, 
PET with 18F-DOPA is more accurate than other 
RNI techniques in patients with MTC, in partic-
ular for detecting local recurrent disease and 
lymph node involvement with a sensitivity of 
about 80% even in those cases with a long Ct DT 
and a low growth rate [81–83]. Other promising 
PET agents to image neuroendocrine tumors 
include SMS analogs labeled with 68Ga through 
the DOTA chelator (e.g., 68Ga-DOTA-TOC, 
68Ga-DOTA-TATE, 68Ga-DOTA-NOC) [84]. 
However, the diagnostic role of 68Ga-DOTA-
peptides is still under investigation and valida-
tion, because of controversial reports probably 
due to the fact that MTCs show a variable and 
often low SMS-receptor subtype expression 
[84–86].

 Treatment of Persistent/Recurrent 
and Metastatic Disease

After the initial surgical treatment, only 5–35% 
of MTCs, mainly those cases with intrathyroidal 
tumor, are cured also at biochemical level (i.e., 
normalization of serum Ct and/or CEA levels). 
Among the others, three groups of patients can be 

distinguished from a clinical point of view: (a) 
those with a biochemical persistent disease (i.e., 
detectable levels of serum markers Ct and CEA 
but no evidence of structural disease); (b) those 
with a structural disease, both local and/or dis-
tant, but with low Ct and CEA DT and a null or 
very slow growth rate; and (c) those with a struc-
tural disease and a rapid progression as assessed 
by both a short DT and a rapid growth of the 
lesions according to RECIST.

While the first and second group must be sub-
mitted to an “active surveillance” by following 
the algorithm above described (Fig. 5), the third 
group requires to be treated with the intent to 
control the disease growth or to reduce the symp-
toms that sometimes are related to the disease 
localization and growth. The type of treatment to 
be used is very much dependent on both the site 
and size of the metastatic lesion. Whenever pos-
sible a local treatment should be preferred to a 
systemic therapy that should be reserved to cases 
with multiple lesions in multiple organs and 
clearly progressing according to RECIST [87]. 
Local or regional recurrence of MTC in the neck 
and mediastinum can be effectively treated with a 
second surgical treatment. External beam radio-
therapy (EBRT) should follow this surgery espe-
cially if the neck is extensively involved or if this 
surgical treatment was the last of several others 
previously performed [88]. ERBT can also be 
used for bone lesions, in particular if painful, and 
brain metastases for their stabilization. In patients 
with a predominant metastasis in the liver, trans-
arterial chemoembolization (TACE) has proven 
effective in reducing the tumor mass [89]. TACE 
is usually well tolerated and determines both 
clinical improvement and tumor response for 
relatively long periods of time in the majority of 
patients. This therapeutic option should always 
be taken into consideration even when extrahe-
patic metastases are present [90, 91]. Several 
types of percutaneous thermal ablation tech-
niques are entering in the clinical management of 
metastatic lesions especially bone, lung, and liver 
lesions. Radiofrequency ablation (RFA), micro-
wave ablation (MWA), laser ablation, high-inten-
sity focused ultrasound (HIFU), and cryoablation 
can be used with curative and/or palliative pur-
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poses [92]. In thyroid cancer RFA is of particular 
usefulness for the treatment of local recurrences 
particularly when surgery cannot be performed 
because of a contralateral cord palsy or anesthe-
sia contraindications (Fig. 6).

The main cause of MTC-related death is rep-
resented by distant metastases, which affect 
more frequently the lungs, bones, and liver, more 
rarely the brain and skin [93]. The 5-year sur-
vival rate of patients with distant metastases at 
diagnosis is 25% [94], with low response rates 
elicited by any of the therapeutic options avail-
able. Conventional chemotherapy, both mono 
drug and combined, induces a temporary clinical 
benefit in terms of disease stabilization (SD) 
and/or partial remission (PR) in only 20% of 
cases [95, 96], but it cannot be considered a valid 
therapeutic option especially when considering 
the cost-benefits between the very severe side 
effects and the poor results [97]. Other systemic 
therapies have been tested in the past such as 
interferon-α and SMS analogs, but they are able 
to only induce transient improvement of the 
symptoms and Ct level reduction with any 
proved benefit in disease stabilization or remis-
sion [98]. Anti-CEA pretargeted radioimmuno-
therapy (pRAIT) has been used for treatment of 
metastatic MTC and has been shown to induce 
long-term disease stabilization and significantly 
prolonged survival in high-risk MTC patients 
with manageable hematologic toxicity [99–101]. 
More recently, radionuclide therapy with the 

radiolabeled SMS analog 90Y-DOTA-Tyr3-
octreotide (90Y-DOTATOC) has been tested in 
metastatic MTC.  This therapy has resulted in 
favorable biochemical response in about one-
third of the patients (irrespective of the result of 
the pre-therapeutic scintigraphy), associated 
with a long-term survival benefit [102]. Patients 
with smaller tumors and higher uptake of the 
radiopeptide tended to respond better [103]. 
Further studies are in progress to investigate the 
effect of other radiolabeled SMS analogs, includ-
ing 177Lu-DOTA-TATE and other radiopeptides, 
among which gastrin-like ligands, on the sur-
vival of patients with advanced metastatic MTC 
[75, 102].

Bone metastases are present in about 20% of 
MTC patients, and about 50% of them suffer 
from skeletal-related events (SREs), less fre-
quently from spinal cord compression [104]. 
Patients with bone metastatic lesions, indepen-
dently from the origin of the carcinoma, are usu-
ally treated with bisphosphonates e.v. particularly 
with zoledronic acid or denosumab to reduce the 
risk of SREs, including bone fracture, spinal cord 
compression, and hypercalcemia. Positive results 
of this treatment have been reported for differen-
tiated thyroid carcinoma [105], but no data are 
available for MTC. An accurate evaluation of the 
dental and buccal cavity status should be always 
performed before starting bisphosphonates for 
the high risk to develop the osteonecrosis of the 
jaw (ONJ) [106].

a b

Fig. 6 Local paratracheal MTC recurrence before (panel a) and 3 months after (panel b) local treatment with ther-
moablation: a reduction of about 60% of the biggest diameter was observed
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Despite all the above mentioned tentative of 
treatment, metastatic MTC has been orphan of a 
real therapy until recently. Starting from 2005, 
molecular targeted therapies became the new 
frontiers for treating patients with metastatic 
MTC [107]. In particular, the RET gene immedi-
ately represented a promising target for therapy 
in patients with familial MTC as well as for the 
majority of patients with advanced sporadic 
MTC [26]. Several inhibitors of the RET kinase 
activity which are active also against other tyro-
sine kinases (TKs), named tyrosine kinase inhibi-
tors (TKIs), have been evaluated in the last 
decade [108–111]. They are small molecules able 
to simultaneously block several kinases (multi-
targeted TKI) including the vascular endothelial 
growth factor receptor (VEGF-R) which is also 

overexpressed in MTC [112] and in particular in 
those cases with a RET mutation [113]. A com-
plex network among RET and RAS mutations and 
the overexpression of other TKs has been recently 
demonstrated suggesting a TK-inhibiting role of 
TKI through the inhibition of the driver muta-
tions [114, 115]. Because of their modality of 
action, the TKI are cytostatic and not cytotoxic 
thus the expected effect is to stop the tumor 
growth. However, since they act also against 
VEGF-R, they have also an antiangiogenic effect 
which ends up in shrinking the tumoral lesions as 
a consequence of their devascularization (Fig. 7). 
Two of these drugs, vandetanib and cabozantinib, 
have been approved by both the Food and Drug 
Administration (FDA) and European Medical 
Agency (EMA) for the treatment of advanced 

a1 a2

b1 b2

Fig. 7 Shrinkage of MTC metastatic lesions after 
6  months of treatment with vandetanib (panel A) and 
cabozantinib (panel B). In both cases, the difference in 

both the size and vascularization before (panel A1 and 
panel B1) and after (panel A2 and panel B2) 6 months of 
the therapy is visible
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and progressive MTC (Table  2). The approvals 
for the clinical use of the two drugs arrived after 
the positive results of the two phase III studies, 
ZETA and EXAM study, in which the effect of 
vandetanib and cabozantinib on the progression-
free survival (PFS) of patients with advanced and 
progressive MTC, were tested against placebo 
[116, 117]. In both studies, the PFS of patients 
treated with the drug was significantly longer 
than that of patients treated with placebo. In both 
studies it was also observed a significant objec-
tive response rate (ORR) since many targeted 
lesions showed either a stabilization of the growth 
(SD) or a partial remission (PR) according to 
RECIST. Unfortunately, until now no advantages 
in terms of overall survival has been reported 
with the exception of a subgroup of patients with 
tumors positive for the M918T RET mutation and 
treated with cabozantinib [118]. The subgroup 
analysis, performed according to age, sex, differ-
ent metastatic lesions, presence of RET muta-
tions, and other parameters, was unable to 
identify a better responder group since in all 
cases an advantage from the drug treatment was 
observed. Finally, cabozantinib has been found to 
be active also in cases previously treated with 
another TKI thus demonstrating that cabozan-
tinib can be used both as first- and second-line 
treatment. The major concerns about the use of 
these drugs are related to (a) the adverse events 
(AEs) that they can induce (Table 2), (b) the fact 
that once they have started they should be contin-
ued long life or at least until the evidence of clini-
cal benefits, and (c) the appearance, sooner or 
later, of the escape phenomenon. The AE can be 
managed in the majority of cases either with the 
introduction of other drugs to treat the specific 
AE, such as angiotensin-converting-enzyme 
(ACE) inhibitors for hypertension, or reducing 
the daily dosage of the drug as in case of a severe 
fatigue or anorexia. Patients must be alerted of 
the possible AE and instructed to refer immedi-
ately the appearance of AE-related symptoms to 
give the doctor the possibility to rapidly inter-
vene with the appropriate clinical attitude. As far 
as the problem of the escape phenomenon is con-
cerned, so far what we can do is to plan an algo-
rithm of drugs administration. At the present 

vandetanib and cabozantinib are the only two 
approved drugs, but unfortunately not all coun-
tries have the same access to the two drugs. 
However, supposing that both drugs are equally 
available, we would better start with vandetanib 
since we know that cabozantinib can be active 
also in second line [116] and reserve this latter at 
the time of the escape from vandetanib treatment. 
Among other drugs that could be used as follow-
ing lines of treatment, lenvatinib has been tested 
in a phase II study and showed very promising 
results [111]. Lenvatinib, but also sorafenib and 
sunitinib, can be eventually used as “off-label” 
drugs in patients surviving to both vandetanib 
and cabozantinib treatment [119].

After the results of a phase I/II study per-
formed in children and adolescents affected by 
metastatic MTC, mainly by MEN IIB, vande-
tanib has been approved also for the treatment of 
patients <18 years of age, although with a differ-
ent schedule of drug administration [120].

Table 2 Similarities and differences between the two 
TKIs approved for the treatment of advanced medullary 
thyroid cancer

Vandetanib Cabozantinib
Phase III study ZETA study EXAM study
    N of enrolled 

patients
331 330

    Median PFS 
(months)

30.5 (drug) vs. 
19.3 (placebo)

11.2 (drug) vs. 
4.0 (placebo)

    Objective 
response rate 
(%)

45 28

    Overall 
survival

No 
improvement

No 
improvement

Half-life 19 days 55 h
Starting dosage 300 mg/day 140 mg/day
Content of capsules 300 mg or 

100 mg
80 mg or 
20 mg

Most frequent adverse events %
   Hypertension 32 32
   Diarrhea 56 63
   Skin rash 45 19
   Anorexia 21 45
   Nausea 33 43
   Weight loss 10 47
   Fatigue 24 40
    QTc 

prolongation
14 NE
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Vandetanib can be prescribed also for the 
treatment of Cushing’s syndrome due to ectopic 
production of ACTH [120–123]. Although the 
prevalence of this ectopic syndrome is rather rare 
in MTC, varying from 1.9 to 11.6% [124], it rep-
resents a very poor prognostic factor for survival. 
For this reason Cushing’s ectopic syndrome is 
per se an indication to therapy independently 
from the evidence of disease progression. On this 
regard it is useful to say that also other TKIs have 
been demonstrated to be useful for the treatment 
of this syndrome [125, 126] and, although they 
have not been approved for the treatment of 
MTC, an “off-label” use could be appropriate in 
cases that, for any reason, could not be treated 
with vandetanib.

 Conclusions

The early diagnosis and successful treatment of 
MTC still remain the most important clinical 
challenges both for doctors and patients. The 
introduction of the RET genetic screening, serum 
Ct measurement, and neck ultrasound in the clin-
ical practice certainly allowed to perform earlier 
diagnosis thus positively impacting on the sur-
vival of the patients. TKIs, particularly vande-
tanib and cabozantinib, have been also 
demonstrated to improve the management of 
advanced and progressive MTC. Nevertheless, it 
is highly desirable that further therapeutic strate-
gies would be explored in the next future to over-
come the occurrence of the drug resistance which 
represents, at the moment, the major limit of the 
new targeted drugs.
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Anaplastic Thyroid Carcinoma

Robert C. Smallridge and Keith C. Bible

 Presentation

Although patients of 15  years old have rarely 
been described, patients with ATC are generally 
older, with a median (mean) age of 69 (66.5) years. 
Women are affected more often than men (~1.9:1) 
[1]. In the United States, there is a small variation 
among racial/ethnic groups, occurring in 1.8% of 
blacks, 1.3% American Indian native, 1.1% non-
Hispanic white, 1.0% Asian-Pacific Islander, and 
0.6% Hispanic white as a percentage of total thy-
roid cancer cases [2].

Anaplastic thyroid carcinoma may develop de 
novo, or in patients with a history of benign goi-
ter or differentiated thyroid cancer, usually pre-
senting as a rapidly growing neck mass. In most 
patients, the tumor extends beyond the confines 
of the thyroid gland to involve nearby structures 
including the recurrent laryngeal nerves, trachea, 
esophagus, and great vessels of the neck (carotid 
arteries and jugular veins). Such invasion com-
monly produces hoarseness/dysphonia, dyspha-
gia, and dyspnea. Less commonly, patients may 

have pain, cough, hemoptysis, or superior vena 
cava syndrome [1].

Distant metastases are common at time of pre-
sentation, reported in two of every five patients. 
Most common sites of metastases are the lung, 
followed by the mediastinum, liver, and bone, 
with the heart, adrenal glands, kidneys, soft tis-
sue, and brain less commonly involved [1]. One 
autopsy report identified the same general ana-
tomic distribution, but an occurrence rate of 
metastases 2–4 times greater than noted while 
patients were alive [3], emphasizing the fact that 
ATC is most commonly distantly metastatic at 
diagnosis, even if not initially recognized.

Immediate assessment and protection of air-
way and esophageal/nutritional status are para-
mount, as will be further discussed, as there is 
great risk of fatal locoregional complications in 
ATC. Death in ATC stems primarily from distant 
metastases (~60%), from distant and locoregional 
disease (25%), or (less commonly) from compli-
cations of local infiltration (15%) [4].

 Diagnosis

Guidelines for management of patients with ATC 
have been published by the American Thyroid 
Association [5] and the National Comprehensive 
Cancer Network (NCCN) [6], and an orderly 
approach is summarized in Table 1. It is critical 
to make the correct histopathological diagnosis 
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quickly. These tumors are undifferentiated and 
often contain necrotic areas, so fine-needle aspi-
ration cytology may be nondiagnostic. Moreover, 
sampling error is also an issue due to tumor het-
erogeneity in patients with mixed differentiated 
and anaplastic thyroid cancers. Hence, ultra-
sound-guided core biopsy should be performed 
to obtain sufficient representative material.

ATC has several histologic subtypes, includ-
ing spindle cell, giant cell, squamoid, and pauci-
cellular. Several other tumors may mimic ATC, 
such as poorly differentiated thyroid cancer, 
squamous cell carcinoma of the head and neck, 
medullary thyroid cancer, lymphoma, sarcoma, 
and metastases (e.g., arising from renal cell carci-
noma, melanoma). Immunohistochemical mark-
ers such as pankeratin, thyroglobulin, 
chromogranin, calcitonin, E-cadherin, CD45, 
and others can help the pathologist define tumor 
origin—but it is critical to remember that ATCs 
are so dedifferentiated to have lost immunohisto-
chemical reactivity for thyroglobulin and TTF-1. 
From the pathologist’s perspective, ATC repre-
sents a “poorly differentiated carcinoma,” lead-
ing to confusion, as ATC must be distinguished 
from “poorly differentiated thyroid carcinoma,” 
wherein immunohistochemical reactivity for thy-
roglobulin and TTF-1 remains. If both FNA and 
core biopsy are insufficient, then an open biopsy 
should be performed [5].

ATC patients often have a prior history of thy-
roid disease, including goiter (reported in >80% 
of patients), and/or differentiated thyroid cancer 
(DTC, particularly more aggressive variants such 
as tall cell). The frequent coexistence of ATC and 
DTC suggests that the latter may precede the 
development of ATC; in some patients, ATC even 
arises in metastatic DTC deposits long after thy-
roidectomy, bolstering the contention that ATC 
may represent dedifferentiated DTC. The identi-
fication of an area of well- or poorly differenti-
ated thyroid carcinoma in the biopsy or surgical 
specimen helps affirm that the observed undiffer-
entiated tumor is ATC.  There are limited data 
suggesting that survival is improved when the 
anaplastic component comprises only a small 
percentage (<10%) of the tumor, so the patholo-
gist should provide some description of how 
much of the tumor is ATC vs. a more differenti-
ated cancer [7]. Long-term survival is also 
improved if the tumor has lymphocytic, but not 
neutrophilic infiltration [8].

ATC is well known for its high genomic insta-
bility, with numerous mutations of both onco-
genes and tumor suppressor genes, as well as 
epigenetic abnormalities, observed [9–15]. While 
the ATA Guidelines did not indicate that molecu-
lar studies were necessary for diagnosis or man-
agement of ATC [5], recent reports of molecular 
abnormalities [10–13, 15] (Table 2) and limited 
reports of patient responses to targeted agents 

Table 1 Approach to patients with anaplastic thyroid 
carcinoma

Diagnosis
  Tissue (cytology; core biopsy)
Evaluation
  Clinical assessment
  Laboratory
  Imaging
Staging
  IVA/IB (resectable)
  IVB (unresectable)
  IVC—metastatic
Establish goals
  Disclose status (risks/benefits of therapy)
  Discuss patient’s values/preferences
  Patient makes informed decision

Adapted from Smallridge et al. [5]

Table 2 Anaplastic thyroid carcinoma: prevalence of 
gene mutations

Gene (No. articles) Median % (range)
TERT promoter (7) 46% (12–73)
TP53 (9) 67% (0–86)
BRAF (10) 27% (8–46)
RAS (11) 22% (8–62)
PIK3CA (7) 12% (4–23)
PTEN (5) 11% (0–16)
EIF1AX (2) 12% (9–14)
CTNNB1 (5) 4% (0–66)
AXIN1 (3) 3% (0–82)
APC (3) 3% (0–9)
AKT1 (4) 0% –
RET/PTC (3) 0% –

Adapted from Landa et al. [11]
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[14, 16–29] support mutational interrogation of 
tumors from patients who wish aggressive treat-
ment, with potential to use this information in 
designing later salvage therapies.

 Evaluation

While the pathologist is confirming the diagno-
sis, the patient should have a rapid, but thorough, 
clinical assessment. History and physical exam 
should carefully define the patient’s aerodiges-
tive status (including vocal cord exam), as well as 
symptoms or signs suggesting the presence of 
distant metastases. Laboratory studies should 
include a complete blood count (leukocytosis has 
been implicated as an adverse predictor of out-
come), comprehensive chemistry profile, TSH, 
and coagulation studies. Imaging studies should 
include a neck ultrasound for initial estimate of 
extent of local tumor invasion, followed promptly 
by a contrast-enhanced CT of the neck for more 
detailed assessment of locoregional involvement 
and to provide the surgeon with information criti-
cal to assessing the potential resectability of the 
tumor. The presence of distant metastases should 
be defined either by CT scans of the chest/abdo-
men/pelvis and a bone scan or preferably via 
18F-FDG-PET/CT scan. In the presence of any 
neurologic symptoms, contrast-enhanced MRI of 
the brain is also imperative. As in non-small cell 
lung carcinoma, brain MRI is best included in 
initial staging, best performed even in asymp-
tomatic individuals prior to prescribing any sys-
temic therapies.

 Staging

Once an ATC diagnosis is confirmed and initial 
evaluation completed, ideally within just a few 
days, stage is defined. Stage IVA ATC is confined 
to the thyroid gland and is seen in only a small 
minority of patients; stage IVB is limited to the 
neck and occurs in ~40% of patients; stage IVC 
refers to those with distant metastases (~45%). 
Stage IVB is further divided into patients with 
potentially resectable disease (RO/R1 resections) 

vs. those with unresectable tumors (those for 
which only biopsy or debulking can be per-
formed, with up-front surgery generally not 
advisable).

 Establish Goals of Care

A multidisciplinary team involving an experi-
enced surgeon, radiation oncologist, medical 
oncologist, and often an endocrinologist and 
also a palliative care physician should identify 
and prioritize treatment options and discuss 
these options with the patient, family, and other 
caregivers. The risks and benefits of available 
approaches (preservation of the airway; nutrition 
and potential need for feeding tube, surgery, 
external beam radiotherapy, systemic therapies, 
directed ablations) need to be explained in the 
context of the patient’s estimated, often brief, 
life expectancy. In general, factors that favor lon-
ger survival include the ability to achieve com-
plete surgical resection of the primary tumor, 
intensity-modulated radiation therapy to the 
neck/mediastinum, and absence of distant metas-
tases. Traditionally, chemotherapy has often not 
been deemed of benefit, possibly due to more 
advanced disease historically noted at diagnosis. 
However, several recent reports have shown 
improved outcomes in select patients who 
undergo initial aggressive multimodal therapy 
[30–33].

Patients need to understand not only risks/
benefits of therapy but their own expected out-
comes based on TNM stage. For instance, Akaishi 
et al. [34] reported median survivals of 33.5, 6.1, 
and 2.5  months for Stages IVA, IVB, and IVC 
disease, respectively. Survival at 6  months was 
100, 49.6, and 22.4%; at 1 year was 72.7, 24.8, 
and 8.2%; and at 2 years was 62.3, 10.6, and 0%. 
Thus, patients with Stage IVA disease are pre-
sumably more likely to benefit from an aggres-
sive treatment regimen and therefore might 
reasonably be more willing to endure the consid-
erable associated side effects and complications. 
Patients with IVC disease may, alternatively, be 
wise to select a palliative care approach from the 
beginning.
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 Supportive and Palliative Care

ATC patients need strong and continued physical 
and emotional support from the outset. Patients 
(and their families) face daunting stresses and 
challenges. Most often they were perfectly 
healthy just a few weeks earlier and suddenly are 
told that they will likely die, perhaps fairly soon. 
The ATA Guidelines [5] has a particularly com-
prehensive discussion of the approach to discuss-
ing patient’s values and preferences and helping 
the patient make an informed decision, empha-
sizing the critical importance of first establishing 
that the patient has adequate decision-making 
capacity to render informed consent. If not, then 
a psychiatric or clinical ethics consultation may 
be needed including determination as to whether 
a surrogate decision-maker is needed. Patients 
should understand how each option may affect 
his/her quality of life, and palliative care/hospice 
should be included as an option. Formalizing 
advanced directives should also be encouraged 
and fully vetted with family members.

Comprehensive and proactive supportive and 
palliative care is a critical aspect of the manage-
ment of all ATC patients, regardless of their elec-
tion of more vs. less intensive treatment 
approaches. Providing the required palliative and 
supportive services can be challenging and time-
intensive and may thus benefit from involvement 
of a dedicated palliative care team. Important 
issues include airway protection, palliation of 
swallowing difficulties and maintenance of ade-
quate nutrition, pain control, and psychosocial/
emotional support. Some ATC patients will 
require tracheostomy due to airway invasion or 
compression or bilateral vocal cord paralysis. 
Patients undergoing intensive radiotherapy often 
(in our experience about half) incur such great dif-
ficulties swallowing and/or painful swallowing so 
as to require temporary percutaneous endoscopic 
gastrostomy (PEG) tube placement—and all 
patients undergoing intensive radiation therapy 
are best provided nutritional counseling and sup-
port. Most ATC patients also require assistance 
with pain control at some point(s) in their disease 
course. All patients additionally require strong 
and ongoing emotional/psychological support.

 Initiation of Therapy

 Locoregional Disease (Table 3)

Patients with Stage IVA or resectable IVB dis-
ease should consider intensive multimodal ther-
apy, assuming that their health is otherwise 
reasonably good and, after counseling, that they 
desire an aggressive approach. Initial treatment 
for these patients should best start with surgery, 
providing that imaging suggests that a complete 
(RO) resection, or grossly negative surgical mar-
gin (R1 resection), may be achievable. In the set-
ting of extrathyroidal invasion (IVB disease), en 
bloc removal is advised, but not if total laryngec-
tomy is required. Patients may present with 
hoarseness from ipsilateral recurrent laryngeal 
nerve damage, so special care must be taken to 
avoid damaging the contralateral nerve in such 
instances. Some patients present with tumor inva-
sion into upper airway, tracheal compression, or 
bilateral vocal cord paralysis—but if not, elective 
tracheostomy is not advised [5].

Shortly after surgery, the highest priority is to 
sustain locoregional control of tumor, either with 
high-dose or palliative radiotherapy; without 
these additions, the benefits of surgery are 
expected to be transient and minimal. In the 
SEER database study of 516 patients, the combi-

Table 3 Algorithm management for ATC (Stages 
IVA-B)

Initial Response Follow-up
Stage IVA/
IVB 
(resectable)

Surgery 
RT+/− 
chemo

NED Observe
Adjuvant 
therapy

Local 
recurrence

RT
Surgery
Chemo/
clinical trial

Systemic 
disease

Palliative 
RT
Chemo/
clinical trial

IVB 
(unresectable)

RT 
+/− 
chemo? 
Surgery 
after RT

Same as 
above

Hospice
Same as 
above

Adapted from Smallridge et al. [5]
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nation of surgery and external beam radiation 
therapy independently predicted survival [35], 
while a review of 2742 ATC patients in the 
National Cancer Database showed marginal 
treatment benefit [36]. If definitive therapy is 
elected, the preferred radiotherapeutic modality 
is intensity-modulated radiation therapy (IMRT), 
but palliative approaches such as Quad Shot may 
be appropriate in patients who wish a more pal-
liative approach [37–39]. Several reports have 
shown that radiation or chemoradiation may 
alternatively be given before surgery [40, 41], but 
surgery is made much more difficult in the setting 
of prior neck radiotherapy, and tumor  progression 
due to delayed surgery can lead to 
unresectability.

Critically, most ATC patients who undergo 
surgery and neck radiotherapy succumb to meta-
static, as opposed to locoregional, disease alone. 
Hence, the important issue arises as to whether 
early intervention with systemic therapy might 
further contribute to improved overall survival. 
Several retrospective studies suggest that this 
may be the case, especially for IVA and IVB ATC 
[31–35], but prospective randomized trial data 
are lacking. Radiosensitizing, followed by adju-
vant, chemotherapy may improve response rate 
but may also increase treatment-related morbid-
ity [5]. Systemic chemotherapy can begin even 
sooner than radiotherapy, possibly as early as 
1 week postoperatively, as less healing of the sur-
gical wound is required to safely administer sys-
temic chemotherapy as compared to definitive 
radiotherapy.

After completion of initial treatment with sur-
gery followed by radiotherapy +/− chemother-
apy, patients are reevaluated (restaged) to help 
define next steps. If there is no evidence of dis-
ease upon restaging, then observation with fre-
quent cross-sectional imaging (perhaps combined 
with adjuvant systemic therapy) is favored. 
Recovery from the considerable toxicities from 
neck IMRT is a slow process, such that many 
patients (in our experience less than half) are not 
in sufficient physical or psychological condition 
to immediately consider additional superimposed 
therapy when assessed 1  month after IMRT 
completion.

If disease recurs locally, then consideration 
should include additional surgery or radiation (if 
maximal dose has not been given), additional 
systemic therapy (either cytotoxic or a clinical 
trial), or hospice. Although many ATC recur-
rences involve widely distributed metastatic 
deposits, some patients develop “oligometa-
static” recurrences, wherein only one or a few 
sites of metastases are observed. In such cases, 
the best initial salvage therapeutic approach may 
represent focal directed therapies (e.g., thermal 
ablation, stereotactic radiosurgery), rather than 
systemic therapy, in efforts to provide more 
robust palliation of limited lesions—especially 
if symptomatic. Palliative locoregional 
approaches are critical in optimizing symptom 
control, especially in the case of bone or brain 
metastases. For those who experience rapidly 
progressive systemic disease, options include 
palliative local therapies, chemotherapy/clinical 
trial, or hospice care [5]. For Stage IVB patients 
who subsequently present with unresectable 
neck disease, several studies have shown 
responses to radio- and/or chemotherapy, with 
some patients subsequently being candidates for 
surgical resection [40].

 Systemic Disease (Table 4)

To date, studies evaluating salvage systemic 
therapies have yielded almost universally disap-
pointing results in patients with widely meta-
static (Stage IVC) ATC [17, 29]. Consequently, 
it is extremely important that patients and their 
 caregivers thoughtfully establish treatment goals 
and embrace the expected low chances of sub-
stantive benefit and the significant potential for 
side effects (and even harm) that may accom-
pany systemic therapy. Most IVC patients who 
wish aggressive therapy should immediately 
receive neck/locoregional radiotherapy and che-
motherapy. One report indicated that “maximal 
debulking” neck surgery may be appropriate in 
selected patients with Stage IVC disease, with 
potential for improved survival and quality of 
life if followed by adjuvant systemic therapy 
[42], but another report yielded contrary results 
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when many patients who underwent surgery did 
not receive adjuvant systemic therapy [43]. 
Patients may alternatively prefer supportive care, 
either because of poor overall health or upon rec-
ognizing the currently dismal response rates and 
considerable potential toxicities from any 
aggressive treatment in the setting of metastatic 
ATC.

First-line systemic therapy might be cytotoxic 
(a taxane, doxorubicin, or platin) either as single 
agent or in combination [5]. Alternatively, several 
clinical trials are usually available (see www.
clinicaltrials.gov) and should also be considered. 
There is abundant preclinical literature describ-
ing the landscape of ATC at a molecular level 
[9–15]. Table 5 highlights many potential thera-
peutic molecular targets. Clinically, there have 
been a few trials, small series, and case reports 
that may help direct new clinical trials during the 
next few years [26, 28, 29, 44]. Vascular disrupt-
ing agents (combretastatin and fosbretabulin) 
have shown a trend toward prolonging survival 
[16, 17], and disease-modifying activity has been 
seen in response to therapy with multikinase 
inhibitors such as sorafenib [18], imatinib [19], 
EGFR antagonists [20], and everolimus [45]. 
Pazopanib as a single agent was ineffective [21] 
but is being examined in combination with IMRT 
and paclitaxel (www.clinicaltrials.gov identifier: 
NCT01236547). Efatutazone, a PPAR-γ agonist, 
showed activity in a phase 1 trial [46]. In 
BRAFV600-mutated ATC, dabrafenib produced 
temporary disease regression in two patients 

[47], while vemurafenib demonstrated a response 
in a single patient [22], as did the ALK inhibitor 
crizotinib in one patient with an ALK mutation 
[23]. Targeted agents also can, however, have sig-
nificant side effects, as described in another 
patient who had extensive tracheal necrosis after 
treatment with a VEGF monoclonal antibody 
[48]; moreover, attained responses in widely met-
astatic ATC are generally brief.

Improving outcomes in anaplastic thyroid 
carcinoma will require improved understand-
ing of the key interactions among the multiple 
dysregulated genes and signaling pathways in 
ATC [9–15], as well as the contributions of the 
tumor microenvironment [24, 28, 49] and 
tumor immunology to tumor progression. On 
this basis, there is hope that combinatorial 
therapeutics [50–52], preferably selected based 
upon each patient’s individual tumor character-
istics, can lead to further therapeutic progress 
in ATC.
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Primary Thyroid Lymphoma

Stephanie Aleskow Stein

 Introduction

Primary thyroid lymphoma (PTL) is a rare cause 
of malignancy, accounting for <5% of thyroid 
malignancies [1] and <  2% of extranodal lym-
phomas [2, 3] with an annual estimated incidence 
of 2 per one million [4]. PTL most commonly 
presents in females with chronic Hashimoto’s 
thyroiditis in their sixth to seventh decade of life 
with a rapidly enlarging neck mass [3, 5–8]. 
Patients with Hashimoto’s thyroiditis have a rela-
tive risk of developing PTL of 67 compared to 
those without thyroiditis [9]. Most thyroid lym-
phomas are non-Hodgkin’s lymphomas (NHLs) 
of B-cell origin. The recognition and diagnosis of 
PTL can be challenging due to its rarity and dif-
ficulty distinguishing it from other thyroid dis-
eases due, for example, to overlapping imaging 
characteristics and often co-occurrence in the 
same gland with thyroiditis. Despite the rarity of 
PTL, it is important to diagnose accurately as its 
management differs from that of other thyroid 
neoplasms. Treatment and prognosis ultimately 
depend upon the histology and stage of the tumor, 
but unlike most thyroid cancers, surgery is not 
the preferred treatment for most cases of PTL.

 Histologic Subtypes

Lymphomas occur when there is malignant 
transformation of normal lymphocytes that can 
reside in both lymphoid and nonlymphoid tis-
sues including the thyroid gland. The 2008 clas-
sification of lymphomas by the World Health 
Organization categorizes lymphomas by their 
dominant cell type including B-cell lymphomas, 
T-cell lymphomas, natural killer-cell lympho-
mas, and Hodgkin’s lymphomas [10]. 
Lymphomas of the thyroid are almost exclu-
sively of the non-Hodgkin’s B-cell type. Diffuse 
large B-cell lymphoma (DLBCL) is most preva-
lent, accounting for more than 50% of cases, fol-
lowed by the more indolent mucosa-associated 
lymphoid tissue (MALT) lymphoma which rep-
resents about 10–23% of cases [3, 7, 11, 12]. 
MALT lymphomas typically arise in the thyroid 
glands of patients with Hashimoto’s thyroiditis 
[9, 13–15]. Many believe it is the chronic anti-
genic stimulation of lymphocytes in autoim-
mune disorders that leads to this malignant 
transformation [16]. Rarer subtypes of PTL 
include follicular (10%), small lymphocytic 
(3%), and Hodgkin’s lymphoma (2%), along 
with Burkitt’s, T-cell, mantle cell, and lympho-
blastic lymphomas each accounting for <1% of 
cases [7].
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 Clinical Presentation

PTL presents as an enlarging anterior neck mass 
that is, about 1/3 of the time, associated with 
compressive symptoms such as dyspnea, dyspha-
gia, stridor, and hoarseness [5, 11, 12, 15]. 
Although duration of symptoms prior to diagno-
sis can range from a few days to 36 months, those 
with the more aggressive DLBL tend to present 
more acutely [3, 5, 8, 12]. Approximately 10% of 
patients experience B symptoms such as fever, 
night sweats, and weight loss [11].

On physical examination, the neck mass in 
patients with thyroid lymphoma is hard with a 
smooth surface and can be unilateral or bilateral 
[8]. Hypothyroidism is reported in approximately 
1/3 of patients [6, 8, 15]. The majority of patients 
display elevated levels of thyroid antibodies, such 
as anti-Tg or anti-TPO antibodies. The tumor size 
at diagnosis is on average 7 cm (0.5–19.5 cm) [5].

 Diagnosis

 Imaging

Ultrasound is the initial diagnostic modality 
used in the workup of anatomic thyroid abnor-
malities. Distinguishing PTL from thyroid can-
cer and Hashimoto’s thyroiditis on ultrasound is 
difficult given their similar appearance. Certain 
sonographic features that are seen with PTL but 
are not specific include enhanced posterior 
echoes, hypoechogenicity, and asymmetric 
enlargement (Fig. 1) [17, 18]. Ota classified the 
ultrasound features of PTL into nodular, diffuse, 
and mixed types [17]. Nodular-type PTL is con-
fined to a unilateral lobe with internal echoes 
that are hypoechoic, homogeneous, and pseudo-
cystic [18]. Diffuse-type PTL usually involves 
two lobes and is hypoechoic, with indistinct bor-
ders between the lymphomatous and non-lym-
phomatous tissues. Mixed-type PTL is 
characterized by multiple patchy lesions with 
hypoechoic regions in the thyroid. The positive 
predictive value of US in nodular and mixed type 
is similar and significantly higher (64.9 and 
63.2%) than that in diffuse type (33.7%).

Xia et  al. later simplified this sonographic 
characterization of PTL into diffuse and non-dif-
fuse disease [19]. The non-diffuse appearance 
was found to be more common (63% vs. 37%) 
and features included being hypoechoic, multifo-
cal, and hypervascular with an absence of calcifi-
cation. Sonography alone was quite likely to miss 
diffuse-type PTL.

Recently, multi-slice computed tomography 
(MSCT) has been investigated as another imag-
ing modality for PTL (Fig. 2) [20]. The pattern of 
PTL on MSCT has been categorized into three 
types: type 1,  solitary nodule; type 
2,  multinodular; and type 3, homogeneous, bilat-
eral enlargement [21]. Of 22 DLBCL and 5 

Fig. 1 Sagittal ultrasound scan of the left thyroid. The 
arrow indicates the location of the thyroid lymphoma, pre-
senting as a homogeneous hypoechoic mass

Fig. 2 Axial contrast-enhanced CT image of the neck. 
The double arrow indicates the location of the thyroid 
lymphoma. The single arrow indicates left-sided cervical 
lymphadenopathy
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MALT lymphoma cases studied, type 3 was most 
common. Type 1 pattern was only observed in 
patients with DLBCL.  Most lesions showed 
homogeneous attenuation equal to that of sur-
rounding muscles on plain MSCT images. No 
calcifications were observed in any of the tumors. 
Cervical lymph node involvement was observed 
in 12 cases of DLBCL and 3 cases of MALT, and 
invasion of cervical vessels, trachea, and esopha-
gus was diagnosed in 11 cases. MSCT was found 
to be useful over ultrasound in detection of meta-
static lymph nodes in areas that are poorly 
assessed with ultrasound and in the evaluation of 
tumor extension into adjacent structures.

 Biopsy and Fine Needle Aspiration 
(FNA)

Once PTL is suspected by clinical presentation 
and ultrasound, the next step in diagnosis is 
biopsy. Accurate diagnosis is again challenging 
due to its histological similarities to thyroiditis as 
well as the co-occurrence of thyroiditis and PTL 
in the same gland which can result in sampling 
error. Therefore, clinicians should consider PTL 
in patients presenting with an enlarging thyroid 
mass even when the FNA cytology suggests thy-
roiditis. Traditionally open surgical biopsy was 
felt to be necessary, but with recent advances in 
immunophenotypic analysis, including immuno-
histochemistry and flow cytometry, the accuracy 
of FNA has improved, although is still variable. 
These advances in diagnosis of PTL mirror that 
of systemic lymphomas with a reported accuracy 
rate of FNA of 80–100% [22–24].

On cytological review, DLBCL appears as a 
relatively uniform population of large, abnormal 
lymphoid cells with the presence of lymphoepi-
thelial lesions and decreased or absent colloid [1, 
25]. Nuclear abnormalities such as segmentation 
or micronucleoli can be seen. DLBCL is easier to 
recognize than MALT lymphomas, which can 
appear similar to lymphocytic thyroiditis. Fine 
needle aspirate smears of MALT lymphoma can 
have a heterogeneous appearance but are gener-
ally highly cellular with a prominent population 
of intermediate-sized lymphoid cells, lymphoepi-

thelial lesions, reactive lymphoid follicles, as 
well as a large plasma cell component [1, 26]. 
Slightly irregular nuclei, small nucleoli, and 
moderate slightly basophilic cytoplasm (“centro-
cyte-like cells”) are often seen. A frequency of 
irregularly shaped nuclei with prominent nucleoli 
above 20% can help distinguish MALT lym-
phoma from Hashimoto’s thyroiditis [27]. A fre-
quency of large-sized cells above 15% 
distinguishes DLBCL from MALT lymphoma. 
Mixed cytology DLBCL and MALT lymphoma 
are seen in about 1/3 of cases [5]. The cytologic 
findings in Hashimoto’s thyroiditis include mall 
lymphocytes, Hürthle cells, florid lymphoid 
hyperplasia with expanded germinal centers, and 
increased interstitial connective tissue [28].

Immunophenotyping in PTL assists in con-
firming a B-cell lineage to the lymphoid cells 
with expression of pan-B-cell antigens including 
CD19 and CD20 [1, 29]. CD3, CD5, CD10, and 
CD23 are usually negative in both DLBCL and 
MALT lymphoma [30]. The majority of DLBCLs 
are B-cell lymphoma (Bcl)-6 positive, and 
approximately half are Bcl-2 positive [31]. 
Monotypic surface immunoglobulin is often 
detected by flow cytometry [29]. Seen with 
MALT lymphomas are the presence of immuno-
globulin light chains and Bcl-2. Patients with 
MALT lymphoma are typically CD5+/CD25+, 
while patients with non-MALT are CD5-/CD25- 
[30]. Immunoglobulin-M heavy chain staining in 
the plasma cell component also is a clue to the 
diagnosis of MALT lymphoma [26]. In 
Hashimoto’s thyroiditis, both B- and T-cells are 
demonstrated by immunohistochemistry [5].

Early studies of FNA not combined with 
immunohistochemistry or flow cytometry were 
disappointing. In two smaller studies of patients 
with PTL, FNA without immunophenotyping 
was suggestive of the diagnosis in only 56% and 
33% of patients in each study, respectively [6, 
32]. Matsuzuka et  al. found that among 83 
patients with PTL who underwent FNA without 
immunophenotyping, 65 patients (78.3%) were 
definitively diagnosed by FNA, while another 10 
patients (12.0%) had borderline cytological 
results leaving 8 patients (9.6%) with false-nega-
tive results [8]. This led to the recommendation 
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for open biopsy on all patients being worked up 
for PTL.

More recent studies have shown improvement 
in the accuracy of FNA when combined with 
immunophenotyping, particularly in the case of 
DLBCL which is more easily diagnosed given its 
high density of large monotonous atypical cells. 
In a study of 17 patients with PTL in which 
immunocytochemistry was combined with FNA, 
of those with DLBCL, 6/7 (85.7%) were cor-
rectly diagnosed by FNA [1]. On the other hand, 
only 4/10 (40%) MALT lymphoma cases were 
correctly diagnosed, and another three cases were 
misdiagnosed as Hashimoto’s thyroiditis. In 
another study examining patients with PTL diag-
nosed at Johns Hopkins Hospital (JHH), 0/4 
patients who had FNA without immunopheno-
typing were successfully diagnosed, while 7/8 
(88%) who had FNA with immunophenotyping 
were diagnosed solely by FNA [33].

Although core needle or surgical biopsies are 
currently needed less for the diagnosis of PTL, 
they still have a role such as in distinguishing 
thyroiditis from low-grade MALT lymphoma and 
to ensure that aggressive histologies are not 
missed such as in glands with mixed MALT lym-
phoma and DLBCL. In the study by Sangalli 
et al., 6/10 MALT lymphoma cases required open 
surgical biopsy for definitive diagnosis [1]. In the 
study at JHH, of the eight patients with PTL who 
underwent FNA with immunohistochemical and 
flow cytometric analysis, one patient needed 
open biopsy for definitive diagnosis, which dem-
onstrated low-grade MALT lymphoma [33]. 
Matsuzuka et al. found that 78.3% of patients had 
a correct diagnosis with FNA but open surgical 
biopsy was performed on all patients for confir-
mation of the final diagnosis [8].

A definitive position on whether core needle 
or open surgical biopsy is necessary is difficult to 
propose as there are no randomized or prospec-
tive trials that address this question, and so insight 
must be gained from retrospective studies. It is 
important to interpret these earlier studies in light 
of whether flow cytometry or immunohistochem-
istry was incorporated on FNA samples. Some 
variables that should be considered when inter-
preting FNA results are the expertise level of the 

physician performing the procedure and whether 
adequate tissue was obtained by sampling, 
including several passes from different areas of 
the lesion. Moreover, it is important to let the 
pathologist know whenever there is suspicion for 
PTL, so appropriate immunophenotypic analysis 
can be done. The proficiency of the pathologist in 
interpreting FNA results and performing immu-
nophenotyping is also a key factor in determining 
the accuracy of FNA.  In any clinical setting in 
which there is doubt about the quality of any of 
these variables to effect accurate diagnosis, open 
biopsy should be done.

 Staging and PreTreatment 
Evaluation

Once the diagnosis of PTL is made, the next step 
prior to treatment is staging. Staging is according 
to the Ann Arbor system and defines whether the 
lymphoma is limited to the thyroid gland (stage 
IE), spreads to regional lymph nodes (IIE), has 
spread to lymph nodes on both sides of the dia-
phragm (IIIE), or has systemic dissemination 
(IVE) [34]. Most patients present with either 
stage IE (30–66%) or IIE (25–66%) disease [5–7, 
12, 15]. Stage IIIE and IVE disease is seen about 
2–7% of the time.

Comprehensive imaging to determine the 
stage of disease at presentation is important to 
establish a treatment plan and prognosis. CT 
scans of the head, neck, chest, abdomen, and pel-
vis are performed as the primary technique for 
staging. CT scan has been found to be superior to 
ultrasound in defining local extent of disease 
[35]. Bone marrow biopsy should also be per-
formed to rule out marrow involvement.

Recently there has been interest as to the util-
ity of fluorodeoxyglucose positron emission 
tomography (FDG-PET) scanning at initial diag-
nosis and in monitoring therapeutic response 
(Fig.  3). In a series of five patients with PTL, 
there was avid FDG uptake in the two patients 
with untreated PTL that was seen subsequently to 
decrease with treatment [36]. The response to 
treatment was detected earlier by FDG-PET 
compared to CT in one patient. In another two 
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patients, disease recurrence after treatment also 
was detected earlier by FDG-PET than by 
CT. Limiting the use of FDG-PET, however, is its 
low diagnostic specificity and its relatively higher 
cost. Focal FDG accumulation can be seen in thy-
roid adenomas and thyroid carcinomas of all 
types, and diffuse thyroid uptake is seen with 
Hashimoto’s thyroiditis. However, it can be a 
useful tool for detecting regional and distant dis-
ease and response to treatment [37, 38].

 Treatment

Traditionally, surgery and radiation therapy (RT) 
were considered the standard treatment for 
PTL. However, with high relapse rates, low sur-
vival rates, and the realization that thyroid lym-
phomas are sensitive to chemotherapy and 
radiation, surgery now plays a limited role [39, 
40]. Surgery is mainly used when treating local-
ized, indolent disease with thyroidectomy, for 
alleviation of compressive symptoms, and tra-
cheostomy for relief of airway compromise. The 
mainstay of treatment for disseminated disease 
and lymphoma with aggressive histology is che-
motherapy, with the most common regimen 
including cyclophosphamide, doxorubicin, vin-
cristine, and prednisone (CHOP), as well as radi-
ation. Rituximab, an anti-CD20 monoclonal 
antibody, was approved in 2006 by the Food and 
Drug Administration as first-line therapy for 
NHL.  An increased antitumor effect without a 
substantial increase in toxicity is seen when 

rituximab is combined with traditional combina-
tion therapy (R-CHOP). When determining the 
treatment plan, the histology of the tumor and the 
stage need to be considered. There are no ran-
domized, controlled trials evaluating the efficacy 
of different treatment modalities in PTL, so 
insight must be gained from retrospective studies 
and from studies of extranodal NHLs.

 Localized, Indolent Disease

RT is effective for local neck disease, particularly 
for MALT lymphoma [41, 42]. Doria et al. found 
similar outcomes in subjects with PTL with dis-
ease confined to the neck who received RT both 
to the neck and mediastinum as in those who 
received combined modality treatment (CMT) 
with chemotherapy and RT [43]. Similar results 
by Vigliotti et  al. indicated that patients with 
stage IE and IIE disease without mediastinal 
involvement responded equally well to RT alone 
and to CMT [44]. RT alone resulted in a 5-year 
disease-free survival (DFS) rate of 83% for stage 
IE patients and 100% for stage IIE patients with-
out mediastinal involvement. Both RT alone and 
CMT had better survival rates than chemotherapy 
or surgery alone.

Laing et al. concluded that it is both the stage 
and the histology that is important in determining 
the efficacy of localized treatment alone [45]. 
The cause specific survival was 88% at 5 and 
10  years for those with localized MALT lym-
phoma treated with RT alone compared with 55% 
for those with non-MALT lymphoma subtypes 
(p = 0.003). Cure from initial RT was approxi-
mately 70% for those with MALT lymphoma 
compared to approximately 55% at 5  years for 
those without MALT origin. Tsang et  al. also 
demonstrated excellent results from RT alone 
in  localized MALT lymphoma patients [46]. A 
complete response without relapse was seen in 
100% of the patients with a median follow-up 
time of 4.9 years. Series of patients such as these 
with low-grade localized MALT lymphomas 
appear to do very well with RT alone.

Studies of surgery alone for treatment of PTL 
are limited to small series of patients that have 

Fig. 3 FDG-PET/CT showing FDG uptake in the thyroid 
lymphoma as well as FDG-avid, left-sided cervical 
lymphadenopathy
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generally shown surgery alone to be effective for 
patients with localized MALT lymphoma. 
However, it does not seem that surgery plus RT 
results in better outcomes than RT alone. Pyke 
et  al. demonstrated no difference in remission 
rates or relapse-free survival between patients 
with localized disease who had surgical debulking 
plus RT vs. those who had RT alone for treatment 
[41]. On the other hand, there were two patients 
with stage IE PTL who underwent surgery alone 
for treatment and were able to obtain a complete 
remission and remain disease-free with a median 
follow-up of 50.5 months. This encouraging out-
come from surgery alone also was seen by 
Thieblemont et  al. in five MALT lymphoma 
patients with localized disease who were followed 
for a median of 4.6 years postoperatively with no 
patients experiencing relapse [3].

Thyroidectomy does not seem to be of benefit 
in patients with aggressive histologic subtypes 
such as DLBCL. An overall 5-year survival of 
only 33% was seen among the three patients with 
stage IE and IIE disease treated with surgery 
alone followed by Vigliotti et al. [44]. Pathology 
of these tumors was predominantly of the diffuse 
large cell type.

Without availability of randomized controlled 
trials, inferences drawn from small studies and 
retrospective studies indicate that the overall ben-
efit of thyroidectomy is limited to stage IE MALT 
lymphoma patients but may not provide any extra 
benefit over RT alone. With the limitations of sur-
gery for treatment of PTL realized over recent 
years, the frequency of surgical approaches has 
declined. During the time period from 1973 to 
1987, 81% of patients underwent surgery for 
PTL, whereas from 1997 to 2005, only 61% had 
surgery [7].

 Disseminated, Aggressive Disease

Because of its aggressive nature and propensity 
for systemic recurrence, patients with DLBCL as 
well as those with non-localized indolent sub-
types should be treated with both chemotherapy 
and RT [44, 47]. Evidence supporting the use of 
CMT is again confounded by the lack of random-

ized controlled trials. There is also a lack of strat-
ification in most studies by histologic subtype 
making meaningful deductions limited.

Matsuzuka et  al. demonstrated the general 
efficacy of CHOP plus RT in a report of 119 
patients with the majority having intermediate 
grade, stage IIE PTL [8]. Those treated with six 
courses of CHOP combined with RT had a sur-
vival rate of 100% at 8 years, while those treated 
with an older regimen of one or two courses of 
chemotherapy plus RT had a survival rate of 
75%. Both groups, however, had better outcomes 
compared with a 35% death rate from older stud-
ies prior to the introduction of chemotherapy.

Onal et  al. examined treatment outcomes 
among 60 patients with aggressive PTL, and 27 
patients with indolent disease, all with either 
stage IE or IIE disease [12]. Among those with 
aggressive lymphoma, CMT significantly 
improved overall survival (OS), DFS, and local 
control (LC) over RT or chemotherapy alone. 
CMT also significantly improved DFS and LC 
but not OS for those with indolent lymphomas. 
The addition of rituximab to CHOP improved OS 
compared to CHOP alone (92% vs. 71%, 
p = 0.06).

Further supporting the benefit of CMT are the 
findings of Doria et al. [43]. Among 211 patients 
with stage IE and IIE PTL of various histologic 
subtypes, CMT significantly decreased distant 
and overall relapse rates with overall relapse rates 
being 7.7%, 37.1%, and 43% for CMT, RT alone, 
and chemotherapy alone, respectively (p = 0.004). 
The only group in which a difference between 
treatment modalities was not seen was in those 
patients receiving RT to the neck and mediasti-
num with disease confined to the neck.

In the retrospective review by Ha et  al., the 
majority of his patients had DLBCL and were 
treated either with surgery alone, surgery fol-
lowed by RT, chemotherapy alone, or CMT [48]. 
The failure-free survival rates at 5 and 10 years 
were 76%, 50%, and 91% for those treated with 
surgery plus RT, CT alone, and CMT, respec-
tively, supporting the role for CMT in those with 
aggressive histologic subtypes (p = 0.15). Of the 
four patients treated with surgery alone, three 
developed a recurrence.
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Although the tumors treated were not of the 
primary thyroid subtype, extrapolation can be 
made from prospective, randomized studies of 
NHL such as the one by Miller et al. [47]. In this 
study, of 401 patients with stage I or II NHL of 
various histologic subtypes, subjects were ran-
domized to either treatment with CHOP alone 
or CHOP plus RT.  Those treated with CHOP 
plus RT had significantly better progression-
free survival than patients treated with CHOP 
alone (77% vs. 64%, respectively, p = 0.03) as 
well as better OS (82% vs. 72%, respectively, 
p = 0.02).

Thieblemont et al. used an approach, whereby 
treatment modality was based on histology and 
stage with localized, indolent subtypes treated 
with surgery alone and disseminated or aggres-
sive subtypes treated with chemotherapy [3]. 
Overall, complete remission was achieved in 19 
of 25 (76%) available patients and partial remis-
sion in 6 patients (5 with DLBCL, 1 with follicu-
lar lymphoma) with 3 of these patients eventually 
relapsing (1 follicular lymphoma, 1 DLBCL, 1 
Hodgkin’s lymphoma). None of the patients with 
MALT lymphoma treated with surgery alone 
relapsed. The 5-year probability rate of OS was 
44% for DLBCL patients and 100% for other 
lymphoma subtypes.

Rituximab has more recently been added to 
chemotherapy regimens for treatment of lym-
phoma, and there are only a few small studies 
that assessed its efficacy in PTL. In a small case 
series of three elderly patients with DLBCL of 
the thyroid who were considered inoperable or 
poor surgical candidates, treatment with ritux-
imab plus cyclophosphamide, mitoxantrone, vin-
cristine, and prednisolone resulted in a complete 
remission without disease recurrence 
16–25  months after therapy completion [49]. 
These patients tolerated the therapy well with 
toxicities predominantly being hematologic. Of 
43 patients 60 years old and older with stage IE 
and IIE DLBCL treated with R-CHOP studied by 
Watanabe et al., 42 patients (98%) responded to 
the treatment [50]. Five-year overall survival and 
event-free survival were 87% and 74%, respec-
tively. R-CHOP has been studied in larger series 
of patients with nodal DLBCL. In a study of 1222 

elderly patients with nodal DLBCL, 6 cycles of 
R-CHOP significantly improved event-free, pro-
gression-free, and OS over 6 cycles of CHOP 
alone [51].

Surgery in disseminated or aggressive disease 
is used for the alleviation of compressive symp-
toms or protection of the airway. In a retrospec-
tive study of 27 patients who underwent total 
thyroidectomy or lobectomy for compressive 
symptoms, five of whom also had a tracheos-
tomy, there were no operative mortalities, no 
complications of hypoparathyroidism or nerve 
injury [52]. The mean symptom-free survival of 
patients was 10  years when chemotherapy and 
RT were also used. It is possible, however, that 
chemotherapy, RT, and the less invasive tracheal 
stents can alleviate compressive symptoms and/
or impending airway obstruction without the 
need for more invasive surgery [53].

 Prognosis

The prognosis of PTL patients is largely depen-
dent on the stage and histologic subtype. In a 
population-based study of 1408 patients with 
PTL over 32 years of follow-up from the SEER 
database, the median OS for all cases was 
9.3 years, 5-year OS was 66%, and the disease-
specific survival was 79% [7]. When stratified by 
stage, the 5-year disease-specific survival was 
86%, 81%, and 64% for stage I, II, and III/VI dis-
ease, respectively. Stratified by histologic sub-
type, the 5-year disease-specific survival rate was 
75% for DLBCL, 96% for MALT lymphoma, 
87% for follicular lymphoma, 86% for small 
lymphocytic lymphoma, and 83% for other 
NHLs. Patients with stage IV disease were 2.2 
times more likely to die than those with stage I 
disease (p  <  0.001), those with DLBCL were 
nearly 5 times more likely to die than those with 
MALT lymphoma (p < 0.01), and those with fol-
licular lymphoma were more than 3.5 times more 
likely to die than those with MALT lymphoma 
(p < 0.05). Recently, Chai et al. found the 5-year 
survival to be 100% for MALT lymphoma and 
mixed MALT and DLBCL patients and 87.5% 
for DLBCL patients [54].
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In another study of 171 cases of PTL in which 
patients were treated primarily based on stage 
(RT alone for stage IE and CMT for stages IIE 
and higher), the 5-year OS was 89% for stage I 
disease and 83% for stage II disease [15]. Based 
on histologic subtype, Derringer found disease-
specific 5-year survival rates for MALT lym-
phoma, mixed lymphoma, and DLBCL of 100%, 
78%, and 71%, respectively, and 5-year OS of 
77%, 47%, and 54%, respectively [5]. Poor prog-
nostic factors include advanced age and stage, 
presence of DLBCL, lack of treatment with radi-
ation or surgery, greater tumor size, mediastinal 
involvement, rapid clinical growth, presence of B 
symptoms, dysphagia, or stridor [5, 7, 12]. 
Table  2 provides an overview of DLBCL and 
MALT lymphoma.

 Conclusion

PTL is a rare cause of thyroid malignancy and 
extranodal lymphomas. A summary of the two 
most common subtypes of PTL is displayed in 
Table  1. It should be suspected when a patient 
presents with an enlarging neck mass, especially 
in a patient with a history of Hashimoto’s thyroid-
itis. Certain ultrasound features can suggest the 
diagnosis of PTL such as enhanced posterior 
echoes and hypoechogenicity, but diagnosis is 
ultimately made by biopsy. With improvement in 
immunophenotypic techniques, FNA can be used 
as the initial diagnostic test in centers with experi-
enced physicians performing the procedure and 
interpreting the cytology. However, if optimal 

procedural technique or correct interpretative 
skills are not available, open surgical biopsy 
should be performed for confirmation. The most 
common subtype of PTL is DLBCL, which can 
be distinguished by its more aggressive presenta-
tion and specific findings on FNA.  The second 
most common subtype is MALT lymphoma 
which is more difficult to diagnose based on its 
more indolent nature and possible similar appear-
ance on ultrasound and FNA to that of chronic 
thyroiditis. Treatment and outcomes are based on 
both stage and histology. Localized, indolent lym-
phomas can be treated with radiation or surgery 
alone, while disseminated indolent lymphoma or 
aggressive histologic subtypes should be treated 
with CMT. There is a need for larger, prospective 
randomized studies to make more definite conclu-
sions on diagnosis and treatment although this is 
difficult to do given the rarity of PTL.
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The routine therapy of differentiated thyroid can-
cer (DTC) consists of (1) surgical treatment 
either lobectomy or total/near total thyroidec-
tomy with or without lymph node dissection and 
(2) therapy with radioactive iodine (RAI), if clin-
ically indicated [1]. The long-term management 
of thyroid cancer consists of therapy with levo-
thyroxine aiming at appropriate thyroid hormone 
replacement in thyroidectomized patients but 
also at suppressing thyroid stimulating hormone 
(TSH) release from the pituitary gland via a neg-
ative feedback loop.

The concept of TSH suppression by supra-
physiologic levothyroxine doses was first intro-
duced in the 1937, when Sir Thomas Dunhill 
reported two cases of papillary thyroid cancer 
that regressed after treatment with thyroid 

extracts [2]. Later, W H Balme in 1954 reported a 
case of a 40-year-old female with metastatic dif-
ferentiated thyroid carcinoma that responded 
favorably to prolonged therapy with thyroxin [3]. 
These observations led to the hypothesis that 
TSH may be a growth stimulus for thyroid can-
cer, and thus its suppression should lead to 
decreased growth of neoplastic cells expressing 
TSH receptor. There is a convincing body of evi-
dence that DTC cells maintain TSH receptor 
expression, although its intensity is variable and 
usually lower compared with the normal thyroid 
tissue [4–12]. However, despite attempts to define 
the growth regulatory effects of TSH by in vitro 
and in vivo models, the results remain controver-
sial to date. One of the explanations of the dis-
crepancies observed in thyroid cancer models 
in  vitro is a biphasic growth response curve—
with TSH being predominantly a differentiation 
stimulus at physiologic concentrations and at 
higher concentrations acting as thyroid cancer 
growth stimulus [13]. The other potential reason 
for the discordant results of in  vitro studies is 
lack of the TSH receptor expression in the major-
ity of well-established human thyroid cancer cell 
lines [14, 15]. Moreover, there is evidence that 
marked stimulation of proliferation by TSH is 
observed only in models using human fetal thyro-
cytes, while mitogenic effects of TSH in other 
models depend on the presence of IGF-1 or insu-
lin signaling, while TSH alone does not stimulate 
proliferation [16]. Ex vivo studies utilizing cell 
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cultures derived from thyroid cancer patients 
incubated for 48 h with different TSH concentra-
tions revealed that the proliferation rate was not 
influenced by TSH levels [17]. In addition, in 
vivo transgenic mouse models indicate that 
TSHR signaling is not sufficient to induce carci-
nogenesis but is involved in goitrogenesis [18].

Clinicians routinely apply a well-documented 
phenomenon of TSH stimulatory effects on can-
cer cell differentiation, specifically induction of 
sodium iodine symporter expression. In clinical 
practice, the short-term endogenous or exoge-
nous TSH stimulation is utilized to enhance 
radioactive iodine uptake for diagnostic and ther-
apeutic purposes [1]. However, the concept of 
long-term TSH suppression as a management 
strategy for thyroid cancer patients is based on 
equivocal preclinical evidence. Therefore, it is 
important to analyze the association between the 
TSH suppression and patients’ outcome docu-
mented by the available clinical studies.

 The Association Between TSH 
Suppression and Overall Survival 
(OS) and Disease-Specific Survival 
(DS)

The clinical evidence behind the association 
between TSH suppression and mortality is either 
weak or moderate as being derived predomi-
nantly from retrospective cohort studies. These 
studies are suffering from lack of randomization 
and appropriate controls, absence of blinding, 
and lack of exclusive focus on the effect of TSH 
suppression on clinical outcomes. One of the first 
meta-analyses summarizing the evidence behind 
the association between TSH suppression and 
patient mortality was based on case series and 
cohort studies published between 1980 and 1998 
[19]. This study, based on the analysis of more 
than 4000 patients among which 69% received 
therapy with suppressive doses of levothyroxine, 
followed for 4.5–19.5  years, revealed a signifi-
cant 27% risk reduction of combined mortality 
rate and disease recurrence rate (RR  =  0.73; 
CI  =  0.60  ±  0.88; P  <  0.05) in patients treated 
with TSH suppression [19]. However, there was a 

significant heterogenicity among ten studies 
included in this meta-analysis [20–29]—with 
two of them showing increased adverse outcome 
associated with TSH suppression [26, 29] and 
one study revealing no effect of TSH suppression 
whatsoever [22]. Moreover, this meta-analysis 
does not provide information about the other risk 
factors associated with increased mortality such 
as age, histology type, stage, completeness of the 
surgical resection, or therapy with radioactive 
iodine. The discrepant results across analyzed 
studies could be related to inclusion of very het-
erogeneous groups of patients, characterized by 
different stages of disease and as such different 
risks of 10-year mortality. Therefore, it is impor-
tant to analyze the role of TSH suppression in 
low-risk patients with small tumors confined to 
the thyroid gland separately from the patients 
with either local or distant metastases. Several 
studies have uniformly documented that TSH 
suppression does not change the outcome in stage 
I low-risk differentiated thyroid cancer patients 
[1, 22, 25, 30–36].

In contrast, there is a significant discrepancy 
in the studies focused on the role and degree of 
TSH suppression in patients with higher risk 
tumors—thyroid cancer with locoregional and/or 
distant metastases. Some studies have proven 
beneficial effects of TSH suppression in this 
group of patients [21, 22, 30, 37], while others 
failed to document any association between 
aggressive TSH suppression and overall survival 
and/or disease-specific survival [32, 33, 35, 38] 
(Table 1). Majority of these studies are character-
ized by a retrospective design; relatively small 
number of patients included and a short duration 
of follow-up. The two largest studies with rela-
tively long duration of follow-up of 7 years [35, 
38] revealed no difference in the mortality rate 
between patients treated with full TSH suppres-
sion (TSH < 0.1 mIU/mL) and the ones charac-
terized by moderately suppressed or low normal 
TSH levels (0.1–2 mIU/mL). However, TSH lev-
els exceeding 2  mIU/mL were associated with 
shorter overall survival.

Interestingly, there is only one prospective 
randomized controlled open-label study focused 
on the role of TSH suppression in thyroid cancer 
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recurrence rate and mortality. Although the 
majority of the patients enrolled in this study 
were characterized by low-risk thyroid cancer, 
there were 296 patients with lymph node metas-
tases and 50 patients with high-risk features [32]. 
This study did not reveal any differences in the 
outcome in patients treated with suppressive 
levothyroxine doses leading to average TSH level 
of 0.07 ± 0.13 mIU/mL compared with patients 
who underwent therapy with physiologic levo-
thyroxine doses resulting in TSH of 
3.2 ± 1.7 mIU/mL [32]. The mortality rate in this 
study was overall very low as 9 patients died of 

thyroid cancer and 23 patients died from other 
diseases, which could have affected the statistical 
power to detect potential differences.

 The Association Between TSH 
Suppression and Thyroid Cancer 
Recurrence Rate and Progression-
Free Survival

There is an evidence that low-risk thyroid cancer 
patients do not benefit from aggressive TSH sup-
pression, as it does not affect the recurrence rate 

Table 1 The effect of TSH suppression on overall survival (OS) and disease-specific survival (DSS) in intermediate- 
and high-risk thyroid cancer patients

Study

Number of 
intermediate/
high-riska patients 
enrolled

Predictors of OS 
and DSS

TSH suppression as 
independent factor 
associated with better 
outcome?

Average number of 
TSH measurements 
during follow-up

Duration of 
follow-up

Retrospective studies
McGriff  
et al. [19]

4174—no data 
on baseline risk 
characteristics

TSH 
suppression

Yes—combined 
outcome of disease 
progression and death

No data No data

Jonklaas  
et al. [30]

483 Stage, extent of 
surgery, RAI 
treatment, TSH

Yes—in univariate 
model and 
multivariate model for 
OS
No—in multivariate 
model for DSS

2.3 3 years

Carhill et al. [35] 1813 Stage, extent of 
surgery, RAI 
treatment, TSH

No—in univariate and 
multivariate model for 
OS
TSH normal/elevated 
associated with worse 
prognosis

6 6 years

Klubo-
Gwiezdzinska 
et al. [38]

597 Age, gender, 
distant 
metastases, TSH

No—in univariate and 
multivariate model for 
OS
TSH > 2 mIU/mL 
associated with worse 
prognosis

12 7.1 years

Diessl  
et al. [37]

157 TSH, freeT3 Yes—in univariate and 
multivariate model for 
DSS

>3 8 years

Hovens  
et al. [33]

291 Extra-thyroid 
extension, age, 
distant 
metastases, TSH

No—in univariate and 
multivariate model, 
TSH > 2 associated 
with worse outcome

>4 8.8 years

Prospective randomized controlled trials
Sugitani  
et al. [32]

296 n/a No effect on 5 years 
DSS

15 6.9 years

aIntermediate/high-risk patients—patients with tumors larger than 4 cm and/or with microscopic or gross extrathyroidal 
extension and/or with lymph nodes or distant metastases
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and progression-free survival [1]. Most published 
studies suggest that there is no difference between 
moderate and aggressive TSH suppression in pre-
venting relapse of thyroid cancer in intermediate- 
and high-risk patients (Table  2). The risk of 
cancer progression increases with TSH exceed-
ing low normal values (Table 2). Again, age and 
disease stage are consistently the most important 
factors predicting and affecting progression-free 
survival in multivariate models. The results of 
studies summarized in Table 2 are not uniformly 
consistent, as bias associated with retrospective 

design and heterogeneous patients’ population is 
inevitable.

To summarize, there is a convincing body of 
evidence that TSH suppression does not affect 
the outcome in low-risk thyroid cancer patients. 
However, there is a significant uncertainty asso-
ciated with the evaluation of the effect of TSH 
suppression on overall survival, disease-specific 
survival, and recurrence rate in intermediate- and 
high-risk thyroid cancer patients, warranting fur-
ther investigation in well-designed long-term 
prospective studies. The optimal TSH goals for 

Table 2 The effect of TSH suppression on thyroid cancer recurrence and progression-free survival (PFS)

Study

Number of 
intermediate/high-riska 
patients enrolled

Predictors of 
disease recurrence/
PFS

TSH suppression as 
independent factor 
associated with 
better outcome?

Average number 
of TSH 
measurements 
during follow-up

Duration of 
follow-up

Retrospective studies
Mazzaferri 
et al. [20]

1355, only 33 with 
distant metastases, 
no data on the 
number of patients 
with intermediate-
risk features

Size, local tumor 
invasion, lymph 
node metastases, 
RAI

Yes—in univariate 
model for cancer 
recurrence,
No—in 
multivariate model

No data 15.7 years

Cooper  
et al. [22]

378 Stage, age, RAI Yes—in univariate 
model for PFS
No—in 
multivariate model 
for PFS

2.6 4.5 years

Pujol  
et al. [21]

76 Stage, age, TSH Yes—in univariate 
and multivariate 
model for PFS

No data No data

Jonklaas  
et al. [30]

483 Stage, extent of 
surgery, RAI 
treatment

No—in univariate 
and multivariate 
model for PFS

2.3 3 years

Carhill  
et al. [35]

1813 Stage, extent of 
surgery, RAI 
treatment,

No—in univariate 
and multivariate 
model for PFS

6 6 years

Klubo-
Gwiezdzinska 
et al. [38]

597 Age, gender, 
distant 
metastases

No—in univariate 
and multivariate 
model for PFS

12 7.1 years

Hovens  
et al. [33]

291 Age, 
extrathyroidal 
extension, distant 
metastases

No—in univariate 
and multivariate 
model for relapse,
TSH > 2 mIU/mL 
associated with 
increased risk of 
relapse

>4 8.8 years

Prospective randomized controlled trials
Sugitani  
et al. [32]

296 n/a No effect on PFS 15 6.9 years

aIntermediate/high-risk patients—patients with tumors larger than 4 cm and/or with microscopic or gross extrathyroidal 
extension and/or with lymph nodes or distant metastases
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individual patients must balance the potential 
benefit of TSH suppression with the possible 
harm from subclinical thyrotoxicosis especially 
in patients with medical conditions that can be 
exacerbated with aggressive TSH suppression.

 The Risks Associated with Therapy 
with Suppressive Levothyroxine 
Doses

Subclinical hyperthyroidism has been associated 
with increased cardiac mortality and is an inde-
pendent predictor of cardiac death in patients 
with preexisting cardiac conditions [39–43]. A 
recent observational study demonstrated 
increased risk of all-cause and cardiovascular 
mortality in DTC patients with suppressed TSH, 
independent of age, sex, and cardiovascular risk 
factors [44]. Interestingly, in this study, the TSH 
level was a predictor of cardiac mortality—with 
threefold increased risk of death per each tenfold 
decrease in geometric mean of serum TSH level 
[44]. Some studies suggest that the absolute risk 
of death in patients with subclinical hyperthy-
roidism is age and gender dependent with highest 
risk observed in older men [41]. The elderly 
patients with TSH values of <0.3  mU/L have 
increased cardiac mortality; moreover higher lev-
els of FT4 in this group of patients are associated 
with an increased risk of cardiovascular and all-
cause mortality [45]. The older patients are also 
at a significantly greater risk of development of 
atrial fibrillation, even with moderate TSH sup-
pression (0.1–0.4 mU/L) [46–49].

Therapy with suppressive doses of levothy-
roxine has been also found to negatively affect 
bone health [50]. Sugitani et al. in a prospective 
randomized controlled study documented signifi-
cant reduction of bone density 1-year post-thy-
roidectomy in women over 50  years old who 
underwent TSH suppression therapy compared 
with the patients treated with non-suppressive 
levothyroxine doses [51]. Suppressive levothy-
roxine doses led to threefold increased likelihood 
of development of osteoporosis in women with 
thyroid cancer [52]. Moreover, there is an evi-
dence that in postmenopausal women diagnosed 

with and treated for osteoporosis, therapy with 
bisphosphonates is less effective in patients who 
are concomitantly on suppressive doses of levo-
thyroxine [53]. Suppressed TSH is also associ-
ated with increased risk of major osteoporotic 
fractures, and the extended duration of suppres-
sion is increasing this risk exponentially even 
further [54]. The detrimental effects of supra-
physiologic doses of levothyroxine on the bone 
health leading to acceleration to bone turnover 
and decreased bone density are seen predomi-
nantly in postmenopausal women, but not in men 
and premenopausal women [55–57].

Therefore, it is extremely important to take 
into consideration a balance between the cardio-
vascular and bone health-related risks of TSH 
suppression against the risks of tumor recurrence, 
progression, and mortality [1, 31]. Currently 
available guidelines focused on management of 
patients with thyroid cancer recommend “one 
size does not fit all” approach to decision-making 
about the TSH suppression.

 Comparison of Different Guidelines 
Focused on the Role of TSH 
Suppression in Thyroid Cancer 
Management

The levothyroxine dose is tailored toward cer-
tain TSH goals—either full suppression with 
TSH goal of less than 0.1  mIU/mL, moderate 
suppression with TSH goal of 0.1–0.5 mIU/mL, 
or low normal TSH values of 0.5–2  mIU/mL 
[1]. The decision-making about the degree of 
TSH appropriate suppression required for a 
patient’s management is based on risk stratifica-
tion assessing the likelihood of cancer-related 
death and persistent/recurrent disease and 
response to routine therapy as well as to pres-
ence of comorbidities which may increase the 
risk of serious complications of therapy with 
levothyroxine [1].

American Thyroid Association guidelines 
recommend targeting low normal TSH values 
of 0.5–2 mIU/mL in patients with low-risk thy-
roid cancer defined as intrathyroidal DTC with 
no evidence of extrathyroidal extension, vascu-
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lar invasion, or metastases and in patients who 
have an excellent response to therapy (Table 3) 
[1]. In patients with intermediate-risk features 
such as thyroid cancer exceeding 4 cm in size, 
tumors with microscopic extrathyroidal exten-
sion, presence of lymph node metastases, or 
aggressive tumor histology such as tall cell, 
hobnail variant or columnar cell carcinoma, as 
well as for the patients who have either indeter-
minate or incomplete biochemical response to 
treatment, the TSH goal is targeted at 0.1–
0.5  mIU/mL.  High-risk patients with thyroid 
cancer and with tumors characterized by gross 
extrathyroidal extension or distant metastases 
as well as the patients with structural incom-
plete response to standard therapy should have 
fully suppressed TSH levels with a goal of 
<0.1 mIU/mL. This goal could be modified to a 
less stringent one if there are cardiovascular 
comorbidities, particularly atrial fibrillation or 
osteoporosis (Table 3) [1].

The British Thyroid Association guidelines 
recommend a very similar approach [58]. Low-
risk patients or patients with excellent response 
to treatment should be treated with physiologic 
doses of levothyroxine with a TSH goal of 
0.2–3  mIU/mL.  The TSH goal for the patients 
characterized by intermediate-risk features or 
indeterminate response to treatment is targeted 
at 0.1–0.5 mIU/mL for 5–10 years. Levothyroxine 
dose for high-risk patients or patients with either 
biochemical or structural incomplete response 
should be tailored toward suppressed TSH val-
ues of less than 0.1  mIU/mL indefinitely 
(Table 3) [58].

The European Society of Medical Oncology 
and the European Thyroid Association guide-
lines apply a similar paradigm for the manage-
ment of thyroid cancer, introducing a risk 
stratification-based TSH goal. However, the sys-
tem of risk stratification is slightly different in 
this model compared with the American and 
British one, as patients are categorized into (1) a 
very low risk if they present with a unifocal 
microcarcinoma less than 1 cm in size, without 
extrathyroidal extension and lymph node metas-
tases; (2) low-risk tumors exceeding 1  cm but 

confined to thyroid, without extrathyroidal 
extension or local and/or distant metastases; and 
(3) high-risk patients with incomplete surgical 
resection, presenting with tumors characterized 
by extrathyroidal extension, lymph node and dis-
tant metastases, vascular invasion, and aggres-
sive histology (Table  3) [59]. Patients 
characterized by very low- and low-risk features 
or individuals who have an excellent response to 
treatment with no evidence of disease can be tar-
geted to achieve a TSH goal of 0.5–2  mIU/
mL. High-risk patients or patients with evidence 
of persistent/recurrent structural disease should 
be treated with suppressive levothyroxine doses 
with a TSH goal of less than 0.1  mIU/mL 
(Table 3) [59, 60].

The Latin American Thyroid Association 
guidelines are similar to the European risk strati-
fication system and recommend TSH suppression 
for high-risk thyroid cancer patients and a TSH 
goal of 0.4–1 mIU/mL for very low- and low-risk 
thyroid cancer patients [61]. Importantly these 
guidelines identify the contraindications for TSH 
suppression, namely, atrial fibrillation, ischemic 
cardiovascular disease, and severe osteoporosis 
(Table 3) [61].

The Japanese Society of Thyroid Surgeons 
and Japanese Association of Endocrine Surgeons 
guidelines significantly differ from the guidelines 
from Western societies [62, 63]. The main reason 
for this discrepancy lies in the different therapeu-
tic approaches implemented in Japan—with a 
watchful waiting strategy—consisting of active 
surveillance with imaging, without thyroidec-
tomy for microcarcinoma confined to the thyroid 
gland and hemithyroidectomy with prophylactic 
central neck lymph node dissection for tumors 
showing progression. Radioactive iodine treat-
ment and therapy with suppressive doses of levo-
thyroxine are not routinely recommended in 
Japan [62, 63].

To summarize, therapy with levothyroxine 
should be individualized based on the anticipated 
biological behavior of thyroid cancer in each 
patient and the patients’ age and presence of 
comorbidities, particularly cardiovascular and 
bone disease.
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Hyperthyroidism and Pregnancy

Jorge H. Mestman

Maternal, obstetrical, and neonatal complications 
are significantly increased in women with poorly 
controlled thyroid diseases. In 1975, Mujtaba and 
Burrow [1] reported on the outcome of 26 preg-
nancies in 21 hyperthyroid women treated with 
antithyroid drugs, both methimazole and propyl-
thiouracil; the infant outcome showed high rate 
of complications: four of the infants had a goiter 
at birth, three of them born with hyperthyroidism, 
and in two of them diagnosis made a few days 
after birth, “because of maternal antithyroid ther-
apy.” Five children had congenital abnormalities. 
Forty years later, these outcomes are still reported 
in the medical literature. Prepregnancy patient 
education, including contraception, and a man-
agement team approach during pregnancy and 
postpartum period, avoids most of these abnor-
mal outcomes. This chapter will be discussing 
clinical topics relevant to the care of women 
affected by Graves’ disease during their repro-
ductive age. The sections to be included are:

 Prepregnancy Counseling

Changes in thyroid economy, which could affect 
the well-being of the mother and offspring, occur 
early in pregnancy; therefore it is imperative to 
advise women with past or present history of 
hyperthyroidism during their reproductive age, to 
plan their pregnancies, and to contact their 
healthcare professionals before or as soon as the 
diagnosis of pregnancy is confirmed [2]. Graves’ 
disease, an autoimmune disease, affects 0.5% to 
1.3 of women between 20 and 45 years of age [3, 
4]; the clinical course of thyroid disease is 
affected by the immunologic changes that occur 
in pregnancy and in the postpartum period [5]. 
Women with a history of hyperthyroidism due to 
Graves’ disease, rendered hypothyroid by abla-
tion therapy, either surgery or RAI therapy, on 
thyroid replacement therapy, usually need an 
increase in their levothyroxine dose early in preg-
nancy, because of a 30–50% increase in thyrox-
ine demand in the first half of pregnancy [6, 7]. 
Some studies, but not all of them, have shown 
that an elevated serum TSH of over 2.5 mIU/L in 
the first trimester of pregnancy increase the inci-
dence of miscarriages, premature labor, and intel-
lectual deficiencies in the offspring later in life 
[8–10]). A serum TSH closed to 1 mIU/L before 
conception prevents the development of hypothy-
roidism after conception in almost 85% of hypo-
thyroid women on thyroid replacement therapy 
[11]. Titers of serum TSH receptor antibodies 
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(TRAbs) may remain elevated for some time 
after ablation therapy, particularly after 131I ther-
apy [12–14], with the risk of inducing fetal thy-
rotoxicosis if not promptly recognized. Surgical 
thyroid ablation should be considered in Graves’ 
disease women with high TRAb titers consider-
ing pregnancy, although occasionally it has been 
reported after total thyroidectomy [15]. In 1 
study [16], 42 women with active or previous 
history of Graves’ hyperthyroidism delivered 42 
babies; 9 infants were diagnosed with hyperthy-
roidism at birth; in 4 out of 9 infants born from 
euthyroid mothers, 3 mothers were treated with 
surgery and 1 with 131I ablation before 
pregnancy.

Inadvertent treatment with radioiodine during 
pregnancy has been studied, with risks to the 
fetus dependent upon timing of exposure and 
radiation dose [17]. In one systematic review, 
spontaneous miscarriage was more likely when 
exposure occurred during the first 2 weeks after 
fertilization, prior to implantation [18].

In summary, women with past or present his-
tory of Graves’ disease and their partners should 
be offered proper information and education in 
planning future pregnancies; contraception; ther-
apeutic options for hyperthyroidism; avoiding 
conception while having active thyroid disease; 
frequent medical and obstetric visits during preg-
nancy; need for serial and frequent thyroid tests; 
potential fetal risk of antithyroid drug (ATD) 
therapy, among them fetal teratogenicity; possi-
ble recurrence of the disease early in gestation in 
the postpartum period; and breastfeeding 
recommendations.

 Physiologic Thyroid Changes 
Through Pregnancy

In early pregnancy, the maternal thyroid gland is 
challenged with an increased demand for thyroid 
hormone production [19, 20], due to (a) increase 
in blood thyroxine-binding globulin (TBG), sec-
ondary to the effect of estrogens on the liver; (b) 
stimulatory effect of human chorionic gonadotro-
pin (hCG) on the thyroid-stimulating hormone 
(TSH) receptor; (c) high concentrations of type 3 

iodothyronine deiodinase (D3), which degrades 
thyroxine and triiodothyronine to inactive com-
pounds and is compensated for by an increase in 
T4 synthesis and secretion [21]; and (d) supply of 
iodine available to the thyroid gland [22]. In the 
United States, the iodine content in the diet 
appears to be insufficient in only about 10–20% 
of pregnancies. The suggested total daily iodine 
ingestion for pregnant women is 229 μg/day and 
289 μg/day for lactating women; prenatal vita-
mins should contain 150 μg of iodine in the form 
of potassium iodine, complementing the daily 
dietary iodine intake [23].

As the result of the above, early in pregnancy 
there is a slight increase secretion of FT4, albeit 
within normal range, and a decrease in serum 
TSH levels, with 10–20% of women having sub-
normal TSH levels, sometimes as low as 
0.03  mIU/L [24]. The normal thyroid gland is 
able to compensate for this increase in thyroid 
hormone demands; however, in those situations 
in which there is a subtle pathologic abnormality 
of the thyroid gland, such as chronic autoimmune 
thyroiditis, or in women on thyroid hormone 
replacement therapy, the normal increase in the 
production of thyroid hormones is not met, and 
hypothyroidism ensues.

The fetal thyroid gland starts secreting thyroid 
hormones at about 10–12 week’s gestation with 
significant fetal thyroid hormone production by 
20 weeks [19, 25]. Fetal TSH level starts progres-
sively to increase at approximately 18 weeks of 
gestation to a peak value of 10 mU/L at term. At 
the same time, fetal T4 levels begin to increase 
steadily until the end of gestation. Fetal serum T3 
remains low until the 30th week of gestation and 
then slowly increases until birth. In the iodine 
uptake by the fetal gland occurring between 10 
and 14 weeks, TSH receptor responds to the stim-
ulation by TSI (thyroid-stimulating immunoglob-
ulin) by 18 weeks’ gestation [26].

 Interpretation of Thyroid Tests

Measurement of serum TSH is the most practical, 
simple, and economic screening test for detection 
and diagnosis of thyroid dysfunction in the 
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 outpatient setting, and it is complemented by an 
assessment of thyroxine levels in cases of abnor-
mal TSH values. Uncommon exceptions include 
patients with pituitary hypothyroidism and those 
with resistance to thyroid hormone syndrome. 
The most common and available commercial 
tests in clinical practice for the determination of 
free thyroxine (FT4) are automated immunoas-
says by nonequilibrium methods. Interpretation 
of FT4 levels during pregnancy can be challeng-
ing, and higher thyroid-binding globulin and 
lower albumin levels decrease the accuracy of 
immunoassays, causing falsely low FT4 levels in 
the second and third trimester of pregnancy [27, 
28]. A study comparing total T4 (TT4), FT4 
index (FT4I), and two different FT4 analog 
immunoassays found that total T4 levels and 
FT4I more accurately demonstrated actual tem-
poral changes in T4 levels throughout gestation 
[27]. Determination of TT4  in pregnancy needs 
to be adjusted, since its blood concentration is 
elevated by the effect of circulating thyroxine- 
binding protein (TBG). TT4 serum values start 
increasing by 50% after the 4–6 weeks of con-
ception reaching a peak at about 20 weeks’ gesta-
tion and plateau after until deliver. It is suggested 
to adjust TT4 (adjusted TT4, AFT4) reference 
range in pregnancy, by a factor of 1.5 times that 
of the nonpregnant values [27] (e.g., normal ref-
erence range in nonpregnancy, 4.0–12.0; multi-
plying by a factor of 1.5, the TT4 reference range 
for pregnancy should be 6.0–18.0); the next 
option is the calculation of serum FT4 by the FT4 
index (FT4I), with the use of serum TT4 and an 
indirect assessment of TBG, such as the resin 
uptake (RU) or similar tests [27, 29]. In this 
review FT4, FT4I and adjusted (ATT4) will be 
used interchangeable (FT4/FT4I/ATT4). Other 
laboratory tests for the determination of FT4 
include equilibrium dialysis technique and tan-
dem mass spectrometry [30]; although more 
accurate, these tests are more expensive and not 
commonly available in clinical practice. In sum-
mary, several options for the assessment of 
serum-free T4 include (a) FT4, (b) adjusted TT4, 
(c) FT4I, or (d) a more expensive and less avail-
able equilibrium dialysis technique and tandem 
mass spectrometry. Routine use of serum FT3 or 

TT3 is reserved for the especial situation in which 
serum TSH is undetectable and FT4 is normal, 
such as in the occasional patient with an autono-
mous functionally thyroid nodule or the patient 
ingesting inappropriate doses of triiodothyronine 
(T3). Another clinical situation in whom serum 
TT3 or FT3 may be of clinical application is the 
woman with severe hyperthyroidism where 
serum T3 levels are disproportionally higher than 
serum T4 levels. It was reported in a series of 
hyperthyroid women, in whom the serum FT4 
was normalized by ATD therapy, that newborn 
serum TSH were above reference range, suggest-
ing state of fetal hypothyroidism [31]. Since the 
reason to limit the routine determination of 
FT3 in pregnancy.

A suppressed or undetectable serum TSH in 
the presence of an elevated FT4 or adjusted TT4 
confirmed the diagnosis of clinical hyperthyroid-
ism, while a serum FT4 within normal limits is 
consistent with subclinical hyperthyroidism. This 
is an important clinical and therapeutic distinc-
tion since antithyroid therapy is not indicated in 
subclinical hyperthyroidism [32].

TSH receptor antibodies (TRAbs)  play a sig-
nificant role in the differential etiologic diagnosis 
of hyperthyroidism and in assessing the risk of 
fetal and neonatal hyperthyroidism (Table 1) [33, 
34]. These antibodies, binding to the TSH recep-
tor (TSHR), are classified as stimulating antibod-
ies, the cause of Graves’ disease, and blocking 
antibodies, occasionally responsible for fetal 
hypothyroidism. Two assays are commercially 

Table 1 Indications for maternal determination of thy-
roid receptor antibodies (TRAbs) (18–22  weeks 
gestation)

  •  Fetal or neonatal hyperthyroidism in previous 
pregnancies

  • Graves’ disease
  – Active
  – Post-ablation therapy (surgery, 131I)
  • Thyroidectomy during pregnancy
  • Fetal monitoring findings of
  – Fetal tachycardia (>160/min)
    Intrauterine growth restriction
    Fetal goiter
  – Poly-oligohydramnios
    Accelerated bone maturation (>28 weeks)
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available, competition-based assays, thyroid- 
binding inhibitory immunoglobulins (TBII), and 
assays that detect cAMP production, thyroid- 
stimulating immunoglobulin (TSI) assay. 
Crossing the placenta barriers, the stimulating 
antibodies, if present in significant titers, are 
responsible for the development of fetal and/or 
neonatal hyperthyroidism. Therefore, testing for 
TRAbs is an important component in the diagno-
sis and management of Graves’ disease. The 
specificity of TBII methods is lower because they 
cannot differentiate between stimulating and 
blocking antibodies. From a clinical practical 
point of view, presence of blocking antibodies is 
unusual; it was reported in 9 out of 788 neonates 
in which neonatal screening tests were suggestive 
of neonatal hypothyroidism [35].

 Maternal-Placental-Fetal 
Interactions (Fig. 1)

Studies over the past few decades have shown an 
important role of maternal thyroid hormones in 
embryogenesis [36, 37]. Maternal T4 crosses the 
placenta early in pregnancy at a time when the 
fetal thyroid gland is not functional, and maternal 
TSH does not cross the placenta barrier. 
Thyrotropin-releasing hormone (TRH) does 
cross the placental barrier, but its physiologic sig-
nificance is unknown. Methimazole (MMI), pro-
pylthiouracil (PTU), and carbimazole (CMZ)—a 
drug that is metabolized to methimazole—do 
cross the placenta barrier and if given in inappro-
priately high doses may produce fetal goiter and 

hypothyroidism [38]. Preparations that contain 
iodine given in large doses or for prolonged peri-
ods are contraindicated in pregnancy because 
accumulation by the fetal thyroid may induce 
goiter, cretinism, and hypothyroidism [39]. As 
mentioned above, TRAb crosses the placenta, 
and maternal blood concentrations have a ten-
dency to decrease with progression of pregnancy 
[40], suggested as the reason for spontaneous 
hyperthyroid symptom improvement. In hyper-
thyroid women with persistently elevated TRAb 
levels, the risk of caring a fetus with hyperthy-
roidism is significant. It has been estimated that 
TBII levels of above three times normal reference 
range have a sensitivity of 100% and specificity 
of 43% in predicting neonatal hyperthyroidism; 
in the same report, mothers with serum TSI below 
400% (reference range below 140%) gave birth 
to no hyperthyroid infant [41].

 Etiology of Hyperthyroidism 
(Table 2)

Graves’ hyperthyroidism diagnosed during preg-
nancy needs to be differentiated from other eti-
ologies, grouped as transient non-autoimmune 
hyperthyroidism of early pregnancy [42] affect-
ing 1–5% of all pregnant women, more often than 
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globulins, and drugs

Table 2 Management of Graves’ hyperthyroidism in 
pregnancy

Control of maternal hyperthyroidism
(a) Indication, choice, and timing of ATD therapy
(b)  Proper ATD dosage and adjustment with the goal 

to keep serum FT4/ATT4/FT4I in the upper limits 
of reference range

(c) Detection of early medical complications
(d) Postpartum follow-up
Early detection of fetal and neonatal dysfunction
(a)  A medical team approach, including obstetrician, 

maternal-fetal medicine specialist, endocrinologist, 
neonatologist, anesthesiologist, and pediatric 
endocrinologist

(b)  Timing and interpretation of maternal serum TRAb 
levels

(c)  Detection of fetuses at risk, in need of intensive 
fetal monitoring management

(d) Neonatal thyroid evaluation in the first week of life
(e) Long-term follow-up
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Graves’ disease. It presents with hyperthyroid 
symptoms occurring after 6–8 weeks’ gestation, 
coinciding with increasing levels of hCG secre-
tion by the placenta, stimulating the TSH recep-
tor [43]. Hyperemesis gravidarum (HG) (Fig. 2), 
the most common cause of thyrotoxicosis in the 
first trimester of pregnancy [44, 45], is character-
ized by severe nausea, vomiting, and weight loss, 
with onset between 6 and 8  weeks’ gestation, 
requiring frequent visits to the emergency room 
and inpatient care for IV hydration. Serum TSH 
measured by a sensitive assay is consistently 
undetected or suppressed, with elevation in serum 
FT4. Symptoms of hyperthyroidism are mild, 
with exception of tachycardia, due most likely to 
dehydration. Absence of prepregnancy hyperthy-
roid symptoms, ophthalmopathy and goiter, dis-
tinguished them clinically from Graves’ disease 
patients. Spontaneous normalization of hyperthy-
roxinemia parallels the improvement in vomiting 
and coincides with a decrease in serum hCG val-
ues by 12–16  weeks’ gestation. Suppressed 
serum TSH may lag for a few more weeks after 
normalization of free thyroid hormone levels 
(Fig.  2). Antithyroid medications are not thera-
peutically indicated. Occasionally, severe vomit-
ing and hyperthyroidism may require parenteral 
nutrition. In 67 patients studied by Goodwin and 
colleagues [44], liver and electrolyte abnormali-
ties were routinely found in women with worse 
symptoms, including severe vomiting, weight 
loss of at least 5 kg, and significant dehydration. 
Other causes of GTH include twin pregnancies 
and trophoblastic disease.

Two cases [46] have been reported of severe 
hyperemesis, hCG levels were not elevated, and 
the symptoms persisted through gestation. 
Thyrotoxicosis and hyperemesis gravidarum 
were due to a mutation of the TSH receptor, pro-
viding thyroid hypersensitivity to hCG.

 Graves’ Disease

The clinical presentation of Graves’ hyperthy-
roidism in pregnancy varies: (a) first time diagno-
sis, (b) patient under treatment with ATD therapy, 
or (c) recurrence of hyperthyroidism in a patient 
on remission after previous course of ATD ther-
apy or after ablation therapy. Stimulation of the 
thyroid gland by placenta hCG in the first trimes-
ter and the elevation of serum TRAb titers, with 
stimulating activity, from prepregnancy values, 
have been suggested as the cause of recurrent dis-
ease [47]. It needs to be kept in mind that women 
rendered hypothyroid post-ablation therapy, 
either 131I therapy or surgery, on levothyroxine 
replacement therapy may present with laboratory 
tests consistent with hypothyroidism, either sub-
clinical (elevated serum TSH and normal FT4/
ATT4) or clinical (high serum TSH and low FT4/
ATT4), as a result of the inability to the residual 
thyroid gland to compensate for the increase in 
thyroid hormone demands usually seen early in 
pregnancy [5]. Prompt correction of hypothy-
roidism is necessary to prevent potential maternal 
and fetal complications. In most patients in whom 
the diagnosis of Graves’ hyperthyroidism is made 
for the first time during pregnancy, hyperthyroid 
symptoms antedate conception. The clinical 
diagnosis of thyrotoxicosis may present difficul-
ties during gestation because many hypermeta-
bolic symptoms and signs are commonly seen in 
normal pregnancy, such as mild palpitations, 
heart rate between 90 and 100  beats/min, mild 
heat intolerance, shortness of breath on exercise, 
and warm skin. However, some clinical clues 
increase the likelihood of Graves’ hyperthyroid-
ism such as the presence of a goiter, orbitopathy, 
proximal muscle weakness, tachycardia with a 
consistent pulse rate of more than 100 beats/min, 
frequent daily bowel movements, and weight loss 
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or inability to gain weight despite a good appe-
tite. Occasionally, the patient may be seen for the 
first time in congestive heart failure, with physi-
cal findings suggestive of cardiac valve disease, 
particularly mitral insufficiency or stenosis [48]. 
Other common symptoms of hyperthyroidism 
include nervousness, increased sweating, insom-
nia, irritability, changes in personality, decreased 
tolerance to exercise, eye irritation, frequent lac-
rimation, and pruritus. Not all symptoms are 
present in a given patient; therefore physicians 
should be aware of subtle complaints, particu-
larly in the presence of weight loss or inability to 
gain weight. In one study, reduction in peripheral 
vascular resistance and higher cardiac output 
were still present despite normalization of T4 
levels [49]. This is an important finding with sig-
nificant clinical implications. Left ventricular 
decompensation in controlled hyperthyroid preg-
nant women may develop in the presence of 
superimposed preeclampsia, at the time of deliv-
ery [50], or with undercurrent complications such 
as anemia or infection [51].

In the first trimester of pregnancy, Graves’ 
hyperthyroidism should be clinically differenti-
ated from other causes of “transient non- 
autoimmune hyperthyroidism of early pregnancy” 
syndrome [42] as mentioned before.

 Maternal and Obstetric 
Complications

Prompt recognition and treatment of hyperthy-
roidism avoids most pregnancy complications. In 
patients with poorly controlled hyperthyroidism 
through pregnancy, one of the most common 
maternal complications is pregnancy-induced 
hypertension (PIH), with a risk for severe pre-
eclampsia five times greater than in patients with 
controlled disease. Millar and coworkers [52] 
reported on 181 pregnant hyperthyroid women, 
34 remained euthyroid through pregnancy, 90 
become euthyroid before the third trimester, and 
57 remained hyperthyroid throughout gestation. 
Uncontrolled hyperthyroidism was associated 
with a ninefold greater incidence of low birth 
weight (LBW) and five times greater incidence of 

pregnancy-induced hypertension (PIH), as com-
pared to controlled disease women. The inci-
dence of LBW infants was almost 2.5 times 
greater in those whose hyperthyroidism was 
treated during pregnancy but who became euthy-
roid at some time during gestation. In mothers 
who achieved a euthyroid state before or early in 
pregnancy, the incidence of LBW infants was no 
different from the control population. Other 
obstetrical complications in uncontrolled hyper-
thyroidism include preterm delivery, placental 
abruption, prematurity, stillbirth, and miscar-
riage. These data were recently confirmed by a 
retrospective analysis from the US Consortium 
on Safe Labor from 223.512 singleton pregnancy 
delivered between 2002 and 2008, information 
obtained from electronic medical records, with-
out information about type of treatment or con-
trol of disease. The authors reported increased 
odds of preeclampsia, preterm delivery, labor 
induction, and ICU admissions [50]. Similar 
results were obtained in a study from India [53, 
54]. Mitsuada et al. [55] reported on the risk for 
small for gestational age (SGA) infants born to 
Graves’ hyperthyroid mothers; risk factors 
included presence of maternal thyrotoxicosis 
lasting more than 30 weeks of pregnancy, dura-
tion of Graves’ disease of approximately 
10 years, and the onset of Graves’ disease before 
age 20 years.

Infants of hyperthyroid uncontrolled mothers 
are at risk for the development of neonatal central 
hypothyroidism, some of these infants recovered 
normal thyroid function in a few weeks, whereas 
another group had long-standing hypopituitary- 
thyroid dysfunction [56–58].

 Maternal Management

Control of hyperthyroidism through pregnancy 
and early detection of fetal thyroid dysfunction 
are the two most important aspects in the man-
agement of women affected by Graves’ disease 
(Table  3). Control of hyperthyroidism includes 
(a) indication, choice, and timing of ATD ther-
apy, (b) proper ATD dosage and adjustment with 
the goal to keep serum FT4/ATT4/FT4I in the 
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upper limits of reference range, and (c) detection 
of early medical complications. Early detection 
of fetal and neonatal dysfunction includes (a) a 
medical team approach, including obstetrician, 
maternal-fetal medicine specialist, endocrinolo-
gist, neonatologist, anesthesiologist, and pediat-
ric endocrinologist, (b) timing and interpretation 
of maternal serum TRAb levels, and (c) detection 
of fetuses at risk, in need of intensive fetal moni-
toring management. Although the incidence of 
fetal/neonatal Graves’ disease is relatively low 
(5–10%), the medical consequences of an uniden-
tified newborn with the disease are very serious 
[13, 58].

Medical therapy is the cornerstone manage-
ment of hyperthyroidism in pregnancy. In the 
United States, the two available ATDs are propyl-
thiouracil (PTU) and methimazole (MMI); in 
other countries such as the UK, carbimazole, a 
methimazole precursor, is used. The three drugs 
are effective in controlling the disease. PTU is 
associated with a risk of maternal liver failure 
[59], and its use is limited to (a) first trimester of 
pregnancy (Fig. 3), (b) allergy to MMI/carbima-
zole, and (c) thyroid decompensation or crisis 

[60]. Taylor and Vaidya [61] reported six cases of 
PTU-induced liver failure, two of them required 
liver transplantation, and one patient died. MMI 
can also induce liver toxicity, but these effects are 
milder, confined to liver cholestasis, not associ-
ated with liver failure, and seen more frequently 
in older patients [62].

Because of the risk of more severe congenital 
abnormalities with MMI than PTU (see Section 
“Congenital Malformations”), PTU is used in the 
first trimester, switching MMI to PTU in women 
planning pregnancy or as soon as gestation is 
diagnosed. MMI is reassumed after 12  week’s 
gestation (Fig. 3). The initial dose of propylthio-
uracil or methimazole is guided by the severity of 
hyperthyroid symptoms. An initial dose of 150–
450 mg daily of propylthiouracil in three divided 
doses or 5–20  mg of methimazole, given as a 
single daily dose, is usually recommended. Very 
seldom a larger initial dose is required; such in 
the presence of a large goiter, drug resistance is 
extremely unusual (if really existed as a medical 
entity), in most cases due to patient inconsistence 
in taking the medication. In patients with mini-
mal symptoms, an initial dose of 5–10  mg of 
MMI daily or PTU 50 mg two or three times a 
day may be initiated. Thyroid test (TSH and FT4/
FT4I/ATT4) are obtained every 2–4  weeks as 
clinically indicated. In the majority of patients, 
clinical improvement is seen in 2–3 weeks, and 
improvement in thyroid tests occurs within the 
first 2  weeks of therapy, with normalization to 
serum FT4/FT4I/ATT4  in 3–7  weeks, while 
serum TSH will remain suppressed or undetect-
able sometimes throughout the duration of preg-
nancy. Because of the immunologic changes that 
occur with progression of pregnancy, require-
ment for antithyroid medications decreases after 
the second half of gestation along with a gradual 
reduction of blood TRAb titers in the vast major-
ity of women. Once there is an improvement in 
serum FT4/FT4I/ATT4, the ATD dose is 
decreased with the aim to keep the FT4/ATT4 in 
the upper limits of normal with the minimum 
dose of ATD (Fig.  3). Another indication to 
decrease ATD dose is when serum TSH values 
become detectable. Blood TRAb titers play a cru-
cial role in adjusting the dose of ATD; as 

Table 3 Etiology of hyperthyroidism in pregnancy

Immune thyroid disease
  Graves’ disease
  Chronic thyroiditis
  Sporadic silent thyroiditis
Nonautoimmune thyroid disease
  Multinodular goiter
  Toxic adenoma
  Subacute thyroiditis
Transient non-autoimmune hyperthyroidism of early 
pregnancy
  Gestational thyrotoxicosis
  Multiple gestations
  Nausea and vomiting
  Hyperemesis gravidarum
   Trophoblastic tumor
   Hydatidiform mole
   Choriocarcinoma
Iatrogenic
  Excessive levothyroxine intake
   Overtreatment
   Factitious
  Iodine induced
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 mentioned above serum TRAb titers tend to 
decrease after the 20  weeks of gestational age, 
becoming negative or slightly elevated. In some 
patients with small goiters, short duration of 
symptoms, low or negative serum TRAb titers, 
and minimal amounts of antithyroid medication 
(MMI 2.5–5 mg, PTU 50–100 mg daily) are able 
to discontinue ATDs by 34 weeks’ gestation or 
beyond (Fig. 4). It is estimated that 30–40% of 
women are able to remain euthyroid without anti-
thyroid therapy in the last few weeks of preg-

nancy. In a study of 44 women in 46 pregnancies, 
the correlation among TRAb activity, the dose of 
antithyroid therapy, and neonatal outcome was 
studied [63]. Medication was discontinued in 30 
pregnancies 3–18  weeks before delivery. 
Neonatal thyrotoxicosis was seen in four infants 
whose mothers’ TRAb levels exceeded 70% 
(normal, <15%). Interestingly, of the infants born 
with elevated serum TSH, maternal TRAb was 
less than 30% in most, suggesting that in Graves’ 
disease-associated hyperthyroid pregnancies, a 
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low TRAb titer is an indication to use the mini-
mal amount of antithyroid therapy to avoid the 
development of fetal hypothyroidism.

β-Adrenergic blocking agents (propranolol 
10–40 mg every 6 h or atenolol 25–50 mg/day) 
are very effective in controlling hyperdynamic 
symptoms and are used for a short period of 
time, decreasing the dose with symptoms 
improvement. We preferred short-acting drugs 
such as propranolol since it is more convenient 
to adjust and decrease the dose according to 
patient’s symptoms. Occasionally women may 
require small doses such as 10  mg at bedtime, 
even after achieving normalization in serum 
FT4/ATT4 levels. Long-term use of beta-block-
ing agent drugs has been reported to induce bra-
dycardia, intrauterine birth restriction, and 
neonatal hypoglycemia [64]. One publication 
reported an increased incidence of spontaneous 
abortion with the combined use of propranolol 
and methimazole vs. antithyroid drugs alone 
[65]. One situation in which β-adrenergic block-
ing agents may be very effective is in the treat-
ment of severe hyperthyroidism during labor. In 
a case reported in which both mother and fetus 
were affected, labetalol was infused at a rate of 
2  mg/min and controlled maternal and fetal 
tachycardia within 45 min [66].

Subtotal thyroidectomy in pregnancy is 
reserved for uncommon cases of large goiters 
causing compressing symptoms, patients not 
responding to large doses of ATD, unusual case 
of allergy to ATDs [67], and poor drug consis-
tency; the timing of surgery is between 18 and 
24 weeks’ gestation. In a population-based study 
[68], maternal complications were higher during 
pregnancy as compared to nonpregnant control 
group. Beta-blockers should be used before sur-
gery for symptom control and continued for the 
first few days after surgery; potassium iodide 
(KI), to be given for 8–14 days before surgery, is 
useful in decreasing thyroid blood flow as well as 
improvement of maternal thyroid function. A few 
days before surgery, it is essential to obtain 
maternal serum TRAb to assess fetal hyperthy-
roidism risks; a titer three times above referral 
range is a predictor of fetal hyperthyroidism and 
an indication of close obstetrical monitoring.

 Thyroid Storm in Pregnancy

Thyroid storm is a rare and serious complication 
of uncontrolled hyperthyroidism, as a result of 
undiagnosed disease, patient inconsistency with 
medication, or discontinuation of ATD during 
pregnancy due to concern for teratogenicity, 
occurring in 1–2% of pregnant hyperthyroid 
women. It is triggered by a precipitating event, 
such as infection, eclampsia, labor, a surgical 
procedure, or cesarean section. It is associated 
with a high maternal and fetal morbidity and 
mortality. Clinical presentation varies, but fever, 
altered mentation status, and a precipitating event 
are the most likely signs that would alert the phy-
sician of the possibility of thyroid storm in a 
patient with hyperthyroidism [60]. These symp-
toms are a manifestation of the abrupt onset of a 
hypermetabolic state that can lead to multi-organ 
failure, including heart failure, liver dysfunction, 
nausea, vomiting, and diarrhea [69]. Although 
thyroid storm is a clinical diagnosis, presenting 
symptoms should be accompanied by thyroid 
function tests indicative of hyperthyroidism, val-
ues that are indistinctive from other forms of 
hyperthyroidism. There are several published 
score systems to assist the physician in the diag-
nosis and severity thyroid storm [70, 71].

Patients should be immediately admitted to an 
intensive care unit; fetal monitoring may show 
concerning findings; however, these may improve 
as the mother is adequately treated. Delivery can 
exacerbate and worsen maternal status [72] and 
should be avoided if possible. Management 
includes (a) supportive therapy such as fluids and 
correction of electrolyte abnormalities, oxygen 
therapy as needed, and control of hyperpyrexia. 
Acetaminophen is the drug of choice because aspi-
rin may increase serum-free thyroid hormones, (b) 
congestive heart failure may require large doses of 
digoxin, (c) proper antibiotic therapy is instituted 
in case of infection, and (d) control of hyperadren-
ergic symptoms, β-adrenergic blocker therapy pro-
pranolol 60–80 mg every 4 h orally or 1 mg/min 
intravenously. Esmolol, a short-acting β-acting 
antagonist, can be given intravenously with a load-
ing dose of 250–500 μg/kg of body weight fol-
lowed by continuous infusion at 50–100 μg/kg/
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min, (d) MMI 30 mg or PTU 300 mg every 6 h is 
initiated as soon as the diagnosis is entertained, 
and PTU is preferred because it blocks conver-
sion of serum T4 toT3. If the patient is unable to 
take oral medications, a nasogastric tube may be 
needed; (e) one hour after the administration of 
thioamides, iodine is administered to block the 
secretion of thyroid hormones from the thyroid 
gland; Lugol’s solution, ten drops three times a 
day, or sodium iodide is given intravenously 1 g 
every 12 h; (d) glucocorticoids are also helpful 
because they reduce the peripheral conversion of 
serum T4 to T3. Hydrocortisone, 50–100  mg 
every 8 h or equivalent amounts of other gluco-
corticoids, such as dexamethasone 2–4 mg every 
8 h. In summary, thyroid storm is a life-threaten-
ing condition with a mortality rate of 20–30%, 50 
and it requires early recognition and aggressive 
treatment.

 Congenital Malformations

Congenital malformation induced by antithyroid 
drugs are known to produce specific birth defects. 
The first case was described in 1972 [73]; the 
authors reported an infant born of a mother that 
took methimazole in the first trimester of gesta-
tion, with a localized lesion in the parietal area of 
the scalp characterized by congenital absence of 
the skin and punched-out ulcer-like lesion, known 
as aplasia cutis. Since then, only one case of this 
lesion has been reported with the use of PTU 
[74]. Since the first publication, several studies 
have described a specific embryopathy in infants 
born to mothers treated with MMI/carbimazole 
in the first trimester of pregnancy [75, 76]. It is 
known as methimazole/carbimazole embryopa-
thy, and it includes choanal atresia (failure of the 
nasal passages to develop), tracheoesophageal 
fistula, esophageal atresia, omphalocele, hypo-
thelia and athelia (failure of the nipples to 
develop), minor dysmorphic features, and devel-
opmental delay. The prevalence of these malfor-
mations in the general population is 1 in 2500 for 
esophageal atresia and 1 in 1000 for choanal atre-
sia. Congenital heart defects were recently recog-
nized in children whose mothers were exposed to 

MMI or carbimazole (MMI-CMZ) early in preg-
nancy [77]. In one study, echocardiography was 
performed in 60 of 68 neonates born of mothers 
with Graves’ disease, and four cases of congeni-
tal heart defects were diagnosed (two atrial septal 
defects, one ventricular septal defect, and one 
tetralogy of Fallot) [78]. Andersen et  al. [79] 
studied congenital malformations in the Danish 
population and estimated that fetal exposure to 
ATD early in pregnancy may affect ~ 1/30 of 
children. The authors also showed for the first 
time that neonates exposed to PTU in early preg-
nancy had a significant incidence of congenital 
malformations ~1/40, as compared to infants not 
exposed to ATD. The PTU congenital malforma-
tions tended to be less severe than the ones 
observed with MMI and affected mainly the face 
and neck area (preauricular and branchial sinus 
fistula/cyst) and the urinary system (single cyst of 
the kidney and hydronephrosis). Some of these 
malformations were detected within 2 years after 
birth and some of the children needed corrective 
surgery. According to Yoshihara et  al. [80] in a 
Japanese population of newborns exposed to 
ATD in the first trimester of pregnancy, an overall 
rate of major anomalies in the MMI group was 
4.1%, a rate significantly higher than the 2.1% in 
the control group and the PTU-treated mothers. A 
recent meta-analysis demonstrated an increased 
risk of congenital anomalies with exposure to all 
thioamides in pregnancy [81].

Ishikawa [82] made a very interesting obser-
vation; he reported a high incidence of dysplasia 
of the hip in infants of mothers affected with 
hyperthyroidism in the first trimester of preg-
nancy: 3 out of 12 with Graves’ disease (20%, 
P < 0.0001) and 5 of 34 with severe gestational 
thyrotoxicosis (12.8%, P < 0.0001) as compared 
to 13 out of 2070 normal pregnancies (0.63%); 
all infants were female.

The significant finding of congenital malfor-
mations in children exposed to PTU in the first 
trimester opens a new dilemma in the manage-
ment of hyperthyroidism in women planning 
pregnancy (see Section “Prepregnancy 
Counseling”), and in all women of reproductive 
age, since unplanned pregnancy is reported to be 
over 50% in the US population [83]. Guidelines 

J. H. Mestman



733

from the Endocrine Society [84], American 
Thyroid Association [85], and European Thyroid 
Association [86] favored the use of PTU in 
hyperthyroid women planning a pregnancy or 
switching from MMI to PTU as soon as the diag-
nosis of pregnancy is confirmed. Laurberg and 
Andersen [87] reviewed the literature on the 
association between weeks gestation in early 
pregnancy and ATD fetal exposure with the 
development of birth defects. They concluded 
that high risk for malformations was confined to 
gestational weeks 6 through 10, the major period 
of organogenesis, suggesting that the risk of birth 
defects could be minimized if pregnant women 
stop ATD intake before gestational week 6. Their 
recommendation for fertile women on drug ther-
apy is to receive written instructions: [1] a preg-
nancy test within a few days after a missed 
menstrual period; [2] if the test is positive, to 
contact their physician; and [3] if feasible, to dis-
continue ATD therapy and follow with weekly 
thyroid function tests. They added that PTU is the 
drug of choice if therapy is needed, because con-
genital defects are less severe as compared to 
methimazole/carbimazole. A recent prospective 
cohort study suggested that high serum FT4 con-
centrations in the first half of pregnancy may 
have negative effects on brain development in 
offspring [88], with a statistically significant 1.4–
3.7 point reduction in mean child IQ, and MRI 

findings of reduction of total gray matter and cor-
tex volume, findings suggesting a clinical impact 
of hyperthyroidism in the first half of gestation. 
This finding could incline the physician to main-
tain euthyroidism in the first trimester of preg-
nancy with the use of PTU, at a risk of a lower 
incidence and severity of congenital 
malformations.

 Fetal-Neonatal Care

As mentioned previously, a team approach in the 
management of hyperthyroidism in pregnancy 
offers the best results for pregnancy outcome. 
Fetal hypo- and hyperthyroidism are severe con-
ditions with high fetal and neonatal morbidity 
and mortality if not diagnosed and treated prop-
erly. Women at risk for having affected outcomes 
are well defined: for fetal hyperthyroidism, (a) a 
previous pregnancy with an affected infant and 
(b) uncontrolled hyperthyroid women and those 
with Graves’ disease treated with ablation ther-
apy before pregnancy, with TRAb titers over 
three times reference range by 18 weeks’ gesta-
tion (Fig. 5), and for fetal hypothyroidism mater-
nal inappropriate high ATD dosage in the second 
half of gestation.

Early signs of fetal hyperthyroidism include 
fetal tachycardia (consistent fetal heart rate 
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Fig. 5 Titers of serum 
TRAb decrease after the 
second half of gestation; 
pregnancies with titers 
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limit of normal are at 
risk of fetal and neonatal 
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>160 per minute for at least 5 min) (a typical fetal 
monitoring pattern has been described [89]), 
inappropriate fetal growth, thyroid gland enlarge-
ment (reported as the first sign of fetal hyperthy-
roidism), presence of oligo-polyhydramnios, and 
advanced bone age (this last complication 
detected later in gestation by 30–32 weeks) [90]. 
The size of the normal fetal gland according to 
gestational age was reported [91]. Less com-
monly, fetal hyperthyroidism can lead to heart 
failure and subsequently, increase risk of intra-
uterine fetal demise [25].

Serial fetal ultrasounds are an invaluable tool 
in expert hands to diagnose and assess fetal signs 
of thyroid dysfunction. It should be started at 
about 18 weeks gestation in women at risk, at the 
time of full maturation of the fetal hypothalamic 
pituitary thyroid axis. The use of ultrasonography 
for monitoring the size of the fetal thyroid gland 
as an indicator of thyroid dysfunction and possi-
bility for therapeutic intervention was evaluated 
by Luton and associates in France [90]; the 
authors studied 41 hyperthyroid women consid-
ered to be at high risk (presence of high titers of 
TRAb) and on antithyroid therapy and detected 
fetal goiter in 11 of them. They considered the 
detection of fetal goiter as the earliest sono-
graphic sign of fetal dysfunction. Of the 11 fetus, 
four of them were hyperthyroid, and seven were 
hypothyroid secondary to high doses of maternal 
antithyroid drug treatment; all of them benefited 
from adjusting drug therapy. The authors con-
cluded that ultrasonography of the fetal thyroid 
gland by an experienced ultrasonographer is an 
excellent diagnostic tool, in conjunction with 
close teamwork, to ensure normal fetal thyroid 
function. Cordocentesis, an invasive technique to 
assess fetal thyroid function, is associated with 
high morbidity and mortality, and it should be 
performed in centers with experience [92].

Inappropriate high doses of ATD during man-
agement of hyperthyroidism may induce fetal 
hypothyroidism with or without fetal goiter [93]. 
To prevent it, it is recommended to keep maternal 
serum FT4/ATT4 in the upper limit of reference 
range with the minimum ATD dose, particular in 
women with negative or low TRAb titers. 
Neonatal hypothyroidism diagnosis is made at 

the time of routine neonatal hypothyroid screen-
ing; occasionally a goiter is detected at birth, 
rarely nowadays requiring maternal cesarean 
section.

There are a small subgroup of babies born 
from Graves’ disease mothers on ATD therapy 
diagnosed with hyperthyroidism at birth [94] or 
within 48–96 h after birth. Maternal TRAb titers 
in the third trimester are over three times refer-
ence [15] (Fig. 5); this high titer of TRAb cross-
ing the placenta may produce fetal 
hyperthyroidism, controlled during pregnancy by 
the placenta transfer of maternal ATD; most of 
these infants are born euthyroid, but in the first 
2–4  days of life, they develop hyperthyroidism 
once the protective effects of ATD disappear. 
Since, the importance to follow these newborns 
with frequent determination of FT4  in the first 
7 days of life. Their hyperthyroidism may last for 
a few months since TRAb half-life up to 3 months 
[26]. It has been suggested that obtaining a deter-
mination of TRAb in cord blood at birth may pre-
dict neonates at risk of developing 
hyperthyroidism [26]. In a very interesting study 
[58], 28 children born of hyperthyroid mothers 
were seen before 1 month of age in a pediatric 
clinic; they were divided into three groups: (1) 9 
born with neonatal hyperthyroidism, eight of 
them from hyperthyroid mothers and one from a 
euthyroid thyroidectomized mother; (2) 11 with 
primary hypothyroidism, ten of them from treated 
mothers and three of them needed levothyroxine 
treatment; and (3) 5 infants with hypothalamic- 
pituitary hypothyroidism.

 Maternal Postpartum Care

Maternal follow-up, in women with Graves’ dis-
ease, during the first postpartum year is strongly 
recommended [95]. Postpartum aggravation of 
autoimmune thyroid disease was elegantly 
described by Amino et  al. [96]. They classified 
postpartum thyroid dysfunctions into five catego-
ries: (1) persistent thyrotoxicosis, (2) transient 
thyrotoxicosis, (3) destructive thyrotoxicosis fol-
lowed by transient hypothyroidism, (4) transient 
hypothyroidism, and (5) persistent hypothyroid-
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ism. The syndrome could be the first manifesta-
tion of thyroid dysfunction in women with 
euthyroid chronic or Hashimoto’s thyroiditis or 
could manifest as a recurrence of hyperthyroid-
ism in women with remission during pregnancy 
or as the first manifestation of Graves’ hyperthy-
roidism. Tada et al. [97] reported from Japan that 
at least 40% of Graves’ women aged 20–39 years 
developed their disease during the postpartum 
period. In another study it was concluded that 
women with a family history of Graves’ disease 
and those older than 35 at the time of pregnancy 
are at increased risk for postpartum Graves’ dis-
ease [98], in the vast majority after 6  months 
postpartum.

In postpartum thyroiditis syndrome, the 
hyperthyroid phase occurs during the first 
1–4 months after delivery, with typical hyperthy-
roid symptoms that could be mild or severe; the 
differential diagnosis is between an episode of 
recurrent or new Graves’ hyperthyroidism (per-
sistent) and transient thyrotoxicosis, a distinction 
of clinical significance since management and 
long-term follow-up differ. In the case of tran-
sient destructive thyrotoxicosis (postpartum thy-
roiditis), hyperthyroid symptoms are less severe 
and resolve spontaneously in a few weeks, lead-
ing to a euthyroid state or developing onto hypo-
thyroidism by the third or fourth month 
postpartum, followed in 3–4  months by euthy-
roidism in the majority of women [96], although 
in one study permanent hypothyroidism was 
reported in 50% of women [99]. The differential 
diagnosis between destructive thyrotoxicosis and 
Graves’ hyperthyroidism is based on clinical 
findings and ancillary tests (laboratory and radio-
logic). Determination of serum TRAb titers is 
very useful, since they are positive in Graves’ 
disease and negative in the destructive thyroiditis 
form; a higher serum ratio FT3/FT4 is helpful but 
may overlap in some cases. A 4–6 hour 123I thy-
roid nuclear uptake, high in Graves’ and low or 
absent in destructive thyrotoxicosis, is very help-
ful; however, in lactating women, this test is con-
traindicated, unless breastfeeding is suspending 
for several days. Thyroid volume and blood flow 
were measured quantitatively by color flow 
Doppler ultrasonography in one study [100]. The 

authors studied 42 women with newly developed 
hyperthyroidism after delivery. Eighteen patients 
had Graves’ disease and 24 had thyroiditis. 
Twelve of 14 patients who developed thyrotoxi-
cosis in the first 3 months postpartum had post-
partum thyroiditis; all patients who developed 
thyrotoxicosis after 6.5  months postpartum had 
Graves’ disease. TRAbs were positive in all 
women with Graves’ hyperthyroidism and were 
negative in those with PPT.  The authors con-
cluded that a positive TRAb titer and a high TBF 
>4.0% are indicators of postpartum onset of 
Graves’ disease.

Yoshihara et  al. [101] reported on the inci-
dence of postpartum thyrotoxicosis (PT) in three 
groups of Graves’ hyperthyroid women: (1) 
women treated with ATD, (2) those ablated with 
radioactive iodine (RI), and (3) post-subtotal thy-
roidectomy. The overall incidence of PT was 
2.1% (4/188) in the RI group, 23.6% (35/148) in 
the subtotal thyroidectomy group, and 55.1% 
(59/107) in the ATD group.

From the above studies, it is recommended to 
educate and alert women with previous or present 
history of Graves’ hyperthyroidism about the 
high probability of disease recurrence in the first 
year after delivery; thyroid tests should be con-
sidered every 3  months in the first year after 
delivery or at any time a patient develops symp-
toms suggestive of thyroid dysfunction.

 Breast Feeding

This is a frequent concern of mothers in need of 
drug therapy during lactation [102]. 131I therapy 
is absolutely contraindicated and surgery is really 
indicated during lactation. Several studies have 
shown that ATD concentration in breast milk is 
very low, as shown by normal thyroid function in 
the babies and normal long-term outcomes [103, 
104]. For reasons already discussed, the ATD of 
choice is methimazole, in daily doses up to 
20 mg. It is recommended to split the total dose, 
every 8–12  h, preferably given after the baby 
feeding. In situations in which the mother is aller-
gic to methimazole/carbimazole, PTU is used in 
divided doses up to 450 mg a day.
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 Resistance to Thyroid Hormone 
Syndrome

Described by Refetoff and colleagues in 1967 
[105], resistance to thyroid hormone (RTH) is a 
syndrome of reduced end-organ responsiveness 
to thyroid hormone caused primarily by muta-
tions in the thyroid hormone receptor β-gene, 
characterized by elevated free thyroid hormones 
with nonsuppressed TSH and with signs of 
hyperthyroidism in some tissues and hypothy-
roidism in others [106]. The clinical manifesta-
tions include goiter and tachycardia, and the 
prevalence is about 1/40,000 live births. 
Unaffected fetuses of mothers with RTH syn-
drome and affected fetuses from normal mothers 
are at risk for poor obstetric outcome. Anselmo 
and associates [107] reported 36 couples with 9 
mothers and 9 fathers affected by the disease and 
with 18 unaffected relatives. The rates of miscar-
riage were 23.7% when the mother was affected, 
6.7% when the father was affected, and 8.8% 
with unaffected first-degree relatives, with a rate 
of 8.1%in the general population. The birth 
weights of unaffected infants born to affected 
mothers were lower than those of affected new-
borns, who in addition had a lower serum TSH at 
birth. This finding suggests that high maternal 
thyroid hormone levels produced fetal thyrotoxi-
cosis and had a direct toxic effect on the fetus. 
The approach to a pregnant patient with the RTH 
syndrome would depend on the genotype of the 
fetus [106]. This requires obtaining the genotype 
of the fetus from DNA through amniocentesis or 
chorionic villus sampling, a history of the course 
and outcome of previous pregnancies, and infor-
mation about other family members with RTH 
syndrome.

 Conclusions

Pregnancies of mothers with a history of Graves’ 
hyperthyroidism, previously treated, and those diag-
nosed at time of pregnancy are at higher risk of 
maternal and obstetrical complications as compared 
to a euthyroid population. Preconception patient 
education and contraception are imperative in 

women with thyroid disease, during the reproductive 
age. A medical team including endocrinologists, 
obstetricians, medical fetal-maternal physicians, 
anesthesiologists, neonatologist, and pediatric endo-
crinologists should be available from the time preg-
nancy is diagnosed. Antithyroid drug (ATD) therapy 
is the treatment of choice; thyroid surgery is indi-
cated in selective cases. Selection of drug, timing of 
administration, and close follow-up with proper thy-
roid tests are essential for a good maternal and fetal 
outcome. Potential complications of ATD therapy 
should be considered and discussed with potential 
parents, as well as the interpretation of serum TRAb 
titers in detecting and treating thyroid fetal and neo-
natal disease. Breastfeeding recommendations and 
postpartum follow-up for a year following delivery 
is part of the care of a woman with a history of 
Graves’ hyperthyroidism.
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Thyroid Hormone Resistance 
Syndromes

Roy E. Weiss and Samuel Refetoff

 Introduction

The term resistance to thyroid hormone (RTH) 
has traditionally been used to describe a subset of 
patients with defects in the action of thyroid hor-
mone (TH). Recently a broader description of 
syndromes with impaired sensitivity to TH has 
been proposed which includes not only the clas-
sic RTH syndromes but also patients with defects 
in TH transport into the cell (thyroid hormone 
cell membrane transport defect, THCMTD) and a 
defect in TH metabolism (thyroid hormone 
metabolism defect, THMD) [1]. Among the RTH 
syndromes, there are three types: the “classic” 
RTHβ, in subjects with mutation in the thyroid 
hormone receptor beta (THRB) gene; RTHα, due 
to a mutation in the thyroid hormone receptor 
alpha (THRA) gene; and nonTR-RTH, in subjects 
expressing the RTHβ phenotype but having no 
THRB gene mutations. The latter may be due to 
THRB gene mosaicism or a defect in an unidenti-
fied cofactor involved in TH action (Fig. 1). The 
thyroid function tests and other clinical manifes-
tations of these individuals with impaired sensi-
tivity to TH are summarized in Table 1.

The overall goal of this chapter is to discuss 
the treatment options for patients with various 
syndromes of impaired sensitivity to 
TH.  However, given that these conditions are 
relatively uncommon, there is little or no evi-
dence-based information using multicenter trials 
and on the “best” treatment of these conditions. 
The first step toward treatment of all of these syn-
dromes is making an accurate diagnosis based on 
a combination of the clinical presentation and 
laboratory tests that ultimately requires genetic 
confirmation. Recognizing the etiology leads to a 
more logical approach to treatment. This asser-
tion becomes most obvious in cases where a mis-
diagnosis results in inappropriate irreversible 
treatment, for example, a patient with RTHβ mis-
diagnosed with Graves’ disease who undergoes 
thyroidectomy or radioactive iodide ablation.

 Thyroid Hormone Cell Membrane 
Transport Defect (THCMTD)

 Clinical Diagnosis

Patients with THCMTD have been demonstrated 
to have a defect in the monocarboxylate trans-
porter 8 (MCT8 or SLC16A2) gene and present 
with profound neuropsychomotor defects and a 
characteristic combination of thyroid function 
test (TFT) abnormalities (Table 1). MCT8, one of 
several TH cell membrane transporters, plays an 
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RTH b
SERUM TSH

NORMAL

Symptoms possibly related to thyroid

? Family History of
of “adverse outcome”
(eg. Low IQ, developmental
delay or growth problems)

Consider L-T4 treatment to
maintain the serum TSH
close to 1.0 mU/ml

Treat symptoms of TH excess with
TRIAC or D-T4 to decrease the
TSH (and therefore endogenous
T3/T4) or use β blockers;
Treat symptoms of TH
deprivation with L-T4.

Use L-T4 to normalize TSH and
to desired effect on peripheral
tissue. Consider concomitant use
of β Blockers to control
symptoms

No

No Yes

No Treatment

Yes

ELEVATED

Fig. 1 Proposed scheme for treatment of patients with RTHβ

Table 1 Classification of syndromes of impaired sensitivity to thyroid hormone

Syndrome Gene FT4 FT3 rT3 TSH # Families Hallmark clinical features
Thyroid hormone cell 
transport defect 
(THCMTD)

MCT8 
(SLC16A2)

↓ ↑↑ ↓ N, 
Sl↓

72 Severe psychomotor 
retardation
Peripheral tissue 
hyperthyroidism

Thyroid hormone 
metabolism defect 
(THMD)

SBP2 
(SECISBP2)

↑↑ ↓ ↑↑ N, 
Sl↑

5 Growth delay, muscular 
dystrophy, hearing impairment 
azoospermia

Thyroid hormone action defects

RTH β TRβ (THRB) ↑↑ ↑,N ↑↑ N, 
Sl↑

372 Goiter, tachycardia, attention 
deficit disorder

NonTR-RTH Unknown* ↑↑ ↑,N ↑↑ N, 
Sl↑

(approx.15% 
of RTH Beta

Same as RTHβ

RTH α alpha TRα (THRA) ↓ N, 
sl↑

↓ N 14 Delayed skeletal development, 
GI dysmotility

RTH resistance to thyroid hormone, TR thyroid hormone receptor, sl slight, N normal, ↑ increased, ↓ decreased
*The mechanism for non-TR RTH is unknown but probably involved abnormal cofactors or substances that interfere 
with the action of thyroid hormone on its receptor, or may represent a THRbeta mutation mosaicism
After [30]
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important role in the supply of TH to the brain 
and, therefore, on brain development. Therefore, 
despite adequate synthesis and secretion of TH, 
and because of the variable tissue distribution of 
TH transporters, patients with MCT8 defects 
have evidence of TH deprivation in the brain and 
at the same time symptoms of TH excess in 
peripheral tissue. Located on the X-chromosome, 
MCT8 gene mutations cause in males severe 
inability to talk or walk and increased metabo-
lism with poor weight gain. The incidence MCT8 
deficiency is not known. A sex-linked form of 
mental retardation with motor abnormalities was 
described in 1944 by Allan Herndon and Dudley. 
Its etiology was recognized in 2004 when the 
same defect, associated with characteristic TFT 
abnormalities, was found to be caused by MCT8 
gene mutations [2, 3]. Since then, 253 individuals 
belonging to 135 families with MCT8 defects 
were identified. De novo MCT8 gene mutations 
can be maintained in the population because car-
rier females have no symptoms; thus no negative 
selection takes place. Brain defects have been 
observed in human fetal life suggesting that the 
damage from lack of TH transport occurs in 
utero. The natural history of the disease depends 
on the severity of TH transport defect. Most sub-
jects die in childhood due to aspiration or compli-
cations of their poor neurologic dysfunction.

 Treatment

Symptomatic Therapy: Current treatment options 
for patients with MCT8 gene mutations are 
 limited to symptomatic and supportive measures. 
Intense physical, occupational, and cognitive 
therapy has been shown to have a positive influ-
ence on the degree of neurologic impairment. 
Braces can be used to prevent contractures. A 
feeding tube is often used to prevent aspiration 
and provide sufficient caloric intake as one of the 
consequences of the THCMTD is visceral hyper-
thyroidism. Dystonia is treated with anticholiner-
gics, l-DOPA, carbamazepine, and baclofen. 
Drooling may respond to treatment with glyco-
pyrrolate or scopolamine. Many patients have 

been reported to have seizures which are treated 
with standard anticonvulsants.

l-T4 and PTU Treatment: Treatment of the 
low serum T4 concentration with physiological 
doses of levothyroxine has been ineffective, pre-
sumably because of the impaired uptake of the 
hormone in MCT8-dependent tissues including 
the central nervous system. In addition to 
impaired T4 transport into cells, there is an over-
expression of deiodinases which converts the 
serum T4 to high levels of T3. This, in part, 
accounts for the peripheral tissue hyperthyroid-
ism and failure to thrive, seen in these children. 
Treatment with propylthiouracil (PTU) to reduce 
the amount of T3 generated, along with supra-
physiologic doses of l-T4, more readily available 
to the brain than T3 is effective in improving 
nutrition and may prevent seizure development. 
The dose of l-T4 is titrated to bring the serum T4 
concentration just above the upper limit of nor-
mal. PTU is given three times a day to reduce the 
serum T3 concentration to the upper limit of nor-
mal for the age of the patient. Doses can be two- 
to threefold higher than those used in the 
treatment of thyrotoxicosis. Serum TSH concen-
tration is usually undetectable.

DITPA Treatment: The use of TH analogues 
that may bypass the molecular defect by using 
alternative transporters has been studied in Mct8-
deficient mice, and one of them, 3,5-diiodothyro-
propionic acid (DITPA), is able to ameliorate the 
brain TH deficit in these mice without causing 
thyrotoxic effect in the liver [4]. Results from a 
small trial in which DITPA treatment was given 
on a compassionate basis have been published 
[5]. In this study the youngest patient treated was 
8.5 months old. The dose of DITPA was between 
1.0 and 2.4 mg/kg/day, given in three divided oral 
doses. This dose was able to normalize the serum 
TSH and T3 levels and to increase the serum T4 
and rT3 to levels just in the lower normal range. 
The predominant beneficial effect of treatment 
was in the state of nutrition and weight gain with 
little improvement in neurocognitive function. A 
decrease in the frequency of seizures has anecdot-
ally been reported by the parents of several chil-
dren. The lack of significant neuropsychological 
effect is not surprising as these children are all 
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treated at an age after neurologic damage had 
occurred. The goal of therapy would be to treat in 
utero male-affected fetuses (see below).

TRIAC and TETRAC Treatment: Based on 
recent studies, triiodothyroacetic acid (TRIAC, 
T3A), a metabolite of T3 given to 1- and 12-day-
old Mct8/Oatp1c1 double knockout mice, 
restored T3-dependent neural differentiation in 
the cerebral and cerebellar cortex [6]. For 
humans, this corresponds to prenatal and early 
postnatal period. In another study using young 
adult Mct8-deficient mice, TRIAC was able to 
restore serum T3 levels but severely decreased 
T4 levels [7]. Analysis suggested that TRIAC 
treatment resulted in relative brain hypothy-
roidism due to lower tissue levels of T3. 
Although there are no published results in 
humans, there is an ongoing clinical protocol to 
investigate the treatment of MCT8 deficiency 
with TRIAC [8].

Tetraiodothyronine (TETRAC, T4A), a 
metabolite of T4, has been also used in the first 
week of life in Mct8-deficient mice [9]. It pro-
duced TH-dependent neuronal differentiation in 
the cerebellum, cerebral cortex, and striatum but 
was ineffective in suppressing hypothalamic 
TRH expression. None of the TH analogues pre-
sented above are commercially available or 
approved by FDA as drugs in the USA.

Special considerations during pregnancy—
In women with an affected child and a known 
mutation of MCT8 gene, male fetuses carried in 
subsequent pregnancies can be assessed in utero 
for the presence of the mutation. If the pregnancy 
with an affected male embryo is allowed to prog-
ress, treatment with intra-amniotic high doses of 
TH or treatment with DITPA, although not 
reported in the literature, could be considered, 
but further studies are needed to determine 
whether this treatment can prevent the neurologic 
sequelae of this condition. Preliminary data in 
mice indicates that the DITPA will cross the pla-
centa [10] and therefore would be logical to con-
sider this compound as a potential therapy in 
women who refuse termination of pregnancy. We 
have no experience to date in treating fetuses 
with MCT8 deficiency.

 Thyroid Hormone Metabolism 
Defect (THMD)

 Clinical Diagnosis

The major TH secreted from the thyroid gland is 
T4. It circulates in serum to be delivered to all tis-
sues by active transport into cells (see THCMTD 
above). However T4 is a precursor or “prohor-
mone” that is activated by 5′-deiodination yield-
ing the active hormone T3 (deiodinase type 1, D1, 
or type 2, D2). T4 is also inactivated by 5-deio-
dination to form reverse T3, (rT3) through D1 or 
type 3, D3. Each tissue adjusts the amount of T3 
or rT3 in the intracellular compartment by regula-
tion of the D1, D2, and D3. Deficiency in deio-
dinases alters the formation of the active hormone 
and results in the syndrome of TH metabolism 
defect. While only 12 families have been 
described with THMD, their TFTs are rather 
classic with elevated serum levels of free T4 and 
nonsuppressed TSH with low serum T3 values 
and high rT3. These subjects have mutations the 
selenocysteine-binding protein 2 (SBP2, 
SECISBP2) gene [11]. While the clinical pheno-
type can be mild or severe, the thyroid function 
tests are usually consistent. Incorporation of sele-
nocysteine into proteins are dependent on SBP2. 
There appears to be a hierarchy as to which sele-
noproteins are most crucial for survival and pre-
served during states of SBP2 deficiency. Also 
many SBP2 gene mutations allow for the synthe-
sis of isoforms from alternative translation start 
sites [12]. The most common clinical feature is 
growth retardation which usually prompts thy-
roid testing. Other findings are photosensitivity, 
muscle weakness, impaired hearing, hypoglyce-
mia, and azoospermia.

 Treatment

Since the defect in THMD is the inability to con-
vert T4 to the active hormone T3, this is the one 
thyroid condition in which treatment with l-T3 is 
recommended. Usually normal replacement 
doses of T3 are sufficient to normalize the serum 
TSH and most observed tissue responses to TH 
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(e.g., linear growth). In general for adults and 
children over the age of 15 years, we recommend 
treatment with oral l-T3 50 μg q12 h. For chil-
dren less than 15,  l-T3 dose is adjusted as fol-
lows: 12.5 μg for ages 1–3 years (8–15 kg body 
weight), 25 μg for ages 4–9 years (16–25 kg body 
weight), and 37.5 μg for ages 10–14 years (26–
45  kg body weight). We have shown that this 
regimen achieves similar serum levels of T3 as 
those in adults receiving the corresponding 
higher l-T3 dose.

Also it would be rational to consider supple-
mentation with selenium, given that the molecu-
lar defect is caused by the inability of 
selenocysteine to be incorporated in the protein 
structure and serum selenium concentration is 
low. Whereas administration of up to 400 μg of 
both selenomethionine and sodium selenite nor-
malized the serum selenium concentration, they 
had no effect on selenoprotein deiodinase D2 
activity and glutathione peroxidase concentration 
and failed to correct the abnormalities of serum 
iodothyronine levels [13].

 Resistance to Thyroid Hormone 
β(RTHβ) and NonTR-RTH

 Clinical Diagnosis

RTHβ is characterized by elevated levels of 
serum TH and nonsuppressed TSH [14]. Some 
degree of thyroid gland enlargement is univer-
sally found in these patients. The thyroid status of 
the peripheral tissue varies among tissues depend-
ing on the relative expression of the TRβ. For 
example, because TH action in the heart is pre-
dominately mediated by the TRα receptor, 
patients with TRβ mutations have tachycardia 
secondary to the high levels of TH effecting the 
tissue not opposed the mutant TRβ. Diagnosis is 
usually detected in children who present with 
symptoms of hyperthyroidism (goiter, overactiv-
ity, growth disturbance). Tachycardia is more 
common in adults. TFTs are analyzed, and the 
characteristic elevation of serum TH concentra-
tions and nonsuppressed or elevated TSH levels 
are detected.

The differential diagnosis includes patients 
with elevated TH levels such as binding protein 
abnormalities (e.g., dysalbuminemia, TBG 
excess) interfering substances falsely elevating 
the TH or TSH levels (e.g., autoimmune thyroid 
disease, anti-T4 antibodies). These diagnoses are 
usually ruled out by measurement of free TH lev-
els by equilibrium dialysis or measurement of 
specific interfering substances. TSH-secreting 
pituitary adenomas (TSHomas) should also be 
considered in the differential diagnosis of RTHβ. 
Unlike TSHomas, RTHβ is inherited (although 
there are de novo mutations of the THRB gene), 
and family analysis shows other affected family 
members, unlike TSHomas. Detection of a muta-
tion in the THRB gene also rules out the diagno-
sis of TSHoma. However, 15% of patients 
presenting with clinical RTHβ have no detectable 
mutation in the THRB gene, such patients behave 
as RTHβ patients but are classified as NonTR-
RTH (Fig. 2).

The mechanism for impaired TH action in 
RTHβ can be due to a mutation that affects the 
ligand-binding domain of the receptor impairing 
T3 binding. These patients have a normal TRβ 
allele, but due to interference of mutant allele 
with the normal allele (dominant negative activ-
ity), impaired action of TH ensues. However it 
should be noted that the most severely affected 
individuals are those that are homozygous for 
point mutations or complete absence of both 
alleles. Secondly, an abnormal cofactor could 
impair activation of the receptor ligand complex.

 Treatment

Thyroid hormone: There is no treatment that will 
correct the defect of TRβ function in subjects 
with RTHβ. Fortunately, treatment is not needed 
in most patients because the hyposensitivity to 
TH seems to be adequately compensated by the 
increase in secretion of T4 and generation of T3. 
This is not the case in patients with limited 
 thyroid reserve due to prior destructive therapy 
directed to the thyroid gland. In general, treat-
ments that attempt to lower the TH levels to nor-
mal and especially thyroid gland ablation should 
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not be carried out. Patients with reduced thyroid 
reserve should be treated with a sufficient amount 
of levothyroxine to reduce their serum TSH con-
centrations to normal or near normal. This may 
require as much as 1000 μg of l-T4 daily.

In some patients with RTHβ, several periph-
eral tissues may be relatively more resistant 
than the thyrotrophs. Thus, the compensation 
for the hormonal resistance in these tissues is 
incomplete, and judicious administration of a 
dose of T4 higher than that needed to restore 
TSH secretion to normal may be indicated. The 
dose must be individually determined by assess-
ing tissue responses. In children, this should be 
done by regular assessment of growth, bone 
maturation, and mental development. l-T4 
should be given in incremental doses, and the 
basal metabolic rate, nitrogen balance, and 
serum sex hormone-binding globulin should be 
measured after treatment for 4–6 weeks before 
the dose is changed; bone age and growth should 
be followed on a longer-term basis. Development 
of a catabolic state is an indication of 
overtreatment.

Patients may have local symptoms caused by 
the goiter size, which is commonly present in 
RTHβ. Thyroid size can be reduced by the admin-
istration of a single high dose of l-T3 given every 
other day [15]. The dose of l-T3 should be titrated 
but can be as high as to 250 μg.

Beta-blocker: Subjects with RTHβ having 
symptoms of thyrotoxicosis, more specifically 
tachycardia and tremor, usually respond to the 
administration of the beta adrenergic blocker, 
atenolol (25–100  mg daily). We have also suc-
cessfully used atenolol to treat symptoms of 
hyperdefecation in adults and children.

TRIAC is a TH analogue with low biologi-
cal effect but in in vitro systems has three times 
the affinity for TRβ compared to T3. 
Interestingly it has equal affinity for TRα as 
does T3 in vitro. TRIAC has been used in sev-
eral patients, and, together with reduction in 
the TSH and T4 levels, there is some decrease 
in heart rate as well as effects on peripheral tis-
sue (such as increase in cholesterol and in sex 
hormone-binding globulin). However, these 
effects were minimal and not consistent. Doses 
used were between 1.2 and 2.8 mg/day. TRIAC 
is not available in North America but can be 
obtained from laboratories ANA (Neuilly-sur-
Seine, France).

Dextrothyroxine (D-T4): D-T4 had been 
thought to be variably useful in lowering serum 
cholesterol levels without producing adverse thy-
romimetic effects. There are three reports in the 
literature of such treatments with contradicting 
results. Therefore, we are unable to recommend 
it. Doses used have been 0.075 mg/kg or 2 mg per 
day in adults. D-T4 is available as Dynothel from 

Pregnant Woman with THRB Gene Mutation

Affected Fetus
(THRB gene mutation)

Unaffected Fetus
(Norma maternal allele)

Lower maternal FT4 to 20% above
the upper limit of normal
to prevent excess fetal
exposure to TH.  Titrate down
with PTU or MMI

Maintain maternal serum TSH
within the normal range
with L-T4, if needed

Monitor fetal well being for growth,
heart rate and goiter.

Genotype of Fetus
(Prenatal screen for the maternal allele)

Fig. 2 Proposed 
scheme for treatment of 
RTHβ patients during 
pregnancy
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Henning (Berlin, Germany) or Choloxin from 
Abbott in the USA.

Other drugs: Corticosteroids, dopamine, and 
somatostatin analogues have the theoretical 
advantage of lowering TSH production without 
causing thyromimetic effects. They have been 
used in several RTHβ patients before 2000 with 
variable effects and unacceptable side effects.

Patients with symptoms of ADD should be 
treated using standard regimens for ADD, inde-
pendently from RTH.  Some beneficial effects 
from treatment with l-T3 have been observed 
[16]. This is attributed to a decrease in serum T4, 
more available to the brain, which expresses pre-
dominantly TR. l-T3 continues to maintain 
eumetabolism in peripheral tissues in face of 
lower T4.

Special considerations during pregnancy—
Management of TH levels during pregnancy in a 
mother with RTHβ or a normal mother carrying a 
fetus with THRB gene mutation is not straightfor-
ward. A pregnant woman with RTHβ is protected 
from adverse effects of her high TH levels, but 
fetal thyrotoxicosis may occur in offspring that 
do not carry the mutation.

A retrospective study of a large family with 
RTHβ, due to THRB R243Q, demonstrated that 
the adverse effect of TH on the fetus was inde-
pendent of that on the pregnant woman [17]. The 
prevalence of early pregnancy loss was increased 
by threefold in affected mothers, but not in cou-
ples with an affected father and unaffected 
mother. Two-thirds of infants born to affected 
mothers carried the THRB gene mutation, which 
suggests that nearly all miscarried fetuses had no 
mutation and thus, a normal response to 
TH.  Furthermore, unaffected infants born to 
affected mothers had lower birth weights and 
suppressed serum TSH concentrations. These 
adverse pregnancy outcomes are similar to those 
for infants with excess TH, caused by gain-of-
function TSH receptor mutations, who are born 
prematurely and have low birth weights [18]. 
Management of pregnancies in mothers with 
RTH who are carrying unaffected fetuses may 
warrant judicious use of antithyroid medication, 
depending on the well-being of the fetus [19]. In 
such mothers, free T4 should be maintained not 

higher than 20% above the upper limit of normal. 
This can be achieved by judicious use of 
PTU. There is no basis for regular treatment of 
normal mothers carrying affected fetuses (inher-
ited from the father, or due to de novo mutation) 
unless the fetus is found to have a large goiter or 
be in distress. In such case the treatment with 
intra-amniotic infusion of l-T4, should be consid-
ered, although this was reported in a single case 
[20]. Further studies are needed before a recom-
mendation can be made.

 Resistance to Thyroid Hormone α 
(RTHα)

 Clinical Diagnosis

Mutations in the thyroid hormone receptor alpha 
(THRA) gene have now been described in 14 
patients due to 8 different mutations [21–27]. 
Four mutations are frameshifts with early termi-
nation resulting in a truncated receptor, and the 
other four are point mutations in the ligand-bind-
ing domain and in the C-terminal helix. As in the 
case of THRB gene mutations, this results in three 
different mechanisms causing functional impair-
ment: (1) there is reduced affinity for T3; (2) the 
mutant TRα interferes with the normal TRα 
allele, resulting in a dominant negative effect; 
and (3) defective coactivator recruitment to the 
liganded receptor. Because TRα is not involved 
in the feedback regulation of the hypothalamic-
pituitary-thyroid axis, the TFTs are different 
from those of the RTHβ phenotype due to THRB 
gene mutations. Patients with THRA gene muta-
tions have low serum T4, borderline high T3, and 
very low rT3, with normal to minimally elevated 
TSH concentrations. A high ratio of free T3 to 
free T4 serum concentration seems to be a com-
mon finding in all the cases described to date.

The phenotype varies in severity but is consis-
tent with the manifestations of untreated congen-
ital hypothyroidism in peripheral tissues. Due to 
the dominant role of TRα in mediating TH action 
in the bone, intestine, heart, and brain, signs of 
hypothyroidism in these issues are dominant. 
There are significant bony abnormalities includ-
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ing reduced bone age, short stature, femoral 
epiphyseal dysgenesis, wormian cranial sutures, 
and macrocephaly. Other major clinical findings 
affect the gastrointestinal tract (constipation to 
megacolon), heart (bradycardia), striated mus-
cles, and the central nervous system (ranging 
from autism to mental retardation).

 Treatment

Treatment with l-T4 was reported in two cases 
[28, 29]. In one of the cases, the hypothalamic-
pituitary axis responded to exogenous TH, but 
the skeletal, gastrointestinal, and myocardial 
tissues were resistant [28], consistent with the 
greater resistance to TH in tissues expressing 
the TRα isoform. In a third case report [21], l-
T3 treatment was given which reduced the 
serum TSH and consequently the T4 level, but 
also an increase in heart rate was observed. The 
experience is too preliminary to make definitive 
recommendations regarding treatment of 
patients with RTHα due to mutations in the 
THRA gene.
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19
Color Doppler (CD) imaging, 162, 497
Color-flow Doppler sonography (CFDS), 424
Colorimetric analysis, 182
Columnar cell variant papillary carcinoma, 469
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Combination therapy
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trials of, 273, 276
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Computed tomography (CT), 343
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neck, 565
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pathogenesis of, 219
primary, 219
rare variant of, 220
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Congenital malformation
antithyroid drugs, 732, 733
incidence and severity, 733

Constipation, 239
Consumptive hypothyroidism, 9, 64
Core needle biopsies, thyroid nodule, 456
Core thyroid function tests

assay interferences, 138
assays used for, 133
performance characteristics of assays used, 133

Coronary heart disease (CHD)
mortality, 297
in overt hypothyroidism, 297–298
risk of, 297
subclinical hyperthyroidism, 347
subclinical hypothyroidism, 298–299
and total mortality, 372

Corticosteroids, 362
Cowden syndrome, 481
Craniopharyngiomas, 246
C-reactive protein (CRP), 402
Cribriform morular carcinoma, 481
Cross-linked thyroid globules, 30
Cushing syndrome, 478
Cushing’s ectopic syndrome, 685
Cyclic adenosine monophosphate (cAMP), 312, 437
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Cystic lesions, 497, 563
Cystinosin-deficient mice, 34
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defect, 743, 744
deiodination and, 62–65
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Desethylamiodarone (DEA), 417, 418
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dose, radiation exposure, 634

empiric vs. dosimetrically guided 131I, 641
equivalent/effective dose, 634
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ablation and adjuvant therapy, 614–621
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follow-up and outcome, 624
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precautions and side effects, 622–624
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risk factor, 545
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706–708
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Diffuse sclerosis variant, papillary carcinoma, 470
Diffusion tensor imaging (DTI), 52
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Disease-specific survival (DSS), 601
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Drug therapy during lactation, 735
Drug-induced thyroiditis, 310
Drugs, affecting HPT axis, 20
Dual oxidases (Duox), 29, 112
Dynamic methods, shear wave speed measurement, 184
Dyshormonogenesis, 224–225
Dystonia, 51
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Echogenicity, thyroid nodule, 496, 497
Echo-sismography, 181
EIF1AX mutations, 551, 552
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Elastography, 166, 181, 206, 565
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shear wave speed imaging, 184
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lymph node, 192, 193
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reproducibility, 184
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nodules, 497
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quasi-static elastography, 185
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472, 475, 568
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Endocrine system, 240
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F
Familial adenomatous polyposis (FAP), 481
Familial dysalbuminemic hyperthyroxinemia, 9
Familial non-medullary thyroid cancer (FNMTC), 544
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Fetal hyperthyroidism, 731, 733, 734
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Fetal thyroid dysfunction, 728
Fetal-neonatal care, 733, 734
18F-FDG-PET/CT, differentiated thyroid cancer, 202
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MTC, 480
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thyroid cancer, children and adolescent, 565
thyroid nodules, 455, 456, 498, 501
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MNG, 504
nondiagnostic nodule, 504
P-FNA, 498
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Flavoprotein, 30
Flip-flop phenomenon, 202
[18F]-fluorodeoxyglucose positron emission tomography 

(18F-FDG-PET/CT), 565
FNMTC, see Familial non-medullary thyroid cancer 
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in children, 568
overall survival, 601

Follicular tumor of uncertain malignant potential (FT 
UMP), 91

Follicular tumors, 91
Follicular variant of PTC (FVPTC), 95, 470, 568, 603
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French TIRADS classification, 188, 190
FTC, see Follicular thyroid cancer (FTC)
Functional sensitivity (FS), Tg assays, 657

G
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Genetic alterations, 647, 648
Genetic mouse models, 69
Genomic alterations, thyroid cancer, 550
Gestational transient thyrotoxicosis (GTT), 311
Glucocorticoids, 16, 288, 425
Glutathione peroxidase (GPx), 57, 110
Glycoprotein hormones (GPH), 222
Glycosaminoglycans, 239
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Goitrogens, 77, 518
Gonadal tissue, 623
Gorlin syndrome, 480
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Graves’ disease, 87, 210, 211, 236, 340, 455, 468, 528, 545

clinical manifestations of, 311–313
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postpartum, 412
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signs and symptoms, 326–327
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epidemiology and natural history, 323–324
measures, 331
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pathogenesis, 324–325
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disease in, 298–299

subclinical hyperthyroidism, 346–347
Hematopoietic system, 239
Heterophile antibodies (HAB), 142
High-density lipoprotein cholesterol (HDL-C), 258, 259
High-grade carcinoma, thyroid, 477
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HPT axis, see Hypothalamic-pituitary-thyroid (HPT) 
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Hypercalcemia, 362
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Hyperprolactinemia, 20, 240
Hyperthyroidism, 16, 83, 103, 518

age-specific hazard rates, 82
definition, 307
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incidence, 83
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surgery for, 210–211
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Hypoglycemia, 282–284, 287, 288
Hyponatremia, 282–285, 287
Hypophysitis, 247
Hypopituitarism, 246, 247
Hypopituitary-thyroid dysfunction, 728
Hypotension, 287–288, 362
Hypothalamic-pituitary-thyroid (HPT) axis, 8, 13, 15, 236

and aging, 20
circadian rhythm of, 18
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drugs affecting, 20–21
and food deprivation, 18–19
high-level picture, 130
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Hypothalamus, 13, 16
Hypothermia, 282–284, 287, 290
Hypothyroidism, 80, 103, 220, 235, 256
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cardiovascular system, 239
causes of, 237
central, 235–237
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development, 531
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endocrine system, 240
epidemiology, 235
etiology, 236–238
gastrointestinal system, 239
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nutrition and metabolism, 238
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pathophysiology, 236
pregnancy, 240–241
primary, 235, 236, 241
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tertiary, 236
treatment (see Treatment of hypothyroidism)
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Hypoxemia, 282–285, 287
Hypoxia-inducible factor (HIF-1α), 65

I
124I PET/CT, differentiated thyroid cancer, 199, 201
124I PET/MRI, differentiated thyroid cancer, 201

131I therapy, 633
IDD, see Iodine deficiency disorders (IDD)
IFN regulatory factor (IRF), 383
IgG4 thyroiditis, 389
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Immunoassays (IAs)

autoantibody interferences, 141
competitive and, 134, 146
heterophile antibodies, 142
IA1/IA2, 140
immunometric, 134

Immuno-chemiluminescent assays (ICMA), 572
Immunoglobulin superfamily member 1 (IGSF1), 246
Immunoglobulins (IgGs), 325
Immunohistochemistry, papillary thyroid carcinoma, 473
Immunohistologic markers, thyroid nodules, 500
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Infected thyroid nodule, 405, 406
Insulin-like growth factor-1 (IGF-1), 519
Intelligence quotient (IQ), 77
Interferon-alpha (IFNα), 88, 237
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ICM exposure in infants, 440
ICM exposure in utero, 440
low-osmolar, 438
metabolism of, 439
thyroid function monitoring, 439–440

Iodination, of thyroglobulin, 29
Iodine, 361

excess, 121
recommended daily iodine intake, 101, 436
supplementation, multinodular goiter, 525
tolerable upper intake limits for, 436
trapping, 30

Iodine deficiency (ID), 8, 75, 121
assessment and epidemiology, 101–102
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hyperthyroidism, 103
hypothyroidism, 103–104
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thyroid autoimmunity, 104
thyroid cancer, 104
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Iodine nutrition
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Iodine-induced hyperthyroidism, 310
diagnosis, 444
management and treatment, 445
pathogenesis, 444
prevention and prophylaxis, 445–446
risk factors, 444

Iodine-induced hypothyroidism
diagnosis, 443–444
management and treatment, 444
pathogenesis, 443
risk factors, 443

Iodine-induced thyroid dysfunction
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excessive dietary iodine intake, 440–441
iodinated contrast agents/media (see Iodinated 
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iodine supplementation, 441–442
iodine-induced hyperthyroidism (see Iodine-induced 
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nutritional supplements, 442

Iodothyronine formation, 29
Iodothyronines, 63
Iodotyrosine deiodinase (IYD), 30, 224
Iodotyrosyl formation, 29, 30
Ischemic heart disease (IHD), 257
Isovolumetric relaxation time (IRT), 295
Isovolumic relaxation time, 368, 369
131I therapy, thyroid cancer, 569
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assay limitations and interferences, 147
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core thyroid function tests

assay interferences, 138
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determining results, 148
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follow-up testing/monitoring, 154–155
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free and total T3 andT4, 138
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measurement bias, 140
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noncore thyroid function tests
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140–141
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151–152
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quadrupole mass filter, 136
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serum iron measurement, 149
tandem mass spectrometry, 136
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drug therapy, 735
131I therapy, 735
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Laryngoscopy
direct/indirect, 206
thyroid cancer, 584
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complication, 590
technique of, 590

LDL receptor-like protein (LRP), 35
Leptin, 16, 18, 19
Lesion dosimetry, 199, 639–641, 643
Leucine-rich repeat domain (LRRD), 228–230
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biochemical evaluation, 269
failure of, 271
patient’s LT4 dose requirement, 267, 268
patients, thyroid status in, 269
pharmaco-equivalence study, 275
subcutaneous LT4 administration, 271
suppressive therapy, 526
treatment, 258
TSH, timing on, 266

Ligand (T3) availability, 61
Limit of detection (LOD), assays, 657
Limit of quantification (LOQ), assays, 658
Lingual thyroid, 4
Liothyronine (LT3), combined levothyroxine/

liothyronine therapy, 272
Lithium, 236
Lithium carbonate, 361
Liver regeneration, 65
Lobectomy, 503, 585
Local thyroid hormone metabolism, 67
Localized treatment, DTC, 627
Locoregional recurrent disease, 627
Low birth weight (LBW) infants, 728
Low-density lipoprotein cholesterol (LDL-C), 258, 259
LTA, see Laser thermal ablation (LTA)
l-thyroxine, 245, 249, 250, 296–298, 300

replacement doses of l-T4, benefit of treatment with
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disease in, 298–299
L-type amino acid transporters, 65
Luminal solubilization activity, 31
Lymph node (LN)

cervical, FNA, 500
disease-specific survival, 604
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Macropinocytosis, 35
Magnetic resonance imaging (MRI), 343

multinodular goiter, 523, 525, 528
neck, 565
papillary microcarcinomas, 585

Magnetic resonance spectroscopy (MRS), 52
Major histocompatibility complex (MHC), 312, 324
Mammary analog secretory carcinoma (MASC), 482
Mannose 6-phosphate (M6P), 28
MAPK inhibitors, 200
Maternal determination, thyroid receptor antibodies, 725
Maternal liver failure, 729
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Maternal thyrotoxicosis, 728
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Maternal-placental-fetal interactions, 726
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Maximum tolerated dose, 626
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angiotensin-converting-enzyme inhibitors, 684
anti-CEA pretargeted radioimmunotherapy, 682
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calcitonin, 502
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contralateral cord palsy, 682
conventional chemotherapy, 682
cryoablation, 681
diagnosis, 480
disease stabilization, 682
distant metastasis, 682
epidemiological studies, 674
external beam radiotherapy, 681
familial, 673
familial medullary thyroid cancer, 674
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genetic screening for RET germline mutation, 674
genetic studies in mice, 673
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histological diagnosis, 675
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laser ablation, 681
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macroscopic appearance, 675
malignant C cells, 676
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MKI, toxicity management, 652
molecular and demographic factors, 653
multiple endocrine neoplasia type IIA, 674
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patient management, 679
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Medullary thyroid cancer (MTC) (cont.)
presurgical diagnosis, 677, 678
prevalence, 543, 673, 675
radiofrequency ablation, 681
radionuclide imaging techniques, 680
RAS oncogene mutations, 677
RET

and RAS mutations, 683
germline mutations, 676
kinase activity, 683
mutations, 676
oncogene, 675
somatic mutation, 677
somatic mutation prevalence, 676

serum Ct and CEA levels, 679
serum Ct and CEA values, 679
side effects, MKIs, 651
skeletal-related events, 682
sorafenib, 650, 651
sporadic, 673
sunshine exposure, 674
surgery, 584
thyroidectomy, 678, 679
TKIs, 684
total thyroidectomy, 678
transarterial chemoembolization, 681
vandetanib, 649, 683, 684
vascular endothelial growth factor receptor, 683

Megalin, 37, 38
MEN syndrome, see Multiple endocrine neoplasia 

(MEN) syndrome
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Metformin, 21
Methimazole, 314, 317
Metoclopramide, 21
Microcarcinoma, treatment, 612
Micromedullary carcinoma, 479
MicroRNAs (miRNAs)

gene expression classifier, 554
thyroid nodules, 501

Microstaging system, 91
MNG, see Multinodular goiter (MNG)
Modified-release rhTSH (MRrhTSH), 529
Molecular markers

papillary thyroid carcinoma, 473
prognostic applications, 556
thyroid cancer, 549
thyroid nodules, 501

Molecular testing, indeterminate thyroid nodules, 556
Monocarboxylate transporter 8 (MCT8), 9, 38, 50, 437
Monocarboxylate transporters (MCT), 67
Monotherapy, 54, 265, 271, 272, 274, 275
mRNA gene expression classifier, 554
Mucoepidermoid carcinoma, 482
Mucosa-associated lymphoid tissue (MALT) lymphoma, 

701, 703–708
Multifocality, disease-specific survival, 604
Multinodular goiter (MNG), 205, 504, 517

clinical manifestations, 520, 521
clinical observation, 524

CT scan, 523–525, 528
diagnostic evaluation, 522–524
epidemiology, 517–518
etiology, 518–519
FNAB, 523
history and physical examination, 522
imaging tool, 522, 525
with intrathoracic extension, 207
iodine supplementation, 525
laboratory investigation, 522
levothyroxine, 526
management, 524–526
MRI, 523, 525, 528
pathology, 519–520
pulmonary function tests, 524
radioactive iodine therapy, 528
recombinant human TSH, 528–530
spirometry, 527
surgery, 527–531
thyroidectomy, 206–207
ultrasound, 523–525, 528

Multinodular toxic goiter (MNTG), 102
Multiple endocrine neoplasia (MEN) syndrome, 478, 

480, 544
Multiple endocrine neoplasia type 2 (MEN2), 564
Multiple papilloid nodules, 456
Munster system, thyroid cancer, 601
Musculoskeletal system, 239
Myxedema coma

cardiovascular manifestations, 283
clinical signs and symptoms, 282–283
diagnosis, 285–286
drug-induced, 282
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factors, 282
gastrointestinal manifestations, 283–284
general supportive measures, 290
hematological manifestations, 284
infections, 284–285
neuropsychiatric manifestations, 284
prognosis, 290
renal and electrolyte manifestations, 284
respiratory system, 283
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glucocorticoid therapy, 288
hyponatremia, 287
hypotension, 287–288
hypothermia, 287
thyroid hormone therapy, 288–290
ventilatory support, 286–287
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N
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Neck lymph node US findings, 171
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Neonatal hyperthyroidism, 726
Neonatal screening tests, 726
Neonatal thyroid dysfunction, 724, 734
Neonatal thyrotoxicosis, 730
Nervous system, 238
Neural crest theory, 673
Neuropeptide Y (NPY), 14
Next-generation sequencing (NGS) testing, 553, 566
No evidence of disease (NED), 573
Nodular goiter, 519
Nodular thyroid disease, see Thyroid nodule
Nodule stiffness, 181, 182, 185
Nodules, 102
Non-thyroidal illness (NTI), 341
Noncarcinoma malignancy, thyroid, 481

branchial-related tumors, 483
Cowden syndrome, 481
cribriform morular carcinoma, 481
hematopoietic and related lesions, 480
MASC, 482
metastatic tumors, 483
mucoepidermoid carcinoma, 482
paraganglioma, 483
parathyroid tumors intrathyroidal, 483
SMECE, 482
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Peroxidase, 7
PET/CT

18F-FDG-PET/CT, 202
124I, 199, 201

PET/MRI, 201
Phlebotomy, 276
Phosphoinositide 3-kinase (PI3K) pathway, 325
Physiotherapists, 52
Pituitary RTH (PRTH), 53
Placental abruption, 728
Plasmatic thyroid hormone metabolism, 67–68
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Thyroid follicle, 6, 26
Thyroid function regulation, 37
Thyroid function tests, 418
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