
M
cG

riffy
M

ake:
D

rones  
Teach an A

rduino to Fly

Teach an Arduino to Fly
by David McGriffy

Technology & Engineering/Drones

US $29.99 CAN $34.99

ISBN: 978-1-6804-5171-9

Make: Drones

Inside Make: Drones, you'll find:

If you’re passionate about drones, get ready to take your skills and understanding
to new heights. Drones make a great platform for learning about the fascinating,
useful, and even beautiful world of control systems. With this guide, you will
learn how to harness the breakthroughs that make possible the remarkable flying
abilities of multirotor copters.

»» Hands-on DIY projects for building your own drones using existing frames

»» An in-depth examination of flight-control systems and programming

»» Tips for upgrading and improving off-the-shelf systems

»» A lucid explanation of multirotor aerodynamics

»» Custom circuit board design with modular components

»» Instructions for installing RC radio, telemetry, and GPS systems

»» Fine-tuning and troubleshooting for flight stabilization

»» And much more!

If you’re ready to get serious about drones and drone control systems,
this is the book for you. Teach your Arduino how to fly today!

The book covers three classes of drones. You’ll start by building a small drone using
the Hubsan frame and brushed motors. As you move up to a medium-sized drone,
you’ll use an Arduino Teensy as the core of a flight-control system and add modules
for power, sensors, and radios. Finally, you’ll build an autonomous drone using the
S500 frame kit, brushless motors, and an ArduCopter flight control system that
makes a great aerial photography platform.

Make:
 Drones

7.5 x 9.25
190.5 mm x 234.95 mm

7.5 x 9.25
190.5 mm x 234.95 mm

.438
11.125 mm

15.438” x 12”
392.2 x 305 mm

M
cG

riffy
M

ake:
D

rones  
Teach an A

rduino to Fly

Teach an Arduino to Fly
by David McGriffy

Technology & Engineering/Drones

US $29.99 CAN $34.99

ISBN: 978-1-6804-5171-9

Make: Drones

Inside Make: Drones, you'll find:

If you’re passionate about drones, get ready to take your skills and understanding
to new heights. Drones make a great platform for learning about the fascinating,
useful, and even beautiful world of control systems. With this guide, you will
learn how to harness the breakthroughs that make possible the remarkable flying
abilities of multirotor copters.

»» Hands-on DIY projects for building your own drones using existing frames

»» An in-depth examination of flight-control systems and programming

»» Tips for upgrading and improving off-the-shelf systems

»» A lucid explanation of multirotor aerodynamics

»» Custom circuit board design with modular components

»» Instructions for installing RC radio, telemetry, and GPS systems

»» Fine-tuning and troubleshooting for flight stabilization

»» And much more!

If you’re ready to get serious about drones and drone control systems,
this is the book for you. Teach your Arduino how to fly today!

The book covers three classes of drones. You’ll start by building a small drone using
the Hubsan frame and brushed motors. As you move up to a medium-sized drone,
you’ll use an Arduino Teensy as the core of a flight-control system and add modules
for power, sensors, and radios. Finally, you’ll build an autonomous drone using the
S500 frame kit, brushless motors, and an ArduCopter flight control system that
makes a great aerial photography platform.

Make:
 Drones

7.5 x 9.25
190.5 mm x 234.95 mm

7.5 x 9.25
190.5 mm x 234.95 mm

.438
11.125 mm

15.438” x 12”
392.2 x 305 mm

David McGriffy

Make: Drones

Teach an Arduino to Fly

978-1-680-45171-9

[LSI]

Make: Drones
by David McGriffy

Copyright © 2017 David McGriffy. All rights reserved.

Printed in the United States of America.

Published by Maker Media, Inc., 1160 Battery Street East, Suite 125, San Francisco, CA 94111.

Maker Media books may be purchased for educational, business, or sales promotional use. Online edi-
tions are also available for most titles (http://safaribooksonline.com). For more information, contact
O’Reilly Media’s institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Roger Stewart
Production Editor: Nicholas Adams
Copyeditor: Charles Roumeliotis
Proofreader: Rachel Head

Indexer: Ellen Troutman-Zaig
Interior Designer: David Futato
Cover Designer: Julie Cohen
Illustrator: Rebecca Demarest

October 2016: First Edition

Revision History for the First Edition
2016-10-05: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781680451719 for release details.

Make:, Maker Shed, and Maker Faire are registered trademarks of Maker Media, Inc. The Maker Media
logo is a trademark of Maker Media, Inc. Make: Drones and related trade dress are trademarks of Maker
Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and Maker Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions, or for damages resulting from the use of the informa-
tion contained herein.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781680451719

Table of Contents

Preface . ix

1. What Makes a Drone Possible . 1
Motors . 2

Batteries . 4

Control Systems . 5

2. Popular Drone Control Systems . 9
MultiWii . 9

Dronecode . 11

APM/ArduPilot . 11

PX4/Pixhawk . 13

DJI/Naza . 14

KK2 . 14

CC3D/OpenPilot . 15

Naze32/Baseflight/Cleanflight . 16

Choosing a Flight Control System . 17

3. Drone Activities . 19
Aerial Photography . 19

FPV Racing . 20

iii

Education . 21

Flying . 22

4. Improve the Hubsan X4 . 23
Goals and Test Methods . 24

Battery Upgrade . 26

Prop Upgrade . 27

5. Build the X4Wii . 31
Parts . 32

Build . 35

Flashing New Code . 35

Wiring . 37

Assembly . 40

Setup and Tuning . 42

RC Rates . 42

PIDs . 43

Modes . 45

6. The Visible Drone . 49
A Teensy CPU . 50

Radios . 51

IMU/AHRS . 52

Power . 53

Circuit Board with Motor Controllers . 54

Frame/Motors/Props . 55

Weight Budget . 56

7. Basic I/O Code . 57
Setting Up the IDE . 57

Main Loop . 59

RC Receiver . 60

Bluetooth . 63

iv Make: Drones

Motors . 66

8. Multirotor Aerodynamics . 69
Lift and Thrust . 69

Pitch and Roll . 71

Yaw . 71

Translational Lift . 73

Vortex Ring State . 74

9. IMU/AHRS . 75
Gyros . 76

Accelerometers . 77

IMU . 78

Magnetometers . 80

10. Mode and Mix . 83
Mode . 83

Angle Mode . 84

Rate Mode . 85

Mix . 85

11. PIDs . 87
The Algorithm . 87

P—Proportional . 87

I—Integral . 88

D—Derivative . 88

Implementation . 90

Tuning . 90

Theory . 90

Practice . 94

12. Circuit Board and Motor Controllers . 97
Design Tools and Files . 98

Component Placement . 98

vTable of Contents

Power Input and Distribution . 99

Motor Controller . 100

Schematic and Layout . 102

Construction . 104

13. Construction and Tuning . 107
Install the Controller and Connect the LEDs . 107

Connect the Motors . 108

Install the Radios . 109

Complete the Frame . 110

Ground Test . 112

Flight Test and Future Work . 114

14. A Bigger Frame . 117
The S500 Kit . 118

Follow the Instructions . 119

15. Install the Power System . 123
Mount the ESCs . 123

Wire the Power Distribution Board . 124

Mount the Motors . 126

Determine Direction . 127

16. Brushless Motors and Their ESCs . 131
Brushless Motors . 131

ESCs . 134

BECs . 135

17. Install the Flight Controller and Radios . 137
Pixhawk Lite and Shock Mount . 138

RC Radios . 140

Telemetry Radio . 143

Safety Switch . 144

Testing . 144

vi Make: Drones

18. GPS . 147
History . 148

Theory . 148

HDOP . 150

Installation . 151

19. Magnetometer . 155
The Earth’s Magnetic Field . 155

Declination and Deviation . 156

Magnetoresistance . 158

Use in Drones . 159

20. Flying the S500 . 161
Install the Props . 162

Connect the Battery and Voltage Monitor . 164

Radio and Accelerometer Calibration . 166

Flight Modes . 168

Initial Tuning . 168

Final Checklist and First Flight . 169

21. Optical Flow, Sonar, and Lidar . 171
Sonar . 172

Lidar . 173

Optical Flow Sensors . 173

Visual Odometry . 175

22. Vibration . 177
Causes of Vibration . 178

Effects of Vibration . 178

Damping and Isolation . 179

Prop Balancing . 180

23. Failure Modes and Fault Tolerance . 183
Failsafes . 183

viiTable of Contents

Redundancy . 185

24. Interfaces . 187
Computer Interfaces . 187

RC Radio Standards . 190

DSM/DSM2/DSMX . 190

FrSky . 191

Servo/ESC Control . 191

Telemetry . 192

GPS . 193

25. The Future . 195
Specialization . 195

Regulation . 196

Ease of Use . 196

Safety . 196

Human Flight . 197

Index . 199

viii Make: Drones

Preface

Success

The successful people I have known all seem to have gotten there by some personal mix of
talent, luck, and work. I hope that the mix turns out right in this book and that I succeed in
inspiring you to make something. It will probably be a drone, but if it’s a great new garage
door opener, I’ll count that as a success as well.

I have put my unique talents into this book, as you will into your project. I was born with a
soldering iron in my hand, or almost, thanks to my father’s ham radio hobby. Also, largely
due to his efforts, I started finding things to program when I was still a kid. I happen to love
mathematics, which has served me well as a coder, of course. And there are several pilots
on my father’s side of the family. But there are other threads in my life that led to drones.

From my mother’s side I get music. My love of music and my love of gear came together in
recording technology. This led to computer audio and digital signal processing. And now
we get back around to drones. Many of the very same algorithms I have coded for audio
processing get used in drones to process sensor data and control inputs.

Add in some professional experience doing consulting in the control systems business,
and perhaps you can see why I love building drones. It all comes together—building elec-
tronics, flying, radios, programming, signal processing. But there was also some luck
involved in the creation of Make: Drones.

My old friend Tim Deagan was working on his book, Make: Fire, and I shot some drone
video of his fire projects. Then Roger, who would become our mutual editor, said, “Drones
are hot, send me a book proposal on drones,” so I did.

Then there is the work. And I don’t just mean mine. Roger Stewart makes all those things
happen that turn a bunch of files into a book on a shelf. Ron Parsons has saved me from
many an error as technical editor. He also let me play on his Processor Technology Sol per-

ix

http://shop.oreilly.com/product/0636920031680.do

sonal computer when I was a kid, giving me one of my very first programming experiences.
And without the constant support of my wife, Marva, and kids, Stella and Sean, the produc-
tion and marketing teams would never have had anything to work on.

The real success, of course, is not just a book on a shelf. I hope that this book inspires you
to make something that pulls the threads of your life together. I hope that this book helps
you see that even something as complex as a drone control system can be broken down
into fundamental, understandable parts. Over and over we see that the same technologies
that make a drone fly make many of our other modern gadgets possible. I hope that they
will make your project fly, figuratively and perhaps literally.

Small, Medium, Large

You can divide this book into three sections, as drones nicely divide themselves into small,
medium, and large based mostly on their motors. Small drones use brushed motors
directly connected to small props. Medium-sized drones use the same 6- to 8-millimeter
motors, but gear them down in order to use larger, more efficient props. Large drones use
brushless motors and electronic speed controllers. Each of these classes can actually vary
greatly in size, but the general trend holds true.

In Chapters 4–5 we work with small drones. First we take some measurements and try to
improve the performance of an existing small drone, the Hubsan X4C. Then we build a new
small drone using a Hubsan frame and an open source flight controller. It’s called the X4Wii
since it uses an X4 frame and MultiWii flight control code.

Chapters 6–13 cover the construction of a medium-sized drone. Once again we start with
the frame from an existing drone, the Syma X5. We use an Arduino Teensy 3.2 as the core
of our new flight control system, adding modules for power, sensors, and radios. A custom
circuit board ties it all together. Finally, so that people can see this new custom controller,
we put a clear lid on it and call this project the Visible Drone.

In Chapters 14–20 we build a large drone, based on the S500 frame kit. For flight control,
this one uses the powerful Pixhawk Lite controller and ArduCopter flight control software.
Combined with a high-performance GPS unit, this system can fly completely autonomous
missions—and it has the power to carry a useful payload while doing it. This one will make
a great aerial photography platform.

Having talked about what makes current drones possible in the first few chapters, we will
look at the future of drones in the last few. Researchers and hobbyists alike continually
push the limits of drones with new sensors and ever more sophisticated software. Be a part
of this future and make a drone!

x Make: Drones

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

This element signifies a general note, tip, or suggestion.

This element indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at http://
www.makedronesbook.com.

This book is here to help you get your job done. In general, if example code is offered with
this book, you may use it in your programs and documentation. You do not need to con-
tact us for permission unless you’re reproducing a significant portion of the code. For
example, writing a program that uses several chunks of code from this book does not
require permission. Selling or distributing a CD-ROM of examples from Make: books does
require permission. Answering a question by citing this book and quoting example code
does not require permission. Incorporating a significant amount of example code from this
book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Make: Drones by David McGriffy (Maker Media).
Copyright 2017 David McGriffy, 978-1-680-45171-9.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at bookpermissions@makermedia.com.

xiPreface

http://www.makedronesbook.com/
http://www.makedronesbook.com/
mailto:bookpermissions@makermedia.com

Safari® Books Online

Safari Books Online offers a range of plans and pricing for enterprise, government, educa-
tion, and individuals.

Members have access to thousands of books, training videos, and prepublication manu-
scripts in one fully searchable database from publishers like O’Reilly Media, Prentice Hall
Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press,
Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks,
Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett,
Course Technology, and hundreds more. For more information about Safari Books Online,
please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

Maker Media, Inc.
1160 Battery Street East, Suite 125
San Francisco, CA 94111
877-306-6253 (in the United States or Canada)
707-639-1355 (international or local)

Maker Media unites, inspires, informs, and entertains a growing community of resourceful
people who undertake amazing projects in their backyards, basements, and garages.
Maker Media celebrates your right to tweak, hack, and bend any technology to your will.
The Maker Media audience continues to be a growing culture and community that
believes in bettering ourselves, our environment, our educational system—our entire
world. This is much more than an audience, it’s a worldwide movement that Maker Media
is leading. We call it the Maker Movement.

For more information about Maker Media, visit us online:

Make: and Makezine.com: http://makezine.com
Maker Faire: http://makerfaire.com
Maker Shed: http://makershed.com

We have a web page for this book, where we list errata, examples, and any additional infor-
mation. You can access this page at http://bit.ly/make-drones.

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

xii Make: Drones

https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/
http://makezine.com
http://makerfaire.com
http://makershed.com/
http://bit.ly/make-drones

What Makes a
Drone Possible

The quadcopter glides gently through the sky, using every subtle variation in the atmos-
phere to its advantage, performing that delicate dance with the air that we call flight.

Doesn’t quite sound right, does it?

Let’s face it, a quadcopter doesn’t so much dance with the air as arm wrestle. Usually the
quadcopter wins. Some days the sky wins.

No, the beauty of a drone is not in the graceful curve it cuts through the sky or the subtle
shape of its wings. It has no wings, of course. In fact, among the best things about our
modern multirotors are all the parts they don’t have. No wings. No control surfaces and no
servos to move them. No complex collective pitch hubs. No stall speed, timed turns, or
holding patterns. We have stripped flying down to its bare essentials. We have four moving
parts that push us upward, and the rest is in the control system (Figure 1-1).

Figure 1-1 A micro drone in a mint tin

1

1

And now we are getting closer to where the beauty lies.

As with the most interesting people and the best books, the real beauty of the multirotor
drone is on the inside. An ArduCopter-based drone has four main inputs from two joysticks
and four outputs to its motors. To compute those four outputs from those four inputs, it
uses nearly three hundred parameters. At first it may appear that this is so complex as to
be magic, but it’s not. It’s engineering. And precisely because of all the parts it doesn’t
have, a drone turns out to be a wonderful platform to learn about engineering principles.

The algorithms used in drone control systems are basic, important, and beautiful. You’ll dis-
cover that learning how to use them will be fun and interesting. But these methods have
been around for decades. So whatever the aesthetics, they are not the breakthrough that
made modern quadcopters possible. And make no mistake: there have been break-
throughs.

I have flown radio control aircraft off and on for many years and have watched them with
great interest since I was a kid. There have long been RC helicopters, but they were expen-
sive and very hard to fly. Then there were toy helicopters, but to watch them fly is to know
that they belong in the toy aisle. The military built cruise missiles, but they cost millions.
Then one day a friend brought a quadcopter into the office. It would fit in your hand and it
flew like an aircraft, not just a toy. And the punch line? It cost $20! Now that’s what I call a
breakthrough.

So I bought one, then another, then a bigger one. Then I built one from scratch and started
to modify the flight control code. After many crashes and much thought, I am now ready
to say what has changed: motors, batteries, and control systems.

Drones Versus Quadcopters

You will see several terms for the flying things we
will build here. Some take “drone” to mean only a
military system or vehicle that can fly autono-
mous missions. Since it is by far the shortest,
easiest word for it, I intend to use the word
“drone” for just about anything that can fly
without a human on board. The military actually
calls them unmanned aerial vehicles (UAVs) and
the FAA calls them unmanned aerial systems
(UASs), but I use enough acronyms in my life
without using one where a one-syllable word

like “drone” will do. The term “multirotor” leaves
out fixed-wing aircraft and traditional helicop-
ters, but describes everything we will build here.
The term “quadcopter” describes an even more
limited class—only those with four, not six or
eight, props—but still covers all of our projects.
We will use these words to differentiate our
drones from fixed-wing or six-rotor vehicles
when needed, but also sometimes just for vari-
ety.

Motors

That first little quadcopter I saw at the office, like most micro drones, used tiny electric
motors. They are smaller but look essentially the same as the small DC motors I bought 10
to a bag as a kid, but those were nowhere close to powerful enough to lift themselves. It

2 Make: Drones

Motors

turns out that there is an essential difference between the quadcopter motors and the
motors I was familiar with. Like many motors these days, they use rare earth magnets, but
that’s not the essential difference. These “coreless” motors (Figure 1-2) are optimized for
aviation.

Figure 1-2 6 mm, 7 mm, and 8.5 mm coreless motors

The windings in small motors, like nearly all electric magnets, are generally made around a
core of some ferrous material like iron. This makes the magnets more efficient—electrically
efficient, that is. It turns out, however, that weight is more important than energy efficiency
in aviation, so someone thought to take out that heavy core, and our tiny, flight-ready
motors were born.

These coreless motors, used in smaller drones, are often called “brushed” to differentiate
them from the sort of motor used in larger multirotors, which have no brushes. In most
motors, brushes riding on a series of contacts control which windings get energized in
what order. In a brushless motor, first developed for floppy disk drives (see Figure 1-3),
electronics control the windings instead of contacts, making a simpler, longer-lasting
motor.

3Chapter 1

Motors

Figure 1-3 Modern drones and old floppy drives use similar brushless motors

Like the drones they fly in, brushless motors gain mechanical simplicity at the expense of
control system complexity. Each of the four motors in a brushless quad has to have its own
little processor, always watching the back current on the unused coils to determine posi-
tion, and adjusting the current to the other coils to achieve the speed commanded by the
central flight controller.

Batteries

I suppose it should come as no surprise that the power plant is one of the important tech-
nologies in a drone. It has always been so in aviation. From that first piston engine that
Orville made according to Wilbur’s design, to Whittle’s first jet engine, to the rocket that
Chuck Yeager flew, advances in power have driven advances in aviation. And each new
power plant comes with its new fuel source.

For our modern electric aircraft—and this means mostly drones, though there are a few
experimental human-carrying electric aircraft—the fuel source is a battery. The most com-
mon battery technology used by drones today is the LiPo, or lithium polymer battery, as
seen in Figure 1-4.

4 Make: Drones

Batteries

Figure 1-4 A selection of 1S and 3S LiPos

LiPos come in all sizes and shapes, from batteries the size of a thick postage stamp to bat-
teries the size of a suitcase that can literally run your house or your car. Their capacities and
capabilities vary accordingly. They can be rather finicky things compared to say, nickel–
metal hydride (NiMH) batteries. LiPos don’t like to be left fully charged for long but don’t
want to be stored completely empty either. Treat them wrong and it is pretty easy to ruin
them, or worse. They have a bit of a reputation for catching on fire, but with a few reason-
able precautions LiPos will allow us to do things no other batteries will.

Control Systems

In between the batteries and the motors is the control system. Even the tiniest micro drone
has several subsystems, including radio receivers, gyros, accelerometers, and, of course, a
processor to tie it all together. Since each of these components is just a little black chip on
a circuit board that looks much like those out of any modern consumer electronics gadget,
people may be less aware of the advances that have made modern drone control systems
possible.

Before looking at what’s new, however, it’s worth pointing out that some parts of these lit-
tle control systems date back years or even decades. The processors used are fairly
modern, but the microcontrollers of several years ago could have done this job as well. On
the software side, the algorithms used, including the Kalman filter and PID controller, have
been used by control systems engineers since long before the microprocessor was inven-
ted.

5Chapter 1

Control Systems

Having acknowledged the great work of engineers past, however, some aspects of drone
control systems do represent new breakthroughs. The general shrinking of electronic com-
ponents in both physical size and power consumption makes smaller drones possible.
Modern design and manufacturing techniques allow these tiny chips to be integrated into
task-specific circuit boards that can be economically made in small numbers. A flight con-
troller, containing all the subsystems mentioned above and more, can be put on a single
board that you could lose in a shirt pocket.

At least one of the chips on that little board represents a breakthrough that is more spe-
cific to aviation: the gyro. Gyroscopes have been used to stabilize aircraft since Lawrence
Sperry demonstrated his gyroscopic stabilizer apparatus on a Curtis C-2 biplane to a
French audience in June 1914. As mentioned earlier, radio-controlled helicopters were
notoriously hard to fly, so someone eventually made a gyroscopic stabilizer for them. The
first models used physical spinning disks, just like the children’s toys, and thus were rather
large and heavy for all but the biggest model helicopters. The price of a single axis stabil-
izer would buy a complete midsized quadcopter today.

Now we can get three gyros and three accelerometers in a single chip (Figure 1-5) and they
only cost a few bucks, even in small, maker-friendly quantities. And this brings us to one
more breakthrough and pleasant surprise. It’s nothing new for a consumer gadget like a
drone to be made more cheaply in China. What makes this new world of micro aviation so
exciting for makers is that Chinese manufacturing has resulted in a range of drone parts
that we can buy in single units, mix and match, and make into our own designs.

Figure 1-5 A gyroscope module and its inspiration

6 Make: Drones

Control Systems

For all these innovations, we are yet at the beginning of the drone revolution. As of this
moment, the FAA has just announced new rules for commercial drone use; and many types
of activities, like package delivery, are not allowed at all. The drones themselves are only
just starting to add safety features like collision avoidance and recovery parachutes that
will make them safe and reliable enough to share the airspace with each other and with
other aircraft. The first international drone racing championship was just held, and every-
where drones are being used in classrooms to excite kids and teach engineering concepts.

And teaching engineering concepts brings us back to what we will do in this book. We will
take the tools we are already familiar with—an Arduino, some motors, and a battery—and
we will teach them how to fly. In the process, we will learn some basic engineering that
can be used in making anything from robots to coffee pots. Then, when the construction is
complete and the tuning is done, when you have put in the hours and learned to control
your drone, you will be rewarded with one of humanity’s oldest dreams: flight, an experi-
ence made deeper because your understanding made it possible.

7Chapter 1

Control Systems

Popular Drone
Control Systems

Of the three breakthroughs that made drones possible—motors, batteries, and control sys-
tems—I find control systems the most interesting. Perhaps I am biased by a lifetime of writ-
ing code, but I am also drawn by the human elements. Of course, real people with stories
to tell developed our motors and batteries too, but those stories are trapped inside compa-
nies in China. The flight controllers we will look at here are mostly open source, so the story
of their development gets played out in public.

In this chapter we will look at several drone control system projects. Each of these projects
has developed software that runs on drones for stability and control. Many projects also
include ground control station software to monitor and tune drones, or even open source
hardware specifications. We’ll look at the history of each and sort out the reasons one
might choose one system over another.

MultiWii

Yes, the two i’s at the end of the name are a reference to the Nintendo video game system.
When solid-state gyros were first becoming commercially available, one of the earliest
products to use them was the Wii controller. Untold numbers of Wii controllers were taken
apart because they were the most reliable place to get the chips. In time, a whole control
system grew up using gyros taken from Wii controllers that were connected to Arduinos to
control multirotors. This project became known as MultiWii.

The original Wii controller only had accelerometers, no gyroscopes, which wasn’t enough
to control flight. Using either the Motion Plus extension or the Nunchuck, one could get
three axes of gyroscope. Some of the earliest MultiWii models didn’t use accelerometers
and thus had no absolute reference to the horizon. But stabilizing the roll, pitch, and yaw
rates provided just enough control to fly. Today, the MultiWii codebase supports all the
common gyro/accelerometer chips, including the currently very popular InvenSense

9

2

MPU-6050 in the MicroMWC pictured in Figure 2-1, which we will use later when we build
the X4Wii.

Figure 2-1 A MultiWii-based flight controller with its namesake

The original MultiWii multirotors used an Arduino Pro Mini, but the codebase now sup-
ports all the common versions of Arduino. One of the advantages of using MultiWii is the
number of integrated flight controllers you have to choose from. They all start with some
type of Arduino processor and a gyro/accelerometer chip. They may include a radio control
receiver, brushed motor controllers, or a compass or barometer. Some will have plugs for
easy attachment of external devices such as radios or GPS devices. Which one is right for
your project depends on whether you are using brushed or brushless motors, whether you
need GPS, and so on.

MultiWii is mature as drone control systems go, and because of this it has given birth to
several offshoot projects. These include, most significantly, Baseflight and Cleanflight,
which we will cover later in this chapter. This maturity means that there are also a variety of
support programs available. MultiWiiConf, the main configuration program, is available for
all the major desktop and mobile platforms. Because several of the offshoot projects have
maintained compatibility with the MultiWii Serial Protocol (MSP) that it uses to communi-
cate, MultiWiiConf and many of the MultiWii support programs can be used with these
other control systems as well.

While MultiWii supports GPS stabilization and there are experimental versions for all the
latest sensors, it does have its limits. As the “multi” in the name implies, MultiWii is for mul-
tirotors, not for helicopters and certainly not for fixed-wing aircraft. Nor can it run complex,

10 Make: Drones

MultiWii

autonomous missions. (The latter is the strength of the next drone control system we will
look at.)

The First MultiWii Tricopter

The first aircraft to use what would become Mul-
tiWii was a tricopter built by Alexandre Dubus in
2010 (Figure 2-2). It had only gyroscopes (no
accelerometers), so it had no absolute horizon
reference. Nevertheless, reports are that it flew
pretty well.

Figure 2-2 The first MultiWii tricopter had no
accelerometers

Dronecode

Dronecode is a Linux Foundation Collaborative Projects initiative that combines open
source hardware and software projects with APIs and communications protocols to create
a rich and wide-ranging development platform for unmanned aerial vehicles (UAVs). On
the software side, there are two main flight control projects: APM/ArduPilot and PX4. Each
has a related hardware project with which it shares a name, though there is some cross-
compatibility. There are also related projects for things like ground stations and simulators.

We will divide our discussion of the Dronecode world into two sections, centered around
APM/ArduPilot and PX4/Pixhawk. Let’s take the older APM/ArduPilot system first.

APM/ArduPilot
You will see the terms APM, ArduPilot, ArduCopter, and APM:Copter. The most confusing
term is APM, because it refers both to the APM 1 & 2 hardware and the APM flight code
project. The latter is also known as ArduPilot, and it is a general-purpose autopilot that has
variants for different types of vehicles now known as APM:Plane, APM:Rover, and
APM:Copter. These were previously known as ArduPlane and so forth. The addition of a
GPS, as shown in Figure 2-3, makes this system capable of autonomous flight.

11Chapter 2

Dronecode

Figure 2-3 An ArduPilot flight controller with power monitor and GPS

The APM:Copter flight control system originated from a collaboration between Chris
Anderson and Jordi Muñoz. Chris had been building a plane controlled by a Lego Mind-
storms controller (see “Lego Mindstorms Autopilot”) and Jordi was working on a traditional
helicopter. Together they built a plane that won the first SparkFun autonomous vehicle
competition in 2009. This plane used thermopiles, an array of six photocells, to stay level
by keeping track of the sun. Chris and Jordi went on to found 3D Robotics and the control-
ler from that plane went on to become ArduPilot and then APM.

3D Robotics

It is important to remember that 3D Robotics is synonymous with neither
APM nor PX4. 3DR is perhaps the largest, but not the only, retailer of the
hardware. While it is a key sponsor of the various Dronecode projects and
sells products based on them, 3DR also extends these systems so that its
products have many unique capabilities as well.

To add a bit of naming confusion, the first hardware that ran ArduCopter was called Ardu-
Pilot, a name now used only for software. Other earlier versions of the hardware for run-
ning ArduCopter were called APM 1 through APM 2.6. Only the 2.x boards are still
supported as of this writing. These older flight controllers use 8-bit microcontrollers and
can only run versions of ArduCopter up to 3.2.x. To run the newer versions at the speed
required to keep up with aircraft requires more power. This is where the cross-

12 Make: Drones

Dronecode

compatibility between different Dronecode projects comes into play. To run APM:Copter
software version 3.3 or later, you need one of the more powerful platforms. Several options
are available, including one based on the Raspberry Pi 2, but the most common choice is
PX4 hardware.

Lego Mindstorms Autopilot

Chris Anderson built this autopilot, based on a
Lego Mindstorms NXT controller (Figure 2-4). He
was working on building an autonomous aerial
vehicle for under one thousand dollars. One
measure of how far we have come is the fact the
we can build one for closer to one hundred dol-
lars today. This first design put the normal R/C
servo on top of the NXT servo so that moving
either one moved the rudder. That way the pilot
could control the plane normally or engage the
autopilot and let the autopilot execute a one
hundred eighty degree turn then fly level until
the pilot takes control again.

Figure 2-4 Chris Anderson’s Lego Mindstorms
Autopilot includes both a Lego and tradition R/C
servo

PX4/Pixhawk
The Pixhawk and PX4 flight controllers have 32-bit processors with floating-point units,
improved sensors, and much more connectivity than the older APM hardware. They run
the NuttX operating system and feature a middleware layer, also called PX4, that gives the
flight control application a consistent interface regardless of the hardware being used. The
flight control application, PX4 Autopilot, flies the aircraft. The PX4 hardware and middle-
ware also support the APM/ArduPilot stack.

The PX4/Pixhawk software stack and hardware specifications were developed with support
from the ETH Zurich research institute in Switzerland, as well as many other labs and indi-
viduals. Advanced controllers, I/O boards, and sensors are available (including, notably, the
PX4Flow optical flow sensor that allows aircraft to remain fixed over a spot on the ground
without using GPS). The PX4 system also supports research projects doing advanced vision
work, using either internal or external cameras to provide position information to the auto-
pilot. Due to its advanced autonomous flight abilities, PX4 is an obvious choice for projects
involving the simultaneous control of multiple aircraft.

To sum it up visually, the world of APM/PX4 looks something like the diagram in Figure 2-5.

13Chapter 2

Dronecode

Figure 2-5 Diagram of the APM/PX4 system

DJI/Naza

If imitation shows some kind of respect, then DJI is surely the most respected drone maker
in the world. Every all-white, fully enclosed, X-shaped drone with red and silver bands on
its arms is a form of homage to DJI’s Phantom line of quadcopters. The control systems that
run these and DJI’s larger commercial multirotors are versions of its proprietary flight con-
trol system, Naza. DJI specializes in aerial photography and, with the Phantom series, is
making drone photography accessible to an ever-larger audience.

DJI’s expanding audience includes many people who just want photographic results and
who are not so much interested in spending hours learning the art of flying. While they
may be missing out on the beauty of aviation, they have a job to do. The real-world appli-
cations drones are used for, from ranching to real estate to search and rescue operations,
deserve hardware that is as reliable and easy to use as possible, and DJI is leading the pack.

The technology that DJI uses to make its products easy to use includes receivers combin-
ing GPS and Glonass satellites and optical flow sensors. In its control systems, DJI pays
careful attention to tuning the flight control parameters. Because DJI sells complete inte-
grated systems, it can do this precisely for the particular hardware being used. Its batteries
and charging systems are more foolproof, and more expensive, than most. DJI builds its
own cameras and gimbals, and thus these systems are highly integrated as well.

The Naza control systems used in these integrated packages are also available separately
for use in custom drones where reliability and smooth operation are critical. They offer
advanced failover systems and modes specially tuned for getting photographic results.
Some may complain that Naza-based drones aren’t as fun to fly, but judged by their own
goals they are hard to beat.

KK2

KK2 flight controllers started with the KKMulticopter board designed by Rolf Bakke. The
first features you notice on almost all KK2 boards are a screen and four buttons, as seen in
Figure 2-6. This enables the principal advantage of the system, which is that it can be com-

14 Make: Drones

DJI/Naza

pletely configured and tuned without the use of a PC or even a smartphone. Recent ver-
sions update the system with the latest gyros and even a backlit screen. And they are
cheap. With a screen, buttons, and a processor for under $20, it’s a wonder that these
boards aren’t more often repurposed for projects other than building quadcopters.

Figure 2-6 KK2 controllers traditionally include a screen

The KKs still use 8-bit CPUs. Given, however, that they are not trying to do operations such
as GPS waypoint navigation or collision avoidance, they work quite well. In fact, solid flight
performance is the other thing KK controllers are known for. In the early years—they go
back to 2012—KKs did a better job than most systems using the limited gyros that were
then available. Today, with the same InvenSense MPU-6050 six-axis gyro/accelerometer
chip that everyone seems to be using, the flight performance of the KKs is quite good.
What really sets these boards apart, though, is that little screen (and the bigger ones it lets
you do without).

CC3D/OpenPilot

The OpenPilot project espouses similar goals to DJI: providing a stable, easy-to-use plat-
form for aerial photography or robotics. But unlike the DJI systems, OpenPilot is open
source and nonprofit; keeping costs down is another of the project’s goals. In addition to
multirotors, the system supports helicopters and fixed-wing aircraft. Like the APM systems,
OpenPilot supports flight control software, ground stations, and a couple of hardware
options.

15Chapter 2

CC3D/OpenPilot

The OpenPilot flight control software includes a complete flight-plan scripting language,
supports wireless telemetry, and has all the features you would expect of a modern drone
control system. The latest versions require the latest hardware, of course, which is called
Revolution or Revolution Nano. But it’s the old hardware, called CC3D for ControlCopter 3D
(see Figure 2-7), that really makes this whole project significant.

Figure 2-7 This CC3D board can run several flight control systems

The CC3D board is one of the most cloned and, thus, most widely available and inexpen-
sive flight controllers. The KK2 controller is also inexpensive and widely available, but CC3D
gives you a choice of several flight control systems to run on it. It supports not only Open-
Pilot but also the Baseflight and Cleanflight systems, which we will cover next. Not bad for
a controller that can be bought in a case for less than the cost of most Arduino boards!

Naze32/Baseflight/Cleanflight

So, we have come full circle. We started with MultiWii and now we are back to a group of
MultiWii forks. Naze32 (not to be confused with the DJI system, Naza) brings MultiWii into
the 32-bit world with its AfroFlight line of hardware. Baseflight, the software that goes with
Naze32, was forked from MultiWii to take advantage of the 32-bit processors that were
becoming available. Because of its MultiWii heritage, Baseflight can still use MultiWiiConf
as a base station, but BaseflightConf base station software is available as well. Here the
story turns a little ugly, though.

16 Make: Drones

Naze32/Baseflight/Cleanflight

Another developer came along and thought he could do better yet. He forked the Base-
flight code, cleaned it up, and called it Cleanflight. And there is a CleanflightConf base sta-
tion program. The original developer of Baseflight was not happy about this new fork. You
might want to read the history of the disagreement and make your choice about which to
support.

Based purely on flying qualities and other features, the two are reasonably close. Each flies
well enough to have its own set of supporters, especially among the drone racing crowd.
So what differentiates them? Baseflight is a bit more mature, with less frequent updates
and less support for new features. Cleanflight gets updated more often and will certainly
be the first to support things like GPS. Perhaps most significantly, Cleanflight will run on a
CC3D board, making it a very economical option, and there are now a couple of Cleanflight
boards with integrated brushed motor controllers for making micro drones.

Choosing a Flight Control System

We’ve looked at a few of the most popular drone control systems, but there are certainly
more. Tau Labs is a fork of OpenPilot that deserves a mention. Paparazzi is an open source
flight controller project that includes the Lisa/S autopilot, the smallest flight controller that
includes GPS and thus can perform completely autonomous flights.

So how do you choose? In many cases, there are several options that will do a fine job.
After making sure your basic requirements are met, you can usually choose based on price
or because of a feature that strikes your fancy. Figure 2-8 is a Venn diagram showing the
domains in which each system tends to be used most often.

Figure 2-8 Common uses of different drone control systems

17Chapter 2

Choosing a Flight Control System

We will get more experience with making these decisions as we choose controllers for our
hands-on construction projects in the coming chapters.

18 Make: Drones

Choosing a Flight Control System

Drone Activities

While the main focus of this book will be building drones, let’s stop for a moment to con-
sider what we can do with them once they are built. Different drones for different jobs, of
course. The smallest toy drones might be mostly for fun, but they can be great for training
too. Most larger drones carry a camera, but aerial photography can be used for anything
from real estate to search and rescue.

While we may customize each drone for a particular activity—bigger motors and props for
a heavy camera, small and low-latency video gear for an FPV racer—the design principles
and even much of the equipment gets shared between these subgroups. Once you’ve built
the projects covered in this book, you will be well prepared to dig into any one of these
activities.

Aerial Photography

It seems like every drone in the store has a camera on it now. Most of these are good for
little more than aerial selfies, but you can also see what your home or flying field looks like
from the air. Step up to better gear and you have the basics for aerial real estate photogra-
phy, which has been one of the first really viable businesses you can run with a drone.

Aerial cinematography—taking shots for movies from the air—has been around for a long
time. Before the development of modern multirotors, Hollywood used RC helicopters for
the job, but these were large, expensive, and notoriously difficult to fly. Today filmmakers
use hex- and octocopters, still large but much easier to fly thanks to modern control sys-
tems. The combination of high-performance medium-sized or large drones like the final
project in this book with action cameras like the GoPro means that even home movies can
use aerial photography now (Figure 3-1).

19

3

Figure 3-1 The widely available Cheerson CX-20 can carry a GoPro and a gimbal

Not everything shot with a camera is art, of course—by which I mean things like mapping,
not just bad photography. Drones can easily be programmed to follow grid patterns and
record the GPS positions of each frame as they go. Specialized software then stitches the
images together into a complete map of the covered area. Complete turnkey solutions for
this have been around for a while, and now they are adding features like infrared cameras
and lidar for more accurate height data.

Like their ground-based robot cousins, drones get sent into places where humans can’t or
shouldn’t go just to look around. Search and rescue teams use drones to search for lost
people. Disaster recovery teams might use drones to survey the area after a tornado.
Ranchers can use drones to track down lost cattle. Most of these jobs have been done with
traditional helicopters or ultralight aircraft in the past, but drones can do much of the same
work at drastically lower cost and risk to humans.

FPV Racing

The very definition of first-person view or FPV racing includes a camera, yet this activity
doesn’t have much to do with aerial photography. To begin with, the drones rarely get that
far off the ground. The race courses usually include multiple barriers or gates that the
pilots must pass through to complete a circuit. The pilots themselves just sit on the side-
lines somewhere, stare into their FPV goggles, and move the sticks on their transmitters.

The pilots control their drones entirely through the video downlink viewed in an isolating
headset, so that one looks out from the point of view of the drone (that is, in first person).

20 Make: Drones

FPV Racing

The cameras used for this must be pretty small, and good low-light response helps a lot.
FPV racers won’t use a gimbal to steady the picture because they need to know which way
the drone is pointing. Actually, it’s not uncommon for a racer to carry an action cam in
addition to the main FPV camera so the pilot can watch a recording of the flight later.

The FPV racing community has settled on the 250 class as the size for the top racers. This
means that they measure 250 millimeters from motor to motor. They usually take the form
of an “H” rather than an “X” like the drones we will build here. This design favors the mostly
forward flight that they are built for. Figure 3-2 shows a typical 250 class FPV racer.

Figure 3-2 Benjamin Tovar’s 250 class FPV racer

Education

Kids love drones, and I believe that drones have a lot to teach them—and the rest of us as
well. Kids can be hooked in by the chance to fly a drone and then go any number of ways,
depending on their interests or the setting. A science class might learn about the physics
of flight, or might use the drone as a platform to plan experiments, gather data, and ana-
lyze results, just as we will soon when testing different props and batteries.

Older kids (no age limit here!) can build complete drones following the instructions here,
or build their own using the same skills. A complete project includes planning and design,
as well as learning to predict performance before you build it (useful skills in many fields).
Students can learn about electronics construction on a fun platform, or, for those more
comfortable with a keyboard than a soldering iron, learn to configure all the flight parame-
ters and analyze flight logs using ground control station software.

21Chapter 3

Education

Flying

Of course, drones are for flying. But I believe the public overlooks this aspect of why we fly
drones too often. Each of us may do one or more of the activities we have just talked about
with our drones. But I find that the people who stick with the hobby, the ones who can’t
wait to get to the field, are the people who just love flying.

Many drone pilots hold traditional pilot’s licenses. Quite a few have flown other types of RC
aircraft in the past, or perhaps still do. Most of us will gladly take a ride in just about any-
thing that flies or stand and watch for hours as luckier pilots than us get to fly fun-looking
aircraft for us at airshows.

They say flying is one of our species’ oldest dreams. I have certainly dreamt of it, and taken
part whenever I get the chance, since I was a kid. Flying generates science and poetry.
Sometimes, when the latest project crashes more than it flies or for any number of reasons
I get stuck in front of a screen for too long, I try to remember to take a micro quad out in
the front yard and fly for a while. Perhaps some kid will walk by and get hooked.

22 Make: Drones

Flying

Improve the Hubsan X4

The Hubsan X4 series includes some of the most popular micro-sized quadcopters avail-
able (Figure 4-1). They come in a variety of versions ranging from plain to those with live
video feeds, but they are all about the same size, and they feel very similar to fly. Spare
parts—including props, batteries, motors, frames, and controllers—are inexpensive and
widely available.

Figure 4-1 The Hubsan X4 107C will be our test platform for this chapter

23

4

This is all great for learning to fly and for everyday stick time, but as makers we always
want a little more than the manufacturer specs give us. In this chapter, therefore, we will
see if we can improve the performance of the Hubsan X4 107C with different props and
batteries. Along the way, we will learn some test techniques and gather data that can help
us later with other designs.

Goals and Test Methods

To begin, we need to define what we are going to improve and how to test for it.

One of the most talked-about specifications for any drone is flight time. In the real world,
flight time depends on factors such as the kind of flying you’re doing, the wind, how beat
up your props are, and so forth. We’re going to try to control for most of these factors so
we can focus on just two of the things that affect performance and are easily changed: bat-
teries and propellers.

To control for type of flying, let’s first restate our goal more precisely as “hover time”
instead of just flight time. Since hovering smoothly in place is not that easy, we will control
for flying style and ability by building a test stand that limits the quadcopter’s motion to
up and down and thus reduces our required control inputs to throttle only.

This test stand is very simple, and it’s easy to build. It lets the quad hang off the edge of a
table to allow free downward airflow. But before describing its construction, it’s worth
pointing out a bit about how engineering works. Not only do we learn design patterns and
algorithms from the works of others, but we get test data too. If you are flying an X4 107C
on one of the batteries tested here, then there is no reason for you to retest. If you find a
great new battery, or want to do similar tests with a new drone design of your own, then
here’s the parts list and a picture of what it looks like before it’s built (Figure 4-2):

• 10” of 1x4, cut into two 4” pieces and one 2” piece

• 18” of 1/4” square dowel

• One 3” #4 machine screw, two #4 nuts, and several #4 washers

• Two Velcro straps

• A bit of wood glue and/or 1 1/2” wood screws

• A 5/32” drill bit

24 Make: Drones

Goals and Test Methods

Figure 4-2 The parts for this test stand are available at any hardware store

The three pieces of 1x4 go together in a “U” formation, held together with glue and/or
screws. Glue is stronger, but screws are quicker. Be sure to pre-drill if you use screws since
1x4s tend to split. Drill a 5/32” hole in the exact middle of the 1/4” square dowel. Drill
another 5/32” hole in the middle of the two sides of the “U” and bolt the dowel into it with
the 3” screw. It’s best to use washers on each side of the dowel and on the outside of the
1x4s, though it’s rather tricky to hold them in place while pushing the screw through. The
first Velcro strap is for balance. With the drone not on the end, move the strap around to
achieve the best balance possible. Then use the second strap to secure the drone. The only
critical points in this design are that the dowel move freely and be relatively balanced.
Figure 4-3 shows what it looks like ready for a test run.

25Chapter 4

Goals and Test Methods

Figure 4-3 This fixed test stand limits motion to up and down for more reliable tests

Battery Upgrade

The easiest part to upgrade on most quadcopters is the battery. We remove it after every
flight, so why not just put a better one back in? But what will give us better hover time?
The lighter battery with less to lift, or the bigger battery with more capacity? Let’s test sev-
eral batteries and see.

First we have to find some candidate batteries. The Hubsan X4 107C comes with a 380
mAh, 25C, 1S LiPo. The 380 mAh is a measure of the total energy that the battery can
deliver between the fully charged and fully discharged states. More would give more hover
time, except that the battery would also get heavier.

The 25C is a measure of how fast the battery can delivery its energy. A 1C battery can
empty itself in one hour. A 25C battery can theoretically empty itself in 60/25 = 2.4
minutes. One can also multiply this 25 by the 380 mAh capacity, giving 9,500 mA or 9.5
amps of current. The quadcopter won’t draw this much current all the time, or perhaps
ever, but it requires batteries that can deliver this much when needed.

The 1S LiPo means that it is a single lithium polymer cell. There are lots of smaller 1S LiPos,
but if they have the same 25C rating, then they probably won’t be able to deliver enough
current. For testing, suppose we’ve found a 260 mAh battery with a 35–70C rating. When
the C rating is a range, the low number is the sustained output and the high one is the
peak. The low end of this range only gives 9.1 amps, not quite what the original can do, but

26 Make: Drones

Battery Upgrade

the 70C peak will certainly be enough. On the larger end, there are many 500 mAh batter-
ies that fit in the 107C, and a normal 25C rating times this larger capacity will be plenty.

Warning—Don’t Use Underrated LiPos

For example, the stock 240 mAh, 25C battery delivered with the smaller
Hubsan X4 107L is not enough for the 107C we are using here. Using a LiPo
that is not rated to deliver enough current will result in the battery over-
heating and “puffing” up or even catching fire. A tiny amount of expansion
after a flight is normal, but if a battery stays puffed up it should not be used
again.

The test procedure will be to strap the quadcopter down, plug in the battery, turn on the
transmitter and let it bind to the receiver, then start the timer and give it just enough throt-
tle to keep the quad level. This will be a little less at the start; climb slowly then quicker
until the lights blink a low battery warning. The measurement will be the time between
throttle up and low battery. Table 4-1 lists the results for the batteries described.

Table 4-1 Hover time for different batteries

Description Capacity Weight Hover time

Smaller 35-70C 260 mAh 7.7g 4:58

Stock 380 mAh 10.6g 6:12

Larger 25C 500 mAh 13g 7:22

The larger battery has almost twice the capacity of the smaller one, but gives less than 50%
more hover time. Overall, the larger the battery, the longer the hover time. This relation-
ship will be limited, though, as too small a battery will not have the power to lift the drone
and the drone will not have the power to lift too large a battery.

Does this mean that we should always choose the largest battery that we can? Not at all.
Hover time is only one parameter, and it comes at the cost of performance. The drone does
not climb as fast or maneuver as well with the heavier battery. We might choose the
smaller battery just for the fun of the higher performance. Or perhaps we need to add a
few grams to the drone elsewhere and want to use a smaller battery to hold the all-up
weight constant, even if this means sacrificing a little flight time.

Prop Upgrade

Propeller design requires a difficult blend of art and science. One might think that a cen-
tury of design work would have given us the perfect prop, but even today we see very
different designs for the same purpose. One might be extra wide (i.e., have a longer chord),

27Chapter 4

Prop Upgrade

in toward the hub and another almost no chord at all in the middle. At first glance a big
prop with a wide chord and an aggressive pitch angle might look like it will give more
thrust, but most gas engines and electric motors give more power as they spin faster, and
that big prop will slow them down. This is why in a plane with a variable pitch prop, maxi-
mum horsepower is achieved with the flattest pitch.

Thankfully, we don’t have to design propellers from scratch. We will limit ourselves to test-
ing a few of the props available to fit our quads. Since the only requirements are fitting the
common 1 mm shaft and not being so big they hit each other, we can easily find several to
choose from (Figure 4-4).

Figure 4-4 A selection of small propellers that will fit a 1 mm shaft

Our test procedure will be exactly the same as that described earlier, testing each set of
props with a small, stock, and large battery (Table 4-2). In fact, our test runs from the previ-
ous section will serve as the first series for this experiment. Note that with the exception of
the stock Hubsan props, the hubs of these propellers needed to be drilled out to fit. A #62
drill bit is ideal, but they are hard to find; the shaft ripped out of an old micro motor, wrap-
ped in tape to fit the drill chuck, can be used as a poor substitute. Either way, be very care-
ful to get the hole straight.

28 Make: Drones

Prop Upgrade

Table 4-2 Hover time for different props

Description 260 mAh 380 mAh 500 mAh

45 mm Hobby King 4:19 5:37 6:28

55 mm Hubsan 4:58 6:12 7:22

60 mm Graupner 3:37 4:59 6:11

In an interesting result, the props on the lower left in Figure 4-4, the Graupner 55 mm
model, didn’t generate enough lift for even the lightest battery. The low battery warning
didn’t go off for well over four minutes, but for most of that time even full throttle was not
enough for the drone to lift itself.

In the end, nothing beats the stock prop. This is not really an unexpected result, as tests of
other props for micro drones have similarly failed to find a better one. Of course, each of
these props may be the ideal prop for some other application. Figure 4-5 shows what the
relationship between battery capacity and hover time looks like for each of the props
tested.

Figure 4-5 A plot of the linear relationship between battery capacity and hover time

And what have we learned from this? Not that one combination of prop and battery is
best. For props, add price and availability to performance and the original Hubsans are
hard to beat. For batteries, if you value long hover time, the 500 mAh batteries have real
benefit at an acceptable loss of performance. But it may turn out more interesting to us to

29Chapter 4

Prop Upgrade

know that there is a lighter battery that can still handle the load. This at least allows us the
choice of sacrificing flight time for payload.

Propeller Failure

The first fatal accident in a powered airplane
occurred when a propeller of a new design failed
while Orville Wright was performing the first
flight carrying a passenger as part of demon-
strating the Wright Flyer to the US Army
(Figure 4-6). That passenger—Lt. Selfridge, the
army’s most experienced aviator in those days
before the airplane—had worked with Glen Cur-
tis and Alexander Graham Bell in the Aerial
Experiment Association that Bell led. Orville
might have saved the plane but he was also
using a new stick control for the first time, which
might have delayed his responses. Orville recov-
ered from his injuries but would suffer from scia-
tica for the rest of his life.

Figure 4-6 The crash that killed Lieutenant
Thomas Selfridge was caused by propeller failure

As a final word on performance, it’s worth noting why we haven’t looked at changing the
other main component in this drone’s power system: the motors. There are more powerful
ones available that will fit the X4 (0820 motors, which are 8.5 mm in diameter and 20 mm
long). Perhaps the best reason not to try such motors is that they draw significantly more
current, and we don’t really know what the X4’s controller is rated for. Also, the increased
thrust they would certainly give would come at the expense of flight time, and as we have
just seen, we can achieve much the same at lower expense and lower total weight by just
using a smaller but powerful battery.

Next, we’ll move to the other component besides motors that we haven’t changed: the
flight controller.

30 Make: Drones

Prop Upgrade

Build the X4Wii

In the previous chapter, we ran a series of tests on the Hubsan X4 107C to find out how
changing props and batteries affects performance. Now we are going to try changing that
most interesting of components, the flight controller. In fact, we are going to build a new
drone from scratch, using the frame, motors, and props from an X4, but putting in an open
source flight controller. We’ll use the MicroMWC mentioned in Chapter 2 (see Figure 5-1).

Figure 5-1 This MicroMWC flight controller will give our X4Wii its character

31

5

You will be surprised how the personality of the drone changes when flying with different
software. If you have flown an original X4, you may not like the new feel as much at first.
But now you can tune the system to your needs, whether that be fast for racing or smooth
for video. And you can include accessories that are not available with the stock X4.

Where the original Hubsan X4 107D has a video camera and transmitter, we will substitute
a Bluetooth module. With it, you can connect a GUI on your computer or smartphone to
the X4Wii without stopping to disconnect the battery and connect a USB cable each time
you want to change something. This makes the X4Wii a great platform for learning things
like how to do proportional–integral–derivative (PID) tuning. When you have tuned the
controller just the way you like it, you can then switch to manual mode and learn acrobatic
flying!

Parts

As mentioned, the X4Wii will use the frame, motors, and props from a Hubsan X4 107D.
Rather than buying each of these items separately, it is much cheaper to get what is called
a crash kit (Figure 5-2). The kit includes a frame, props, motors, and batteries.

Figure 5-2 A “crash kit” contains many of the parts we need

No electronics come with the crash kit. Instead of stock electronics, we will use the items
pictured in Figure 5-3, including, from left to right, an FTDI programmer, the MicroMWC
flight controller, and an HB-02 serial Bluetooth module. I suggest getting the FTDI adapter
packaged specifically for the MicroMWC because it comes with the two cables also shown.

32 Make: Drones

Parts

One of the cables fits the MicroMWC, but it just so happens that the other cable, meant for
a MiniMWC, fits the Bluetooth module. So, we can combine these two cables and build one
that connects the MicroMWC to the Bluetooth module. While not required, I’d actually sug-
gest buying two of these adapters: one for the two cables and another to keep handy for
later reflashing of the MicroMWC.

Figure 5-3 A MicroMWC flight controller with accessories

The built-in receiver on the MicroMWC board understands the DSM2 protocol. Since the
original Hubsan transmitters use a proprietary protocol, we will need a new transmitter.
The Blade MLP4DSM, shown in Figure 5-4, does everything we need and can be bought for
under $20 used. Any DSM2 transmitter with at least four channels should work, though
having at least one additional channel lets you change flight modes easily. The MLP4DSM
handles this by having a push of the right stick toggle the AUX1 channel and a push of the
left stick momentarily change the AUX2 channel, meaning it is actually a six-channel trans-
mitter.

33Chapter 5

Parts

Figure 5-4 The MLP4DSM uses stick pushes for its fifth and sixth channels

We will also need a few other parts, like a battery connector, heat shrink tubing, a few little
bits of wire, and some even tinier screws. Table 5-1 is the complete list.

Table 5-1 X4Wii parts list

Part Quantity

Hubsan X4 107D “crash kit” 1

MicroMWC flight controller 1

FTDI adapter for MicroMWC 1 + 1 optional

Bluetooth module (HB-02) 1

Male Micro Losi connector 1

Heat shrink tubing, 1/16” 6”

Wire (~36 AWG) 6”

Screws (1.6 mm x 4 mm) 3

DSM transmitter (MLP4DSM) 1

34 Make: Drones

Parts

Build

The first thing we need to do is flash new code to the MicroMWC. When I built the first
X4Wii, it kept flipping over. It thought up was down and left was right. It’s an easy fix for a
drone, but one that requires a code update.

Flashing New Code
Benedikt, founder of micro-motor-warehouse.com, has set up a version of MultiWii 2.3 for
the MicroMWC controller, which we will use as our starting point. To tell the controller
which way is up, you must uncomment the line quoted here in the config.h file. Remove
the // at the start of the line and add the minus signs as shown:

#define FORCE_ACC_ORIENTATION(X, Y, Z) {imu.accADC[ROLL] = -Y; imu.accADC[PITCH] = -X;
imu.accADC[YAW] = Z;}

Download the Arduino Project

The complete Arduino project with all the changes described in this chapter
can be downloaded from the book’s companion website.

We must also change a couple of settings to accommodate the transmitter. The Blade
MLP4DSM outputs a range of about 1,150 to 1,830. This range represents the width of a
pulse in microseconds in some systems but is just an arbitrary scale here. This matters to us
because the control system compares these RC values to preset minimum and maximum
values to determine when to do things such as arming the motors. Many transmitters will
output a wider range, say 1,000–2,000, or allow you to set the range, but we must make
the software accommodate the hardware. Specifically, these values must be changed in
the file MultiWii.h:

#define MINCHECK 1200

#define MAXCHECK 1800

Once you have the modified code ready in the Arduino integrated development environ-
ment (IDE), you can upload it to the MicroMWC. To set up your environment for this board,
select “Board: Arduino Pro or Pro Mini” and “Processor: ATmega328 (5v, 16 MHz).” The port
setting will vary depending on your computer, but it will include “usbserial.” Figure 5-5
shows how these settings look in OS X.

35Chapter 5

Build

https://micro-motor-warehouse.com/
http://www.makedronesbook.com/projects/X4Wii

Figure 5-5 The settings for connecting the MicroMWC to the Arduino IDE

Next, connect the MicroMWC to your computer using the FTDI adapter. Only one of the
supplied cables fits and it only fits one way, so this part is easy. Getting the MicroMWC into
boot mode, by contrast, is tricky.

To get the MicroMWC to reset properly so the bootloader will accept new code, you have
to touch the extra pin hanging from the FTDI adapter to just the right little spot on the
circuit board at just the right time. Figure 5-6 shows the spot that you have to hit. Hold the
pin in place, then start the upload in the IDE. You can remove the pin once the download
has started, as indicated by rapidly flashing lights on the FTDI adapter.

36 Make: Drones

Build

Figure 5-6 You must hold the pin against this small spot to start the flashing process

Wiring
I usually start building each new project by wiring the power. In this case all we have to do
is solder on the battery connector. The connector needed is a male Micro Losi, which is the
same as on a stock Hubsan X4, so the same batteries will fit. You can buy these connectors
from several places, but I actually salvaged one off of a cheap battery charger. The connec-
tion on the board for the positive terminal is well marked and the negative one is near it, as
seen in Figure 5-7. This connector should go on the same side of the board as the red radio
antenna wire.

37Chapter 5

Build

Figure 5-7 The battery connector soldered onto the controller

Our new quad will really start coming together as we put the motors in the frame and sol-
der them to the controller. Be careful to get the motors in the right corners. The front left,
as seen from the top of the X4, should be red and blue. Then they alternate going around,
as can be seen in Figure 5-8. The wires on the front two motors do not reach far enough, so
this is where we use that little extra bit of wire. I salvaged some wire that matches from old
motors. The motor wires should come out of the opposite side of the board from the bat-
tery cable. Complete the motor installation by putting some heat shrink on and soldering
the front motors to their extensions as shown.

Figure 5-8 The motor wires should be soldered before the MicroMWC is screwed in

38 Make: Drones

Build

Finally, we will build a cable to connect the Bluetooth module. As mentioned, we will use
the two cables that come with the FTDI adapter. Take the smaller end of each one and con-
nect the like colors as shown in Figure 5-9. Note that the colors of the supplied cables may
change, in which case, of course, it is the order and not the color that really matters.

Figure 5-9 Building the cable to connect the MicroMWC to the Bluetooth module

Also note that, as with all serial connections of this sort, RX goes to TX and TX goes to RX.
The result should look something like Figure 5-10 when plugged in.

Figure 5-10 Wiring diagram for the Bluetooth cable

With all the wires in place, we can fit it all together.

39Chapter 5

Build

Assembly
Now we can assemble everything to see how it flies! Plug the cable you just built into the
MicroMWC and the Bluetooth module. Use one screw to hold the board into the top of the
frame. The only hole that lines up between the Hubsan frame and the MicroMWC is at the
lower right. It fits very tightly into the case, so one screw should be plenty. Next, place the
middle piece of the frame on top, being careful that the motor wires don’t get pinched.
The Bluetooth module fits nicely into the slot designed for the video transmitter. A little
wire routing, and the result should look like Figure 5-11.

Figure 5-11 The Bluetooth module fits where the video transmitter would go

Finally, fit the bottom of the case on, again being careful not to pinch any wires. The four
motor arms snap together. As you know if you have flown a stock X4 before, these motor
arms come unsnapped all the time in crashes. This seems to be a way to absorb energy
and keep anything from actually breaking, since they always snap right back together
again. Two screws hold the middle of the case together.

To fly, we must put on some props. The MultiWii starts with clockwise at the left front and
alternates as shown in Figure 5-12. It helps as a visual cue to put contrasting colors in the
front and the back. Press the props on as far as they will go so that crashes will push the
prop against the top of the motor, rather than pressing the motor’s shaft down into it.

40 Make: Drones

Build

Figure 5-12 Yellow turns clockwise, green turns counterclockwise

You are ready to fly! The default parameters in the MultiWii work reasonably well for the
X4Wii. The DSM radios require a different power-on sequence than the Hubsan’s, though,
and since MultiWii also runs much larger, more dangerous drones, we have to intentionally
arm the motors before we can fly. This checklist should get you airborne:

1. Turn on the transmitter.

2. Place the battery into the X4Wii and plug it in.

3. Place the X4Wii on solid, fairly level ground until the green blinking light stops.

4. Hold the left stick on the transmitter down and to the right until the green light
comes on solid.

5. Throttle up very slightly and then back down; take note that all props turn.

(The green light mentioned shines though the case and can be very hard to see in bright
sunlight. If you have trouble with the arming sequence, try it in the shade or indoors.)

The X4Wii responds a bit sluggishly to stick input compared to the stock X4, at least with
the default parameters. But we will tune that up in the next section.

41Chapter 5

Build

Setup and Tuning

Our X4Wii flies all right with the default settings, but we chose the MicroMWC and its open
source MultiWii firmware so that we could improve and customize the way the X4Wii flies.
We will take this in three steps. First we will increase the RC rates a bit—this is a feature
most expensive transmitters have that now we can do in software! Then we will experi-
ment with tuning the PIDs, though this is a complex subject we will tackle in greater detail
in a later chapter. Finally, we will set up acrobatic mode on our X4Wii for a real flying chal-
lenge.

RC Rates
Radio control (RC) rates are like a gain knob for the control sticks. Turn up the rate, and it’s
like you are moving the stick further. Turn the rate down, and it makes your stick move-
ments smaller. Advanced transmitters allow you to adjust this, but we can get this feature
using our simple transmitter by adjusting parameters in MultiWii. The default roll and pitch
response—that is, how fast it will rotate front to back or side to side—feels a bit slow to
me, so let’s increase these RC rates a little.

The “RATE” shown in Figure 5-13 changes the RC rate for pitch and roll. Setting this higher
makes the drone respond quicker as you move the sticks. To keep this from making the
controls too twitchy and hard to manage, the “EXPO” setting makes the stick response
lower around the center. The settings of 1.1 and 0.1 for “RATE” and “EXPO” are not extreme,
so feel free to try higher values.

Figure 5-13 Setting RC rates with MultiWiiConf

42 Make: Drones

Setup and Tuning

Desktop Versus Smartphone

You can use the desktop program MultiWiiConf
or various smartphone programs like MultiWii
Configurator or Naze32 Configurator to adjust
settings on your X4Wii (Figure 5-14).

Figure 5-14 Viewing PID settings in two
smartphone apps

The process for connecting different computers
or phone applications varies, but in every case,
when asked what to connect to, look for “HB-02.”
I find the phone app is easier for changing set-
tings, but the desktop app is easier to read since
more settings fit on one screen.

PIDs
Setting RC rates can help, but this just makes the drone do the same thing with a little less
stick movement. To really make our new drone fly better, we will need to tune the PIDs (a
topic we’ll discuss in more detail in Chapter 11). The PIDs in MultiWii include an extra
“RATE” parameter in addition to the “P” (proportional), “I” (integral), and “D” (derivative)
parameters, and this new parameter happens to do just what we want: it increases the rate
when using high stick deflection. Try setting the “PID Yaw Rate” and the “PID Roll/Pitch
Rate” to 0.25 and 0.75, respectively (see Figure 5-15).

43Chapter 5

Setup and Tuning

Figure 5-15 Using MultiWiiConf to adjust the extra RATE parameter

I use full yaw all the time, so this setting really helps. Roll and pitch need more adjustment
in the midrange, so we will adjust the actual “P,” “I,” and “D” settings next.

The PID controllers, embodied by a few lines of code in the firmware, either hold some-
thing constant or smooth out any required control changes so that they are as fast as pos-
sible without causing problems such as overshoot or oscillation. The cruise control system
in a car uses something like a PID controller, for example. In drones we use them to control
roll, pitch, and yaw at a minimum. As we add other systems, like a barometer for altitude
hold, PIDs get added to manage these variables too.

The “P” setting controls how strongly the controller tries to correct an error between the
requested and actual values. The value in question could be roll angle, roll rate, or even
latitude. Using roll angle as an example, the desired and actual angles might be different
because the wind blew your drone around, changing the actual angle, or because you
moved the stick, changing the desired angle. The “P” value in this case would control how
much roll force gets applied to reduce the error.

If you set “P” too low, the system doesn’t have enough control and the drone will sort of
wobble around. If you set “P” too high, the control system goes into oscillations. This may
at first look similar to the wobbling around of a low “P.” To be sure which you are seeing,
adjust through the middle, more stable zone first. Most tuning guides say to increase “P”
until oscillations begin, then back off a little. But adjusting “I” and “D” affects how “P”
works, so you may have to make several passes before you get the response you are after
(see Figure 5-16).

44 Make: Drones

Setup and Tuning

Figure 5-16 “P,” “I,” and “D” settings for a smooth, but more responsive feel

You should now have “P,” “I,” and “D” set to your liking—but this is only angle mode.
Adding other modes may require more tweaking, and that’s what we’ll talk about next.

Modes
For extra credit, let’s try setting the X4Wii to what MultiWii calls “manual” mode. Most
would call this “rate” mode or full acrobatic mode. It means that the control system uses
the gyros to stabilize roll, pitch, and yaw, but it does not use the accelerometers to give any
reference to the horizon. In the normal angle mode, the angle of the stick is proportional
to the pitch or roll angle of the drone. In rate mode, the angle of the stick determines the
roll rate or pitch rate. If you hold the stick all the way to the left, the drone should roll com-
pletely around. Of course, acrobatics are not that easy!

There is a trick to setting MultiWii to “manual”—it doesn’t show up in the list of modes! You
get manual mode when no other mode is selected. You select modes when flying by
changing AUX channels on the MLP4DSM, and you do that by pushing in the right stick.
This changes the AUX1 value from high to low. Modes get selected when the box under
the appropriate value, “L” or “H,” is highlighted (Figure 5-17). You highlight a box in Multi-
WiiConf by clicking on the boxes until you have the settings you want and then pressing
“Save.” In general, I find the cell phone apps easier for tweaking settings, which is why we
added the Bluetooth connection.

45Chapter 5

Setup and Tuning

Figure 5-17 With only the “H” box selected, a low value on AUX1 will give manual mode

This completes the construction and initial tuning of the X4Wii (Figure 5-18). We started
with a stock frame and motors, but this little drone can do many things that its stock cous-
ins can’t. We can change the RC rates and adjust the PIDs to fine-tune the X4Wii’s flying to
our individual tastes. Thanks to the Bluetooth module, we can easily connect to ground
control station software on a computer or smartphone. We can also start learning how to
fly in rate mode. In short, the X4Wii has many of the features of larger, hobby-grade drones
in a small, safe, and cheap to maintain package.

Figure 5-18 The completed X4Wii

46 Make: Drones

Setup and Tuning

Now that we’ve seen how much difference the flight controller makes, it’s time to dig in
and see how one works. As makers, we learn how things work by building them, right? So,
we shall build a flight controller from separate modules and then write the code that
makes it fly.

47Chapter 5

Setup and Tuning

The Visible Drone

By building the X4Wii, we learned what a difference a flight controller can make. This made
me all the more curious to find out what’s going on in there, so in fine maker style, we will
build our own! Instead of a single, integrated flight controller, we will build a modular one,
combining a standard Arduino-compatible CPU with an accelerometer/gyro module,
radios, and a custom motor controller to create our hardware platform.

By upgrading key components from what is integrated in the MicroMWC, we will gain sig-
nificant functionality—such as altitude hold and heading hold—and still have future
expandability. Later, the modular nature of the system will allow us to upgrade to a better
barometric pressure sensor if one becomes available, or use an even faster processor. It’s
like moving up from a boom box to a component stereo.

As with any modern gadget, our flight controller will need software. While we could port
the MultiWii software we used with the X4Wii to our new hardware platform, that wouldn’t
teach us anything new about how flight control software works. So, we will write our own!
While it takes many person-years of effort to create a really complete flight control system,
by leveraging existing code and keeping our initial scope modest, we can quickly create a
flight control system that not only works, but makes it easy to see how it works.

Given the highly experimental nature of our controller, it seems best to once again use the
frame, motors, and props from a stock drone. Keeping the design as small as possible, but
allowing for a heavier controller, we will move to geared motors instead of direct drive.
Geared motors can lift more payload for a given amount of power because they use a
larger prop. However, the larger prop and the gear train make the system less responsive.
There is always a trade-off in aviation.

49

6

In the spirit of making it clear how this drone works, we’re not going to hide our custom
controller away inside the body. A window cut into the top of the case will allow us to
show off our work and perhaps explain to the next generation of drone makers that this
part is the radio, this part is the gyro, and so forth. So, with credit to the clear plastic model
of a human with removable organs, we will call this design the Visible Drone.

A Teensy CPU

The processor in the Visible Drone will be upgraded significantly from the one in the X4Wii.
It’s not that the 8-bit CPU on the MicroMWC was having trouble keeping up. It can consis-
tently run loop times around 2 milliseconds, which means 500 updates per second. Still,
the reasons for wanting a more powerful CPU are twofold. Having power to spare will
allow for future expansion, but more importantly, we want to move up to a processor with
a hardware floating-point unit.

To understand what a floating-point number is, see the sidebar on the subject. While an 8-
bit Arduino can do floating-point arithmetic, it must do so in software, and this gets too
slow on older CPUs. Hardware floating point is fast enough to use in a flight control loop,
which means that we can avoid difficult code optimizations that also make the code far
less readable. It will allow us, in fact, to take an academic code example and run it as is.
Floating point makes the code easier to write and easier to read.

Floating-Point Numbers

Computers use floating-point numbers like we
use scientific notation, only in binary instead of
base 10. Both consist of a main part, or mantissa,
and an exponent. The exponent says how far left
or right to move the decimal point, thus the
name “floating point.” For example, with a man-
tissa of 1.000 and exponent of 5, we get 1 x 2^5,
or 32.

With an exponent of –5, we get 1 x 2^–5, which
is 1/32 or 0.03125. This allows the representation
of very large and very small numbers without
loss of precision.

In another move to keep the coding easy, we will choose a processor that can be program-
med using the Arduino integrated development environment. Currently, the Teensy 3.2
from PJRC (Figure 6-1) looks like the best combination of small size, the latest 32-bit CPU
with hardware floating point, and plenty of fast ports. As we shall see when we start pro-
gramming it, it takes a couple of tweaks to the Arduino IDE to support this board, but with
those done it feels very familiar.

50 Make: Drones

A Teensy CPU

Figure 6-1 The Teensy 3.2 comes with a lovely pinout card

Radios

We can use the same radio control (RC) transmitter with the Visible Drone that we used
with the X4Wii since a single transmitter can be used with multiple aircraft, but we will
need a new RC receiver. It must support the same DSM2 standard as the MLP4DSM trans-
mitter, but that leaves many choices from several companies.

Historically, RC receivers simply talked directly to servos. When gyro stabilizers first
appeared, they just plugged inline between the two, using these same servo connections.
The trouble is that with lots of channels, each one having three wires (two for power and
one for signal), this adds up to lots of wires. Today we have several standards available that
put all the channels on a single connection.

We will talk about various RC radio standards in Chapter 24, but interestingly, the one we
will use wasn’t originally developed as an external interface at all. Spektrum, a maker of RC
radios and owner of the DSM2 standard, started making little secondary remote receivers
that could be placed in multiple locations on a model for better reception. It turns out that
the simple three-wire serial interface they use to talk to the main receiver is also easy to
read directly with an Arduino, which is just what we will do.

Several companies make Spektrum-compatible satellite receivers. (“Satellite” refers to the
fact that they are remote, not that they receive signals from orbit.) For this design, we will
use the Lemon RX DSM2 satellite. This tiny board communicates nicely with our transmit-
ter, weighs less than a gram out of its case, and costs well under $10.

51Chapter 6

Radios

Like with the X4Wii, we will also add a Bluetooth radio to the Visible Drone for real-time
telemetry and ease of parameter changes. We will use an HC-06 module instead of the
HB-02 we used before, but they differ only in the type of physical connection—plug versus
pins. More significantly, since we are writing this control system ourselves, we can feed it
any data that we want to see and we can use the same channel to send commands back to
the drone. Figure 6-2 shows the HC-06 module with the Lemon RX DSM2 receiver.

Figure 6-2 The Lemon RX receiver and HC-06 Bluetooth module

IMU/AHRS

IMU stands for inertial measurement unit and AHRS stands for attitude and heading refer-
ence system. The latter term covers a broader range of systems that include noninertial sen-
sors like magnetometers and barometers. In the academic literature on the subject—and
there are decades of research out there—the latter are often referred to as MARG systems,
for the magnetic, angular rate, and gravity sensors they include.

Almost all micro quads today claim six-axis stabilization. A more technical description is
that they measure rotation rates around three axes and acceleration rates in three direc-
tions, making what is known as a six degrees of freedom or 6DOF system. We’re going to
improve on that!

Today, you can get a 10DOF sensor module that fits in the same space and talks to the
same interface, though it does cost all of $10 instead of $3. The GY-88 module (Figure 6-3),
available from several sources, includes an accelerometer/gyro chip like other small flight

52 Make: Drones

IMU/AHRS

controllers, but adds a magnetometer and a barometer. That’s 3 new degrees of freedom
to describe the direction of the Earth’s magnetic field and 1 more for altitude on top of the
6 we already had, giving 10.

Figure 6-3 The GY-88 module includes a compass

Power

For this design we will stick with 1S LiPos, meaning single-cell lithium polymer batteries. As
drones get larger, they tend to use higher-voltage LiPos of 3S or more. The higher voltage
means that less current and therefore smaller, lighter wires are needed to deliver the same
amount of power. For the small, coreless motors in this design, we can get enough power
through small wires using only a 1S source. Making the motor wires any lighter would just
make them hard to work with, so there is little to be gained by using a more complex and
expensive battery.

Modern electronics like to have clean, consistent power, but the voltage coming from bat-
teries varies with load and their state of charge. Our 1S LiPos will run from 4.2V down to
3.7V or so during a normal flight. Also, many of our modules require a 5V supply. All of this
can be solved with a DC-DC voltage step-up module like the one shown in Figure 6-4. Con-
nect a 1S LiPo on one side and get up to 2 amps of clean 5V power on the other.

53Chapter 6

Power

Figure 6-4 A 1S LiPo and this DC-DC convertor give clean 5V power

Circuit Board with Motor Controllers

In the small quads we have looked at so far, everything is integrated into a single circuit
board, including the motor controllers. This makes sense as the circuits are simple and
these small quads need to be as light as possible. In larger quads using brushless motors, a
complex controller with its own processor is needed for each motor, and the current
requirements vary widely, so these electronic speed controllers (ESCs) tend to be separate
units. The Visible Drone design exists in an odd gap in between. We are using simpler,
brushed motors, but building a modular control system.

Most of the available brushed motor controllers are for land vehicles and thus are too big
and heavy. Also, they have additional circuitry for going forward and in reverse, which we
do not need. Well, we were going to need some kind of circuit board to connect every-
thing together anyway, and it only takes a couple of parts per motor, so we’re going to
build our own motor controllers!

The scale of our controller project makes it well suited for testing on a breadboard, but we
will need something a little more robust, not to mention smaller and lighter, for flying.
Thankfully, one can get custom circuit boards fabricated quickly and cheaply now and the
tools to design them are free and easy to use, so we will use a custom PC board for our
motor controllers and the connections between all the other modules.

54 Make: Drones

Circuit Board with Motor Controllers

Frame/Motors/Props

Everything we have talked about so far could be the brains of a car, a robot, or anything
that uses motors to move and needs to know its position. Of course, that’s part of the
point. We are using drones as a vehicle to learn general control systems engineering con-
cepts. All of these components, from the RC radios to the motor controllers, can be used in
projects far removed from building drones. But this time we are building a drone, so let’s
choose the frame, motors, and props.

In between the little direct-drive micro drones with brushed motors like the X4Wii and the
large, hobby-grade multirotors that use brushless motors (also direct-drive), there exists a
world of mostly toy drones with brushed motors running larger props through gears. This
allows them to run slower and more efficiently, which in turn means they can carry more
payload—so, let’s build a geared drone this time.

I like to stay as small as possible for most drone projects because I can fly the resulting
product in a small space and the hazards of crashing it into things are mostly to my drone
and not to the things I hit (like the neighbor’s car). While you can get geared drones as
small as the Hubsan X4s, we will need a little more space for all the components in our
control system. The Syma X5 (Figure 6-5) has a nice roomy case, and spare parts are widely
available. I got the bind and fly (BNF) version without a transmitter. There are also crash
kits, but again they don’t come with screws, so the BNF version worked out better this
time.

Figure 6-5 The Visible Drone project starts with a stock Syma X5

55Chapter 6

Frame/Motors/Props

As mentioned, I think our new modular controller will be really cool looking, so I’m going
to chop a hole in the top of that case and put in a clear window—but we will cover that in
Chapter 13.

Weight Budget

We will need a few other parts like pins, plugs, and wires, and we won’t really know what
the circuit board weighs until much later the project, when the design is complete and
back from the fab. Nonetheless, it is our duty as aircraft designers to do a weight budget
and check the results against our available thrust. Table 6-1 shows our best available esti-
mates.

Table 6-1 Weight budget for the Visible Drone

Item Grams

Teensy 3.2 2.7

Lemon RX DSM2 satellite receiver 1

HC-06 Bluetooth module 3.5

GY-88 10DOF sensor module 2

19 0.1” pins & 4 motor plugs 1

Circuit board 5

Matek DC-DC 1S to 5V step-up convertor 1.8

Frame/motors/props from Syma X5C 64

680 mAh 1S LiPo 16.2

Total 97.2

For comparison, a stock Syma X5C flies at an all-up weight (AUW) of 85.6 grams, making
our modular controller design almost 12 grams heaver. This compares to a measured
thrust of 41.7g per motor, for a total of 166.8 grams of thrust. That’s a thrust to weight ratio
of only 1.7, a little low. We like to see a ratio of 2 or higher. But that AOW number for the
stock X5 is stripped. Most of them fly with a camera, bigger landing gear, and prop guards,
easily making them as heavy as ours. The Visible Drone, like the stock X5, will be a gentle
flyer.

56 Make: Drones

Weight Budget

Basic I/O Code

In this chapter we will create a basic framework for our new flight controller code and learn
to communicate with some of our key peripherals, including the radios and motors. We
will use the framework we build here as the platform for the next few chapters, where we
will add the IMU and mode functions.

The figures in this section show the circuit being built up on a breadboard. If you plan to
use exactly the same circuit as shown in the following chapters in your own project, then
you can skip directly to building all of this on the printed circuit board that we will lay out
later.

Time to write some code!

Setting Up the IDE

As mentioned in the previous chapter, the Teensy 3.2 processor can be programmed using
the Arduino IDE. This can be downloaded from www.arduino.org/software#ide, where there
are also instructions on how to install it. Using this IDE with the Teensy 3.2 requires that
you install Teensyduino, a package from PJRC (the designers of the Teensy), that includes
the Teensyloader program and some Teensy-specific libraries. This package is available at
www.pjrc.com/teensy/teensyduino.html. First install the Arduino IDE, then this package.
With the included Teensyloader program running, you can upload code to a Teensy just
like any Arduino. Open the Arduino IDE, connect the Teensy by USB, and set up the IDE as
shown in Figure 7-1.

57

7

http://www.arduino.org/software#ide
http://www.pjrc.com/teensy/teensyduino.html

Figure 7-1 Arduino IDE settings for the Teensy 3.2

To verify that everything is working, it is traditional to run the Blink example program.
Open this sketch with File ➙ Examples ➙ Basics ➙ Blink on the Arduino IDE menu, then
press the upload button. After the program is compiled, you should be able to see the
download progress on the little Teensyloader screen (Figure 7-2).

Figure 7-2 Teensyloader uploads code to the Teensy 3.2

If this sketch uploads and runs correctly, you will see an amber LED on the Teensy blink,
one second on, one second off. Working? Great!

58 Make: Drones

Setting Up the IDE

Main Loop

Most flight control systems will have at least two main loops, called inner and outer or fast
and slow. There may also be background tasks and interrupt-driven tasks and more com-
plex task scheduling systems, but we’re trying to keep it simple, so we will stick to a fast
and a slow loop for now. We will be indirectly using interrupt processing, but we will do it
through established libraries.

The code for this project can be downloaded from GitHub at github.com/
dmcgriffy/DroneControlSystem or directly from www.makedrones-
book.com/projects/VizDrone.

The fast loop runs the essential flight stuff. This includes reading the accelerometers, gyros,
and control inputs; computing our position and any needed corrections; and finally updat-
ing the motor speeds. All of this can be done in two or three milliseconds even on a slow 8-
bit processor. We will set our inner loop target time to two milliseconds. The inner loop
code should be able to execute quite a bit faster than this, but we will run it at exactly two-
millisecond intervals for consistency. Finally, after the flight control is done, we read any
pending telemetry messages. Reading on the fast loop helps keep the input queue from
overflowing, but we only write on the slow loop. Here is what the inner loop looks like:

#define FASTLOOPTARGET (2000) // length of inner control loop in microseconds

unsigned long fastLoopLength;
unsigned long fastLoopStart = 0;

void loop() {

 // the fast loop for flight control
 unsigned long fastLoopEnd = micros();
 fastLoopLength = fastLoopEnd - fastLoopStart;
 if ((fastLoopLength) > FASTLOOPTARGET)
 {
 fastLoopStart = fastLoopEnd;
 readIMU(); // read raw gyro/accel/mag
 calcIMU(); // calculate current yaw/pitch/roll
 doMode(); // calculate yaw/pitch/roll commands
 doPID(); // smooth yaw/pitch/roll commands
 doMix(); // convert cmds to motor speeds
 writeMotors(); // write to pwm
 mspRead(); // check for new telemetry msgs
 fastLoopTiming = micros() - fastLoopEnd;
 }

The first line defines the loop length. Two thousand microseconds is our two-millisecond
target. Ignoring the declarations, at the start of each pass through the main program loop
we check to see if enough time has passed. If so, we reset the clock and run through the list

59Chapter 7

Main Loop

https://github.com/dmcgriffy/DroneControlSystem
https://github.com/dmcgriffy/DroneControlSystem
http://www.makedronesbook.com/projects/VizDrone
http://www.makedronesbook.com/projects/VizDrone

of fast loop calls. Finally, the time it took to process the fast loop is recorded. We hope that
this stays significantly lower than our target loop time.

The slow loop has much the same structure. The tasks in our slow loop will all be commu-
nications for now, in particular the sending of all our telemetry data. We can trade off the
speed of this loop against the amount of data to be sent in each pass. The baud rate of the
Bluetooth connection (115,200) limits the total amount of data that can be sent. With an
update rate of 10 per second we can still send plenty of data in each pass. Here is the slow
loop code:

#define SLOWLOOPTARGET (100) // length of outer control loop in milliseconds

unsigned long slowLoopLength;
unsigned long slowLoopStart = 0;

void loop() {

 ...

 // the slow loop for communications
 unsigned long slowLoopEnd = millis();
 slowLoopLength = slowLoopEnd - slowLoopStart;
 if ((slowLoopLength) > SLOWLOOPTARGET)
 {
 slowLoopStart = slowLoopEnd;
 long slowLoopTimingStart = micros();
 mspWrite();
 slowLoopTiming = micros() - slowLoopTimingStart;
 }

Right now, we only have one task in the slow loop: the sending of telemetry messages.
Doing the sending here guarantees that we will send messages at most 10 times per sec-
ond.

RC Receiver

Now let’s put the radio into radio control by connecting the Lemon RX receiver. First, we
must bind the receiver to our transmitter. In order to put the receiver in bind mode, a
sequence of pulses must be applied to the power pins. Since the receiver needs only 3.3V
and doesn’t draw much power, it is possible to actually power the unit off of a data pin on
a 5V Arduino. This would make it easy to pulse the power to the receiver, except that we’re
not using a 5V Arduino. The Teensy uses 5V power, but only 3.3V so-called logic levels.

After considering more and more complex circuits to allow the Teensy to control the
power to the Lemon RX receiver, I finally realized that adding all this circuitry, which we will
never need while flying, was the wrong approach. Instead, I recommend that you just get
any old 5V logic level Arduino and perform this simple process. I used an old Arduino Uno
that I had lying around, and they are available retail from places like Radio Shack and Frys.

60 Make: Drones

RC Receiver

Temporarily solder some pins on the end of the receiver cable so that they can be plugged
directly into the headers on the Arduino. Now connect the red (or leftmost, looking down
at the receiver), wire to pin D5 on the Arduino, the black (or middle) wire to pin D4, and the
yellow (or rightmost) wire to pin D0. You can see how this looks in Figure 7-3.

Figure 7-3 Fritzing and actual images of using an Arduino Uno to bind the Lemon RX receiver

You can download the code for the binding process at http://www.makedronesbook.com/
projects/VizDrone. Remember to change the port settings in the Arduino IDE to match the
board you are using, and then set them back for programming the Teensy later. Download
and run spekbind, and the receiver should momentarily start a fast blink. Once the receiver
is ready, hold down the left stick on the transmitter and turn it on. The transmitter should
beep and the receiver blink pattern should change.

With the receiver bound to the transmitter, let’s wire it up to the Teensy 3.2 and update our
code to read from it. This receiver takes 3.3V, as mentioned, but this is no problem now
since the Teensy 3.2 outputs up to 250 mAh of 3.3V power, regulated down from its 5V
input. This means we can just wire the receiver straight to the Teensy as shown in
Figure 7-4.

Figure 7-4 The Lemon RX receiver gets its power from the Teensy 3.2 CPU

61Chapter 7

RC Receiver

http://www.makedronesbook.com/projects/VizDrone
http://www.makedronesbook.com/projects/VizDrone

We only receive data on this connection, since there are no settings to send back to the
receiver. The data stream consists of frames at 11-millisecond intervals, each containing
eight 16-bit values, a header, and seven channel values. For radios with more than seven
channels, two frames are needed to transmit all the values. Strangely, the channels seem to
be in random order, so we must pay attention to the channel value in bits 11–14. A picture
will make it clearer, so look at Figure 7-5.

Figure 7-5 The DSM radio format includes seven channels in each frame

We will use the standard Arduino Serial library to read from the receiver. We will, however,
have to use a serial event interrupt instead of just letting the library buffer for us since we
need to know the timing of the arriving bytes in order to determine when a frame starts.
The interrupt handler buffers the new bytes and parses the frame if it is complete. The
code looks like this:

// RX interrupt
void serialEvent1() {
 checkForNewFrame();

 // put data in buffer
 while ((Serial1.available()) && (rxBufPos < RX_BUFFER_SIZE))
 rxBuf[rxBufPos++] = (char)Serial1.read();

 // parse frame if done
 if (rxBufPos == SPEK_FRAME_SIZE)
 parseRXData();
}

Parsing the raw receiver data into real channel values inevitably involves some of that
messy integer math we are trying to avoid. But we have a 4-bit channel number and a 10-
bit value packed into 2 bytes, so the code will end up looking something like the following
no matter how you do it:

// parse raw serial data into channels
void parseRXData() {
 // convert to channel data in the 1000-2000 range
 #define SPEK_FRAME_SIZE 16 // 1024 mode

62 Make: Drones

RC Receiver

 #define SPEK_CHAN_SHIFT 2 // Assumes 10 bit frames, that is 1024 mode.
 #define SPEK_CHAN_MASK 0x03 // Assumes 10 bit frames, that is 1024 mode.
 for (int b = 2; b < SPEK_FRAME_SIZE; b += 2)
 {
 uint8_t bh = rxBuf[b];
 uint8_t bl = rxBuf[b+1];
 uint8_t spekChannel = 0x0F & (bh >> SPEK_CHAN_SHIFT);
 if (spekChannel < RC_CHANS)
 rcValue[spekChannel] = 988 + (((uint16_t)(bh &
 SPEK_CHAN_MASK) << 8) + bl);
 }

 // constrain outputs and implement deadband
 #define DEADBAND (10)
 #define DEADTOP (MIDRC + DEADBAND)
 #define DEADBOT (MIDRC - DEADBAND)
 for (int i=0; i<4; i++)
 {
 rcValue[i] = constrain(rcValue[i], MINRC, MAXRC);
 if ((rcValue[i] > DEADBOT) && (rcValue[i] < DEADTOP))
 rcValue[i] = MIDRC;
 }
}

Note that this routine also implements a deadband on the input values. This means that
when you hold the sticks near enough to the middle of the ranges, the values will be con-
verted to exactly the midpoint. This helps eliminate small drift in roll, pitch, and yaw.

Bluetooth

The HC-06 Bluetooth module requires four wires for transmit, receive, and power. It uses
the same 5V power as the Teensy. Figure 7-6 shows both the Bluetooth and RC radios
wired up on a breadboard.

Figure 7-6 The Bluetooth and RC radios both use the 2.4 GHz radio band

63Chapter 7

Bluetooth

We will use the MultiWii serial protocol (MSP) for telemetry, which means that we will be
able to use existing ground control station software like MultiWiiConf. This protocol is
designed to be simple and efficient. The ground station requests updates and sends com-
mands. The drone sends the requested messages and updates its settings as requested. To
request an update, the ground station just sends the update message with a zero data size.
Each message starts with “$M” and either “<” or “>”, depending on whether the message is
to or from the drone. For example, to request the current roll, pitch, and yaw, collectively
called attitude, the ground station would send:

"$M<", 108, 0, <crc>

The drone might then respond with:

"$M>", 108, 6, <roll>, <pitch>, <yaw>, <crc>

The number 108 stands for the MSP_ATTITUDE command. The <crc> at the end of each mes-
sage stands for cyclic redundancy check, which in this case means an exclusive-or of each
byte in the message. It is an 8-bit value. The <roll>, <pitch>, and <yaw> values are all 16-
bit.

To send a message, we have routines that send the preamble, write data to the buffer, then
calculate the CRC and send it. See the online source code for details, but as an example,
here is the code to send the message we have been talking about:

void writeMSP_ATTITUDE() {
 mspWriteStart(MSP_ATTITUDE);
 mspWriteWord(IMURoll*10);
 mspWriteWord(-IMUPitch*10);
 mspWriteWord(-IMUHead);
 mspWriteEnd();
}

Note that *10 on roll and pitch. It’s that pesky integer math again. You can multiply by 10
and still not overflow the range of a 16-bit integer, so this allows one decimal place of pre-
cision. This apparently isn’t needed for yaw.

To parse the incoming MSP message, we will use a state machine. This is just a fancy way of
saying that we will wait for a “$”, then wait for an “M”, and so on. In the case of an error—for
example, if we don’t get an “M” after a “$”—we go back to the start. We call the condition
Found “M” a state. Once we have read the “$M<” preamble, we read the length byte, then
loop in the same state while reading the data bytes. Figure 7-7 shows this in a state dia-
gram.

Figure 7-7 This state diagram shows how to parse an MSP message

64 Make: Drones

Bluetooth

Having a diagram like this to work from makes it easier to write the code. The resulting
code looks like this:

enum {MSPSTATE_BEGIN, MSPSTATE_DOLLAR, MSPSTATE_M, MSPSTATE_LT, MSPSTATE_DATA}
 mspState = MSPSTATE_BEGIN;
int mspBytesRemain = 0;
void mspRead() {
 // read available messages
 while (Serial.available())
 {
 char ch = 0x7f & Serial.read();
 switch (mspState) {
 case (MSPSTATE_BEGIN) : mspState = (ch == '$') ? MSPSTATE_DOLLAR :
 MSPSTATE_BEGIN; break;
 case (MSPSTATE_DOLLAR) : mspState = (ch == 'M') ? MSPSTATE_M :
 MSPSTATE_BEGIN; break;
 case (MSPSTATE_M) : mspState = (ch == '<') ? MSPSTATE_LT :
 MSPSTATE_BEGIN; break;
 case (MSPSTATE_LT) :
 mspState = MSPSTATE_DATA;
 mspBytesRemain = ch + 2; // data+cmd+chksum
 if (mspBytesRemain == 0)
 {
 evaluateMSPCmd();
 mspBufPosIn = 0;
 mspState = MSPSTATE_BEGIN;
 }
 break;
 case (MSPSTATE_DATA) :
 mspInBuf[mspBufPosIn++] = ch;
 if (--mspBytesRemain == 0)
 {
 evaluateMSPCmd();
 mspBufPosIn = 0;
 mspState = MSPSTATE_BEGIN;
 }
 break;
 }
 }
}

Near the end of this routine, the real work gets done in the call to evaluateMSPCmd(). When
we get a request for an update, which is most of what MultiWiiConf sends, we just set a
flag noting the request. The update actually gets sent later in the slow loop to make sure
we don’t send more than 10 per second and take time away from flight control. Actual
commands like changes to PID settings or even RC stick positions get handled as they are
received.

Like with the RC receiver code, we will use the standard Arduino Serial library to implement
our telemetry. In this case we can let the library do the queuing since we don’t need to
know the exact time when a byte comes in. We just need to read the queue often enough
to keep it from overflowing—hence the read in the fast loop. The only complexity is that

65Chapter 7

Bluetooth

we actually need two input queues, since we can get messages from either USB or Blue-
tooth. You can see the details in the file MSP.cpp in the source code.

Motors

After the complexity of implementing telemetry, controlling the motors is easy. We drive
the motors with pulse width modulation (PWM) from a digital output on the Teensy. The
actual motor driver circuit we will cover in a later chapter. Right now, let’s look at the soft-
ware required.

Pulse width modulation conveys information by the length of each pulse. Our motor
responds mostly to the duty cycle, or ratio of on time to off time, but it turns out the rate or
frequency at which those pulses occur still represents an interesting compromise. Too low
and we would see the motor pulse, but we don’t need to go that low. At moderate fre-
quencies, in the few hundred to few thousand cycles per second range, the pulses become
audible as a high-pitched whine. But we can’t just keep going higher.

Our motor driver circuit, like most, uses a field effect transistor (FET) to turn on and off the
large flow of current based on the input from the Arduino. It turns out that in our applica-
tion, the FET uses power mostly when switching, so the faster we switch, the more power it
must dissipate as heat. Motor PWM for small, brushed motors like the ones we are using
here often runs at 8 kHz. While high pitched, most people can hear a sound in this range.
We will start there, but consider going higher if the sound turns out to be a problem.

The code for this is simpler than the description. We use the standard Arduino analog
Write() calls:

uint16_t motor[4];
uint8_t PWM_PIN[4] = {20,21, 22, 23};

void writeMotors() {
 for (int i=0; i<4; i++)
 analogWrite(PWM_PIN[i], (motor[i]-1000)/4);
}

void initMotors() {
 for (int i=0; i<4; i++) {
 motor[i] = 1000;
 pinMode(PWM_PIN[i],OUTPUT);
 analogWriteFrequency(PWM_PIN[i], 8000);
 }
 writeMotors();
}

The values in the variable motor[4] range from 1,000 to 2,000. This represents the range of
standard servo PWM in microseconds, but they are just arbitrary numbers for us. The 1,000
gets subtracted off and divided by 4 to give a number in the range of 0 to 256 for the
actual PWM register.

66 Make: Drones

Motors

If we were controlling a naturally stable, fixed-wing aircraft, we could just connect the RC
radio to the motors or servos and be done. In fact, we wouldn’t need a processor at all, as
evidenced by all the RC planes that flew for decades with no stabilization or automatic
control.

However, our modern quadcopter designs do need stabilization, and in order to stabilize a
quadcopter we must understand what makes it fly. Thus, our next stop will be a brief sum-
mary of multirotor aerodynamics.

67Chapter 7

Motors

Multirotor Aerodynamics

Quadcopters basically have no aerodynamics, so this will be a pretty short chapter, right?
Well, it’s true that some of the usual factors, like drag, are insignificant for drones, but
drones do have a few unique properties. And the laws of physics apply to all, so at least
some of the basics must be the same, starting with this: it takes lift to make something go
up.

Lift and Thrust

The most basic equation in flight says that lift, the upward force on the aircraft, must equal
weight, the downward force due to gravity. Certainly this still applies to multirotors, but
where fixed-wing aircraft use thrust to create forward motion and then use wings to con-
vert this forward motion into lift, we skip all that. We just point the props up, so lift equals
total thrust, as shown in Figure 8-1.

Of course, this only applies when level. If the drone gets tilted, either by the wind or
because of control inputs, then only a portion of the total thrust gets converted to lift. The
rest becomes horizontal thrust and accelerates the drone forward, backward, or sideways.
Figure 8-2 shows this relationship.

69

8

Figure 8-1 When hovering level, weight = lift = total thrust

Figure 8-2 Only part of the total thrust becomes lift when the drone is tilted

70 Make: Drones

Lift and Thrust

Thus, if we are to maintain our hover—that is, if we want to keep lift equal to weight—we
must increase the total thrust when the drone tilts over. We will accommodate this in our
control system with a correction factor applied to the throttle value.

Pitch and Roll

Pitch means tilting forward and backward. Roll means tilting side to side. As noted, when
the drone is tilted, we get some amount of horizontal thrust, and, of course, drones use this
to maneuver. When we want to tilt in a given direction we just decrease the thrust on the
motors in that direction and increase the thrust on the motors in the opposite direction.
Figure 8-3 shows how this so-called differential thrust creates a rotational force.

Figure 8-3 Differential thrust creates a rotational force

If we keep applying differential thrust to our drone, it will roll faster and faster, eventually
doing flips and more. This may be what the aerobatics pilot wants, but it’s not what we
expect when flying in angle mode. In this, our usual mode, the desired angle of the drone
is proportional to the angle of the stick. When you move the stick to a new angle, the flight
control system applies differential thrust just long enough to rotate the drone to the
desired angle. It will then use small amount of differential thrust to hold it there until you
move the stick again.

Yaw

Yaw is rotation around the vertical axis, the way a car turns. While most people understand
that you can speed up the motors on one side and make the drone tilt, it is less obvious
what makes it yaw. Instead of differential thrust, we use differential torque. It’s one of
those ideas that is clever in its very simplicity.

71Chapter 8

Pitch and Roll

As each motor turns its prop and the prop pushes against the air, the motor must in turn
push back against something. That something is the frame of the quadcopter. This torque
would make our drones spin around if all the motors turned in the same direction. By hav-
ing half of the motors spin clockwise and half counterclockwise, the torque cancels out,
resulting in zero rotational force.

Then, when we want to make our drone yaw, we just make the half of our motors spinning
in the opposite direction spin a little faster. To keep the total thrust the same, we slow
down the other motors a corresponding amount. The difference between the push back of
the motors in each direction, the differential torque, creates the desired rotational force on
our drone. Figure 8-4 illustrates how this works.

Figure 8-4 The differential torque between the high- and low-speed motors results in rotational force

While gravity gives us a nice absolute reference for pitch and roll angles, we also need to
measure the Earth’s magnetic field in order to get an absolute reference for yaw. We need
to move from a 6DOF sensor to our 10DOF sensor. Just stabilizing yaw, with no absolute
reference, can be enough for just flying around. But for true autonomous flight, we need to
know which way is north.

72 Make: Drones

Yaw

Translational Lift

So far we have looked at lift, roll/pitch, and yaw. The aerodynamics describe how the drone
uses the air to do what we command with our stick movements. The next two items, trans-
lational lift and vortex ring state, describe the sometimes surprising ways that the air reacts
to the drone.

While helicopters and multirotors can hover, it turns out that it helps to keep moving. Mul-
tirotors, like the helicopters they share their strange aerodynamics with, create lift more
efficiently when moving horizontally through the air. To understand why this would be so,
first consider hovering in place.

As seen in the first part of Figure 8-5, when in a stationary hover, the air going through the
rotor is moving straight downward. Our aircraft has to work harder to maintain altitude
when the air it’s in is moving downward. It’s like hanging on a rope that is slowly being
lowered down. You have to climb just to stay in the same place.

Figure 8-5 Translational lift occurs when the rotor pushes on air that is not already traveling downward

In the second part of Figure 8-5, we start moving forward. The air entering the rotor comes
from in front rather than above, and thus it is not already moving downward. Once you are
moving fast enough, you are always in clean air, not the turbulent, downward-moving air
you just pushed on a minute ago. To stretch the rope analogy, as soon as you pull on the
rope and it starts to move downward, instead of climbing, you just grab the next rope over
that isn’t moving yet.

We call this increased lift with horizontal motion translational lift. It occurs whenever the air
moves horizontally across the rotor, whether you are moving forward or flying into the
wind to maintain a fixed position. This comes up for us as drone pilots when we turn from
flying with the wind to flying into it, or the other way around. This changes our effective air
speed and in turn the amount of throttle required to maintain a constant altitude.

73Chapter 8

Translational Lift

Vortex Ring State

To help understand this next effect, visualize a smoke ring. Smoke rings occur when a col-
umn of smoke gets pushed relative to the air around it. The interface between the moving
and nonmoving air creates turbulence, leading to swirls or vortices. When these all line up
just right, you get a smoke ring, technically called a vortex ring. When a rotating prop
pushes a column of air, a similar thing happens and we get a vortex ring around the tip of
each prop. As the air rotates around the prop tip, some of it comes around and pushes
back down on the prop, canceling some of the lift from that portion of its length. Under
normal circumstances, these vortex rings don’t affect our performance too much, as shown
in the first half of Figure 8-6.

Figure 8-6 Prop tip vortices get much larger when descending

However, when descending rapidly, the additional upward air movement increases the
effective angle of attack of the prop blades and thus increases the size of the vortices, as
seen in the second half of Figure 8-6. As the vortices become larger, they reduce lift and
our rate of descent increases. Add power to stop the descent and the vortices get bigger
yet, creating a vicious cycle that helicopter pilots know as “settling with power.”

As multirotor pilots, we experience the vortex rotor state (VRS) as an inability to power out
of a descent coupled with increased turbulence. Full power may not be enough to slow
your descent and prevent a crash, making you think your battery must be low. Then, when
taking off again (assuming the crash wasn’t bad!), full power makes your drone head for
the sky. Thankfully, there’s a simple answer.

Just don’t go straight down! Whenever descending rapidly, be careful to also maintain
some forward speed. Of course, in a drone backward or sideways will do just as well. By
moving horizontally, we continually fly out of the vortex rings we are creating instead of
going down through them.

74 Make: Drones

Vortex Ring State

IMU/AHRS

Now that we understand the basic aerodynamic forces acting on our drones, we can create
a control system that uses these forces to make our drone do what we want. But in order to
control our position we must know our position, and for this we start with an inertial meas-
urement unit (IMU). Inertia describes the tendency of objects at rest to stay at rest and
objects in motion to stay in motion. In other words, inertia embodies Newton’s first law of
motion.

Inertia explains why you get thrown back into your seat when the car you are in acceler-
ates or why you get thrown to the side when the car turns. Your body tried to stay in one
place when the car moved or tried to keep moving in a straight line when the car turned.
By way of ingenious design, engineers have built tiny structures into integrated circuits
that measure these forces.

When these chips measure straight-line acceleration, we call them accelerometers. While
accelerometers will detect the acceleration of the drone due to its own thrust, we primarily
use accelerometers in drones to detect the constant force of gravity. When trying to keep a
drone up, it’s important to know which way is down.

When our integrated circuits measure rotation, we call them gyroscopes. Large spinning-
disk gyroscopes were used for this job in the past, and the name has stuck even though
today’s chips operate on a different principle, as we will see. In drones, we use gyroscopes
to stabilize our rotation. They will not tell us which way we are facing, but they will let us
keep facing the same way.

By combining accelerometers to determine the direction of gravity and gyros to determine
our rotation rates we can keep ourselves level with the horizon and keep ourselves from
spinning around, but we can’t tell which way we’re going. In other words, we have an abso-
lute reference for roll and pitch but not yaw. Enter the magnetometer.

75

9

Our magnetometers work like little compasses in three dimensions. By adding this data to
our inertial sensors, we can hold an absolute heading. With a new sensor comes a new
acronym. We now call the system an attitude and heading reference system (AHRS), since it
can give us a complete and absolute reading of our direction.

Sometimes we need to know not just exactly where we are heading, but exactly where we
are—for example, for complete autonomous waypoint navigation. To accomplish this we
will have to add more sensors, like an altimeter and GPS, but those are subjects for later
chapters.

Gyros

Engineers have developed a number of interesting devices for stabilizing aircraft over the
years. Orville Wright, in one his few developments independent from Wilbur, built a wing
leveler that used vanes to measure air currents, but it never worked very well. Lawrence
Sperry built the first really functional autopilot around the same time, using spinning gyro-
scopes for attitude reference. Gyroscopes were the Sperry family business, Lawrence’s
father having coinvented the gyrocompass and gyro stabilizers for ships.

A little more recently, in 1963, scientists developed the laser interferometry or ring laser
gyroscope. This operates by sending a laser beam in two directions around a path and not-
ing the resulting interference patterns. As you rotate the system, the light’s path is longer
in one direction and shorter in the other simply because you have moved the point at
which they meet. The different path lengths change the interference patterns (known as
the Sagnac effect), and this can be measured to determine the rate of rotation. Very cool
technology, but it has remained too expensive to see much use in model aviation.

The integrated circuit gyros we put into our modern drones are based on yet another tech-
nology: micro electrical mechanical systems (MEMS). Sometimes called vibrating structure
gyroscopes, the IEEE has standardized the name of these components as Coriolis vibratory
gyroscopes, since they depend on the same Coriolis force that makes storms turn one way
in the Northern Hemisphere and another in the Southern Hemisphere. Gaspard-Gustave
de Coriolis described this effect in 1835 after noting that long-range cannon shots tended
to land to the right of their target in the North and to the left in the South. To see how this
works, try the following thought experiment.

Imagine a tiny ball bouncing back and forth from the front to the back of your drone. Now,
just as the ball has bounced off the back and is heading toward the front, imagine the
drone turns right. If the little ball isn’t connected to the drone it will keep flying in the same
direction and thus land to the left of where it otherwise would have on the drone. In
Figure 9-1 the green bar represents the deflection of the ball’s path, relative to the drone,
due to rotation.

76 Make: Drones

Gyros

Figure 9-1 The ball ends up in the same place (it’s the drone that moved!)

In much this same way, tiny vibrating structures inside the chips we put in our drones get
pushed to the left or right as they get rotated. By measuring this deflection, the chip can
then tell us how fast it is rotating. Several such structures are then used to measure rota-
tion in different directions.

Accelerometers

Unlike the wide variety of gyroscope designs operating on different principles, all acceler-
ometers work basically the same way. They measure the force exerted by a weight as the
frame it is held in gets accelerated. Usually, the weight is on the end of a spring and we
measure the deflection of the spring. Sometimes piezoelectric sensors—crystals that pro-
duce a voltage when pressed on—are used to measure the force instead.

The integrated circuit accelerometers in our drones use MEMS technology like the gyros. In
this case the structures consist of a small mass held in place by springy, flexible arms. Small
fingers on the side of the mass move relative to fixed fingers in the frame, which creates a
variable capacitor that can be measured to determine how far the mass has deflected the
spring arms. Each of these structures can measure acceleration in only one or two direc-
tions, so several such structures must be used to get a three-dimensional measure of accel-
eration.

Measuring acceleration can, of course, tell us how fast we are going. If we accelerate at 5
miles per hour (mph) per second for 3 seconds, then we are going 15 mph. If we then stop
accelerating and travel at 15 mph for 1 hour, we travel at 15 miles, so we can use accelera-
tion to find distance as well, though this takes extremely accurate measurements. If we are
actually going a little more or less than 15 mph, the error gets compounded every hour we
drive.

Some drones use acceleration to determine velocity and thus position, but this is usually
only done in advanced drones and as an addition to GPS. In this case we need only use this

77Chapter 9

Accelerometers

so-called inertial navigation between GPS updates, which are generally from 1 to 10 times
per second, so errors don’t have time to accumulate too much. Nonetheless, such a system
puts a premium on vibration reduction in the control system since vibrations can add up to
look like straight-line motion to an accelerometer.

More importantly for us, in addition to their being affected by the motion of our drones,
gravity pulls on the little weights in the accelerometers, thus telling us which way is down.
It is this information that we will make use of as we combine accelerometer and gyro data
to create a complete inertial measurement unit. In Figure 9-2 you can see how the deflec-
tion of the horizontal and vertical springs changes as the drone tilts forward.

Figure 9-2 By comparing the deflection of the two balls on springs, we can determine the direction of gravity

Of course, real gyro/accelerometer chips like the MPU-6050 we chose have much more
complicated structures than these examples. The springs are really flexible arms and there
are lots of little fingers sticking out of the structures, which form variable capacitors by
which to measure their movement. These tiny changes are detected, digitized, and made
available to us as a few values on the inter-integrated circuit (I2C) bus. It’s the job of our
IMU code to read this data and make sense of it.

IMU

The IMU reads the raw data from the sensor chips, combines it, and converts the results to
values we can use like roll, pitch, and yaw. We will use the Arduino Wire library to commu-
nicate with the MPU-6050 chip. Our first messages to this chip must be initialization codes.
These set parameters for how to scale and filter the results before giving them to us. While
these settings are critical, and may need to change if the fast loop timing changes, the
code is highly specific to the application and unlikely to get reused, so let’s move on to
reading the sensors.

Once during each fast loop, we call the routines readIMU() and calcIMU(). The first one
reads the raw values and the second calculates roll, pitch, and yaw from these values. We

78 Make: Drones

IMU

keep these functions separate so that other functions, in particular calibration routines,
can read the raw values and do other things with them. To read a set of values from the I2C
bus, we make a request and then read bytes until the response is complete. In our case we
will read seven 16-bit values, for a total of 14 bytes. The request looks like this:

//---------------------
// read gyro and accel
void requestIMU()
{
 Wire.beginTransmission(MPU);
 Wire.write(0x3B); // starting with register 0x3B (ACCEL_XOUT_H)
 Wire.endTransmission(true);
 Wire.requestFrom(MPU,14,true); // request a total of 14 registers
}

When reading the response, we also check for any bus errors. When the message is com-
plete, we have to do some of that ugly integer math to combine the bytes into 16-bit
words. Here’s the result:

//---------------------
// read available IMU bytes and process if full message
uint8_t imuBufPos = 0;
uint8_t imuBuf[14];
void readIMU()
{
 // read the whole IMU set
 requestIMU();
 while (imuBufPos < 14) // block until enough data read
 {
 if (Wire.available() > 0)
 {
 imuBuf[imuBufPos++]=Wire.read();
 if (Wire.getError() != 0)
 i2cErrorCnt++;
 debugVals[2] = i2cErrorCnt;
 }
 }
 if (imuBufPos == 14)
 {
 Acc[0]=imuBuf[0]<<8|imuBuf[1]; // 0x3B (ACCEL_XOUT_H) & 0x3C (ACCEL_XOUT_L)
 Acc[1]=imuBuf[2]<<8|imuBuf[3]; // 0x3D (ACCEL_YOUT_H) & 0x3E (ACCEL_YOUT_L)
 Acc[2]=imuBuf[4]<<8|imuBuf[5]; // 0x3F (ACCEL_ZOUT_H) & 0x40 (ACCEL_ZOUT_L)
 Tmp=imuBuf[6]<<8|imuBuf[7]; // 0x41 (TEMP_OUT_H) & 0x42 (TEMP_OUT_L)
 Gyro[0]=imuBuf[8]<<8|imuBuf[9]; // 0x43 (GYRO_XOUT_H) & 0x44 (GYRO_XOUT_L)
 Gyro[1]=imuBuf[10]<<8|imuBuf[11]; // 0x45 (GYRO_YOUT_H) & 0x46 (GYRO_YOUT_L)
 Gyro[2]=imuBuf[12]<<8|imuBuf[13]; // 0x47 (GYRO_ZOUT_H) & 0x48 (GYRO_ZOUT_L)

 //Acc[2] = -Acc[2];
 imuBufPos = 0;
 }
}

79Chapter 9

IMU

Now for the fun part, the calculations! We can choose from several thoroughly researched
algorithms, including the Kalman filter (which we will revisit later), the complementary fil-
ter, and the Mahony/Madgwick algorithm. The Madgwick implementation of Mahony’s
method has the advantage of being available as simple source code with clear rights. It
also has a history of working successfully in other model aircraft projects. Finally, since it is
implemented with quaternions, the Madgwick optimized code is extremely efficient.

What’s a quaternion, you ask? Invented in 1843 by Rowan Hamilton, who was so pleased
with the thought that he carved the formula into the bridge he was crossing in Dublin
when he came up with it, quaternions are used in computer graphics and navigation,
among other things, to represent rotations. They make some computations easier and
avoid gimbal lock. Gimbal lock occurs in real gyroscopes when they reach some physical
limit of motion. Something similar occurs in our code when we reach some limit of the
mathematical representation of rotation. It’s like standing at the North Pole and asking
which way is south.

Stripped of the language of higher math, the process goes something like this:

1. Read the raw gyro and accelerometer data.

2. Calculate our rate of change based on current direction and gyro data.

3. Determine the difference between this gyro-based estimate and an estimate from
the accelerometers.

4. Correct the gyro-based rate of change by nudging it toward the accelerometer-
based direction according to a tuning parameter.

5. Update our direction estimate based on this corrected rate of change and the
amount of time that has passed.

6. Convert the quaternions to roll, pitch, and yaw.

Have a look at the actual codebase to see the details, or just read about the Madgwick
implementation online. The code in our IMU has been changed to use only our calibration
data and to output the so-called Tait–Bryan angles of roll, pitch, and yaw.

So far, we have described a 6DOF system, with three degrees of freedom each for the gyros
and accelerometers. Now, let’s add three more for the magnetometers.

Magnetometers

Magnetometers measure the direction of the magnetic field passing through them. Usu-
ally the Earth’s field dominates this measurement, but interference from magnetic fields
generated by the drone’s own power system can be a problem. We get this information in
the form of a vector, much like the accelerometer data, and the magnetometer data gets
used in the attitude calculations in much the same way as the accelerometer data.

80 Make: Drones

Magnetometers

http://x-io.co.uk/open-source-imu-and-ahrs-algorithms/
http://x-io.co.uk/open-source-imu-and-ahrs-algorithms/

Mathematically speaking, this is quite significant. While a 6DOF system gives absolute roll
and pitch relative to the Earth’s surface, it can only give yaw relative to where it started,
and that is limited by gyro drift. When we move up to a 9DOF system, we can now calcu-
late an absolute, three-dimensional rotation relative to the Earth. Our equations give a sin-
gle solution.

Practically, going from six to nine degrees of freedom does not buy us much new function-
ality by itself. We could implement a so-called headless mode, where the sticks on the
transmitter correspond to absolute directions like north and south, instead of forward and
backward relative to the drone. While this is interesting, the magnetometer becomes
essential when we add GPS and try to do autonomous navigation.

With the addition of the magnetometer our IMU gets a new name. Such systems are com-
monly known as attitude and heading reference systems (AHRSs), or, in academic literature,
magnetic, angular rate, and gravity (MARG) systems.

Next, we’ll bring our IMU results together with the RC commands.

81Chapter 9

Magnetometers

Mode and Mix

In a car, you turn the wheel and hold it to make the car turn at a constant rate. In a fixed-
wing plane, you turn the control wheel for a few seconds until the plane has rolled far
enough, then return the wheel to nearly zero to hold the roll position. The roll angle deter-
mines the rate of turn, and the control wheel determines this indirectly by controlling the
rate of roll. In the language of drones, we might call the car “angle mode” and the plane
“rate mode.” Interestingly, drone pilots will use both of these modes and several others,
sometimes switching between several in a single flight.

The current mode determines what the sticks on the transmitter mean. Combine this with
our attitude, and the mode code outputs commands to the mix code like “pitch forward
strongly” or “yaw left slightly.” The mix code takes these commands and determines how
much throttle to send to each individual motor. In other types of aircraft, this mixing might
also control some servos or possibly require complex sequences of movements (“bank
right, then hold bank angle”). By sticking to multirotors, we eliminate a lot of complexity
and thus make it possible to create something functional while we learn.

Mode

I’ve said that the mode determines the meaning of the sticks on the RC transmitter. But
before describing the modes we will use in detail, a word about another use of the word
mode. RC transmitters come in mode 1 or mode 2 (or some are switchable), which in this
case means that the right stick or the left stick controls the throttle. One can reorder the
channels in software, of course, but the throttle stick usually doesn’t have a spring, so this
makes a real difference. Almost all transmitters used with drones use mode 2, which means
throttle on the left. Now that we know which stick controls the throttle, we can dig in and
figure out what the other sticks do.

The different control systems have different names for the various modes, even though the
functionality remains very similar. What we will call angle mode corresponds to stabilize

83

10

mode in ArduCopter. In MultiWii, the closest thing to the rate mode we’re about to imple-
ment is what’s called manual mode, though the two are not exactly the same, as we shall
see. As we add sensors, we must add modes to use them. We could add altitude hold mode
to use the barometer data, and if we add GPS we will need modes for that too. Right now,
let’s look at the two basic modes, which depend only on inertial sensors—angle mode and
rate mode.

Angle Mode
Almost all toy-class drones run in angle mode. In fact, if a toy drone has two different
modes, they are probably just two versions of angle mode with different tuning parame-
ters. Beginners find angle mode intuitive, as the angle of the stick corresponds directly to
the angle of the drone. It also has the advantage that when you let go of the sticks, the
drone goes back to level and at least stops accelerating, even if it does not stop moving.

When flying in angle mode, the angle of the drone with respect to the ground is propor-
tional to the angle of the control stick. As we saw when tuning the X4Wii, several settings
can modify this relationship even before we really do the mode calculation. The RC rate
determines the ratio between the angle of the stick and the angle of the drone. The drone
might move 20 degrees when the stick moves 10 degrees or only 5, which would be an RC
rate of 2 or 0.5, respectively. The RC exponential setting takes this straight-line ratio and
flattens it out near 0 so that we can make fine control adjustments more easily.

To calculate the final desired angle for roll and for pitch, we first convert the RC value to a
float in the range –1 to 1, then multiply this by the RC rate and a parameter called
maxAngle, which determines the actual drone angle when the RC value, as modified by the
rate, reaches 1. To find the command value—the force by which we wish to rotate the
drone—we take the difference between the desired angle and the actual angle. Divide this
difference by 90 degrees and we have a measure between –1 and 1, which we call axisCmd
and which a control systems engineer would call the error because the control system is
trying to drive this difference to 0. Here’s the code for pitch and roll:

// pitch/roll: axis cmd = imu angle - rc angle
axisCmd[1] = -((float)IMURoll - maxAngle * rcRate[1] * (float)((int16_t)rcValue[1]
 - (int16_t)MIDRC) / halfRange) / 90.0f;
axisCmd[2] = -((float)IMUPitch - maxAngle * rcRate[2] * (float)((int16_t)rcValue[2]
 - (int16_t)MIDRC) / halfRange) / 90.0f;

We interpret the yaw stick in rate mode even when the system overall is in angle mode. It
would be awkward to have to hold the stick to the left or right the whole time we wanted
to face in that direction. Instead, the stick controls the rate of change of yaw. A small
deflection might mean “turn 5 degrees per second,” where in true angle mode it would
mean “face 5 degrees to the right.” Similarly, when we center the stick, the drone keeps
pointing where it’s pointing. It doesn’t snap back to north.

To control the yaw rate, we must first compute it by taking the difference between the cur-
rent heading and the previous heading. The function circleDiff() does this correctly,
even when the two directions are either side of north. The next line smooths the yaw rate

84 Make: Drones

Mode

to eliminate noise and vibration. The general form of � = 1 − � � + � ��������� can be
used anywhere a signal needs to be cleaned up. When � is near 0, the signal passes nearly
unchanged. When it is near 1, the output changes very slowly, responding only to the aver-
age of the input.

Once we have computed the yaw rate, the code for yaw looks much like the code for roll
and pitch. We just take the difference between the actual and desired values. The code
ends up like this:

const float yawRateSmooth = 0.01f;

// compute and smooth the yaw rate
float yawRate = deltat_inv * circleDiff(IMUHead, prevHead);
yawRate = (yawRateSmooth * yawRate) + ((1.0f-yawRateSmooth) * prevYawRate);
prevYawRate = yawRate;

// yaw: axis cmd = imu rate - rc rate
axisCmd[3] = (yawRate - 90.0f * rcRate[3] * (float)((int16_t)rcValue[3]
 - (int16_t)MIDRC) / halfRange) / 90.0f;
prevHead = IMUHead;

In the next section, we’ll cover full rate mode, where pitch and roll are handled the same as
yaw has been here.

Rate Mode
What we will call rate mode many people know as acro or acrobatic mode. MultiWii calls this
manual mode, though that seems less descriptive since we still stabilize the drone in this
mode.

Rate mode does not require any absolute reference to the ground. The drone will just keep
rolling left as long as you hold the stick to the left, no matter which way is up. As such, we
do not need accelerometers to implement rate mode, and historically, when gyros and
accelerometers were in separate chips and harder to get, many pilots flew exclusively in
rate mode with nothing but gyros.

In our control system, however, we have accelerometers. In some cases you might want to
avoid using them to avoid the noise the sensors introduce, but it doesn’t seem to be a
problem here, so we will simply calculate roll and pitch rates from the IMU’s existing roll
and pitch angle outputs, just as we did with yaw above. In fact, the code is so similar, we
won’t take up space repeating it here.

Mix

When I’m flying out in public and someone stops to ask, “How does that work?” more often
than not what they want to know is something about how the mixing works. It’s a natural
enough question. You can see the control sticks on the transmitter and clearly the motors
are the things being controlled, but how does one lead to the other?

85Chapter 10

Mix

We covered most of the answer back in Chapter 8, really. For example, we saw how turning
the motors faster on one side and slower on the other can make the drone roll. The code
for this is pretty simple too. First we set the output for all motors based on the throttle
(axisCmdPID[0]), then we modify each individual motor based on the appropriate axis (roll
in the following example), scaled by the current throttle:

// set throttle
for (int i=0; i<4; i++)
 motorCmd[i] = (int16_t)axisCmdPID[0] / throttleCorrection;

// apply roll
motorCmd[0] += (int16_t)(axisCmdPID[0] * (-axisCmdPID[1]));
motorCmd[1] += (int16_t)(axisCmdPID[0] * (-axisCmdPID[1]));
motorCmd[2] += (int16_t)(axisCmdPID[0] * (axisCmdPID[1]));
motorCmd[3] += (int16_t)(axisCmdPID[0] * (axisCmdPID[1]));

The pitch and yaw sections are similar, except for which motor speeds go up and which go
down.

One fine point and one huge subject are hiding in that example. As we saw in Figure 8-2,
when a drone is tipped to the side, only part of the thrust becomes lift. Dividing by
throttleCorrection, a measure of this reduction calculated for us by the IMU, adds a little
thrust to make up for this. It’s a fine point, but it makes our drone fly a little easier.

Now for the big subject: perhaps you noticed that while our mode code used the variable
axisCmd as its output, the input here is actually called axisCmdPID. The PID here is an algo-
rithm that effectively does a little smoothing in between the mode and mix sections. This
topic deserves a chapter of its own.

86 Make: Drones

Mix

PIDs

Hidden between mode and mix we find the proportional–integral–derivative (PID) control-
ler. On the one hand, it’s just a little smoothing filter applied to the axis commands before
sending them to the motors. On the other hand, as a drone maker and pilot, you may well
spend more time dealing with PIDs than any other component of the control system—not
changing the algorithm, since that comes in but a few standard flavors, but tuning the
PID’s parameters. And few things will make as much difference in how your drones fly!

The Algorithm

As with gyroscopic stabilization, at least some of the credit for the PID algorithm goes to
the Sperry family. In this case it was Elmer Sperry, father of Lawrence, who built the first
autopilot for airplanes; he came up with the idea while working on an autopilot for Navy
ships. He noticed that the helmsmen would compensate for not just the current course
error, but the immediate history of that error and any sudden changes in the error. He was
implementing this with pneumatic systems, but the principle remains the same to this day.

P—Proportional
When the person at the helm moves the rudder further as the ship gets further off course
—that is, if the rudder position is proportional to the course error—then that person at the
helm is acting as the “P,” or proportional, part of the algorithm. Similarly, if you press the
accelerator pedal of your car harder in proportion to how much your speed is below the
target, you are implementing the “P” part of a PID controller.

The “P” term controls the overall force the control system will use to achieve the desired
output. Not enough “P,” and your drone won’t have the power to respond to your control
inputs. The controls will feel mushy. Too much “P,” and your drone will overreact and possi-
bly oscillate wildly.

87

11

I—Integral
So now you go up a hill in your car and slow down a bit, making you press the pedal
harder. Perhaps this is enough to hold your new, slower speed, but there is a persistent
error of a couple of miles per hour. When you give it a bit more gas to fix this ongoing
error, you are now adding the “I,” or integral, part of the algorithm.

A mathematician might describe an integral as the area under a curve. In Figure 11-1, the
blue line represents the error and the red line the area under this curve, or the sum of past
errors. As long as the error stays positive (the green areas), then the larger the area gets, the
higher the red line goes. When the blue line goes below the axis we say the resulting area
is negative and subtracts from the total. When we add up all the areas we get the sum of all
past error.

Figure 11-1 The red line is the sum of all past values of the blue line

The “I” term corrects for long-term error to make sure that the output finally reaches the
desired value. This also causes the output to reach the desired value faster. Increasing “I”
makes your drone feel snappier, responding quicker to control inputs, but too much can
cause overshoot and oscillation, much like too much “P.”

D—Derivative
If the integral term is about the long-term error, the derivative or “D” term is about the
instantaneous response. In the moment when you first hit that hill and your car begins to
slow down, you might just give a bit of extra gas to keep it from slowing down too much

88 Make: Drones

The Algorithm

while you find the right pedal position to maintain your speed. The “D” term responds to
the change in the error, not the current size of the error.

A mathematician would probably describe the derivative of a curve as the slope at a point.
If we plot the speed of your car versus time, then as you start up the hill, the curve will
slope downward. Similarly, if you don’t take your foot off the gas quickly enough when the
road levels out, your speed might suddenly increase and the plot of your speed will slope
upward. In Figure 11-2, the red line is above zero when the blue line is rising and below
zero when it falls.

Figure 11-2 The “D” term depends on the slope of the error

The “D” term makes the immediate response faster and can help prevent overshoot and
damp out oscillations.

PID or Pee-Eye-Dee?

How do you pronounce “PID”? Does it rhyme
with “squid,” or do you pronounce each letter in
the acronym? I’ve met professional control sys-
tems engineers who say it both ways, and I

always use the short version inside my head. But
pronouncing the letters, like “Pee-Eye-Dee,”
seems to be the more common usage, among
both engineers and drone pilots.

89Chapter 11

The Algorithm

Implementation

For an algorithm that has so many uses and that gets so much academic attention, imple-
menting it is pretty easy. There are a couple of fine points between theory and practice
even here, though.

In theory, the integral or sum of all past errors will just keep getting larger and larger if it is
not corrected completely. In practice, it rarely works out well to let a variable increase
without limit, so actual PID implementations usually include a limit on possible runaway
integrals, called integral windup. We see this in the following code, where constrain() is
used in the calculation of pid_isum:

// compute PID for each axis
for (int i=0; i<MYPIDITEMS; i++)
{
 e = axisCmd[i];
 pid_isum[i] = constrain(pid_isum[i] + (e * deltat), -1, 1); // constrain to stop windup
 pid_ddt[i] = (e - prevE[i]) / deltat;
 axisCmdPID[i] = (pid_p[i] * e) + (pid_i[i] * pid_isum[i]) + (pid_d[i] * pid_ddt[i]);
 prevE[i] = e;
}

Tuning

Tuning a PID can be as simple as turning a knob on your transmitter until your drone flies
better, or as complex as a full functional analysis of the system followed by an algorithmic
calculation of the tuning parameters. We will use an iterative process of changing a value
(perhaps with your smartphone) and doing short flight tests until a satisfactory result is
obtained.

Theory
The following process assumes a starting point with “P” set to some low value, 0.5 or less,
and “I” and “D” set to 0. At each step, change the parameter in question using the Blue-
tooth connection to your computer or smartphone, then take a short flight to test the
results. A few seconds is usually enough.

1. Increase “P” until oscillations begin. Reduce to half this amount.

2. Increase “I” if needed to make control response quicker. If oscillations occur, back
off some and leave it.

3. Increase “D” if needed to make response to disturbances quicker.

4. As “I” and “D” are increased, “P” may need to be decreased some.

This will all make more sense with an example. Let’s say the setpoint represents the desired
roll angle of our drone, shown in Figures 11-3 through 11-5 by a blue line. It starts out at
the center, moves quickly to one extreme, then moves more slowly to the other extreme

90 Make: Drones

Implementation

and suddenly back. The green lines show the output of the PID controller and the red lines
show the resulting roll angle of our hypothetical drone.

In Figure 11-3, we start with “P” set to 0.5, which is a little low. The resulting angle does not
move as far as the setpoint. As we increase “P” to 1, the result gets closer to the setpoint,
and the little oscillations are starting to get very noticeable. By the time we have “P” set to
2, the oscillations are too much, so according to our procedure, we back off and set it to 1.

Figure 11-3 Even with “P” turned up until the oscillations get bad, the output still does not reach the setpoint

A drone with too little “P” just won’t have the maneuvering power to respond to your con-
trol inputs or disturbances from the wind. The word “wobble” comes to mind. With too
much “P,” we get oscillations. This might seem a lot like the low-“P” wobble, but it will usu-
ally be faster. The drone drives itself back and forth instead of just flopping around.

In Figure 11-4, we add a new, cyan-colored line to show how the integral term adds up. In
the top graph, we leave “I” at 0. You can see that the integral just keeps getting bigger or

91Chapter 11

Tuning

smaller as long as we hold position, since we are doing nothing to correct the error. In the
middle graph, we set “I” to 0.5, which just corrects out the error, but also adds to the oscil-
lations. With “I” set to 1, the oscillations are increasing, not decreasing, so we must back off
a bit, according to our process. We will go forward with “I” set 0.8.

Figure 11-4 Increasing I brings the output up to the setpoint but adds more oscillation

Setting “I” to 0 works fine sometimes, so it’s hard to say what too little “I” looks like, except
that a little more makes everything a little snappier. Too much “I” creates obvious hard, fast
oscillations, much the same as with “P.”

At this point, the oscillations are too high to tolerate, but just watch what the “D” term can
do! After trying several values, a “D” of around 1.4 seems to most perfectly damp out the
oscillations without slowing down the response or creating oscillations of its own. In the
third graph we can see that pushing “D” up to 3 creates unacceptable ringing in the out-
put.

92 Make: Drones

Tuning

Figure 11-5 Increasing “D” can damp out the oscillations from “P” and “I,” or add more of its own

Too little “D” does not make a signature of its own; it simply allows the “P” and “I,” oscilla-
tions to continue.

Set right, “D” damps these oscillations out. Set “D” too high and we get oscillations again,
but often faster those caused by “P” or “I.” They may, in fact, be too fast to see directly as
many drone control systems run PID loops 500 times a second, but the drone will become
unflyable nonetheless.

The final result looks quite flyable. At each fast setpoint change, the PID controller gives an
immediate strong response, followed by a strong response in the other direction to stop
the motion as the setpoint is reached. There is a single wobble after that as the system
locks on to the new position, and then it stays perfectly flat.

93Chapter 11

Tuning

Practice
Getting your PIDs tuned right can be frustrating, especially when more than one parame-
ter needs changing and the resulting oscillations keep crashing your drone. But most peo-
ple need never find themselves in this situation. In fact, in the most common case—trying
to make a working drone fly a little better—turning PIDs can be both easy and satisfying.

If your drone flies well now but you would like it to be either smoother or quicker in its
control response, then the PID adjustments should be easy. Actually, I would always start
by adjusting the RC parameters, but assuming you have done that, you can almost always
just move “P,” “I,” and “D” up and down in equal proportion. If the current settings are 1, 0.1,
and 0.01, then adjusting up by 10% gives 1.1, 0.11, and 0.011. Move up or down in small
increments and you should be able to tell that it’s getting worse before things get so bad
as to cause crashes.

If you’ve just built a brand new drone, however, or made a major modification like chang-
ing motors or props, then you might have to make more drastic changes. If possible, find
someone else who has built a drone using similar components and start with their values. I
give working values for all the projects in this book, for example. If you can’t manage that,
the default values in the popular flight control systems are often better than starting with
“D” and “I” at 0. Some flight control systems, like ArduCopter, allow you to tune parameters
in flight using your RC radio, which can make the process much faster; some can even per-
form an autotune and get to workable settings by themselves.

If you have a completely new codebase or otherwise are starting from scratch, then some
kind of test rig will allow you to debug the code without crashing and breaking something.
Figure 11-6 shows the test rig I used to debug the PID algorithm in the Visible Drone’s
code.

The PID algorithm is one of the most useful and important algorithms in control systems
engineering. For me, understanding PIDs really starts to unlock the mystery of how things
work. There really is more going on than meets the eye, but it is a process that we can
understand and use to make our machines work better. Your drone will respond better.
Your robot arm will move more smoothly. Your coffee pot will hold a more precise temper-
ature. Not bad for less than 10 lines of code!

94 Make: Drones

Tuning

Figure 11-6 This rig allows a new PID implementation to be tested without crashes

95Chapter 11

Tuning

Circuit Board and
Motor Controllers

If small, smart flight controllers count as one of the breakthroughs that make drones possi-
ble, then surely the ease with which one can design small circuit boards and have them
fabricated must be a part of the story. An individual maker can use one of a selection of
open source tools to design a custom circuit board and have it fabricated in small quanti-
ties in a reasonable time for a reasonable price.

While these tools and services, combined with a little surface mount soldering, make it
possible to design and build a controller every bit as integrated as the tiny toy drones, we
will not target quite that level of integration. Circuit board design for things like blinking
lights or even motor controllers is pretty simple. Adding things like the radio frequency
(RF) components of the receivers and the high-frequency digital signals of the processor
can make the component layout much more critical and thus require a great deal of
research into chipset data sheets. Fun as that reading might be, we will compromise and
build our controller out of modules.

Our circuit board will provide power to the different modules and connect each to the
Teensy CPU’s various ports. I could not find a widely available brushed motor controller
module to use, so we will have to include that on our board at the component level. That
turns out to be only two components per motor, so building that part will be easy.

At each step in the design, we must compromise between the ability to construct the
results with only the soldering skills required of any other Arduino project and keeping the
size and weight low enough that the drone will actually fly.

97

12

Design Tools and Files

I have used Fritzing to design the circuit board for this project. Fritzing, available from fritz-
ing.org, wins for being the most commonly used design tool and for having a direct con-
nection to a circuit board fab with reasonable single-piece rates. The design software is
free, so I recommend that you download it and open the final design file for this project,
available at www.makedronesbook.com/projects/VizDrone, even if you don’t intend to mod-
ify the design or order one. It will be easier to see what’s going on when you can zoom in
and out or turn the layers on and off.

Component Placement

Our board design should maximize ease of construction, while keeping size and weight
down. Measuring the interior space available in the Syma X5 body, the biggest board we
can fit in there will be about 55 mm square. The mounting screws go in three of the four
corners of a 25 mm square.

The Teensy goes in the middle, so that we can get to the USB port. The surface mount
parts in the motor controllers go on the corners to make soldering them as easy as possi-
ble. To save space, the gyro board will go up above the Teensy on a header and the RC and
Bluetooth radios will be kept off the main board. This has the advantage of allowing us to
reposition the radios if there is any interference trouble.

Next, we add the power module at the back, behind the Teensy. It fits on the connectors
labeled J1 and J2. Along the edges go the sockets for the motors and solder pads for the
LEDs. The theory here is that motors get changed fairly often, so using sockets prevents
tearing up the circuit board with repeated soldering and desoldering. Finally, we have
headers for the various ports and the component placement is complete, as shown in
Figure 12-1.

98 Make: Drones

Design Tools and Files

http://fritzing.org/home/
http://fritzing.org/home/
http://www.makedronesbook.com/projects/VizDrone

Figure 12-1 The surface mount components are on the edges to make soldering easier

Power Input and Distribution

The power system starts with a 1S LiPo battery, which will output between 4.2 and 3.7 volts
as it discharges. The motors run directly off this voltage with the positive side connected
directly and the negative controlled by the processor. The circuit board traces for these
connections need to be as wide as possible because they will carry fairly large currents.
Each motor can draw close to 2 amps, for a total of 6 to 8 amps at full throttle.

Everything but the motors gets powered through the Maytek voltage booster. This module
takes the varying voltage from the battery and gives us a steady 5V. The 5V distribution is
shown in red in Figure 12-2. The RC receiver only takes 3.3V, which the Teensy conveniently
provides, and is shown in blue. The unregulated positive voltage off the battery feeds the
motors directly and is shown in purple. Ground distribution is black, of course. The ground
plane has been removed for clarity.

99Chapter 12

Power Input and Distribution

Figure 12-2 Power distribution for the Visible Drone (red is 5V, blue is 3.3V, and purple is battery voltage)

Also included as part of the power system is a large capacitor, C1, which protects the input
of the power conditioner module from spikes as the motors power up. And so that the pro-
cessor can monitor the power system, we include a pair of 10K resistors, R5 and R6, as a
voltage divider and connect the result to one of the Teensy’s analog input pins. When two
resistors are placed in series like this, the midpoint will be at half the voltage that is put on
the ends. We use this to bring the 4.2V LiPo cell voltage down to a range that the Teensy
can measure.

Motor Controller

We will use the simplest possible motor controller circuit for the Visible Drone. Most small
motor controllers use metal oxide semiconductor field effect transistors, called MOSFETs or
just FETs, but some require more complex circuits. Ours will use a single FET and a single
resistor, as we will see—but first, some explanation of what is not included.

100 Make: Drones

Motor Controller

To go forward and in reverse requires at least four FETs per motor instead of the single FET
we use, but forward is enough for this application. Some designs would use a pull-down
resistor on the input to make sure the motor doesn’t come on when the processor boots
up in a strange state. This hasn’t proven to be a problem with the fast-booting and reliable
Arduinos, though, and perhaps more to the point, the consequences of accidentally run-
ning a motor in a quad this size are not too serious.

Finally, this motor controller design does not include flyback or protection diodes. When
driving an inductive load—that is, one that uses coils like motors and solenoids—the same
mechanism that we drive with current will often produce current when pushed back the
other way. Solenoids can easily produce three times their original drive voltage, in reverse,
when released. This current needs somewhere to go! A diode placed across the load the
right way will take this flow instead of the FET, which may not be able to take this higher,
negative voltage.

In our application, the reverse voltage should never get higher than what we drive the
motors with, since they are unlikely to spin faster by themselves than when we are driving
them. Also, the FET we have chosen has a body protection diode. Putting this current
through that diode doesn’t keep it out of the FET overall, but it seems to be enough for this
application. Few brushed motor drivers for small drones include protection diodes.

Choosing a FET

If you search for “FET” at Digi-Key or Mouser
Electronics, you will get a bewildering list of
results with over a dozen attributes each. For our
application only a few of these specs matter.
First, we can filter by package. We want an
SOT-23 surface mount. Next, we have to be able
to control it, so it must work with 3.3V logic lev-
els. This really means that the FET must turn on
with anything over 1.8V, so we need a FET with a
Vgs <= 1.8. Our FET must also be able to handle
the operating voltage of our motors. This is an

easy challenge at only 3.7V; nonetheless, our
Vdss, or voltage from drain to source, must be
higher than that. Finally, the tough one: current
handling. If the FET has much internal resistance
when on (Rds), it will dissipate too much power
and get too hot. A low Rds will give a high Id, or
drain current. Our motors can only draw about 2
amps each, but it’s good to have some overhead
in this area, so we’ll choose a FET with more like
6 or 8 amps, since they are still available and
inexpensive.

The one component other than the FET that we do include is a current limiting resistor.
When first turning on, the gate input of a FET acts like a capacitor charging up and it can
sink a great deal of current. Trying to sink too much current out of an Arduino pin could
cause actual damage, or (much more likely) could cause a voltage sag inside the processor
that causes a freeze or reboot. Neither will make for a good flight, so we add a small 100-
ohm resistor between the Arduino and the FET.

101Chapter 12

Motor Controller

Schematic and Layout

We need to add connectors for the various ports and solder pads for the LEDs, but these
connectors all go directly to Arduino pins. They must be pins capable of pulse width mod-
ulation (PWM), but otherwise this is simple wiring from one header pin to another as far as
circuit board design goes. As mentioned, keeping the RF and high-frequency digital signal
local to each module keeps the routing rules simple. The result is shown as a schematic in
Figure 12-3.

Figure 12-3 The complete schematic for the Visible Drone controller

Figure 12-4 shows the final circuit board layout. The colors are yellow for the top layer data,
green for the bottom layer data, red for the +5V regulated supply, purple for the raw bat-
tery power, black for ground, and finally blue for the single 3.3V power supply line from the
Teensy to the RC radio.

102 Make: Drones

Schematic and Layout

Figure 12-4 The complete Visible Drone controller circuit board layout

Figure 12-5 shows what the board looks like, fresh from the factory.

Figure 12-5 The front and back of the circuit board as it comes from the factory

103Chapter 12

Schematic and Layout

Construction

Construction will be easiest if you solder in the surface mount components before adding
the motor sockets and headers. A 100-ohm resister and a FET go in each corner, as shown
in Figure 12-6, and the 100-microfarad capacitor and the two 100K-ohm resistors go in the
space that will be under the voltage booster module.

Figure 12-6 The discoloration around the FET is leftover flux, not burned board

SMC Soldering—Hot Air Versus Iron

Drones have forced me to learn how to solder
surface mount components (SMCs). When the
FETs blew on my favorite controller, I got out my
smallest-tipped soldering iron, some copper
braid, and some ChipQuick and I managed to
replace them. While doing surface mount solder-
ing with such gear is certainly possible, I highly

recommend investing in a hot air soldering sta-
tion. Not only does it make the SMC soldering
easy, but it has many other uses, like shrinking
heatshrink tubing or flowing hot melt glue into
little crevices. For less than a hundred bucks, it’s
a tool worth having.

With all the SMC components in place, let’s build the power system. First solder the battery
cable to the two pins nearest the word in. The wires should come out the bottom of the
module, opposite where the components are. And of course, red is positive and black is
negative. Next, solder pairs of straight pins into the remaining holes. The result should look
like Figure 12-7. When it is complete, you can solder it to the board. Clip the pins off on the
bottom once you are done.

104 Make: Drones

Construction

Figure 12-7 The Maytek voltage booster with battery lead installed (the inset shows how to test the power

before adding any more components)

Even the best manufacturers make mistakes, so I recommend checking the power and
ground to each module before adding it to the board. The inset in Figure 12-7 shows how
to test the Teensy’s power. You can use Figure 12-4 as a guide to the power distribution.
Assuming it all checks out, you’re ready to add the processor and gyro module.

Solder straight pins into all of the GY-88’s holes and those on the outside of the Teensy 3.2.
We don’t need any of the inside pins or the pads on the bottom. They should look like the
ones in Figure 12-8. The female pins with the larger plastic case will be used to hold the
gyro module up above the CPU.

Figure 12-8 The Teensy and GY-88 modules with pins soldered on

105Chapter 12

Construction

We will now work from the inside out, putting the rest of the parts on the circuit board. The
Arduino is in the middle, so we solder it next, followed by a row of seven female to male
header pins for the gyro board. These will let the GY-88 sit above the Teensy. Now, solder
straight pins in all the holes for the various ports with the long side on the top. Finally, put
the micro JST sockets in for the motors, being careful which way they go. One of them
faces in the opposite direction, as shown in Figure 12-9.

Figure 12-9 Note the one motor socket in the lower right that faces in the opposite direction

You might have noticed as you soldered the sockets in for the motors that they don’t fit in
the holes. OK, this was originally a mistake, but I have left it this way so that if you would
rather just solder the motors to the board instead of using plugs and sockets, the pads are
big enough for easy soldering. Given that they don’t fit very well, I do recommend reinforc-
ing with a little hot melt glue.

This completes the construction of the controller for the Visible Drone. It weighs in at a few
grams more than the original controller, but it has much more power, more sensors, and
more connectivity.

106 Make: Drones

Construction

Construction and Tuning

We’ve been through several chapters now getting the pieces ready. We’ve been putting
together flight control software, starting from the aerodynamics. We have built a controller
to run it on, from power distribution to motor controllers. Now it’s time to put it all
together into a drone.

Install the Controller and Connect the LEDs

Getting inside the Syma X5 case means removing a lot of little screws, but they do give it
strength when it’s all put together. Once inside, unscrew the existing controller and cut all
the LED and motor wires. Now screw in our new controller with the USB port facing the
back where the battery goes in. Next, solder the existing LED wires to the new LED pads on
each side of our circuit board. Red and yellow are positive. Black and white are negative.
The result should look like Figure 13-1.

Figure 13-1 The existing LED wires connect directly to the new controller

107

13

Connect the Motors

The design as shown calls for putting plugs on the motors and sockets on the main circuit
board. Given the likelihood of changing motors over time, this saves possible damage to
the circuit board each time you unsolder and resolder something. On the other hand, the
motors in this geared design are much better protected and should last much longer than
the direct-drive motors we used in the X4Wii. You could skip the plugs and sockets and just
solder the motors to the board. Assuming you do put sockets on the board, though, let’s
crimp some plugs on the motors.

It’s pretty small work, and the crimp tool (mine’s an AMP 29004-1) isn’t as cheap as you
might like, but I still recommend using plugs on your motors. The crimp-on ends come in
strips that you can easily break apart by bending them back and forth a bit with long-nose
pliers. Then put a single end into the crimp tool as shown in the first half of Figure 13-2,
being careful not to put any pressure on the crimp tool before you’re ready. I find that
crimping makes the pin too wide to fit in the plastic holder easily, but a quick squeeze with
the long-nose pliers gets it back into shape. Using the little tab to hold it, stick each pin in
one side of the plug body, as seen in the second half of Figure 13-2. Be sure to get the
polarity right! White and red go on the left as shown.

Figure 13-2 First crimp the ends on the motor wires, then stick them into the plug body

108 Make: Drones

Connect the Motors

With the plugs on the ends of the motor wires, install the drive units in the frame and plug
them in. Each motor goes to the nearest corner, of course, and assuming you put the sock-
ets on the board correctly, one of them will face in the opposite direction. The result looks
like Figure 13-3.

Figure 13-3 Be careful to get the polarity correct as you wire the motors!

Install the Radios

The physical installation of the radios consists of stuffing them down into the spaces under
each side of the main circuit board. The HB-02 Bluetooth module plugs in using short,
female header wires. Make sure the Vcc wire goes toward the front of the drone, where the
voltage booster module is.

We will have to make a cable for the RC receiver. Cut the cable that comes with the Lemon
RX receiver and solder it to half of a standard servo extension. Since servo connectors are
symmetrical, it doesn’t matter which way you solder the cable; just be sure when you plug
it in to get the direction right. The power, which starts on the left side of the receiver as you
look into the socket, should end up toward the front of the drone, the same as the Blue-
tooth module. Figure 13-4 shows how it looks inside with everything installed.

109Chapter 13

Install the Radios

Figure 13-4 With both radios installed, it’s starting to get a little crowded

Complete the Frame

We’re going to want to get to the USB port on the Teensy, so we will have to make the hole
that once held the power switch big enough to get a USB cable through. The thin plastic of
the Syma X5 shell cuts easily with an X-Acto knife. Carefully cut just inside the two screw
posts up to just above the words ON and OFF, as shown in Figure 13-5.

It would be a shame to cover up all that cool-looking hardware, so next we’ll cut a hole in
the top and install a window. Try to cut right at the edge of the dome as shown in
Figure 13-6.

110 Make: Drones

Complete the Frame

Figure 13-5 The existing hole must be widened to allow a USB cable through

Figure 13-6 Remove the dome so we can see our new controller

111Chapter 13

Complete the Frame

The dome that we cut out of the original top will be our guide for cutting a window. Any
thin, clear plastic will do. The plastic lid used here once covered a buttermilk pie. Simply
cut around the dome, leaving about a quarter inch extra. Now, hold the new window over
the hole in the shell top and cut slits along the ridges of the arms, from the outside to the
edge of the hole. This creates tabs that fit into the body in between the arms. Add a little
decoration, and some colored props, and we have Figure 13-7.

Figure 13-7 The Visible Drone

Put all those little screws back in, and construction is complete. Are we ready to fly? Maybe.
Perhaps we should do some testing.

Ground Test

Connect the Visible Drone to your computer via USB. You’ve already checked the power
supplies to all the modules, so the likelihood of smoke at this point is low. Lights should
immediately glow on the power module and the gyro module. To really make some lights
glow, try the VisDroneBlink sketch, available at www.makedronesbook.com/projects/
VizDrone. If this program works correctly, the LED pods on the arms should start blinking in
sequence. No problems? Let’s load the flight code!

112 Make: Drones

Ground Test

http://www.makedronesbook.com/projects/VizDrone
http://www.makedronesbook.com/projects/VizDrone

We have to use USB to load new code, of course. For telemetry data, we could connect via
Bluetooth, but that would require a battery, which in turn could then run the motors. The
way our power system works, the motors will never run when on USB power, which makes
our first tests safer.

Don’t Use USB and a Battery Together!

You should never plug in a USB cable and a battery at the same time. This is
true for most drones. Small differences between the voltages in the two
supplies could lead to large current flows where they were not designed to
go.

The latest flight code for the Visible Drone is available at www.makedronesbook.com/
projects/vizdrone. Load this sketch into the Arduino IDE and upload it to your drone. If all is
well, a few seconds after the processor reboots, the LEDs will flash around a few times.
Next, let’s see if all the sensors are working.

In MultiWiiConf, connect to the Visible Drone’s USB port and press start. Several fields on
the screen should turn green. The version will display 23. And if you pick up your drone
and move it around you should see all the flight indicators track your movements. The
graphs should show the data as well, as we can see in Figure 13-8. If this all works, then let’s
try the RC radio.

Figure 13-8 The flight info and graphs should respond to the Visible Drone

113Chapter 13

Ground Test

http://www.makedronesbook.com/projects/vizdrone
http://www.makedronesbook.com/projects/vizdrone

Turn on the Blade MLP4DSM. After several seconds the light on the Lemon RX receiver in
the drone should come on. Note that sometimes if the transmitter or receiver loses its con-
nection and reconnects, the receiver light will blink. Other than telling you that there was
a loss of connection, this doesn’t affect anything. Now when you move the sticks on the
transmitter, you should see the RC values changes on the MultiWiiConf screen, as shown
in Figure 13-9.

Figure 13-9 The RC values should change when you move the transmitter sticks

Flight Test and Future Work

The flight code we loaded comes with a reasonable set of default parameters, so you
shouldn’t have to change anything to fly. You may wish to change the RC rate or expo set-
tings, as these are more a matter of taste than of finding some optimum value. The proce-
dure for this is the same as what we did with the X4Wii in Chapter 5.

The process for powering up and taking off goes like this:

1. Put a battery in the compartment and plug it in.

2. Place the drone on a perfectly level surface and wait for the flashes.

3. Arm the drone by pressing in on the right stick.

4. Test the motors with a short blip on the throttle.

That’s it. Go fly! The Visible Drone as constructed here is pretty heavy for its power system.
This means that it will only climb slowly and can have trouble pulling out of rapid descents.
This drone, like the Syma X5 it is based on, seems to suffer more than small, direct-drive

114 Make: Drones

Flight Test and Future Work

drones from translational lift changes and seems especially prone to vortex ring state trou-
ble when coming down. Both of these factors lead to this drone flying best when in con-
stant forward motion.

There is so much we haven’t covered—there are many fascinating things in the code that
there was not space to mention, and you may have noticed that we haven’t actually used
the compass or barometer yet.

The Visible drone and its drone control system serve as a platform—a platform for future
development and a platform for learning. But we’ve made it halfway through this book
without spinning a brushless motor. We will remedy this situation next.

115Chapter 13

Flight Test and Future Work

A Bigger Frame

It’s time to build The Big One—the S500 (Figure 14-1). We’re not going to set any records
for size, but this drone will literally be in a different class. It will weigh well over the 250-
gram limit for requiring registration with the FAA in the US. In fact, the frame alone will
weigh more than that. Despite, or perhaps because of this heavier frame, one of the main
goals of this drone design will be to carry a useful payload. Like most people, I will proba-
bly load a camera and gimbal on it first, but the possibilities are endless.

Figure 14-1 The completed S500 drone

117

14

The other design goals for the S500 include using brushless motors with electronic speed
controllers and using one of the most powerful of the open source drone control systems
—ArduCopter. This firmware will let us integrate the latest sensors quickly and tap into a
world of more powerful ground control software. This control system with all of its periph-
eral parts will weigh more than the last complete drone we built, but it will be controlling
motors that more than make up for the added weight.

Unlike the little brushed motors of our previous drones, which come in three or four sizes,
brushless motors come in dozens of sizes, all with different power ratings, propeller
mountings, etc. To make sure you have a combination of frame, motor, and prop that will
work, look for examples of successful builds by others or kits based on the parts you are
interested in. The DJI Flamewheel 450 and 550 quadcopters set the standard in this size
range. The S500 frame we are starting with is right in that range at 480 millimeters, but by
using off-the-shelf components and an open source controller, we will be able to add
many advanced features.

The S500 Kit

The S500 drone frame kit can be ordered from several sources, including Hobby King. It
comes in two versions, one with power distribution integrated into the frame and the one
we will use, which comes with a separate power distribution board. Figure 14-2 shows
what comes in the kit.

Figure 14-2 Contents of the S500 frame kit

118 Make: Drones

The S500 Kit

http://www.hobbyking.com

Be careful to get one that includes the carbon fiber rods in the arms. Some of the cheap
knockoffs don’t include this, and they are not nearly as strong. You can tell by looking for
little slots in the back of the arms that show the rods, as seen in Figure 14-3.

Figure 14-3 The slots in the bottom of the arm allow you to see the carbon fiber rod inside

Follow the Instructions

Like the famous IKEA instructions, the single page that comes with the S500 frame doesn’t
even try to use words, so there is no chance of bad translation. There is no sense in repeat-
ing everything here, but I will point out some exceptions to how they show to build it.

To begin with, don’t do step 1. The directions show to mount the motors first, but we’re
going to wait until later, after we have everything else mounted on the arms. Step 2 covers
building the undercarriage. There are two rods that mount underneath the frame on which
a platform for strapping the battery can slide. The set screws that hold the rods in place are
rather hard to screw in, but there are convenient holes in the frame’s bottom plate for set-
ting them.

The plastic parts that ride on the rails can be snapped into place by putting them in a little
sideways and twisting. You can’t do this once they are both secured to the battery plate, so
snap them in before using the bevel-headed screws to secure this plate. The resulting
undercarriage can be seen in Figure 14-4.

119Chapter 14

Follow the Instructions

Figure 14-4 The rails allow the small plate to be repositioned easily

The set screws for the rods are accessible, so they can be repositioned. The mounts for the
rods can even be moved, as there are extra sets of holes drilled in the bottom plate. The
battery should be positioned in the middle if it is the only thing under there. We can move
the battery back and perhaps even move the rods out of the way later, when it’s time to
hang a gimbal on the front.

The rest of the instructions can be followed as shown, until the very end. Since we are
going to be going back into the middle of this frame to mount various control system
components, just put one screw in the top of each arm to hold them in place. With this
done it looks like Figure 14-5 and you can start to tell that this is going to be a strong
frame.

Figure 14-5 The S500 frame complete

120 Make: Drones

Follow the Instructions

Since it is put together with screws, too heavy for our smaller drones, the S500 will be easy
to maintain. Spare parts are readily available and not too expensive. Let’s add some
motors, and it will start looking more like the powerful drone it will be.

121Chapter 14

Follow the Instructions

Install the Power System

Let’s start strapping hardware to that big frame. As usual, the first thing to add is power.
One reason for this is simply that power wiring is much thicker and harder to route, so we
do it first and route the smaller stuff around it. Also, once we know where the power wiring
goes we can arrange certain other things, like the magnetometer, away from this wiring
since the high currents can cause magnetic interference.

Our power distribution system must take power from the battery and get it to the four
electronic speed controllers (ESCs). The rest of the control system runs on a regulated 5V
supply instead of battery voltage, so that will get wired separately.

We will also mount the motors, to complete the power system, though we will only wire up
the one whose ESC we wired power to. This way we can safely test one complete power to
ESC to motor path without powering up the others.

In the following chapter we will explain enough about how brushless motors and ESCs
work so that all of the testing and tuning that follows will make sense.

Mount the ESCs

ESCs are generally mounted on the arms of multirotors. They pair with the motors on the
ends of the arms, so this makes basic sense. It also keeps the changing currents of the
motor outputs away from the magnetometer and radios, where it will cause less interfer-
ence, and should help with cooling.

In this case, I have chosen to mount the ESCs on the bottom of the arms. This takes them
out of the direct prop wash, so the cooling effects might not be as great. Large, 1 1/2” clear
heat shrink tubing holds the ESCs to the arms, as seen in Figure 15-1. They come wrapped
in one layer of heat shrink, so this shouldn’t compromise cooling any further and it pro-
vides a very secure mount. The motors we have chosen should only draw 10 to 14 amps

123

15

compared to the 20-amp rating of the ESCs, so we should be fine (and if not, we can always
upgrade to 30A ESCs).

Figure 15-1 Clear heat shrink tubing holds the ESC in place

What we lose in cooling by mounting under the arms, we gain in wire routing simplicity.
The motor wires are wire-tied to the frame to isolate their movement from the solder
joints. The power and signal wires from each ESC fit neatly through the tunnels in the arms
into the space between the upper and lower plates of the frame. And this is just where we
will do the power distribution wiring.

Wire the Power Distribution Board

As mentioned, the S500 frame kit comes in two versions: one has the power distribution
built into the lower frame plate and the other, which we are using here, comes with a sepa-
rate power distribution board, shown in Figure 15-2. This board has two sets of connected
solder pads, one for the positive leads and one for the negative. Power comes in from a
battery connector and goes out to each ESC.

Obviously, be sure to connect all the positive or red wires to the positive pads, which are
the inner circle, and the negative or black wires to the negative pads on the outer circle.
Any ESC can be wired to any set of pads. With the first ESC connected, it should look like
Figure 15-3.

124 Make: Drones

Wire the Power Distribution Board

Figure 15-2 The power distribution board that came with the S500 frame kit

Figure 15-3 We wire only one ESC first, so we can test which direction the motor spins

Why only wire one, with everything else tucked out of the way? Well apparently, the easi-
est way to make a brushless motor turn the correct direction is to wire it up, make it spin,
and swap any two wires if it goes the wrong way. The next chapter should help explain
why this works.

125Chapter 15

Wire the Power Distribution Board

Mount the Motors

The motors mount directly to the frame, using screws provided with the S500 frame kit.
Each motor sits on top of the circle at the end of an arm. Then, since we have chosen to
mount the ESCs under the arms, the motor wires can be routed down through the frame
and then immediately wire-tied down. Be sure to screw the motors down pretty tight as
they can be subject to a lot of vibration. Figure 15-4 shows how this looks from under-
neath.

Figure 15-4 The motor wires are routed along the underside of the arm

Don’t Trim the Motor Wires!

The wires that come out of the motor are the
same magnetic wire that the coils are made of
internally. This means that each strand is individ-
ually covered in enamel. The high melting point
of this enamel makes it ideal for high-
performance motors, but it is also very hard to

remove for soldering. Therefore, I highly recom-
mend that you do all the necessary trimming to
the output wires of the ESC, which are normal
copper, and use the pre-tinned ends that the
motor comes with.

126 Make: Drones

Mount the Motors

Figure 15-5 shows how the motor sits in the middle of the frame end. It turns out that this
provides pretty good, but not perfect, protection for the motor in a crash. You can go
ahead and solder the one motor to the ESC we wired power to earlier. Put some heat
shrink tubing on before you solder, but don’t shrink it down yet and leave the other motors
undone until you make sure this one is spinning in the right direction. For the first one, just
trim the ESC wires and connect them in order. As the next chapter will show, all you have
to do to reverse the direction is swap any two of the three wires.

Figure 15-5 The larger end of the frame provides some protection for the motor

Determine Direction

We have now put together enough of the power system to test and see which way the
motors spin. You will need a charged 3S LiPo. Capacity doesn’t matter right now. First, with
the one ESC wired to the one motor, check all the connections once more for proper polar-
ity. Make sure that when the battery plug is lined up with the socket, the red wires go
together and the black wires go together. I have seen examples of batteries using the same
connector with different polarity for different drones. Look good? Plug in the battery and
see what happens.

We’re mostly looking for no smoke here. There should be no loud pops. The ESC that is
getting power will probably play you a little song, but it might also make no noise,

127Chapter 15

Determine Direction

depending on the mode it is in. ESCs are known for playing different little tunes as a form
of feedback on what they are doing. I find attempts to annotate these melodies in ASCII-art
in the middle of badly translated English most entertaining. Assuming everything looks
OK, or perhaps especially if it doesn’t, unplug the battery.

Check Those Cables!

I have received a number of cables, both signal
and power wiring, that came from the factory
wrong. I have burned out regulators (which are
actually easy to replace with a hot air reflow sta-
tion), and I got a nice pop out of a PX4 power
module that had its battery connector put on
the wrong way. In Figure 15-6, note that if you
plugged in the battery sitting next to it, red
would go to black and black to red.

Figure 15-6 This bad cable popped a hole in the
chip when plugged in

Next, we are going to add the RC receiver so that we can make a motor spin. We just need
to plug the ESC’s signal cable into the throttle channel on the receiver, which is channel 3.
The ESC will provide power to the receiver. In Figure 15-7 you can see that for channel 3
you plug into the fourth slot, since the first one is the combined output that we will use
later to connect to the flight controller.

Figure 15-7 A single ESC plugged directly into channel 3, which is the throttle

128 Make: Drones

Determine Direction

For this test, make sure there are no props installed. You might want to put a bit of tape on
the motor’s axle if you are having trouble seeing which way it is spinning. Next, turn on
your transmitter and pull the throttle all the way down. Now plug in the battery. The red
light on the receiver should come on solid, meaning that it has established a link with the
transmitter. If this looks good, slowly move the throttle up until the connected motor starts
to spin. Check Figure 15-8 to see which way each prop should spin (clockwise or counter-
clockwise).

Figure 15-8 Swap ESC wires as needed to get the correct prop rotation

If the one motor you wired spins in the correct direction, then go ahead and shrink the
heat shrink. If not, just unsolder it and swap any two of the wires between the ESC and the
motor. Whichever way makes the first motor spin in the right direction, we can do the
same on the opposite arm. The motors on the other two arms should spin in the other
direction, so swap the wires or don’t as appropriate. Figure 15-9 shows examples of swap-
ped and un-swapped motor wiring.

129Chapter 15

Determine Direction

Figure 15-9 Swapping any two wires makes the motor turn the other way

You can also complete the wiring of the power distribution board at this time. When it’s
done, the result should look like Figure 15-10. We may use some of those empty slots later
to power video gear.

Figure 15-10 The power distribution board with all of the ESCs wired

Now that we have mounted and wired all the motors and their ESCs, in the next chapter
we will talk about how these components work. It’s a fascinating story.

130 Make: Drones

Determine Direction

Brushless Motors and
Their ESCs

Aside from its size, what really sets this bigger drone apart from the other projects we’ve
done are the brushless motors and the electronic speed controllers (ESCs) that it takes to
run them. Technically, the single FET, fed by a single resistor, that we used to drive each
motor in the Visible Drone counts as an electronic speed controller, but our brushless
motors need much more.

Brushes, as contained in the small coreless motors we used previously, fail very quickly at
the high speeds these motors turn. Eliminating them adds a great deal to the long-term
reliability of brushless motors, but it means we need a more complex speed controller.

ESCs take the current from the battery and switch it to the different coils in the motor at
just the speed commanded by the control system. They are really amazing pieces of kit, as
we shall see in a minute. But first, a little about the history of a variety of brushless motors.

Brushless Motors

Many people had their first introduction to brushless motors back in the days of floppy
disks, though they probably didn’t know it. These motors were not fast or powerful, but
they were very reliable, which was important given the constant use that floppies once
received. This reliability stems directly from the lack of brushes for which they are named.

In a brushed motor, the coils move, so to get the current to the coils, springs hold station-
ary brushes against rings on the spinning axle. These brushes are usually small blocks or
strips of metal. In a direct current (DC) motor, the rings are split into sections that go to the
different coils, but the splits cause faster wear and can spark. In most alternating current
(AC) motors, unsplit rings are used, which don’t spark but still wear out.

In a brushless motor, we reverse the usual structure and have a moving permanent mag-
net going around a set of stationary coils. Figure 16-1 shows the type of motor we are
using opened up so you can see the coils and magnets. The coils can be connected directly

131

16

to the electronics with no rings or brushes or anything. The electronics must then turn on
each coil in turn so that the magnets get pulled around at the desired rate. Of course, the
electronics must know the position of the motor in order to do this correctly.

Figure 16-1 This motor has 12 coils and 14 magnets

In large, industrial AC motors, the position is usually determined with some sort of optical
encoder. Gimbals have IMUs similar to our drones to determine their position. But both of
these systems require extra components and wiring. Because they generally run fast and in
the same direction, the brushless motors we use to drive propellers can use a simpler and
very clever solution, which we will discuss in a minute when looking deeper into ESCs.
First, a bit more about how the drive works.

The brushless motors we use in RC aircraft power systems, and those in brushless gimbals,
and, in fact, the large majority of AC motors in the world, are three phase. In motors, this
means that however many coils they have, they will be wired in groups of three. These
groups of coils will then be energized in sequence so that as you move around the motor
you pass coils from group A, then B, then C, then A again and so on. Remember, these coils
are stationary. Around them move a series of permanent magnets with alternating poles
facing in, first north, then south, then north again.

At the point in the sequence pictured in Figure 16-2, the first A coil is drawing magnet X to
it with a north magnetic field; coil B has just pulled magnet Y in with a south field, and
since magnet Z has passed it, coil C will now switch off for a moment, then switch to a
south field. As the sequence continues, magnet X will get drawn in turn to A, B, and C, then
the next A.

132 Make: Drones

Brushless Motors

Figure 16-2 Brushless motors usually have three sets of coils, here labeled A,B, and C

While you might expect that we need six wires, two per coil group, to control this
motor, the coils are actually wired in series so that we only need a total of three wires,
labeled P1, P2, and P3.

Brushless motors may have as few as 4 or as many as 24 or more coils. The number of mag-
nets, or poles, must be different and is usually slightly greater. This ensures that the coils
and poles don’t start out perfectly lined up such that the motor can’t tell which way to go.
Low-power, low-speed motors can get away with fewer coils. Brushless gimbal motors usu-
ally have lots of coils to optimize positional accuracy over speed or complexity.

I chose EMax MT2216 II KV810 motors for this drone—or rather, that’s what I have on mine
now. (I originally used some generic 2212 13T/1000KV motors that didn’t work out.) What
do all these numbers mean? Except for the last one, not much to us. The first, four-digit
number in a brushless motor description gets broken up into two two-digit numbers, here
22 and 16. In our case these are the width and height of the stator, or internal, coils. In
other cases, these numbers represent the size of the outer case. The last number, KV810,
relates the no-load speed of the motor to the input voltage.

Some motors also get labeled with the number of turns of wire around each coil, like 13T
for 13 turns. The KV rating of a motor depends largely on the number of turns used, so
these numbers are directly (OK, inversely for the math geeks out there) related. In general,
the higher the number of turns, the lower the KV. A lower KV rating means the motor will
be better at swinging a large prop and carrying high loads. A higher KV rating means the
motor will turn faster for a given voltage—good for small props and fast quads. The RC car
community tends to use the number of turns rating much more than the RC aircraft world.

133Chapter 16

Brushless Motors

ESCs

An electronic speed controller, or ESC, takes power from the battery and sends it to the
coils of the attached brushless motor in such a way as to make it run at the speed com-
manded at its input. Each one contains several FETs to control the power and some sensors
to determine the motor’s position, as well as an embedded controller to tie it all together.
Yes, each ESC has its own small processor, and in some cases you can actually update the
code, though we won’t need to.

As mentioned in the previous section, the brushless motors and ESCs we use for RC appli-
cations are three phase. This means that the coils of the motor, however many it has alto-
gether, are wired in three groups (consider Figure 16-3).

Figure 16-3 These graphs show how the three-phase output of an ESC energizes each coil group in sequence

The three outputs of the ESC each follow the same pattern but start at different times. You
can see how they are distributed in the top half of Figure 16-3, where the blue, green, and
red lines represent the P1, P2, and P3 outputs. The bottom half isolates only the first two
outputs so that the difference between them can be more easily seen. When P1 is higher,
the difference is shaded red and when P2 is higher, it is shaded blue. In the line labeled A,
this difference is redrawn centered around the origin.

We label this line A because it shows the voltage delivered to the A coil group. Where this
is positive or red, the coil generates a north magnetic field and where it is negative or blue,
it generates a south magnetic field. Lines B and C show the differences between P2 and P3
and P3 and P1, respectively, which will be the voltages in the B and C coil groups.

134 Make: Drones

ESCs

If the signals in Figure 16-3 were used to drive the motor shown in Figure 16-2, we would
be just at the beginning of the timeline with coil group A just starting to pull magnet X
toward it. As we follow the sequence of red lines, at position 1, magnet X will pass coil A. At
position 3 it will pass coil B. After passing coil C at position 5, the sequence then begins
again as our same magnet X will pass the next coil in group A. The blue lines similarly trace
the route of the Y magnet.

BECs

Our ESCs also provide 5-volt power for the flight control system via a battery eliminator
circuit (BEC). Instead of a receiver powering a servo over the middle wire of the servo cable,
we run it backward. The ESC sends power back along this wire to the flight controller.

Any one of our ESCs can produce up to a couple of amps, which is plenty of power for our
whole control system. But they all do this, and you should not just connect several sources
of power together. Any small differences among the output voltages will result in the ESCs
wasting current fighting amongst themselves and possibly overheating.

The traditional solution is to remove the middle (red) wire from the connectors on all but
one of the ESC signal cables. Figure 16-4 shows how to slip a knife under the clip that holds
the pin in. Pull the pins from three of the four ESCs and cover them with heat shrink for
safety as shown in the inset photo. We’ll tie them back out of the way as we complete the
control system wiring.

Figure 16-4 Pulling the red pin from three of the four ESCs prevents power supply trouble

135Chapter 16

BECs

Now that we have powered our motors and ESCs and understand them, we can wire them
into the control system. As complex as they are, they turn out to be simple, dependable
things to use in practice.

136 Make: Drones

BECs

Install the Flight
Controller and Radios

We’ve put in the muscle. Now it’s time to add the brains (and, I suppose, the eyes, ears, and
mouth, to stretch the analogy a bit). More seriously, we are going to mount a Pixhawk Lite
flight controller, a GPS receiver, the RC receiver, and the telemetry radio, then wire them all
up. Oh, and a safety button—another new feature very appropriate to a larger, more pow-
erful drone. Figure 17-1 shows these components wired together, but not installed.

Figure 17-1 The central Pixhawk Lite controller with three radios and a power module

137

17

I got all of these components, except for the RC radio, in a single kit, but they can also be
bought separately. We’ll discuss each part in more detail as we install them. When we are
done, this will complete the first round of hardware installation on the big drone. We still
have a couple of chapters to go before we properly understand all this new hardware, but
once we do this, it will be a very capable drone. Among other things, this drone will be
able to fly itself. Using GPS and a compass, it will be capable of following a series of way-
points in fully autonomous flight!

Pixhawk Lite and Shock Mount

To make sure we have power for future expansion, we will put a 32-bit Pixhawk Lite flight
controller in this drone. The Lite version of this controller eliminates a few connectors that
few people use in favor of being smaller, lighter, and cheaper.

When last we left our drone, we had installed only the bottom plate, with the ESC power
and battery connector attached. Push the battery connector down through the large hole
in the back of the bottom plate. Plug a six-pin signal cable into the power module, then
plug the power module into the end of the battery connector. Push the signal cable up
through the hole where the battery connector comes down. Arrange everything as neatly
as you can and wire-tie the parts in place so they won’t move when flying around, or espe-
cially when disconnecting a battery. The results should look something like Figure 17-2.

Figure 17-2 A close-up showing how the power module fits below the bottom plate

138 Make: Drones

Pixhawk Lite and Shock Mount

One thing included in many flight controller kits, though not the one I got, is a shock
mount. This mount provides some level of vibration isolation between the controller and
the motors. As we will cover in detail in Chapter 22, more powerful motors can create more
vibration and more sophisticated flight controllers can be more sensitive to vibration, so
shock mounts become important as drones get larger.

We’re ready to mount the top plate, so bring all the ESC signal cables and the signal cable
from the power module up through the big hole in the middle of the top plate and screw it
into place. Now, using double-stick foam tape, place the shock mount back against the
hole where the ESC cables come up. You can see the correct placement in Figure 17-3.

Figure 17-3 The shock mount should be placed up against the large hole in the top plate

Using more double-stick foam tape, place the controller on top of the shock mount with
the pins facing to the rear. Be careful to align the controller as well as possible since this is
where the drone gets its sense of up and forward, though the firmware can compensate
for small errors. Now route the cable from the power module up through the center hole in
the top plate and plug it into the port on the left side of the flight controller, as seen in
Figure 17-4.

139Chapter 17

Pixhawk Lite and Shock Mount

Figure 17-4 The power module plugs into the left side of the Pixhawk Lite

RC Radios

I chose the Quanum i8 (Figure 17-5) radio control transmitter and receiver for this drone.
Almost any system with five or more channels will work, but I like this set because it has
some features designed specifically with drones in mind. Like with nearly all RC aircraft
transmitters, the first four channels contain roll, pitch, throttle, and yaw, though not neces-
sarily in that order.

Figure 17-5 The mode lights at the top center of this Quanum i8 transmitter suit drones perfectly

140 Make: Drones

RC Radios

Many flight control systems use channel 5 for mode control, and the Quanum i8 transmit-
ter handles this perfectly. There is a rotary knob with LEDs that show the positions. It even
comes with stickers to label the different modes. Regrettably there is no PosHold sticker,
since position and hold mode works very well on this quadcopter.

The Quanum i8 receiver has eight of the standard three-pin pulse width modulation
(PWM) outputs that can directly drive servos or ESCs. In another feature that supports
drones well, the receiver also sends all eight channels out on a single output using com-
bined pulse position modulation (CPPM, or just PPM). This allows us to connect the
receiver to the flight controller with a single servo cable, which also serves to provide
power to the receiver.

Place the receiver on the top plate, to the right of the controller, using double-stick foam
tape. The pins should face to the rear, the same as the controller. Run a three-pin servo
cable from the leftmost port of the receiver to the rightmost port on the controller as seen
in Figure 17-6. You can also plug the ESC signal cables into the controller at this point, but
be careful: the outputs on the controller start with channel 1 in the middle, not on one end
as you might expect. Figure 17-7 shows how the motors are numbered.

Figure 17-6 The Pixhawk Lite outputs don’t start where you might expect them to

141Chapter 17

RC Radios

Figure 17-7 Motor numbering for the Pixhawk flight controller

On the other end of the RC receiver, two antennas come out. With two antennas, one will
hopefully continue getting a good signal when the other gets interference. I routed these
down through the slot in the front of the top plate and then replaced the heat shrink on
the forward ESCs to include them. This keeps them out of the way, as seen in Figure 17-8.

Figure 17-8 Putting the RC antennas in the heat shrink keeps them safe

142 Make: Drones

RC Radios

Telemetry Radio

For telemetry, we will use a 3DR 433 MHz radio set. These are widely available, fairly cheap,
and easy to interface to an APM- or PX4-based flight controller. Note that use of the 433
MHz band in the US requires a ham radio license.

We can actually do much more than just telemetry (i.e., real-time monitoring of flight infor-
mation) with this radio. Basically, this link can do anything a USB link can do, though it’s not
as fast. This includes setting turning parameters, creating autonomous flight plans, and
even sending commands like “start the programmed mission,” or “return to land.”

Turn On All Your Radios

Even though for some flights you may think you
don’t need telemetry or video or whatever, turn
on all the radios before you fly. I have had lost
radio connection with my drone and used a
smartphone to land it via telemetry. I have even
used radio signal strength as a tool to find a
crashed and lost drone. Your phone or computer

might have a log of GPS positions right up to a
crash if you’re logging telemetry data. You might
save your drone by flying by video link if your
view gets obstructed during a line-of-sight flight.
You never know which link will save you, so turn
them all on!

The telemetry radio comes with several cables. The one attached to it includes a split to
send the telemetry data to the on-screen display (OSD) that will add information to the
video downlink. We don’t need this now, but we might later. One end of each cable will fit
the telemetry radio. Find one where the other end fits the telemetry port on the side of the
flight controller. Now check the cable wiring very carefully to verify that it looks like
Figure 17-9.

Figure 17-9 Verify the cable wiring before powering up the system

143Chapter 17

Telemetry Radio

Safety Switch

To complete this chapter, we will install the safety switch. When preparing for flight, you
must press and hold this switch for several seconds before the motors can be armed. This
ensures that no single action on the RC transmitter or via telemetry can accidentally arm
them. As drones get larger and more powerful, it becomes increasingly important to guard
against spinning props. In addition to the safety switch, we must always take the time to
remove the props when not required for testing and make sure the area is clear before
allowing a prop to spin.

Wiring the safety switch just means wire-tying the switch itself to the bottom plate as
shown in Figure 17-10, then routing the cable up through both plates and plugging it into
its port, as seen in Figure 17-9.

Figure 17-10 Secure the safety switch to the bottom plate with wire ties

Testing

Let’s stop and test what we’ve just installed before going any further. First, plug the con-
troller into your computer via USB. You should get blinking lights on both the telemetry
radio and the RC radio. (And no smoke!) If you don’t see a good response, immediately
unplug the system. You might save a component that has its power wired backward if
you’re quick!

Next try powering the system from a battery. Unplug the USB and plug in a charged, 3S
lithium polymer (LiPo) battery pack and you should get the same response you got previ-
ously, though you might also get some beeps from the ESCs since they are getting power
now too. If the USB test worked and this one didn’t, check the cable between the power
module and the controller.

Leaving the quadcopter powered up, plug the telemetry ground unit into a USB port on
your computer. The light inside should come on and within a few seconds this light and

144 Make: Drones

Safety Switch

the one in the telemetry air unit should both stay on constantly, meaning that they have
established a link. You can now start up your favorite MAVLink ground station software
and connect to your drone.

Personally, I don’t have an overall favorite. I use a combination of Mission Planner,
QGroundControl, APM Planner (Mac), and finally Tower on my smartphone. QGroundCon-
trol has the slickest interface. It connects automatically in most cases, which really helps,
and it has great calibration screens for both accelerometer and compass. And it runs on
both Mac and Windows.

MissionPlanner only runs on Windows, but it has a built-in log viewer that I’m used to and
puts all the PID tuning parameters on one very useful screen. I also tend to use Mission-
Planner for, well, planning missions (that is, creating autonomous flight plans). QGround-
Control also does a good job of this so my choice is mostly habit.

I use APM Planner, which is Mac only, just for its compassmot. It produces a nice graph
while it’s running that lets you see how good the data is. I use the Tower application when
running on a smart phone. Using a small USB adapter, it will connect to the telemetry don-
gle. I always keep this turned on when flying, though my phone often sits in my pocket,
just giving audio feedback on modes, battery state, and altitude.

At the moment, the point is only that the radio calibration screen in Mission Planner makes
a nice radio test. I recommend looking at the connection drop-down before and after con-
necting the telemetry receiver so you can see which port got added. Select that port and a
baud rate of 57,600 and it should connect up. Once it finishes reading all the parameters
you can switch to the Radio Calibration screen in the Initial Setup category and the graph-
ics should respond to the controls on your RC transmitter (see Figure 17-11).

Figure 17-11 Mission Planner’s Radio Calibration screen is a good test of the RC radio

145Chapter 17

Testing

This completes the installation of everything we are going to wire up on the top plate, so
go around the system and wire-tie everything down. I found that the unused mounting
holes on the corners of the shock mount made good tie points. Shake your drone around a
little. Does anything move too much? If so, reroute or use more wire ties. Their weight
won’t matter this time.

Two radios installed so far, and one more to go. In the next chapter we will install a GPS
receiver and I’ll explain a bit about how it works.

146 Make: Drones

Testing

GPS

The Global Positioning System (GPS) allows our drones to find their three-dimensional
position by listening to the signals from several satellites. The receivers we have today are
small, cheap, fast, and accurate. The first GPS receiver I used was too heavy for one person
to lift. Thankfully, the receivers and the satellites have continued to evolve. Figure 18-1
shows one of the latest generation of satellites.

Figure 18-1 A GPS series IIIa satellite, courtesy NASA

147

18

GPS found its way into aircraft and survey crews years ago, but it took the cell phone revo-
lution to make the receivers as small and cheap as the one we will use. The GPS receiver we
will use for our big drone, combined with a three-axis magnetometer that we will discuss
in the next chapter, fits in a little round puck about two inches across.

History

The Global Positioning System was conceived in the US in 1973, and the first satellite was
launched in 1978. By the mid-1980s, when I was working on prototype GPS systems for the
US Air Force and Navy, there were still only a few working satellites. The receivers we used
weighed over 50 pounds and cost $150,000 each. And each one had an external cesium
clock, adding a few thousand to the total.

Then, in 1983, the Russians shot down Korean Airlines flight 007 when it strayed acciden-
tally into their airspace. In response, Ronald Reagan announced that the full accuracy of
the GPS system would be made available to civilians. Previously, the high-accuracy part
had been encrypted and only a lower-accuracy subsystem was available to the public.

Today the Russians run their own satellite positioning system, called GLONASS (GLobal
NAvigation Satellite System). And the latest models of GPS receivers for drones can use
GLONASS and the American GPS satellites at the same time. This means that there are
more satellites available, which helps with the reliability and accuracy of the results, as we
shall see in the next section.

Theory

Satellite navigation depends on the simple idea that time equals distance. If we know the
time a radio signal takes to travel from a satellite to us, and we know it goes at the speed of
light, then we can compute the distance to the satellite. So, GPS satellites keep broadcast-
ing messages like “I sent this message at exactly 03:22:17.64836125 GMT.” Then we just
have to know the exact time when we receive such a message. Knowing the current time
very accurately is part of the trick.

By noting exactly when we receive each message by our internal clock and taking the dif-
ference between this and the start time contained in the message, we can compute an
estimated time of flight. Convert these times to distances and include the known positions
of each satellite, and we can begin to see the geometry problem.

To make it really easy to see, let’s just consider two dimensions and three satellites. In the
Theory frame of Figure 18-2, the circle around each satellite represents our computed dis-
tance to it. In other words, if we only knew about one satellite, then the circle around it
would represent all the places we might be. Add a second satellite, and the two circles
(usually) intersect in two points. Add a third, and there is only one point that we can be at
—our position!

148 Make: Drones

History

Figure 18-2 To make GPS work in practice we use Kalman filters

Since we put three variables into our equations, we should be able to determine three out-
put quantities, but in our flat world we have only two. But nothing is lost here! The solution
to these equations also tells us how far off our local time is from the shared time of the
satellites. This extremely accurate source of timing information gets used in many applica-
tions that don’t need position at all, like keeping the clocks on cell phone towers synchron-
ized.

Of course, the real world does not really look like a problem in a geometry textbook. The
circles don’t actually line up, as shown in the Practice frame of Figure 18-2. This means we
get to use yet more interesting math! Instead of just looking at one set of measurements,
we take the average of lots of measurements over time. And not just a simple average,
either—a Kalman filter or other equally interesting data-smoothing technique.

No GPS Without Einstein

If you think relativity is only for stars and cosmic
rays, well, think again. Einstein’s theory of relativ-
ity predicts that clocks on a fast-moving satellite
will run slower than clocks on Earth—which they

do. If this slowing of the clocks on the satellites
were not taken into account, positions calculated
by GPS could drift as much as 10 kilometers per
day.

The Kalman filter was developed by Rudolf E. Kálmán, among others, around 1960 and can
be found in applications from aerospace to robotics to seismology. Like most algorithms
that have a name, shelves full of papers have been written on the subject, but here’s a sim-
ple outline of how it works.

First, we need a model that can predict the next value. In one simple case, if we know our
altitude and our vertical speed, we can compute our next altitude. Then we take some
measurements: perhaps a barometer reading and the sum of our accelerometer values.
Now we take a weighted average of the altitudes from our three sources (the prediction
and two measurements). The trick is in the weights, of course. We change the weights for

149Chapter 18

Theory

each altitude value in order to make the total error—the difference between our final out-
put and each value—as small as possible.

To get the most accurate positions, variations in the ionosphere must be taken into
account. Radio signals travel at the speed of light, as Einstein tells us, but the speed of light
varies a little depending on what the light is passing through. The ionosphere, a section of
the upper atmosphere between 75 and 1,000 kilometers above the Earth, slows down the
signals from the GPS satellites just a bit, and it varies in thickness.

In order to compensate for the varying thickness of the ionosphere, GPS satellites transmit
on two different frequency bands (really, up to five now). Since the amount that the iono-
sphere slows down the signals also depends on the frequency of the signal, a receiver can
measure the difference in the time of arrival of the same message in each band to deter-
mine how much the ionosphere affects signals from a given satellite.

Sadly, most of the GPS receivers we use in drones, like those in cell phones and many con-
sumer devices, only receive on one of the two primary GPS bands and so can’t take advan-
tage of this correction. Because of this, we need to pay attention to space weather. Yes,
space has weather!

Things like solar storms can stir up the ionosphere and make it thicker. A dual-channel
receiver can correct for this, but our single-channel receivers cannot. There will be days
when you are tracking lots of satellites and the geometry (or HDOP, discussed in the next
section), looks good, but your positions still seem awful. This could be due to a space
storm, and there are websites that will let you predict and track their effect on GPS signal
quality.

HDOP

HDOP stands for horizontal dilution of precision. This measures the degree to which a bad
arrangement of satellites, or constellation, degrades the accuracy of your position. With a
theoretical accuracy of 1 meter but an HDOP of 5, you could be 5 meters away from where
you think you are.

In the first frame of Figure 18-3, a small error in the distance to one satellite results in an
error of similar size in the calculated position. In the second frame, the two satellites are
close together in the sky. In this situation, a small error in the distance to one satellite
results in an error of several times that size in the calculated position. You can see that the
red arrow representing the position error is now about four times as long as the blue arrow
representing the original satellite position error.

150 Make: Drones

HDOP

Figure 18-3 A high HDOP means that position errors get enlarged

Practically, we like to fly with an HDOP of 2 or less. You can set a minimum HDOP and num-
ber of satellites required in the flight control system. If these conditions aren’t met, then
you can’t arm the motors in a mode that requires GPS. However, beware: you can still
switch into a GPS-dependent mode, even when the HDOP is high, when you are already
flying.

Installation

With all the complexities in the theory of GPS operation, the complexities of its installation
may seem a bit trivial—but complexities they are, nonetheless. The GPS unit I got was
wired for a PX4 or APM flight controller, and the Pixhawk Lite has unique combined GPS/
telemetry ports that require some special wiring. We will return to this if we decide to add
an on-screen display (OSD) unit that will need the second telemetry port. For now, we just
have to wire the GPS correctly.

Wiring generally goes better when the thing we are wiring sits still, so let’s install the GPS
mast before doing the wiring. You will need four #4-32 × 3/8” bolts with nuts. Bolt the base
in place as shown in Figure 18-4, lock the mast into the base and the top on the mast with
the set screws, then stick the GPS puck on top with the provided double-stick foam tape.
Now we are ready for the wiring.

My GPS actually came with an extra empty plug for rewiring, but if you’re careful you can
pull the pins out and reinsert them without damaging the plug. Figure 18-5 shows how to
slide a knife blade down into the retaining clip and release the pins.

151Chapter 18

Installation

Figure 18-4 The GPS mast bolts solidly to the bottom plate of the frame

Figure 18-5 With care, you can release the pins without damaging the plug

Red almost always means positive—in this case, 5 volts—so looking at the pinout of the
Pixhawk in Figure 18-6 you can see that the red and black wires must be swapped. I
guessed at which wires were transmit (TX) and receive (RX), but I guessed wrong. When I
powered up my flight controller, I got blinking lights on the GPS, but the controller didn’t
recognize it. You can check by connecting to your ground station software. If the GPS

152 Make: Drones

Installation

works, you will see some status like “GPS: No Fix.” If you don’t get any kind of GPS status, try
swapping the TX and RX lines.

Figure 18-6 The Pixhawk Lite uses shared GPS and telemetry ports

Now you should be able to see the GPS status in your ground station software. To get a fix,
the drone will have to be outdoors or at least near a window. If you power the drone from
a battery, you can set it outdoors, connect via radio telemetry, and watch on the computer
as your GPS acquires satellites and the HDOP improves.

In the next chapter, we will discuss magnetometers, but guess what? You just finished
installing one. GPS units built for use with PX4 systems also contain a three-axis magneto-
meter.

153Chapter 18

Installation

Magnetometer

Back in Chapter 9, we talked about adding a magnetometer to the mix to prevent drift in
the yaw axis. When you start doing navigation, knowing your absolute direction becomes
more important. You may know where you are and where you want to be, but if you don’t
know which way you are pointing, you can’t get there.

Humans have been using magnetic sensing devices for centuries, and animals perhaps for
millennia. We’ve come a long way from floating bits of iron, both in our apparatus and in
our understanding. Humans have learned, often by crashing ships onto rocks, about devia-
tion and variation, and about the change in variation over time. The magnetic variation of
my local airport has changed over half a degree during my lifetime, as noted on the aero-
nautical charts.

Practically, in the drone world, the hardware has become pretty simple. A single chip with
a convenient I2C interface gives us a three-axis measurement of the local magnetic field.
Operationally, compasses remain, as they have always been, a bit of trouble. They must be
calibrated (in our case by doing the “magnetometer dance”—just wait!), and sometimes
we must compensate for changes in the fields due to the current of the motors.

We have already installed a magnetometer along with the GPS unit, so this chapter will be
a discussion of how it works and how best to use it.

The Earth’s Magnetic Field

We’ve all seen the basic picture of how the magnetic field lines flow through the Earth
(Figure 19-1). And if you have played much with magnets, you know that they like to line
up a certain way, north to south and south to north. So, if we let a magnet move freely
without any other magnets nearby, it will line up with the huge but weak magnet that is
the Earth. Humans have long known how to float a lodestone (a naturally magnetic rock),
or later iron pins, so that they would point toward magnetic north.

155

19

Figure 19-1 The Earth’s magnetic field is not quite aligned with the geographic north pole

Notice the term magnetic pole. The first thing you need to know in order to make use of a
compass for navigation is that the magnetic north pole is currently several hundred kilo-
meters from the geographic north pole, the axis that the Earth rotates around. And the
magnetic north pole moves over 50 kilometers per year, lately heading northward out of
Canada. Geologists tell us that the Earth’s magnetic field has flipped north for south several
times in its history, though we don’t expect this to affect navigation any time soon.

We, or perhaps our computers on our behalf, must pay attention to the difference between
magnetic and geographic north when trying to fly a magnetic course and track ourselves
on a geographically oriented map. To get this right requires an understanding of not just
the global but also the local differences between maps and compass readings.

Declination and Deviation

Declination, more commonly called variation, measures the local difference between mag-
netic and true north. This includes both the difference because of the different positions of
the poles and the local differences caused by things like differences in the thickness of the
Earth’s crust of local deposits of iron ore. Humans have learned about declination the hard
way, often paying with the lives of mariners.

156 Make: Drones

Declination and Deviation

Christopher Columbus noted that the difference between magnetic and true north
changed considerably as he crossed the Atlantic in the fifteenth century. By the seven-
teenth century, it was understood that this difference also changes over time, and that
there will be purely local differences. But it wasn’t until the nineteenth century that accu-
rate and useful maps of the resulting compass variation were available.

Deviation, as opposed to declination or variation, describes our attempt to measure the
Earth’s magnetic field, not the field itself. It has long been known, for example, that any
iron in a ship can throw a compass off—a real problem once the hulls began to be made of
it! In the 1800s John Gray and then Lord Kelvin came up with systems to correct for this
effect. Lord Kelvin’s system places two large balls of iron, one on either side of the ship’s
binnacle or compass stand, which can be moved to compensate for the error. Traditionally
painted red and green (Figure 19-2), these are commonly known as Kelvin’s balls.

Figure 19-2 The red and green balls on this ship’s binnacle correct for the presence of iron in the ship

157Chapter 19

Declination and Deviation

In modern aircraft, we still carry a basic magnetic compass, and it will also include a set of
small magnets placed around it to correct for the presence of iron in the structure of the
plane. But this correction is never perfect, so aircraft compasses also come with a so-called
compass card. This small card, placed next to the compass, lists the remaining error at dif-
ferent angles so the pilot can correct that last degree or two. When you’re traveling at 500
miles an hour, a small angle can become a big distance in a hurry!

Magnetoresistance

Of course, our drones don’t carry an iron needle floating in oil. They carry solid-state devi-
ces using a property known as magnetoresistance. Scientists and engineers have discov-
ered many different mechanisms by which the electrical resistance of a material can be
made to vary with the magnetic field around it. As they found ever larger effects they had
to make up ever sillier names, like “giant magnetoresistance,” “colossal magnetoresistance,”
and even “extraordinary magnetoresistance.” The magnetometer chips in our drones gen-
erally use anisotropic magnetoresistance (AMR), which means that the change in resistance
varies with the direction of the magnetic field—a useful property when you are trying to
find direction.

Each of the named types of magnetoresistance may, in fact, be produced by a combination
of multiple underlying physical mechanisms. Without going into all the details, one out-
come of the way AMR works also has a fun name that you may hear used to describe these
systems: barber-pole sensors. AMR sensors start with a thin strip of permalloy, a nickel-iron
alloy. But by itself this will only tell you, in effect, how close you are to pointing to north,
not whether you are a bit east or west. By placing a series of aluminum strips across the
permalloy at 45-degree angles, the response to the left and right become different, and
the resulting chip looks something like a barber pole, as seen in Figure 19-3.

Figure 19-3 The aluminum strips help determine left from right and make the structure look like a barber pole

158 Make: Drones

Magnetoresistance

Use in Drones

Putting a modern magnetometer into our drone control system is easy. Choose a chip like
the HMC5883L three-axis magnetometer that shares the puck with our GPS receiver. Now
connect power and the I2C interface, and you’re done. But building compasses was always
the easy part. Learning to use them is the problem.

All of the things we’ve just talked about show up in our flight software and calibration pro-
cesses. When you’re setting up a drone using ground control station software, the system
can read your position from the GPS receiver and, using the Internet, find your local mag-
netic declination. Alternatively, you can enter the value by hand.

Next comes what we call compass calibration. Just as they still swing whole ships and
planes around to determine the deviation of their compasses, we get to swing our drone
around in what is known as “the compass dance.” You start the process by choosing the
compass calibration option in your ground control station software, then follow the
instructions as you point the drone in different directions and twirl around. Figure 19-4
shows a complete calibration using QGroundControl.

Figure 19-4 This compass calibration screen guides you as you do the compass dance

This process compensates for the presence of lots of strong permanent magnets in the
motors—one type of deviation in our compass reading. But we also have electric magnets
in those motors and high currents running through our power system, which can create
magnetic fields that change during flight. Our large drone design, like many, places the
compass and GPS receiver on a mast, several inches above the power system and other
radios. This minimizes the interference with the compass, in our case to acceptable levels

159Chapter 19

Use in Drones

(as we shall see). To test this and compensate for it if necessary, we can perform the com-
passmot test.

To perform a compassmot, you must first remove all your props (we’ll talk about choosing
and installing props in the next chapter) and put them back on so that they will push down
instead of up. Either swap pairs or move them each around by one arm. Then, in a safe
location with no other people too close, start the compassmot calibration, which will
instruct you to move the throttle up and down. The system will monitor the current being
used and the resulting magnetic interference and compute a correction factor for later use.
Figure 19-5 shows the results I got: less than 10 percent interference. This low result is not
surprising since we have a compass up on a mast.

Figure 19-5 These compassmot results show insignificant interference

Given that I have demonstrated the very low level of interference with this design, I would
actually not recommend running this test on this drone unless you have reason to suspect
compass problems. First of all, it is dangerous to run these props up to full speed anywhere
near people, including yourself. There is also the hassle of and room for error when switch-
ing the props around. And finally, it could happen that a bad test result gives a calibration
that flies significantly worse than not having done this at all. I’ve done the test, so you
don’t have to. This is engineering at work.

We have hardly touched on the fascinating history of the compass, but hopefully you have
learned enough to know why you must do that funny dance when setting up your drones.
And, of course, you should repeat it if you change the hardware, especially when adding
things with more motors, like a gimbal, or if you change locations by more than a few
miles. But enough theory for a while. We’re almost ready to fly!

160 Make: Drones

Use in Drones

Flying the S500

We have put all the pieces in place. We’ve done some testing. Hopefully, you have even
gained some understanding of how it all works. But there comes a time in the develop-
ment of any aircraft when you just have to take off and see how it goes.

Next, we will install the props and talk for a moment about prop choice. At this point the
drone will look something like Figure 20-1. Then we will strap on a battery and backup
power meter.

Figure 20-1 The completed large drone stands ready to fly

161

20

The systems will demand some calibration before being willing to fly. We did the magneto-
meter in the previous chapter, but we must still do the radios and accelerometers. You can
choose which flight modes you want for which switch positions, and then, of course,
there’s tuning.

If you have built something close to the design shown, then you can simply load the tun-
ing parameters I use from www.makedronesbook.com/projects/S500. If you have made any
important changes, like frame size or motor specs, then you might be better off starting
with the default settings and tuning it yourself.

Install the Props

For initial flight testing, we’ll use the nylon 1045 props that commonly come with motors
in this size range. You can get them from multiple sources for a reasonable price, and they
work quite well. These props don’t come perfectly balanced, however, so I strongly advise
following the prop balancing procedure outlined in Chapter 22.

Don’t Use Carbon Fiber Props for Testing

Carbon fiber props are lighter, thinner, stronger, more efficient, and, per-
haps most important, really cool looking! So why not use them on your
shiny new drone? They also spin a bit faster and are sharp as razors. Until
you have confidence in your drone and your ability to fly it, make the world
a little safer and use plastic props.

The EMax motors we’re using can accommodate traditional props with a hole all the way
through, or DJI-style self-tightening props that screw on directly. The traditional props
we’re using, shown in Figure 20-2, require that you choose the right adapter ring from the
provided set. Find the smallest one that fits over the motor shaft. Now, go balance them!

When installing props on the motors for flight, the adapter ring side goes down.
Figure 20-3 shows the proper direction, clockwise or counterclockwise, for each prop. If in
doubt which way a prop goes, just spin it around a bit and visualize which way pushes the
air down. The different color prop nuts match the different directions, black for clockwise
and silver for counterclockwise.

162 Make: Drones

Install the Props

http://www.makedronesbook.com/projects/S500

Figure 20-2 These generic 1045 plastic props require adapters to fit on motor shafts

Figure 20-3 Be sure your props spin in the right direction before flight

163Chapter 20

Install the Props

You want the prop nuts on pretty tight, of course. It’s obviously bad if one comes off in
flight! But the thread direction for each motor causes the nuts to tighten rather than
loosen with the force of the motor. And if you put too much force on the prop hub, it can
crack. I tighten mine using no more than an inch or so of wrench length. If you pushed
hard at the end of a six-inch wrench, you would crack them easily.

Connect the Battery and Voltage Monitor

Depending on what other payload you strap to it, this drone could carry a very large bat-
tery. I’ve done my flight testing with 3S, 2,700 mAh batteries (Figure 20-4), mostly because
I already had several. This will be our first time to step up from 1S or single-cell batteries to
3S batteries that have three cells in series.

Figure 20-4 These 2,700 mAh, 25C battery packs worked well for flight testing

According to a chart from the manufacturer, the EMax 2216 motors with 1045 props and
3S batteries can draw nearly 10 amps. Rounding up to 10, times 4 motors, gives us 40 amps
total current. If you divide this by the 2.7 Ah rating of our battery, you get just less than
15C. My packs are rated for 25C, so I have been fine. If you want to try anything smaller, do
the math and make sure your battery can provide at least 40 amps, hopefully with a bit of
margin. Anything with a larger mAh or C rating will be fine as long as you don’t run it down
too far—which is why you’ll want a voltage monitor.

164 Make: Drones

Connect the Battery and Voltage Monitor

For something less than five bucks, you can buy a small digital voltage meter (Figure 20-5)
with an alarm that plugs directly into the balance plug—the small white one—from the
battery. This way it can monitor each cell individually and warn if any one goes below a set
limit.

Figure 20-5 A cheap voltage monitor could save your drone

Attach the battery monitor to the battery with the black or ground wire on the left side
(check your unit to make sure this is correct, though; it should have some kind of instruc-
tions on the back side). When properly attached, the LEDs will display first the total volt-
age, then the voltage of each cell. If any cell goes below the limit an amazingly loud alarm
sounds—loud enough that you can hear it over a powerful drone at a distance.

The limit can be changed using a small button on the top of the unit. I set mine at 3.7 volts.
This gives me enough flight time and leaves the battery at right about the storage voltage
of 3.75V (the voltage dips a bit under load, so the final resting voltage will be a bit higher).

165Chapter 20

Connect the Battery and Voltage Monitor

I installed my voltage monitor by putting a wire tie around one of the mounts that hold
the battery to the tubes. Having a bit of play left makes it easier to get the balance plug
connected to the unit. You can see the results in Figure 20-6.

Figure 20-6 The voltage monitor must be installed close to the battery connector

The power adapter we installed earlier reports voltage and current to the flight controller,
and we can also use telemetry to connect to a smartphone to give us low voltage warn-
ings. It’s a pretty cool system, but there are lots of ways it can go wrong. If you always plug
in that backup voltage monitor, your $5 investment may well save a $50 battery!

Radio and Accelerometer Calibration

The APM flight stack won’t let you arm the motors until you have finished certain setup
tasks. We did the compass calibration previously, while discussing how magnetometers
work. You must also calibrate the radio and accelerometers.

In the days before it was practical to put computers in our model aircraft, advanced RC
pilots would use complex transmitters that could save settings for multiple models. Today,
the computer in the model can be set to respond correctly to a standard transmitter. All it
needs to know are the minimum and maximum values that your transmitter puts out on
each channel, since these vary a bit from one transmitter to another. Knowing exactly what
“all the way down” translates to matters for actions like arming. I like QGroundControl’s cal-
ibration screens the best, so Figure 20-7 shows that radio calibration screen.

166 Make: Drones

Radio and Accelerometer Calibration

Figure 20-7 Radio calibration tells the flight controller about your transmitter

If calibrating the compass is a dance, then perhaps calibrating the accelerometers is the
rehearsal. We go through the same basic positions, but instead of twirling around, we just
hold still in each one. Figure 20-8 shows this calibration screen in QGroundControl.

Figure 20-8 Accelerometer calibration lets the controller know which way is down

167Chapter 20

Radio and Accelerometer Calibration

Flight Modes

Strictly speaking, setting flight modes isn’t required. By default in APM all switch positions
translate to stabilize mode, which is a fine place to start. But this drone can do so much
more! In order to access other modes, we have to map the positions of the channel 5 rotary
switch on the transmitter to different modes. The Quanum i8 transmitter outputs values
that map perfectly to the default ranges in APM, so we just have to choose which modes to
use.

I’ve mapped the six positions on my transmitter to stabilize, altitude hold, loiter, position
hold, auto, and return to land, as you can see in Figure 20-9. This makes a useful sequence
since I generally take off in stabilize, which requires the least number of sensors, then go to
altitude hold, which adds the barometer; only if that seems be working well do I use any of
the last three modes, which all require GPS.

Figure 20-9 The default PWM ranges matched our transmitter, making setup easy

Initial Tuning

I’ll be honest. I figured that this was a pretty typical setup, and I’ve tuned enough drones to
at least my own satisfaction by now that this one should go easy. Nope. The first time I hit
the throttle, it flipped on its back with amazing speed, shattering one prop. OK, I had two
motors plugged in backward. But the tuning still took many flights. I believe that one fac-
tor was doing testing with a small battery and no payload—that is to say, lighter than I will

168 Make: Drones

Flight Modes

probably fly most of the time. This meant I was dialing back from twitchy instead of turn-
ing it up from sluggish. Not conceptually harder, but it kept my heart rate up and I broke a
few props.

The APM flight system used here, version 3.3.3, does respond very nicely to being well
tuned. For this work I prefer the extended tuning screen in Mission Planner ground control
station. There must be a dozen different P or PID controllers that can be adjusted. But it
turns out that you usually only have to adjust the core PID controllers for the roll and pitch
rates, and the rest will all fall into place. For those key values, I am currently flying at 0.11,
0.00, 0.004. Since this quad is symmetrical, roll and pitch are the same, as seen in
Figure 20-10.

Figure 20-10 The extended tuning screen in Mission Planner is well organized

Final Checklist and First Flight

Consider carefully where to do your first flight testing with any drone this size. Unlike our
previous projects, this one can dent cars, break windows, or hurt people if it gets out of
control. A large, unobstructed place with no other people around would be best, but few
of us have acess to an ideal location, so do the best you can. Working in a small space with
nothing but brick walls to hit might be bad for your drone but safer for the world. When in
doubt, err on the side of safety.

169Chapter 20

Final Checklist and First Flight

This Drone Requires FAA Registration

This drone weighs far more than 250 grams, so
you must register with the FAA before flying it. It
won’t take you long or cost you much, so go do
it. And then you have to follow through and

really put that number on your drone before
flight. The process starts at www.faa.gov/uas/
registration/.

Next, consider the weather conditions for your first flights. A dead calm would be best. Try
to notice what time of day tends to have the least wind in your area. You might also check
the space weather at a site like www.uavforecast.com to make sure nothing funny happens
to your GPS signals.

With time and place chosen, prepare the drone:

1. Check for any unplugged cables or loose parts.

2. Check the props for damage or missing balance tape.

3. Turn on your transmitter and make sure the throttle is all the way down, with the
mode set to stabilize.

4. Strap on a battery, connect it to the voltage monitor, and check that you have
enough power to fly, around 12.5 volts total.

5. Check the polarity and plug the battery into the main XT60 connector.

6. (Optional) Connect to the telemetry via your smartphone or computer and check
the status.

7. Wait for a 3D GPS lock and an HDOP of less than 2 (ideally close to 1).

8. Check that the area is clear and arm the motors by holding the left stick down and
to the right.

9. Slowly raise the throttle. The motors should all start.

Raise the throttle more, and you will fly! If the drone flies well in stabilize mode, then stay
there. I find this one much easier to hover in altitude hold, but staying in stabilize requires
the least number of sensors to be working right. This is where piloting skill really pays off.
Time spent flying the smaller drones will make you more confident with this one.

170 Make: Drones

Final Checklist and First Flight

http://www.faa.gov/uas/registration/
http://www.faa.gov/uas/registration/
http://www.uavforecast.com/

Optical Flow, Sonar,
and Lidar

Technology moves ever forward. The $150,000 GPS receivers of the 1980s have become
the $15 pucks that we navigate our drones by. And while they can’t do everything those
military-grade receivers did, they work much better on the whole.

Similarly, sensors (and the processing power necessary to use them) that were once the
exclusive domain of top-secret military projects can now be integrated into our drones.
The hardware vendors trade open source designs to keep costs down, and the open source
software communities work constantly to support the latest gadgets.

In this chapter, we’ll look at several new technologies that are finding their way into drone
projects today—optical flow sensors (Figure 21-1) and the related technologies of sonar
and lidar. These last two measure distance; usually for us that means altitude, which we
must know in order to use an optical flow sensor.

Figure 21-1 A PX4Flow optical flow sensor

171

21

Sonar

When we hear the word sonar, it conjures up images of scared men listening intently to
pings in their submarines. Or perhaps the less martial of you think of bats using ultrasonic
pings to track and catch insects. Starting with the Polaroid SX-70 camera back in the 1970s,
which used sonar to focus, sonar has become a very cheap and common form of range
finding in a wide variety of applications today.

Hobbyists use sonar for collision avoidance on robots or as motion detectors for interactive
displays or a million other things. The HC-SR04 ultrasonic pinger module is so common,
easy to use, and cheap that practically any project can include one. They cost just a few
bucks and only take four wires and a few lines of code to use. Figure 21-2 shows one of
these modules.

Figure 21-2 This cheap ultrasonic pinger can be used to determine altitude

People have successfully used HC-SR04 modules to control the altitude of drones. Their
simplicity suits use with older, 8-bit APM systems. But they also have their limits. These are
not the most accurate range finders available. They are subject to interference from back-
ground noise. And most importantly for us, they can only work up to a couple of meters at
most.

172 Make: Drones

Sonar

For better range and accuracy, the Dronecode team recommend moving up to a some-
what more expensive sonar module like the Maxbotix HRLV-EZ4, which is included with
the optical flow sensor we’ll discuss shortly. Maxbotix sells a whole line of better ultrasonic
range finders, and this one has the narrowest beam for the longest range. According to the
manufacturer, this sensor measures down to the millimeter at ranges of up to five meters.

Lidar

The name lidar comes from a combination of light and radar. The technology uses light,
generally lasers, to measure the distance to an object by measuring the time it takes for a
light pulse to travel to that object and be reflected back. Light moves much faster than
sound, of course, so a lidar system must be able to measure very, very small amounts of
time accurately; thus, these systems still cost much more than sonar.

On the plus side, lidar can be more accurate than sonar and is much less prone to interfer-
ence from the environment or other systems on the drone. Several manufacturers now
make lidar systems specifically for drones, and the APM flight stack supports the Lidar-Lite
series of modules. At this point, the open source projects like APM only use lidar for alti-
tude measurement. In the future, it may also have a role to play in collision avoidance.

Optical Flow Sensors

Whether we know it or not, most of us use a form of optical flow sensor every day in the
form of an optical mouse. Those of you who remember mice with rolling balls tracking
movement know how much better today’s optical technology can be. These work by com-
paring consecutive images from a low-resolution camera to see which direction the image
has moved. The same idea—in fact, the same hardware—can be used to keep a drone over
a fixed spot on the ground.

When the original Parrot AR drone came out to much fanfare, one of the technologies that
made it stand out from the crowd was optical flow sensing. This gave it a position stability
much tighter than is possible with GPS, indoors or out.

Today, in particular in the world of APM and PX4, we see two common optical flow systems
being used. The cheaper option uses a DNS3080 sensor, literally built to be used in mice.
You can connect this unit via its SPI bus to older APM 2.x 8-bit control systems. Combined
with a super-cheap HC-SR04 sonar module, you can try out optical flow technology for
under $50—but it takes a lot of hacking, and you can’t expect top-dollar results from
bottom-dollar gear.

The better option in the Dronecode world, called PX4Flow, uses a purpose-built controller
board with a better camera. As mentioned, drone makers generally pair this unit with the
better Maxbotix ultrasonic sensors, which can connect directly to the controller. This
results in a single, complete unit that connects easily via I2C, as seen in Figure 21-3.

173Chapter 21

Lidar

Figure 21-3 The PX4Flow often comes with an ultrasonic pinger for altitude

These still require some setup, though in this case the setup is kinda fun. You can connect
directly to the optical flow controller board via USB and calibrate using special software,
which includes the ability to directly view the camera image it is seeing (Figure 21-4).

Figure 21-4 The PX4Flow config screen lets you see the camera image

174 Make: Drones

Optical Flow Sensors

Visual Odometry

Visual odometry: isn’t that a fancy term? It just means figuring out where you are by looking
around. We do this every day, but it’s only starting to find its way into our robots and
drones. Academics have been working on this technology for years now, especially as it
applies to the world of augmented reality. The computer must be able to map the world
around us in order to project things onto it.

Putting the processing power on board a drone to do this kind of interpretation and map-
ping of video images has been prohibitive until recently. Academic projects have used
remote processing to test their theories. DJI actually built an experimental device called
Guidance, which used a series of camera and ultrasonic range finders to attempt collision
avoidance.

Right now, this is not something you can implement cheaply and easily: you can’t just buy
a part from China, plug in a standard bus, and enable it with a checkbox in your ground
control software. But who knows, by the time you’re reading this, visual odometry might
be in every self-respecting drone out there.

When installed and set up correctly, some combination of range finding and optical flow
sensors makes a very practical addition to today’s advanced drone. This will allow you to fly
with position stabilization indoors where there is no GPS, or to do precision automatic
takeoffs and landings. Tomorrow’s systems may allow your drone to find its place on a map
by sight or fly near other drones without running into them. Watch this space for exciting
developments in the immediate future!

175Chapter 21

Visual Odometry

Vibration

If you read drone forums for long, you will inevitably run across a discussion of vibration. I
have had several hard crashes I believe were caused by vibration, so I have a very personal
interest in the subject.

Vibration matters to anyone who flies a multirotor aircraft. We all use inertial stabilization
systems, gyros and accelerometers, and these are very sensitive to vibration. Aerial pho-
tography depends on having a stable platform from which to shoot. And in the end, bad
vibrations can simply shake a drone apart.

Figure 22-1 shows the log from a test when my drone was suffering from some devastating
vibrations. It shows forces in the range of three to five times the force of gravity (that is, 3–
5G). A reasonable reading here would be less than one tenth of that. A good aerial photog-
raphy platform will often read less than 0.1G.

Figure 22-1 This is what excessive vibration looks like in a log

177

22

Causes of Vibration

It’s ironic that vibration should be such a problem on a vehicle with so few moving parts,
but those moving parts spin very fast—up to 7,000 RPM for the 1045 props and 2216
motors of the big drone we just built. If a prop or motor or even a prop nut is even a little
out of balance, it will create vibrations. Since we run our motors over their full possible
range of RPM during normal flight, if there is a bad frequency in there that lines up with
the resonance of the frame, we will eventually hit it. Figure 22-2 shows a frame from a
video of this happening with this drone, with a different motor.

Figure 22-2 When vibrations resonate with the frame, they can get large

You will be glad to know that with decently balanced props, the EMax 2216 motors we will
fly this drone with have never exhibited this kind of vibration. It should make a fine aerial
photography platform.

Effects of Vibration

Vibration causes many troubles. In the drone forums, people talk the most about jello in
their video. I’ll get back to what this means in a minute, but I believe the reason this gets
mentioned so often is simply that shooting video from a drone happens to be a really
good way to see how bad the vibrations are at different times in the flight. You can look at
logs, of course, but jello in the video is what people notice when everything else is fine.

I suppose at a certain point vibrations might simply rattle parts off, but I haven’t had this
happen. Certainly, screws will come loose at a faster rate as the vibrations get worse. This

178 Make: Drones

Causes of Vibration

could cause parts to fall off eventually, but as long as you check on the important screws
before flying, this won’t happen to you.

The insidious problem that you can’t see until it’s too late happens when the vibrations
start affecting accelerometers and gyros. It might just cause a little drift. Since inertial navi-
gation gets used to supplement the barometer in altitude hold mode, vibration can make
your drone wander up and down in this mode. Finally, advanced multisensor systems like
the one we’re using here constantly check their sensors against each other and will stop
using one that doesn’t seem to be working. This will almost certainly happen at a critical
moment, just when you could use all the help you can get from your sensors!

Back to jello in the video now. When your drone vibrates back and forth, and the camera
isn’t well enough protected from those vibrations, you will see these small movements
reflected in the video. But action cameras don’t take a whole frame at once. They scan
down the frame at some rate. If your drone vibrates back and forth three times for each
frame the camera takes, then vertical lines will appear to have three waves in them as you
look down the frame.

Damping and Isolation

Technically, what everyone calls “vibration damping” in drones—the kinds of shock
mounts we put our controllers on or that most gimbals hang from—should really be called
“vibration isolation.” Damping occurs when the energy of the vibration gets converted to
some other form, usually heat caused by friction, before it gets to the item being pro-
tected. Automobile shock absorbers do this when they use a fluid to convert the car’s
motion into heat. Isolation occurs when the energy passes through the item without
affecting it much. Springs, whether steel or silicone like the damping balls often used in
drones, temporarily absorb the energy so the protected item doesn’t have to.

The best systems use a combination of damping and isolation. Cars have shocks and
springs, or perhaps struts, which are nothing but a well-balanced combination of the two.
We don’t see actual damping systems in drones much, so let’s see how we can use isolation
to reduce the trouble that vibration causes.

First, let’s be more specific about our goal. We want to stop the high-frequency, regular
motion that comes from the rotating props and motors. But we must let through the
actual motion of the drone without significant change or delay. Mathematically, these are
the low-frequency movements. Drone makers use silicone balls, stretched o-rings, and
pads made of special vibration isolation material. In each case, the material acts as a kind
of spring. To make it work well, we must adjust the stiffness of that spring to the situation.

The frequencies of the movements we want to stop and pass affect the ideal spring stiff-
ness, but we can’t change this. We can however, change the other important factor—the
weight of the thing being sprung. The heavier the object being isolated is, the easier it is to
isolate it from the small, high-frequency movements that we don’t want. We can make use
of this fact by including more weight with the control system. I have considered using a

179Chapter 22

Damping and Isolation

larger shock mount on this drone and putting the RC and telemetry radios on with the
flight controller, though the vibration levels are fine already. Some commercial drones, like
the Parrot Bebop, place the battery on the isolated side with the control system and cam-
era, adding a great deal to the sprung weight.

Prop Balancing

If you are having vibration problems, anything from mild jello to crashes, you need to bal-
ance your props. Even if you see no sign of vibration whatsoever, balancing your props will
make your motors run a bit smoother and let the bearings last longer. It’s easy. It doesn’t
take expensive tools. It does take a specialized tool, a prop balancer, but a basic one like
that shown in Figure 22-3 costs less than $10. Better ones will allow balancing self-
tightening props that don’t have a hole all the way through.

Figure 22-3 A prop balancer, scissors, and electrical tape are all you need to balance a prop

With the proper hub adapter in place, gently screw the prop into the balancer. Cut a piece
of electrical tape, one centimeter square for a badly balanced prop or less if the prop
already seems close. Stick the tape on the leading edge and check the balance. Move it
back and forth until the blades seem as even as possible. Now it’s time to balance the prop

180 Make: Drones

Prop Balancing

hub. Yes, it’s kind of a fine point and not everyone does it, but you’ve got it on the balancer,
so why not?

Once the blades are perfectly balanced, push one side down. If the prop has a tendency to
return to level no matter which blade you push, the lower side of the hub is heavier. If, on
the other hand, when you push either blade down, that side stays down, then the top side
of the hub is heavier. You can lighten the heavier side by sanding a bit with a medium-grit
sandpaper. It is probably best to take the prop off the balancer so you don’t sand it and
unbalance your tool. I find that one side of the hub always has noticeably more flashing
and ends up heavier, so I will often sand that side down a bit before even starting.

If you get good motors and balance your props well, you can enjoy smooth flying and
smooth video. And even if your drone flies fine with props straight out of the delivery box,
do your bearings and your gyros a favor and balance them up anyway. Your drone will feel
more like the precision machine that it is.

181Chapter 22

Prop Balancing

Failure Modes and
Fault Tolerance

If you start thinking about all the ways a failure can bring your drone down, it can get a
little depressing. Any one prop coming loose, any one of the dozen solder joints running
the motors coming loose, any one of the 24 FETs in the ESCs failing..., and that’s just the
power system. And everything goes back to a single battery connection. We call each one
of these items a single point of failure, and we can do better.

Engineers will sometimes talk about having “no single point of failure,” but we almost
never really reach this level of reliability, even in just the control system. The trouble comes
in the transition. If a component fails, its backup must not only be present but be up and
running and in exactly the same state so it can take over seamlessly.

If we can’t keep running, perhaps we can at least fail safely. In fact, failsafes are now com-
mon in drone control systems, and drone makers have learned to duplicate certain key
components and either switch over or manage without when one fails.

Failsafes

No doubt, pilots of RC aircraft have been dealing with loss of their main radio connection
ever since the first radio-guided balloon took flight in the nineteenth century. The old-
timers have endless stories of the “one that flew away.” Today, we can (usually) do better.

If your drone has a good GPS lock when you take off, should you happen to lose radio con-
tact the flight control software can be set to automatically return and either hover or land
at the takeoff site, first climbing to a safe height to avoid obstacles. Figure 23-1 shows the
failsafe setup screen in QGroundControl, where all the safety-related settings are nicely
gathered in one place.

183

23

Figure 23-1 QGroundControl puts all safety settings in one place

The other common failsafe of this sort that current control systems usually implement trig-
gers when your battery gets low. Even the smallest drones will blink their lights as a failsafe
warning when they are running low on juice. More complex drone control systems will
often have a two-step response: first a warning, like lights blinking or warning buzzers, fol-
lowed by an automatic landing if the battery voltage drops below a certain limit. I highly
recommend that you review all the failsafe settings for any drone you fly. It’s very confus-
ing to see your drone start to climb when you tell it to land if you don’t know that it has
been set to a safety height of 30 meters.

Seeing a drone that you lost control of coming home to land can be quite a relief, but not
every failure leaves a drone able to perform this maneuver. In the case of a motor failure or
power loss, you can’t really keep flying, so some heavier commercial drones carry recovery
parachutes that can be triggered when it all goes wrong. Such recovery chutes are
required of commercial operators in parts of Europe where drones may be operated in
close proximity to people.

184 Make: Drones

Failsafes

Redundancy

Pilots of traditional multiengine aircraft train at length on how to continue flying in the
face of an engine failure. While it is possible for a quadcopter with an engine out to keep
flying, it takes specialized programming. Once we move up to six or eight motors, it
becomes more reasonable to expect the control system to be able to cope with the loss of
one. If the drone has enough excess power and the failure doesn’t result in some kind of
terrible imbalance and vibration, then a well-tuned system might cope well enough to
allow a controlled landing, at least. This is probably on the minds of professional aerial
photographers as they mount their expensive cameras, but then those cameras are pretty
heavy. I wonder if they have the excess power to really pull it off.

The control system of even a moderate-sized quadcopter may use a couple of other types
of redundancy to improve reliability and performance. Since everything depends on the
power supply, it’s no surprise that power problems cause many failures. Highly redundant
power systems might use two batteries with each running to different sets of motors, but
even with one battery, controllers like the Pixhawk and APM can receive power from both
a power module and a battery eliminator circuit in one of the ESCs and switch completely
to the good source when one source fails.

As we add more and more complex sensors, like GPS receivers, we must start thinking
about what happens when they fail. The Pixhawk flight controller actually has two acceler-
ometers and two gyros. It only has one compass, but it is expected that you will add an
external one as well. There are two GPS ports too. The navigation filters in the ArduPilot
flight stack were converted to use extended Kalman filters (EKF), which make the handling
of sensors coming and going work better, and much logic was added to constantly com-
pare the different sensors.

As drones become more complex and integrate ever more technology, failsafes and redun-
dancies will be essential tools in their design. As the designers of the first vacuum tube–
based computers knew all too well, one fairly reliable part makes a fairly reliable system.
Use 10,000 of them, and you have to start thinking about detecting and handling failures.

185Chapter 23

Redundancy

Interfaces

Throughout this book we have been connecting one processor to another using some
kind of interface with another acronym for a name. These standards allow us to buy a GPS
unit from one company and a flight controller from another and believe that they will be
able to talk. But the number of them, and the constant stream of new ones, can be a bit
daunting. This chapter lists many of the interfaces commonly used on drones, with some
discussion of what each can be used for.

Computer Interfaces

Much of the wiring on a complex drone connects different computers together: for exam-
ple, the flight controller to an ESC or to the telemetry radio. All of these connections use
some kind of serial interface. This just means that the bits are sent one after another on a
single wire instead of in parallel on several wires.

In some cases, no higher standard is named. It’s plain old serial (no acronym). The teleme-
try receiver connects to the flight controller using four wires: power (often called Vcc),
ground (GND), transmit (TX), and receive (RX). For two computers to talk this way each
one’s TX must be connected to the other’s RX; then one usually supplies power to the
other, as shown in Figure 24-1.

Figure 24-1 In this basic serial connection, each side’s transmit connects to the other side’s receive

187

24

As with any electrical connection, you must be careful of the voltage. The power supply is
probably five volts (5V), but it could be 3.3V or even 12V. The so-called logic level on the TX
and RX lines could be 3.3V or 5V, or perhaps even 3.3V, but 5V compatible. This last phrase
means that a device will put out a 3.3V logic level but if you feed it a higher 5V output it
won’t fry anything. Otherwise, the voltages should match everywhere.

As we found out when choosing a FET, a system that uses so-called 3.3V logic does not
actually output 3.3V for high and 0V for low. If you put a volt meter on a high signal in a
3.3V system, it will probably read something just under 2V. Similarly, a low signal won’t be
quite 0V. As long as you connect systems of the same family together, either 3.3V or 5V,
then you don’t need to think about the exact voltages used. It should only come up in
detail when you do strange things like use a 5V data pin to power a 3.3V receiver so you
can pulse it to put it in bind mode.

Physically, simple serial interfaces can use almost any connector. Basic Arduino projects
often use no connectors at all, relying on simple pins and headers or wires in breadboards.
Drones will often use smaller connectors like the DF13 or the Micro JSTs shown in
Figure 24-2. These connectors come in many sizes, with two to a dozen or more pins and
with pin spacings of either 1 mm, 1.25 mm, 1.5 mm, or 2.5 mm. The extra pins might be
unconnected, or they might be used for a second port on the same connector, as on the
Pixhawk Lite flight controller.

Figure 24-2 Micro JST connectors with 1 mm spacing and from three to six pins

188 Make: Drones

Computer Interfaces

That’s the physical connection. Logically, the sending computer holds the data line high
until it is ready to start sending a message. Each message begins with a low start bit to let
the other computer know a byte is coming. The sender then puts out eight bits, one after
another, followed by a high bit to show that the message has ended. The order runs from
most significant to least significant. This format, called 8N1 to signify eight data bits, no
parity or check bit, and one stop bit, seems to dominate basic serial communication,
though other formats are certainly possible. Figure 24-3 shows the value 0xB2 being sent
this way.

Figure 24-3 The hex value B2 as sent down a serial line

We call the speed at which these bits get sent the baud rate. The unit baud (Bd) honors
Émile Baudout, who invented the 5-bit code used in early paper teletype machines. The
unit measures the rate at which symbols, in this case ones and zeros, are sent. In the case
of a simple serial line this is the same as the bit rate. Common baud rates in drones are
57,600 or 115,200 bits per second. Some connections, like I2C, might be much faster.

Now we’ve sent a single number. Other standards define what the numbers mean. A more
complex message might start with an address, so that multiple devices can share a con-
nection but send messages to only one of them, then maybe a message type indicator
defining the rest of the content. For each interface we use—inter-integrated circuit (I2C),
serial peripheral interface (SPI), controller area network (CAN), and many more—commit-
tees meet and long, technical documents get written. This is all very important to certain
engineers, actually.

Thankfully, you don’t need to read those documents to connect an I2C compass to your
flight controller, but here are a few things that might help when using I2C. Notice that the
basic serial wiring diagram (Figure 24-1) includes only two devices. We call I2C a bus
because it allows multiple devices to connect to the same port. We can, for example, add
an optical flow sensor on the same port where the compass connects. Also, knowing that
two of I2C’s four wires are for data and two for power explains why the compass connec-
tion from an integrated compass/GPS only has two wires. The compass gets its power from
the GPS’s connection.

One more thing about I2C, since it is such a common interface on drones: interference
from a power system or other busses can cause communication errors with I2C. It’s not the
most fault-tolerant way two processors can talk. There is a reason that there are logs for I2C

189Chapter 24

Computer Interfaces

errors. If you have trouble with an I2C bus, try just twisting the wires a few times. Other
measures, like using shielded cables, work too, but a few twists can do wonders to equalize
the interference in each data line so it can be canceled out.

Given the trouble with I2C, drone makers have been looking for better alternatives. And
what better place to look than cars, a notoriously harsh environment in which to run com-
puters? The automotive industry came up with a very robust bus called the controller area
network, which works well for connecting multiple devices to a control system in tough
conditions. Already, some ESCs use a CAN bus and the Storm32 gimbal has been rede-
signed to use it as well.

Finally, as far as computer-to-computer connections go, I’ve watched as other industries
turned grudgingly to Ethernet instead of other protocols designed specifically for control
systems. Like so many things, the mass market has made very fast, reliable networking
gear available. Ethernet’s randomized retry method of determining who gets to use the
bus does not suit control systems engineers’ desire for predictability. But Ethernet runs so
much faster for so much less money than most of the alternatives that I won’t be surprised
to find it in my drones soon.

RC Radio Standards

Radio control systems have come a long way since the time when doing even single-
channel electronics was hard, so systems like the Galloping Ghost used mechanical parts
instead. On the radio frequency side, where once you had to have a flag on your transmit-
ter’s antenna to show which channel you were using, now many people can share the 2.4
GHz band without interference because of frequency hopping and spread spectrum tech-
nologies. And once again, mass market gear (WiFi this time) using these same frequencies
helps make the parts common and therefore cheap.

Still, the world of RC radio has its multiplying standards, like DSM/DSM2/DSMX, FrSky, or
even AFHDS 2A. The systems named by these acronyms each use the 2.4 GHz radio band a
little differently. The systems vary in their cost, ability to reject interference, range, and
number of channels, and the variation among the different models using the same stan-
dard might be just as great. You should research the particular model you are considering,
not just the standard.

DSM/DSM2/DSMX
While as a rule your transmitter and receiver must use the same standard, we have actually
seen one of the exceptions in our earlier projects. The DSM/DSM2/DSMX series of stand-
ards, owned by Spektrum, each build upon the last. We used a DSMX transmitter and a
DSM2 receiver. The original DSM used a single frequency, DSM2 could switch between two
frequencies to avoid interference, and DSMX uses multiple frequencies in a more complex
way. But any DSM2 or DSMX transmitter should work with any DSM2 or DSMX receiver, so
our use was fine.

190 Make: Drones

RC Radio Standards

Some variety of DSM seems to be the most popular radio standard for the smallest, com-
pletely integrated flight controllers, like the MicroMWC we used in the X4Wii or the simi-
larly sized but more powerful Pico32 controller. If you want to go modular, like we did in
the Visible Drone, the receivers are still cheap, and we used the same transmitter for both
of those projects. The ability to use just the satellite receiver makes very small projects pos-
sible as well.

FrSky
FrSky builds a line of advanced transmitters and receivers. The transmitters support
advanced mixing and mode controls similar to many of the RC settings available on flight
controllers. FrSky radios take advantage of the fact that a 2.4 GHz radio link is actually two-
way in order to send telemetry data back from the aircraft to the transmitter. The company
also sells a line of sensors, including airspeed, GPS, and current sensors, that plug directly
into the receiver for display on the transmitter’s screens. While most of these features
might be more useful in fixed-wing aircraft, many serious drone pilots use FrSky for its
quality and performance.

Servo/ESC Control

While you might see a few different connectors used, almost all servos used in RC models
adhere to the same electrical and logical standard. They use 5V logic levels and send data
using pulse width modulation (PWM). There will generally be three wires, for power,
ground, and signal. The signal consists of a series of pulses, each from 1,000–2,000 micro-
seconds long. This is why you often see the RC control positions represented as a number
in the range 1,000–2,000. The length of the pulse tells the servo what position it should
attempt to get to or stay at. With each pulse, the position can change. Most electronic
speed controllers have adopted this same PWM standard for their control.

Pulse position modulation (PPM) uses a string of timed pulses like PWM, but every pulse
will be the same width. The timing, or position, of each pulse determines the value that it
represents. Combined pulse position modulation (CPPM) builds on this idea, sending
groups of eight values in sequence with a longer sync gap in between groups so that you
can tell where the group starts. Many modern RC receivers will have separate PWM ports
for each channel, but also a single CPPM port that allows the receiver to be connected to a
flight controller with a single cable.

Graphics often convey concepts like PWM and PPM better than words, so here’s an exam-
ple. The black line on the top in Figure 24-4 shows the original to be encoded. The green
line shows how that signal might be encoded using PWM. The blue line on the bottom
shows how that same signal might be encoded using PPM.

191Chapter 24

Servo/ESC Control

Figure 24-4 PWM and PPM encode the same information in different ways

Telemetry

Telemetry data tells us things like the drone’s current attitude or position. It can also con-
tain status or configuration information like modes or PID settings. Telemetry goes both
ways in most cases, meaning we can change things on the drone as well. This might let us
update configuration like those PID settings, or take control of the drone, change modes,
and tell it where to go. This makes telemetry a useful backup in case you have trouble with
your main RC radio.

Telemetry data gets communicated within the drone control system via serial links and
between the drone and the ground over various types of radio links. The complex and var-
ied ways that data gets represented on the radio fascinate me, but you don’t usually need
to know about these as long as your transmitter and receiver match. What you do need to
be aware of are the definitions of the different telemetry standards.

The two most common telemetry standards each have their own worlds of flight control
and ground control software that support them. The MultiWii/Baseflight/Cleanflight
branch of the flight control software tree all use the MultiWii Serial Protocol (MSP). The Visi-
ble Drone, earlier in this book, also implemented some MSP message types. The ArduCop-
ter/PX4 flight control systems use what they call MAVLink to talk to their ground stations.

To show what these messages look like, let’s consider an example. All MSP messages start
with the characters “$M”. Then, for messages coming from the drone the next character
will be “>”, and it will be “<” for messages going back up. Next we have a count of the data

192 Make: Drones

Telemetry

payload, not including all the preamble and command bytes, and then the command.
Finally, there are the actual binary values. The attitude message, called MSP_ATTITUDE, is
command number 108. Thus, the complete message looks like this:

$M Preamble

> Direction indicator

6 Payload byte count

108 Command

16-bit integer (Roll in degrees)*10

16-bit integer (Pitch in degrees)*10

16-bit integer (Yaw in degrees)*10

GPS

In addition to whichever telemetry protocol is in use, we often see one other serial com-
munication standard in our drones—the National Marine Electronics Association’s NMEA
0183 standard for GPS data. Like MAVLink and MSP, NMEA 0183 defines a series of message
types, in this case for things like fix quality and position. The standard also includes things
about the physical connection, baud rate, etc., but the GPS units we see in drones don’t
use that part of the standard. They usually communicate using 3.3V logic levels at 57,600
baud, like nearly everything else. Note that things like changing the baud rate are not a
part of the standard and thus may vary from one brand of GPS to the next.

With GPS units as cheap and easy to use as they are today, you can include one in any
project where knowing your position, or even just the correct time, would help. A quick
example will serve to demonstrate this simple protocol. The message shown here gives a
current position. Note that unlike with MSP, numeric values are given in text, not binary,
and the data fields are separated by commas:

$ Preamble

GP Message from GPS

GGA Time and position message

172814.0 UTC time

3018.9370 Latitude as ddmm.mmmm

N North or South latitude

09743.0739 Longitude as dddmm.mmmm

W East or West longitude

1 Fix quality, 1=3D fix

193Chapter 24

GPS

16 Number of satellites in use

0.9 HDOP

151.0 Height above sea level

M Height is in meters

2.0 Height above the ground

M Height is in meters

<empty> Used for differential GPS

<empty> Used for differential GPS

* End of message indicator

1234 Checksum

When we put this together in a complete message it looks like this:

$GPGGA,172814.0,3018.9370,N,09743.0739,W,1,16,0.9,151.0,M,2.0,M,,,*1234

While that might not immediately say Austin, TX, to you, it’s pretty easy for a computer to
interpret.

An understanding of the various standards and protocols in use on drones will serve you
well, whether you want to write a fancy app to control your drone remotely or just want to
understand why we have to swap the transmit and receive wires sometimes. Perhaps you
are building some new type of aircraft that the world has never seen! If you make it speak
MSP or MAVLink, you can take advantage of existing ground station software and concen-
trate on your new design. Maybe understanding how these protocols work will inspire you
to invent your own protocol. If it’s good enough, maybe they will name it after you, like
Samuel Morse and his Morse code or Émile Baudout with both Baudout code and baud
rate.

194 Make: Drones

GPS

The Future

As futuristic as a current drone performing a completely autonomous flight might seem,
most people agree that we are only at the beginning. There may yet be new break-
throughs that change the game, breakthroughs like in the motors, batteries, and control
systems I described in Chapter 1 as making drones possible. Battery technology seems like
one place where radical changes might happen. But we will stay on safer ground, or per-
haps in safer skies, here by only asking where current trends might take us.

Specialization

Already an aerial photography drone looks different from a racing drone. If and when we
have delivery drones, those will surely be a different breed again. Just as today we have
several well established categories of cars (economy car, pickup, sports car, off-road vehi-
cle, etc.), I would expect there to be several established categories of drones.

Just as today few people could tell you how many horsepower the engine in their car can
produce, many categories of drone will simply do a job with performance measured by
one or two obvious numbers, like flight time. Then, as with the car hot-rodders, there will
be certain groups who know every last thing about their drones, who are constantly trying
to find the best combination of components and programming.

I would, however, expect one aspect of drone flying to move toward standardization rather
than specialization: the controls by which we fly them. Just as cars have the pedals in the
same places and traditional aircraft have standard instrument layouts, I hope that the dif-
ferent manufacturers and control system communities will adopt some common human
interface standards. I think the names and precise definitions of several standard flight
modes could be common. Safety would be increased if safety features like the safety
switch in our big drone got used the same way in every flight stack.

195

25

Regulation

Governments have taken an interest in drones as well, and new regulations on drones get
passed all the time. It’s a pretty good guess that this trend will continue.

Ease of Use

The trend toward ease of use in drones has taken place mostly in the mid- to large-sized
drones so far, because these have the payload capacity to carry the new technology. As
that technology becomes more common and more highly integrated, it should make its
way into smaller and smaller drones.

An easier-to-fly drone translates to a safer drone. If the controls are too complex, then mis-
takes are more likely. There are commercial jobs that drones can do, but if someone has to
go practice hundreds of hours to learn to fly them, it’s not gonna happen.

The educational possibilities for drones will be opened up as they become easier to fly, too.
Just think what kids could do with a drone that could be sent on autonomous missions
with an interface as fun as Lego Mindstorms! The lesson, like the job, is more likely to suc-
ceed when the reward is more immediate.

On the other hand, I hope there will always be a place for piloting skill as well. Drone racing
is fast becoming a popular spectator sport. The pundits already debate whether race car
drivers are athletes in the same sense as runners. I wonder if a guy sitting in a lawn chair
with goggles on twiddling his thumbs on some sticks will count? In his head he’s going a
hundred miles an hour!

Safety

As we saw in Chapter 23, drones have been getting steadily safer, with features like sensor
redundancy and failsafe systems. I certainly hope this trend continues with recovery para-
chutes and fully redundant power systems and controllers, and that we handle failures
ever more gracefully.

As the number of drones increases year by year, we will be forced to keep making our
drones safer if we want to be allowed to keep flying them. If drones are to be allowed to fly
over people, just as traditional aircraft fly over our cities every day, then the risk of a drone
crashing must be much lower than most drones in the air today can claim.

I believe we will learn to build a class of drone that can be safely flown in and around peo-
ple. People fly their drones close to people all the time now, regardless, so this will be good
for everyone, pilots and bystanders alike.

196 Make: Drones

Regulation

Human Flight

Every so often, a new story shows up where someone or some company has strapped
enough drone technology together to be able to carry a human. Sadly, I have to say that
most of them look like a bad idea. I have already commented on the number of single
points of failure in today’s drones. This can be reduced by redundancy, but actually design-
ing control systems where human life is at risk starts much further back than that.

When designing for human safety, you start with the management processes. If you don’t
know what you are doing, how will you know that you are doing it right? Redundancy and
fault tolerance in the narrow sense that we discussed earlier certainly play a part. Special-
ized analysis techniques like failure mode and effects analysis (FMEA) or testing techniques
like hardware-in-loop (HIL) testing allow the systems to be validated before they are
actually built. These things will come to drones. Already HIL testing and simulation can be
done using certain ground control station software.

Driverless cars that carry humans share the road with us now. Our small, remotely or
autonomously piloted drones will need to share the sky with larger, traditional aircraft as
our numbers grow. We may not be there yet, but I can imagine the day when some conver-
gence of drone and conventional aircraft technology lets me take off in my own multirotor.
I can’t wait!

197Chapter 25

Human Flight

Index

Symbols
10DOF (degrees of freedom) sensors, 52
250 class FPV racers, 21
380 mAh, 25C, 1S LiPo battery, 26
3D Robotics, 12
3DR 433 MHz radio sets, 143
3S, 2700 mAh batteries, 164
6DOF (degrees of freedom) sensors, 52, 80
9 DOF (degrees of freedom) sensors, 81

A
accelerometers, 6, 75, 77

calibrating for S500 drone flight test, 167
in MultiWii Manual mode, 45
Rate mode and, 85
vibrations affecting, 179

acro or acrobatic mode, 85
(see also Rate mode)

activities with drones, 19-22
aerial photography, 19
education, 21
flying, 22
FPV racing, 20

aerial photography, 19
aerodynamics, multirotor, 69-74

lift and thrust, 69
pitch and roll, 71

translational lift, 73
vortex ring state, 74
yaw, 71

AFHDS 2A standard, 190
Ah rating of batteries, 164
AHRS (attitude and heading reference system),

52, 76
(see also IMU/AHRS)

alternating current (AC) motors, 131
altitude

controlling using HC-SR04 ultrasonic pinger
module, 172

measurement using lidar, 173
altitude hold mode, 168

effects of vibration in, 179
analogWrite() function, 66
Anderson, Chris, 12
Angle mode, 45, 71, 84
anisotropic magnetoresistance (AMR), 158
antennas, Quantum i8 RC receiver, 142
APM Planner (Mac), 145

compassmot test, 160
APM/ArduPilot, 11
APM:Copter flight control system, 12

running software version 3.3 or later, 13
ArduCopter, 118

drones based on, 2
ArduCopter/PX4 flight control systems, 192
Arduino boards

199

in MultiWii control systems, 10
using Arduino Uno to bind Lemon RX

receiver, 60
Arduino IDE

modifying code for X4Wii build, 35
setting connecting to MicroMWC controller,

35
setting up for use with Teensy 3.2 processor,

57
Arduino project for X4Wii, downloading, 35
ATTITUDE command (MSP), 64
auto mode, 168
axisCmd, 84
axisCmdPID, 86

B
Bakke, Rolf, 14
barber pole sensors, 158
Baseflight, 16
batteries, 4

and hover time for different props, 29
connecting 3S, 2700 mAh battery for S500

drone, 164
for Visible Drone project, 53
getting low, warnings about, 184
hover time for different batteries, 27
in redundant power systems, 185
soldering battery connector onto MicroMWC

controller, 37
upgrading for Hubsan X4 107C, 26
USB power and, 113

battery eliminator circuits (BECs), 135, 185
baud rate, 189
Blade MLP4DSM transmitter, 33
Blink example program, running, 58
Bluetooth

connection baud rate, slow loop and, 60
HB-02 serial Bluetooth module, 32

building cable to connect to MicroMWC,
39

HC-06 Bluetooth module, 63
radio for Visible Drone project, 52

BNF (bind and fly) version, Syma X5, 55
brushed motors, 3, 131

(see also coreless motors)
brushless motors, 3, 118, 131-136

and their ESCs, 134
BECs, 135

EMAX MT2216 II KV810 motors, 133
overview, 131

C
C rating for batteries, 164
cables

checking for defects, 128
connecting MicroMWC to Bluetooth module,

39
calcIMU() function, 78
cameras on drones, 19
CAN (Controller Area Network), 189
capacitors, 100
carbon fiber props, 162
CC3D/OpenPilot, 15
channels, parsing raw serial data into, 62
checklist, final, before first flight, 170
cinematography, aerial, 19
circleDiff() function, 84
circuit board and motor controllers, 54, 97-106

component placement, 98
construction, 104
design tools and files, 98
motor controller, 100
power input and distribution, 99
schematic and layout, 102

Cleanflight, 17
coils in brushless motors, 131

number of, 133
width and height of, 133

combined pulse position modulation (CPPM or
PPM), 141, 191

compass calibration, 159
compass dance, 159
compassmot, 160
computer interfaces, 187
connectors in serial interfaces, 188
constructing and tuning a drone, 107-115

completing the frame, 110
connecting motors, 108

200 Index

flight testing and future work, 114
ground test, 112
installing radios, 109
installing the controller and connecting LEDs,

107
control systems, 5, 9-18

adding to sprung weight, 179
building custom controller for Visible Drone,

49
circuit board with motor controllers, 54
Teensy 3.2 CPU, 50

CC3D/OpenPilot, 15
choosing a flight control system, 17
DJI/Naza, 14
Dronecode, 11
in brushless motors, 4
installing a controller, 107
installing flight controller and radios, 137-146

PixHawk Lite and shock mount, 138
RC radios, 140
safety switch, 144
telemetry radio, 143
testing, 144

KK2, 14
MultiWii, 9
Naze32/Baseflight/Cleanflight, 16
possible future standardization in, 195
use of redundancy to improve reliability and

performance, 185
writing basic I/O code for, 57-67

main loop, 59
RC receiver, 60
setting up the IDE, 57

ControlCopter 3D (see CC3D/OpenPilot)
Controller Area Network (CAN), 189
coreless motors, 3

brushed motors and, 3
Coriolis vibratory gyroscopes, 76
CPUs

in drone control systems, 5
more powerful CPU for Visible Drone, 50

crash kits, 32
crimping tools, 108
cyclic redundancy checks (crc), 64

D
damping (vibration), 179
DC-DC converters, 53
declination (magnetic), 156, 159
derivative (in PID algorithm), 88

tuning, 92
design file (VizDrone), 98
desktop program, MultiWiiConf, 43
deviation, 157, 159
differential thrust, 71
differential torque, 71
diodes, flyback or protection, 101
direct current (DC) motors, 131
DJI Flamewheel 450 and 550 quadcopters, 118
DJI/Naza, 14
DNS3080 optical sensor, 173
drone activities (see activities with drones)
Dronecode, 11

APM/ArduPilot, 11
PX4/Pixhawk flight controllers, 13

drones versus quadcopters, 2
DSM/DSM2/DSMX standards, 190
DSM2 protocol, 33

power-on sequence for DSM radios on X4Wii,
41

seven channels in each frame, 62

E
Earth, magnetic field, 155
ease of use in drones, 196
education, applications for drones, 21
Einstein, Albert, 149
electric aircraft, 4
electronic speed controllers (ESCs), 54, 123, 131

completing wiring to power distribution
board, 130

for brushless motors, 134
BECs, 135

mounting, 123
plugging signal cable into throttle channel on

RC receiver, 128
PWM standard for control, 191
soldering motors to, in S500 drone, 127

201Index

swapping wiring to get correct prop rotation,
129

testing, 127
wiring to power distribution board, 124

EMax 2216 motors with 1045 props and 3S
batteries, 164

EMAX MT2216 II KV810 motors, 133
Ethernet connections, control systems and, 190
evaluateMSPCmd() function, 65
extended Kalman filters (EKF), 185

F
FAA, registration requirements for drones, 117,

170
failure mode and effects analysis (FMEA), 197
failure modes and fault tolerance, 183-185

failsafes, 183
redundancy, 185

fast and slow loops, 59
field effect transistors (FETs), 66, 100

choosing, 101
in brushless motor ESCs, 134

Flamewheel 450 and 550 quadcopters, 118
flight control systems (see control systems)
floating point numbers, 50
flying, 22

flight test for Visible Drone, 114
S500 drone, 161-170

connecting battery and voltage monitor,
164

final checklist and first flight, 169
flight modes, 168
initial tuning, 168
installing props, 162
radio and accelerometer calibration, 166

FMEA (failure mode and effects analysis), 197
FPV racing, 20
frames

building a drone with a large frame, 117
choosing for Visible Drone project, 55
completing in drone construction, 110

Fritzing, 98
FrSky radios, 191

FTDI adapter, connecting MicroMWC to your
computer, 36

FTDI programmer, 32
future of drones, 195-197

ease of use, 196
human flight, 197
regulation, 196
safety, 196
specialization, 195

G
gimbal lock, 80
gimbals, 132

brushless gimbal motors, 133
Global Positioning System (see GPS)
GLONASS (GLobal NAvigation Satellite System),

148
GoPro cameras, 19
government regulation of drones, 196
GPS, 147-153

HDOP (horizontal dilution of precision), 150
history of, 148
in APM/ArduPilot, 11
installation, 151
NMEA 0183 standard for data, 193
theory, 148
use of GLONASS and GPS satellites by

receivers, 148
gravity

determining direction of, 78
sensors in MARG systems, 52

GY-88 sensor module, 52
gyro/accelerometer chips, 15, 78
gyroscopes, 75, 76

advances in, 6
in MultiWii Manual mode, 45
Rate mode and, 85
vibrations affecting, 179

H
ham radio license, requirement for use of

433MHz band in US, 143
hardware-in-loop testing (HIL), 197

202 Index

HB-02 serial Bluetooth module, 32
building cable to connect module to

MicroMWC controller, 39
HC-06 Bluetooth module, 52

writing I/O code for, 63
HC-SR04 ultrasonic pinger module, 172
HDOP (horizontal dilution of precision), 150
headless mode, 81
heat shrink tubing, 123
HMC5883L three-axis magnetometer, 159
hot air soldering stations, 104
hovering, 24

hover time for different batteries, 27
hover time for different propellers, 28
translational lift and, 73

Hubsan X4, improving, 23-30
battery upgrade, 26
goals and test methods, 24
Hubsan X4 107C, 24
propeller upgrade, 27

human flight, 197

I
I/O (input/output) code, 57-67

for HC-06 Bluetooth module, 63
for motors, 66
main loop, 59
RC receiver, 60
setting up Arduino IDE, 57

I2C (inter-integrated circuit) interfaces, 189
communication errors with, 189
reading values from I2C bus, 79

IMU (inertial measurement unit), 52
IMU/AHRS, 75-81

accelerometers, 77
gyroscopes, 76
IMU, 78
magnetometers, 80

inner and outer loops, 59
integral (in PID algorithm), 88

integral windup, 90
tuning, 91

interfaces, 187-194
computer, 187

GPS, 193
RC radio standards, 190
servo/ESC control, 191
telemetry, 192

interrupt handler (serial events), 62
Invensense MPU-6050 six-axis gyro/

accelerometer chip, 15
isolation (vibration), 179

K
Kalman filters, 5

extended, 185
using to make GPS work in practice, 149

Kelvin, Lord William Thomson, 157
KK2 flight controllers, 14
KKMulticopter boards, 14
Kv rating of motors, 133

L
laser interferometry gyroscopes, 76
LEDs

connecting to new controller, 107
testing on completed Visible Drone, 112

Lemon RX DSM2 receiver, 51
lidar, 173
Lidar-Lite series of modules, 173
lift, 69

translational, 73
LiPo (lithium polymer) batteries, 4

1S LiPos for Visible Drone project, 53
380 mAh, 25C, 1S LiPo with Hubsan X4 107C,

26
warning about underrated LiPos, 27

logic levels (voltage), 188
loiter mode, 168

M
magnetic field (Earth), 155
magnetic versus geographic north, 156
magnetic, angular rate, and gravity (MARG)

systems, 52, 81

203Index

magnetometer sensors, 72
magnetometers, 75, 80, 155-160

declination and deviation, 156
magnetoresistance, 158
use in drones, 159

magnets in brushless motors, 131
number of, 133

Mahony/Madgwick algorithm, 80
main loops, flight control systems, 59
Manual mode (MultiWii), 45, 84, 85
mapping, using drones, 20
MAVLink, 145, 192
maxAngle parameter, 84
Maxbotix HRLV-EZ4 sonar module, 173
metal oxide semiconductor field effect

transistors (MOSFETs), 100
micro electrical mechanical systems (MEMS), 76

in integrated circuit accelerometers, 77
MicroMWC flight controller, 31

connecting to your computer using FTDI
adapter, 36

settings for connection to Arduino IDE, 35
soldering battery connector onto, 37
with accessories, 33

Mission Planner, 145
tuning screen, 169

mix, 83, 85
MLP4DSM transmitter, 33
modes, 83-85

Angle, 84
flight modes for S500 drone, 168
names for, in different control systems, 83
Quantum i8 RC transmitter, 141
Rate, 85
RC transmitter, 83
setting for X4Wii, 45

motor controllers, 54, 100
motors, 2

brushless, 118
brushless motors and their ESCs, 131-136
choosing for Visible Drone project, 55
connecting in drone construction, 108
creating vibration, 178
for S500 drone, determining spin direction,

127

making S500 drone motors spin in desired
direction, 129

mounting on S500 drone, 126
numbering for PixHawk Lite flight controller,

141
soldering motor wires onto MicroMWC

controller, 38
upgrading for Hubsan X4 107C, 30
writing code to control, 66

MSP (see MultiWii Serial Protocol)
MT2216 II KV810 motors, 133
multirotor aerodynamics (see aerodynamics,

multirotor)
multirotors, 2

MultiWii controllers, 10
MultiWii Configurator, 43
MultiWii control systems, 9

Naze32/Baseflight/Cleanflight forks, 16
MultiWii Serial Protocol (MSP), 10, 64, 192

ATTITUDE command, 64
parsing incoming MSP messages, 64
sending a message, 64

MultiWii/Baseflight/Cleanflight flight control
software, 192

MultiwiiConf, 10, 43
tuning modes, 45
using to ground test Visible Drone, 113

Muñoz, Jordi, 12

N
National Marine Electronics Association's NMEA

0183 standard, 193
Naza flight control system, 14
Naze32 Configurator, 43
Naze32/Baseflight/Cleanflight, 16
NMEA 0183 standard, 193
NuttX operating system, 13
nylon 1045 props, 162

O
OpenPilot project, 15
optical flow sensors, 171, 173

204 Index

P
Paparazzi flight controller project, 17
parseRXData() function, 62
Phantom line of quadcopters (DJI), 14
photography, aerial, using drones, 14, 15, 19
PID controllers, 5

adjusting, 169
PIDs (proportional–integral–derivatives), 32,

87-94
axisCmdPID, 86
implementations of the algorithm, 90
PID algorithm, 87

derivative (D), 88
integral (I), 88
proportional (P), 87

tuning, 90
for X4Wii drone, 43
in practice, 94
in theory, 90-93

piezo-electric sensors, 77
PixHawk Lite flight controller, 137

and shock mount, 138
GPS installation, 151

polarity, checking, 127
position hold mode, 168
power

constructing power system on circuit boards,
104

hazards of using USB and batteries together,
112

input and distribution for circuit board and
motor controller, 99

installing power system for S500 drone,
123-130, 138
completing power distribution board

wiring, 130
mounting the motors, 126
wiring power distribution board, 124

redundancy in power supply, 185
propellers

balancing, 180
creating vibration, 178
hover time for different propellers, 28
installing for S500 drone, 162

putting on X4Wii drone, 40
swapping ESC wiring to get correct rotation,

129
upgrading for Hubsan X4 107C, 27

proportional (in PID algorithm), 87
tuning, 91

proportional–integral–derivative (PID) (see PIDs)
pulse position modulation (PPM), 141, 191
pulse width modulation (PWM), 66, 102

for small, brushed motors, 66
Quantum i8 RC receiver, 141
standard for servo/ESC control, 191

PX4 flight control systems, 192
PX4/Pixhawk flight controllers, 13

diagram of APM/PX4 control systems, 13
PX4Flow optical flow sensor, 173

Q
QGroundControl, 145

accelerometer calibration screen, 167
compass calibration, 159
failsafe setup screen, 183
radio calibration screen, 166

quadcopters, 1
drones versus, 2

Quantum i8 RC transmitter and receiver, 140
quaternions, 80

R
radios

adding RC receiver to S500 drone, 128
calibrating for S500 drone flight test, 166
for Visible Drone project, 51

I/O code for RC receiver, 60
ground testing in Visible Drone, 113
installing for PixHawk flight controller, 137

RC radios, 140
telemetry radio, 143

installing on circuit board, 109
RC radio standards, 190

DSM/DSM2/DSMX, 190
FrSky, 191

RC radios for Visible Drone project, 51

205Index

RC transmitter modes, 83
testing installation of, 145

Rate mode, 85
RC (radio control) rates, 84

changing RC values for X4Wii, 35
tuning for X4Wii, 42

readIMU() function, 78
redundancies to handle failures, 185
regulation of drones, 196
resistors, 100, 101
return to land mode, 168
ring laser gyroscopes, 76
roll, defined, 71
roll, pitch, and yaw, 75

calculating pitch and roll in Angle mode, 84
getting values with MSP_ATTITUDE

command, 64
in MultiWii Manual mode, 45
PID settings for, X4Wii, 43
pitch and roll, 71
roll and pitch settings in MultiWii, 42
smoothing and computing the yaw rate, 85
Tait-Bryan angles of, 80
yaw, 71

S
S500 drone

flying, 161-170
frame, 117-121

completed frame, 120
following instructions, 119
S500 drone frame kit, 118

installing the power system, 123-130
determining direction of motor spin, 127
mounting the ESCs, 123
mounting the motors, 126
wiring power distribution board, 124

safety switch, installing, 144
safety, trends in, 196
Sagnac effect, 76
satellite receivers, 51
sensors

AMR, 158
failure of, 185

in MARG systems, 52
multisensor systems, effects of vibration on,

179
new technologies, 171-175

lidar, 173
optical flow sensors, 173
sonar, 172
visual odometry, 175

serial interfaces, 187
connectors, 188

Serial library (Arduino), 62
serial peripheral interface (SPI), 189
servos, standard PWM, 66, 191
shock mount, installing for PixHawk Lite

controller, 139
slow loop, 60
smartphone programs, 43, 145
soldering surface mount components, 98

hot air versus soldering irons, 104
solenoids, 101
sonar, 172
space weather, checking, 170
specialization in drones, 195
Spektrum, RC radios, 51
SPI (Serial Peripheral Interface), 189
stabilize mode, 84, 168

(see also Angle mode)
states (in MSP), 64
Syma X5, 55

T
Tait-Bryan angles of roll, pitch, and yaw, 80
Tau Labs, 17
Teensy 3.2 processor, 50

setting up Arduino IDE for use with, 57
Teensyduino package, 57
Teensyloader program, 57
telemetry data, 192
telemetry radios

for Visible Drone project, 52
installing 3DR 433 MHz radio set, 143

testing
flight test of Visible Drone, 114
ground testing Visible Drone, 112

206 Index

hardware-in-loop testing (HIL), 197
installation of control system and radios, 144
test rig for PID implementations, 94
test stand for Hubsan X4 107C, 24

three-phase motors, 132
throttle, setting, 86
thrust, 69

pitch and roll and, 71
torque, differential, 71
translational lift, 73
tuning drones, 87

(see also PIDs)
initial tuning for S500 drone flight, 168
tuning parameters for S500 drone, 162

U
ultrasonic pinger module (HC-SR04), 172
USB, using to load new code, 113

V
vibrating structure gyroscopes (see Coriolis

vibratory gyroscopes)
vibration, 177-181

balancing propellers to mitigate, 180
causes of, 178
damping and isolation, 179
effects of, 178
resonating with the frame, 178

VisDroneBlink sketch, 112
Visible Drone, building, 49-56

circuit board with motor controllers, 54
frame, motors, and propellers, 55
IMU/AHRS, 52
power, 53
radios, 51
schematic and layout for controller, 102
test rig for PID implementations, 94
uprading the CPU, 50

weight budget, 56
visual odometry, 175
voltage, 123

(see also batteries; power)
in serial connections, 188

voltage monitors, 165
vortex ring state, 74
vortex rotor state (VRS), 74

W
weather conditions for first flights, 170
weight budget (Visible Drone project), 56
Wii controllers, 9
Wire library (Arduino), 78
wiring

for S500 drone motors, not trimming, 126
safety switch, 144
telemetry radio, 143

writeMSP_ATTITUDE() function, 64

X
X4Wii, building, 31-47

assembly, 40
flashing new code, 35
parts, 32
setup and tuning, 42

modes, 45
PIDs, 43
RC (radio control) rates, 42

wiring, 37

Y
yaw, 71

(see also roll, pitch, and yaw)
PID settings for, X4Wii, 43

207Index

About the Author
David McGriffy has been a programmer since the earliest days of the personal computer.
He has piloted both radio-controlled and human-carrying aircraft, including gliders of
both sorts. He worked on GPS systems before they had even finished launching all the sat-
ellites. He’s written embedded systems code for top computer companies and for fun. He
has traveled the world to do failure-mode analyses on the control systems of offshore oil
rigs and is an inventor on a patent for a vibration analysis system. He is an expert on web-
site performance and has been published by IEEE on the subject. David runs an audio soft-
ware company, VVAudio, which produces plugins for surround sound and virtual reality. He
has a Ph.D. in Physics from the University of Texas at Austin.

Colophon
The cover image is from David McGriffy. The cover and body font is Myriad Pro; the head-
ing font is Benton Sans; and the code font is Ubuntu Mono.

	Copyright
	Table of Contents
	Preface
	Success
	Small, Medium, Large
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Chapter 1. What Makes a Drone Possible
	Motors
	Batteries
	Control Systems

	Chapter 2. Popular Drone Control Systems
	MultiWii
	Dronecode
	APM/ArduPilot
	PX4/Pixhawk

	DJI/Naza
	KK2
	CC3D/OpenPilot
	Naze32/Baseflight/Cleanflight
	Choosing a Flight Control System

	Chapter 3. Drone Activities
	Aerial Photography
	FPV Racing
	Education
	Flying

	Chapter 4. Improve the Hubsan X4
	Goals and Test Methods
	Battery Upgrade
	Prop Upgrade

	Chapter 5. Build the X4Wii
	Parts
	Build
	Flashing New Code
	Wiring
	Assembly

	Setup and Tuning
	RC Rates
	PIDs
	Modes

	Chapter 6. The Visible Drone
	A Teensy CPU
	Radios
	IMU/AHRS
	Power
	Circuit Board with Motor Controllers
	Frame/Motors/Props
	Weight Budget

	Chapter 7. Basic I/O Code
	Setting Up the IDE
	Main Loop
	RC Receiver
	Bluetooth
	Motors

	Chapter 8. Multirotor Aerodynamics
	Lift and Thrust
	Pitch and Roll
	Yaw
	Translational Lift
	Vortex Ring State

	Chapter 9. IMU/AHRS
	Gyros
	Accelerometers
	IMU
	Magnetometers

	Chapter 10. Mode and Mix
	Mode
	Angle Mode
	Rate Mode

	Mix

	Chapter 11. PIDs
	The Algorithm
	P—Proportional
	I—Integral
	D—Derivative

	Implementation
	Tuning
	Theory
	Practice

	Chapter 12. Circuit Board and Motor Controllers
	Design Tools and Files
	Component Placement
	Power Input and Distribution
	Motor Controller
	Schematic and Layout
	Construction

	Chapter 13. Construction and Tuning
	Install the Controller and Connect the LEDs
	Connect the Motors
	Install the Radios
	Complete the Frame
	Ground Test
	Flight Test and Future Work

	Chapter 14. A Bigger Frame
	The S500 Kit
	Follow the Instructions

	Chapter 15. Install the Power System
	Mount the ESCs
	Wire the Power Distribution Board
	Mount the Motors
	Determine Direction

	Chapter 16. Brushless Motors and Their ESCs
	Brushless Motors
	ESCs
	BECs

	Chapter 17. Install the Flight Controller and Radios
	Pixhawk Lite and Shock Mount
	RC Radios
	Telemetry Radio
	Safety Switch
	Testing

	Chapter 18. GPS
	History
	Theory
	HDOP
	Installation

	Chapter 19. Magnetometer
	The Earth’s Magnetic Field
	Declination and Deviation
	Magnetoresistance
	Use in Drones

	Chapter 20. Flying the S500
	Install the Props
	Connect the Battery and Voltage Monitor
	Radio and Accelerometer Calibration
	Flight Modes
	Initial Tuning
	Final Checklist and First Flight

	Chapter 21. Optical Flow, Sonar, and Lidar
	Sonar
	Lidar
	Optical Flow Sensors
	Visual Odometry

	Chapter 22. Vibration
	Causes of Vibration
	Effects of Vibration
	Damping and Isolation
	Prop Balancing

	Chapter 23. Failure Modes and Fault Tolerance
	Failsafes
	Redundancy

	Chapter 24. Interfaces
	Computer Interfaces
	RC Radio Standards
	DSM/DSM2/DSMX
	FrSky

	Servo/ESC Control
	Telemetry
	GPS

	Chapter 25. The Future
	Specialization
	Regulation
	Ease of Use
	Safety
	Human Flight

	Index
	About the Author

