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Preface

With the development of aerospace technology, information technology, and electronic warfare
(EW) technology in last few decades, space electronic reconnaissance (SER) technology has
drawn great attention for its wide coverage and full time, 24/7 interception of a transmitting
source providing electronic intelligence (ELINT), communication intelligence (COMINT), or
signal intelligence (SIGINT). Various electronic reconnaissance systems have been developed
by the United States, Russia, Japan, and the European Union and their importance has been
noticed in recent conflicts. Not surprisingly, China has also made great progress in this field in
recent years. In the process of electronic reconnaissance, one of the crucial tasks is to locate
the transmitting source, or the transmitter on the earth or in space. Due to the motion of the
satellite in an orbit and the relatively high altitude of the reconnaissance platform, the SER
system differs greatly from the traditional passive detection and location system on land and
in oceans in terms of geolocation theory, method, and system realization. Therefore, it is rather
meaningful and useful to research the geolocation theory and the method for the SER system.
As the SER system is mainly used for military intelligence (such as ELINT, COMINT, and

SIGINT), early warning, battlefield awareness, and electromagnetic spectrum survey, the rele-
vant technologies are always confidential so it was rare to find detailed technological literature.
However, there is still some theoretic or technological literature on SER geolocation, which
are dispersed among different reports, journal papers, and books, but until now there has been
no academic book on the SER geolocation technologies, which is far from being commensu-
rate with the current ever-increasing development in this field. Therefore, after organizing the
reports and papers written by our research group in this field in the last decade and some of
the relevant technological literature, we wrote this book, which covers theory and methods on
SER geolocation.
To introduce the theory andmethods on SER geolocation systematically, this book covers the

development of concepts, theories, technologies, andmethods on SER geolocation over the last
decade. Firstly, the concept and system of SER geolocation are introduced. The geolocation
theory by a single satellite based on the line-of-sight (LOS) information, which is measured
by the direction finding (DF) system, was discussed. Then the geolocation theory by multi-
ple satellites based on the time difference of arrival (TDOA), geolocation by dual-satellites
based on TDOA and frequency difference of arrival (FDOA), geolocation by a single satellite



xiv Preface

based on particle kinematics and geolocation by near-space platform for geolocation ground
transmitters were introduced in detail. At the same time, the orbit determination problem of
a satellite using DF and frequency information by an aerospace platform in deep space was
analyzed and explored.
There are 11 chapters in this book: an introduction of SER localization technology, knowl-

edge about the satellite orbit and basic terminology of geolocation, single-satellite geolocation
technology based on DF, three-satellite geolocation technology based on TDOA, two-satellite
geolocation technology based on TDOA and FDOA, the single-satellite localization tech-
nology based on kinematics theory, localization principles of near-space platform electronic
reconnaissance systems, the orbit determination of single satellite-to-satellite tracking
using bearings only (BO) information, the orbit determination of single satellite-to-satellite
tracking using bearings and frequency information, and the orbit determination of single
satellite-to-satellite tracking using frequency only (FO) information. At the end of the book,
the perspective of the SER technology is given.
This book might be helpful to engineers who are researching the space information coun-

termeasurement, the aerospace application system, EW, intelligence reconnaissance, and the
signal and data processing system. It might also be useful to graduate students or teachers
researching aerospace science and technology, information and communication engineering,
electrical engineering in university or college, or the administration officers in the defense
industry and military officers in the army.
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1
Introduction to Space Electronic
Reconnaissance Geolocation

1.1 Introduction

With the rapid development of aerospace technology, space has gradually become the strategic
commanding point for defending national security and providing benefits. As the electronic
reconnaissance satellite is able to acquire the full-time, all-weather, large-area, detailed, near
real-time battlefield information (such as force deployment, military equipment, and operation
information), it has become a powerful way to acquire information and plays an important role
in ensuring information superiority [1, 2]. In the early 1960s, the United States launched the
first general electronic reconnaissance satellites in the world – Grab and Poppy – to collect
electronic intelligence (ELINT) on Soviet air defense radar signals. Intelligence from Grab
and Poppy provided the location and capabilities of Soviet radar sites and ocean surveillance
information to the US Navy and for use by the US Air Force. This effort provided significant
ELINT support to US forces throughout the war in Vietnam [3].
Space electronic reconnaissance (SER) refers to the process in which signals from various

electromagnetic transmitters are intercepted with the help of man-made satellites, and then
features of signal are analyzed, contents of signal are extracted, and the position of transmit-
ters are located [1–5]. The main tasks for space reconnaissance includes: intercepting signals
from various transmitting sources such as radars, communication devices, navigation beacons,
and identification friend or foe (IFF) transponders, determining the tactical or technological
parameters and location, and identifying its type, purpose, and the related air defense system
and weapon system; intercepting and analyzing signals of remote control and telemetry and
estimating its weapon system performance, experimental situations and development trend;
intercepting and monitoring radio communications, analyzing the signal features and deter-
mining the location of the transmitters, interpreting and deciphering the communication con-
tents fromwhich the potential military actions and operation plans can be perceived; long-term

Space Electronic Reconnaissance: Localization Theories and Methods, First Edition.
Fucheng Guo, Yun Fan, Yiyu Zhou, Caigen Zhou and Qiang Li.
© 2014 John Wiley & Sons Singapore Pte Ltd. Published 2014 by John Wiley & Sons Singapore Pte Ltd.
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monitoring of the changes in the electromagnetic transmitters and obtaining the information
such as electronic equipment development status and rules of force deployment and activities.
According to the intended purpose, the application of the SER system can be classified

into radio frequency spectrum surveillance, ELINT, communication intelligence (COMINT),
signal intelligence (SIGINT), battlefield surveillance, and characteristic measurement intel-
ligence reconnaissance. The major reconnaissance objects are transmitters from air, space,
land, and sea. The major reconnaissance signal types include radio signals, short wave and
ultra-short communication signals, satellite communication signals, microwave and troposcat-
ter communication signals, data link signals, IFF signals, navigation signals, and space data
link signals. The band of the reconnaissance objects ranges from short wave, ultra-short wave,
VHF (very high frequency), UHF (ultra-high frequency, L band, S band, C band, X band, Ku
band, Ka band to EHF (extremely high frequency) band, while the frequency can range from
0.3MHz to 70GHz.
Generally speaking, SER tasks are mainly conducted by electronic reconnaissance satellites

on a low earth orbit (LEO) (which includes a sun synchronous orbit, polar orbit, the orbit with
the inclination near the critical value, and an inclined orbit) and electronic reconnaissance
satellites on a medium earth orbit (MEO) and a high earth orbit (HEO) (highly elliptical orbit
or geostationary orbit), and a near-SER (vehicle in the stratosphere or a suborbital vehicle).
The altitude of the electronic reconnaissance satellites on a low orbit is relatively low, most
often 300–1100 km with an inclination greater than 50∘. Thus a relatively accurate location
for the transmitters can be achieved. These satellites can also be applied to monitor the emit-
ters on the sea through the reconnaissance and location of the radar or communication signal
on vessels. The reconnaissance can be run with one satellite or a multiple-satellite network.
Typical reconnaissance systems are the US Semos-F series electronic reconnaissance satellite,
the USWhite Cloud series electronic ocean surveillance satellite and the former USSR Tselina
series electronic reconnaissance satellite. The orbit altitude of a synchronous orbit reconnais-
sance satellite is generally about 36 000 km. The significant advantages are its wide coverage,
stability over earth and all-weather, 7/24 continuous reconnaissance, and monitor of the elec-
tromagnetic signals from one particular area on earth. A typical HEO reconnaissance system is
the US Magnum series electronic reconnaissance satellite. A highly elliptical orbit electronic
reconnaissance satellite is primarily used for the continuous reconnaissance and monitoring
of the areas with high altitude. It can make up for the disadvantages of poor reconnaissance
performance of a synchronous orbit electronic reconnaissance satellite in such areas. A typical
system is the US Jump Seat series electronic reconnaissance satellite.
As position information is one of the most important parts in the intelligence generated

from the electronic reconnaissance (ER) system, location technology plays a crucial role in the
SER and determines the means of operation for the entire reconnaissance satellite. This book
introduces various concepts, theories, andmethods on electronic reconnaissance geolocation in
great detail, and discusses the direction-finding geolocation, geolocation based on TDOA (time
difference of arrival), geolocation based on TDOA–FDOA (frequency difference of arrival),
geolocation by a single satellite based on kinematics, and geolocation based on a near-space
platform, and at the same time analyzes and explores in depth the orbit determination of a
satellite using direction finding and frequency information from a space platform.
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1.2 An Overview of Space Electronic Reconnaissance Geolocation
Technology

According to the space location of the transmitters, two types of signals can be intercepted from
space: the transmitters on the earth’s surface (land, sea, and air) and the satellite transmitters in
space. According to different observation platforms, the electronic reconnaissance system can
be based on a satellite or a near-space platform. Therefore, three reconnaissance geolocation
technologies are discussed here, that is, geolocation of a ground emitter, geolocation of a space
emitter, and geolocation using a near-space platform.

1.2.1 Geolocation of an Emitter on the Earth

Through the geolocation of the transmitters of the earth’s surface, information from various
radars, wireless communication stations, and navigation stations can be revealed, which is
rather meaningful and valuable for the military. The earth’s surface here is in a broad sense
that covers land, sea, and lake surface and low altitude air.
The fundamental characteristic of SER geolocation is to locate the satellite through the inter-

section between the geolocation line and the a priori information of the ground emitter on
the earth’s surface, as shown in Figure 1.1. According to the number of electronic recon-
naissance satellites, the geolocation method can be classified into the geolocation method by
a single satellite, the geolocation method by dual-satellite, and the geolocation method by
multiple satellites.

1.2.1.1 Geolocation Method by a Single Satellite

Naturally, using this method, the geolocation can be done using one satellite. This method can
be further classified into:

1. The geolocation method by a single satellite based on the line of sight (LOS).
This is a traditional and widely used method [6–10], which locates the transmitters

through the intersection between the oriented LOS generated from the two dimensional
(2D) direction finding system on the satellite with the earth’s surface, as shown in
Figure 1.2. The advantage of this method is that it can realize ‘instantaneous’ geolocation,
sometimes called a ‘single-pulse geolocation’. However, as the LOS in a 3D space must
be determined with the 2D direction finding antenna array or a multiple beam antenna,
large numbers of antennas and receivers are, generally speaking, required. In addition, the
attitude measurements of the observing satellite, including yaw, pitch, and roll angle, also
need to be accurate enough.

2. The geolocation method by a single satellite based on particle kinematic parameters.
This novel method locates the transmitters by the rate of changing information, such as

the frequency of the received signal and/or the time of arrival (TOA), or the phase rate
of changing information of a long baseline interferometer (LBI) over a period of time. It



4 Space Electronic Reconnaissance

draws the relative moving information from kinematic features of the transmitters against
the satellite observatory platform. Featured with a payload of small volume, light weight,
and low power consumption, it is suitable for a microsatellite or a nanosatellite.

According to the orbit altitude, the geolocation by a single satellite based on the LOS can be
classified into three types: geolocation by a single LEO satellite, geolocation by a single HEO
satellite, and geolocation by a single satellite on a highly elliptical orbit.

Earth Transmitter
On Earth

Ground
Station 

Reconnaissance
Satellite

Figure 1.1 Geolocation of an emitter on the earth’s surface by a single LEO reconnaissance satellite

y

x

z SER Satellite

Earth

LOS line

Transmitter

Figure 1.2 The geolocation method used by a single satellite based on the line of sight (LOS)
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1. The geolocation by a single LEO satellite
As the LEO satellite’s orbit is low, generally 500–1100 km with an inclination of more

than 50∘, it is closer to the transmitters on earth compared with the HEO satellites, the
signals intercepted by satellites are stronger, and the position can be estimated quite accu-
rately. In addition, its cost is low for production and launching as smaller, low-gain antennas
can be applied. Therefore, this was one of first systems developed in history, such as the
first ELINT satellites – Grab and Poppy satellite series of the United States. These satellites
can also be applied to monitor the targets on the sea surface through the reconnaissance and
geolocation of the radar or communication signal on vessels. The reconnaissance can be
run with one satellite or a multiple satellite network. Typical reconnaissance systems are the
US Semos-F series electronic reconnaissance satellite, the USWhite Cloud series electronic
ocean surveillance satellite, and the former USSR Tselina series electronic reconnaissance
satellite. Its disadvantage is that as the LEO satellite’s orbit is low the reconnaissance of
the same place cannot be kept for long and the instantaneous coverage field of the satellite
may be narrow compared with other orbits.

2. The geolocation method of a single HEO satellite [1–5]
As the satellite is far away from the transmitters, for example, the altitude of the earth’s

stationary orbit is approximately 35 800 km, the advantage is that the coverage area is very
wide. It can remain stationary over the earth and all-weather, full-time (7/24) monitoring
over one area, especially the hotspot ones, can be conducted. In comparison with the LEO
satellite, there is no orbit revisit period problem for HEO satellites. They can transmit the
reconnaissance data downwards to a ground station for real-time support of tactical opera-
tions, which is very meaningful for military strategy and tactics. A typical reconnaissance
system is the USMagnum series electronic reconnaissance satellite. However, as the emitter
on earth is far away from the satellite, the intercepted signals are quite weak. It is necessary
to intercept the signals with a large-diameter, high-gain antenna. As a result of the long
distance, there is a high demand placed upon direction finding accuracy for geolocation of
the emitter on earth, which makes it quite challenging as far as technology is concerned.

3. The geolocation method by a single satellite on a highly elliptical orbit based on direction
finding
The apogee of such a satellite is approximately 38 720 km and perigee is about 400 km

with inclination of 63.4∘. The satellite is primarily used for the continuous reconnaissance
and monitoring of the areas with high altitude. It can conquer the disadvantages of poor
reconnaissance performance of a synchronous orbit electronic reconnaissance satellite in
such areas. Aypical system is the US Jump Seat series electronic reconnaissance satellite.

1.2.1.2 The Geolocation Method Based on TDOA–FDOA of a Dual Satellite

Naturally, with this method, dual satellites are formed in one group for reconnaissance. If
the signals from the same transmitters can be intercepted by dual satellites at the same time,
the geolocation of the emitter on earth could be achieved after signal processing and location
estimation [1–5, 11–16].
Generally speaking, in such a system, two satellites may cooperate with each other and are on

a same orbit to measure the signal TDOA and FDOA parameter. The basic principle is: as the
distance between the ground emitter and two satellites are different, the signal arrives at two
satellites at different times. If the TDOA can be calculated, a hyperboloid of revolution with
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Figure 1.3 The geolocation method by dual satellites

two satellites as the focus can be determined. Additionally, as speed, that is, radial velocity
of two satellites, makes a different projection on the line between the transmitter and recon-
naissance satellite, the Doppler frequency shift of the intercepted signals will not be the same.
Meanwhile, measurement of the FDOA can be applied to determine a constant Doppler dif-
ference curve of revolution with two satellites as the focus. Making an intersection between
the hyperboloid of revolution based on equal TDOA and equal FDOA curves of revolution, we
can get a circle whose axis is the line of the satellites. Then if we make an intersection between
the circle and the earth’s surface, we will get two positions. Delete the ambiguous one and we
can locate the transmitters. This is shown in Figure 1.3.
Because the LEO satellites move fast and the Doppler frequency difference between two

satellites is significant, this method is featured as geolocation by short time accumulation
and high accuracy for an LEO dual-satellite reconnaissance system. If dual satellites are on
the same orbit, the distribution of geolocation is irrelevant with latitude compared with the
three-satellite TDOA geolocation system. As the geolocation by the TDOA and FDOA is on
the basis of a cross-ambiguity function (CAF) over the length of a certain duration of signals,
the geolocation of the multiple signals can also be realized, even if they are at the same fre-
quency and transmitted at a same time. The disadvantage of this method is that there is the poor
geolocation accuracy area near to the subsatellite track. It is a result of the geolocation circle
formed by the TDOA and FDOA plane and the earth’s surface being nearly tangential in the
area close to the subsatellite track. In addition, in order to measure the TDOA and FDOA from
received signals in the process of geolocation, the correlation between the two signals must
be computed and the signal or signal data should be sent to the same place, such as the pri-
mary satellite, ground station, or the tracking and data relay satellite system (TDRSS). Thus,
it exerts a high demand upon the high-speed satellite-to-satellite data link or satellite-to-land
data link, and the synchronization of time and frequency between the satellites. Besides, left or
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right ambiguity is another issue that should be deal with – it is hard to judge whether the target
transmitters are located on the left or the right of a subsatellite track in mathematics, that is, the
ambiguous geolocation problem. We have to resort to other technical measures such as direc-
tion finding information to solve such a problem. Therefore, technically speaking, it is more
complicated to realize the dual-satellite TDOA–FDOA geolocation system compared with a
single satellite based on the LOS and geolocation by multiple satellites based on TDOA.

1.2.1.3 Geolocation Method by Multiple Satellites Based on TDOA

This system locates the transmitters by a set of N satellites (N ≥ 3). Among the multiple satel-
lite geolocation system based on TDOA, the three-satellite geolocation based on TDOA has
been discussed in many papers [1–5, 11, 17–21].
This method locates the emitters on the earth’s surface by TDOAs of the signals arriving

at multiple satellites. The basic theory is that as distances between the emitters on earth and
different satellites are different, the times of the transmitted signals arriving at the transmit-
ters are also different. So the TDOA of the intercepted signals at any two satellites from the
transmitters can determine a hyperboloid of revolution with two satellites as the focus point.
The TDOA of the signals arriving at another two of the satellites from the transmitters can
determine another hyperboloid of revolution, with two satellites as the focus. Thus the two
hyperboloids of revolution can be intersected by each other to form a curve, which further
intersects with the earth’s surface to obtain two points, which are generally located at the two
sides of the earth. When the ambiguous point is ascertained (because normally the ambiguous
point is in the other hemisphere of the earth and the transmitting source cannot be at such a
point from a priori knowledge), the position of the transmitters on the earth’s surface can be
located. This process is shown in Figure 1.4.
In the geolocation process of the transmitters, we need the a priori information of the trans-

mitters on the earth’s surface so that the geolocation is influenced by the altitude error of

O1 O0

O2

Isochrone of O0 and O1

Earth
Surface

Isochrone of O0 and O2

Emitter

Figure 1.4 Geolocation by three satellites based on TDOA
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the transmitters. However, as the altitude of the emitter on an ocean is always approximately
zero, the acceptable geolocation accuracy can be achieved. Using this method, surveillance
over the transmitters on an ocean can be realized in a very large area (3000–7000 km diame-
ter). An LEO constellation by three to four satellites based on the TDOA is generally formed.
For example, in typical TDOA satellites – US first and second generation White Cloud series
electronic ocean surveillance satellites – the orbit altitude is approximately 1100 km and incli-
nation is about 63∘.
This method is featured with relatively simple, high accuracy in large areas as well as the

capability of instantaneous geolocation (sometimes called ‘single-pulse geolocation’). In the
coverage area of multiple satellites, the highest accuracy is near the subsatellite point, which
makes it very suitable for the geolocation of strong power pulsing signal sources like radar.
The disadvantage is the changing geolocation accuracy within certain ranges and poor per-
formance when three satellites are in an approximate straight line due to the unstable satellite
geometry, because satellites are generally not on the same orbit. In addition, there are other
problems such as the ‘common view’ problem of three satellites, which means that multi-
ple satellites should intercept the same pulse, the TDOA ambiguity problem of a high pulse
repetition frequency (PRF) radar signal would occur, the matching problem of pulse and the
synchronization problem of the time between satellites would interfere, and so on.

1.2.2 Tracking of an Emitter on a Satellite

The geolocation of a satellite emitter refers to tracking of the emitter satellite through the
geolocation of its signals by another reconnaissance satellite. As the satellite moves accord-
ing to certain orbit rules in space, we also call this process an orbit determination process. Its
application is wide and it can be classified into two groups: the first application is for the space-
craft space telemetry, tracking, command, and monitoring (TTC&M), which aims at tracking
a cooperative satellite; the second application aims at tracking uncooperative satellites through
which the electromagnetic surveillance of the space emitters can be achieved and the informa-
tion of the orbit, status, and function of satellites can be deduced. In this book we will focus
on the second group and take the issue of orbit determination of a moving satellite transmitter
by a single satellite into consideration.
According to the type of signal, it can be classified into two groups. The first one is the LOS

geolocation system, or bearings only tracking system, which is measured by photoelectric sen-
sors such as a camera or infrared imaging sensor. The tracking of the emitter of a satellite can
be made through measurement of the emitter’s LOS information. The second one is the pas-
sive tracking system which intercepts the radio signal transmitted from the emitter. With some
parameter estimation and tracking algorithms, the location, speed, or elements of the uncoop-
erative satellite orbit can be identified. The signals intercepted from the satellite are mostly the
satellite-to-satellite data-link signals, such as communication, command and control, naviga-
tion or telemetry signals. In this way uncooperative orbit determination and tracking can also
be achieved.
As shown in Figure 1.5, when signals are sent from the target satellite to the geostationary

data relay satellite, such as the TDRSS, with the analysis and parameter estimation of the
signals intercepted by a reconnaissance satellite, the location, speed, and elements of orbits of
the uncooperative satellite can be estimated.
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Figure 1.5 Satellite-to-satellite geolocation

With the passive working mode on photoelectric sensors (such as a camera or infrared imag-
ing sensor), only the target’s bearings information can be obtained. The bearings or LOS can
be measured accurately with an accuracy of approximately 4′′–10′′ in some applications. On
the other hand, after passively intercepting radio signals, the target’s bearing, frequency, and
its changing rate may also be measured. The accuracy of these parameters is related to the sig-
nal processing algorithms and device technologies. Generally speaking, the latter’s accuracy
is lower than the accuracy achieved with the former one.

1.2.3 Geolocation by Near-Space Platforms

Near space refers to the space between the highest altitude at which a contemporary air-
plane can fly and the lowest altitude at which a satellite can fly [22–24]. Currently speaking,
aircraft in the near space include a free balloon, airship, unmanned aerial vehicle (UAV),
and hypersonic UAV. As the full-time, large-scaled and all-weather electronic surveillance
can be conducted over one area, research of this geolocation application is rather useful.
The geolocation by a near-space platform can be classified into the geolocation by multi-
ple near-space platforms, such as the geolocation based on TDOA and the geolocation by a
single near-space platform based on particle kinematics.
Based on the ground and space emitter, this book introduces various geolocation methods

and their theories, methods, analysis, and technologies. We hope it will be beneficial to your
understanding of the SER geolocation theory and methods.

1.3 Structure of a Typical SER System

Normally, the electronic reconnaissance satellite consists of the satellite platform and the effec-
tive payload. As the carrier of the effective payload, the satellite platform is composed of
TTC&M equipment, power, and shell. With reference to the SER satellite, the effective pay-
load refers to the electronic reconnaissance equipment. Its primarily purpose is to intercept,
analyze, and store the electromagnetic transmitter signals of the electronic equipment. The
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Figure 1.6 Components of the electronic reconnaissance effective payload

effective payload consists of an antenna, receiver, signal processor, system administration and
control equipment, and storage and transmittal equipment. For example, the typical structure
of an LEO electronic reconnaissance satellite is shown in Figure 1.6.
The functional parts of the effective payload in an SER satellite are listed as follows [25,

26]:

• Reconnaissance antenna
It receives the intercepted electromagnetic signals with some gain, including radar, com-

munication, and telemetry signals. The type of antenna varies according to the task of the
satellite. The narrow-beam scanning antenna, multibeam antenna, phase/amplitude compar-
ison antenna, or phased-array antenna can be used.

• Electronic reconnaissance receiver (ELINT receiver)
The electronic reconnaissance receiver is also called the electronic intelligence receiver.

It is used to magnify, control, and filter the signals in order to extract particular signals. As
a result of the high altitude and wide coverage area of the satellite, it is facing a complicated
electromagnetic signal environment. In order to intercept different sources simultaneously,
the receiver needs to have a wide frequency coverage, high interception probability, high
sensitivity, high accuracy, and strong adaptability of different unknown signals.

• Signal processor
It processes and analyzes parameters the intercepted analog signals from the receiver by

changing them into digital signals. As the satellite equipment is strictly limited in volume,
weight, and power consumption, the receiver generally performs some simple operations
and compares them with those of ground station signal processing, primarily involving
recording, storage, or direct transmission.
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• Storage and relay equipment
It stores the signal data and processing results collected on the satellite temporarily and

transmits the data to the ground stations when the satellite is near ground stations. It can be
classified into satellite-to-ground and satellite-to-satellite types. The former’s equipment is
used to send the information at the terminal to the satellite earth station, but by the latter
the reconnaissance data are transmitted to the ground through the geostationary data relay
satellite by the satellite-to-satellite link.

• System control and administration equipment
It receives directions and commands from the ground and controls the system to operate

according to the task mode set by the ground.
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2
Fundamentals of Satellite Orbit
and Geolocation

2.1 An Introduction to the Satellite and Its Orbit

An artificial earth satellite, also called an artificial satellite, or satellite for short, is an unmanned
spacecraft that orbits earth at least once. Since the satellitemoves in a regular and cyclicmanner
around the earth, the fixed, repeated movement path in the inertial coordinate system of the
satellite is called the orbit.

2.1.1 Kepler’s Three Laws

The revolution of the satellite around the earth is very similar to that of planets around the Sun,
and its motion basically conforms to Kepler’s Laws. If only the ‘two bodies’ of the spacecraft
and central body of the earth are considered without taking into account any effects of other
factors, that is, assuming that the earth is a uniform sphere and the satellite is a particle, the
motion of the satellite can be considered to be a kind of two-body motion. This two-body
motion conforms to the restrictions of Kepler’s Laws [1–4].

2.1.1.1 Kepler’s First Law

The satellite moves in a quadratic curve with the earth as one focus of the curve. In a polar
coordinate system, the satellite motion can be described as

r =
p

1 + e cos 𝜃
. (2.1)

where e is eccentricity, generally 0≤ e< 1 for an earth satellite that is making elliptic motion;
p = h2∕𝜇 = a(1 − e2) is the semi-latus rectum, where h is momentum moment of the satellite
moving relative to the earth center, and 𝜇 is Kepler’s constant: 𝜇= 398 600.4418 km3/s2.
As shown in Figure 2.1, the point most distant from the center of the earth in the orbit of a

satellite is called the apogee; the point nearest the center of the earth is the perigee. In general,
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Figure 2.1 Diagram of a satellite orbit

hmax and hmin, the heights of the apogee and perigee of the satellite above the ground, are given
first for the design of the satellite orbit, based on which other parameters of the elliptical orbit
can be determined:

Semi-major axis of ellipse∶ a =
hmax + hmin

2
+ Re, (2.2)

Focal length of ellipse∶ c = ae, (2.3)

Semi −minor axis of ellipse∶ b = a
√
1 − e2, (2.4)

Eccentricity∶ e = c
a
, (2.5)

where Re is the earth radius.

2.1.1.2 Kepler’s Second Law

In equal periods of time, the area swept out by the line from the earth to the satellite will be
the same when the satellite moves on the orbit. According to this law, instantaneous velocity
of the satellite with any radius vector r can be obtained:

𝑣(r) =
√
𝜇

(2
r
− 1
a

)
, (2.6)

where a is the semi-major axis of orbital ellipse and r = ‖r‖ is distance scalar of the radius
vector r. This law reflects the proportional relationship between the speed of the satellite and
its location on the orbit: the speed of the satellite in the orbit decreases as its distance from the
earth increases.

2.1.1.3 Kepler’s Third Law

The square of the period T of the satellite to complete one cycle around the earth is directly
proportional to the cube of the semi-major axis of the orbital ellipse a:

T2 = 4𝜋2

𝜇
a3. (2.7)
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Figure 2.2 Orbits with different eccentricities

This relationship is essentially based on the fact that the force of gravity G to the satellite
is inversely proportional to the square of the distance r2 between the satellite and the earth
center. This force of gravity is center gravity, also called two-body gravity. The solution of the
two-body motion equation fully conforms to the Kepler’s three laws. Thus a two-body orbit is
also called a Keplerian orbit.

2.1.2 Classification of Satellite Orbits

Common satellite orbits can be classified according to four aspects, that is, eccentricity, incli-
nation, altitude, and relation to the earth revolution [1, 3, 4].

2.1.2.1 Classification by Orbit Eccentricity

According to the shape, the satellite orbit can be classified as a circular orbit and an elliptical
orbit. As shown in Figure 2.2, the orbit with eccentricity e= 0 is a circular orbit; the orbit with
eccentricity 0< e< 1 is an elliptical orbit. If e is close to 1, the orbit is a highly elliptical orbit
(HEO).

2.1.2.2 Classification by Orbit Inclination

According to different inclinations i between the satellite orbital plane and the earth equatorial
plane, the orbit can be classified as an equatorial orbit with i= 0∘ (e.g., geostationary orbit
(GEO)), polar orbit with i= 90∘, and other inclined orbits with different inclinations.
According to the relation between the direction of satellite motion and its rotation direction,

an orbit with an inclination of 0–90∘ is called a prograde orbit. Conversely, if the inclination
is 90–180∘, the orbit is called a retrograde orbit. Most satellites are launched into a prograde
orbit. In such a case, the earth’s rotational velocity will provide a part of the orbital velocity,
thus saving energy required by the satellite launch.



16 Space Electronic Reconnaissance

2.1.2.3 Classifications by Orbital Altitude

According to the orbital altitude, generally the satellite orbit can be classified into GEO,
medium earth orbit (MEO), and low earth orbit (LEO).

1. Geostationary orbit (GEO)
The satellite in a GEO has an orbital period T equal to the earth’s rotational period, and

the orbit is a circular orbit in the earth’s equatorial plane, e= 0, i= 0. Thus, the GEO is an
orbit 35 786.04 km above the earth’s equator. To ground observers, satellites in such an orbit
appear stationary in the sky at their respective locations. Making full use of this relatively
stationary feature can simplify satellite navigation, communication, and reconnaissance
systems. Three to four satellites are enough to provide global coverage. The GEO is themost
used satellite orbit so far.

2. Medium earth orbit (MEO)
An orbit ranging in altitude from 10 000 to 15 000 km is a MEO. In general, 10–15 satel-

lites in an MEO can provide global coverage.
3. Low earth orbit (LEO)

In general, an orbit with an altitude below 1500 km is a LEO. More than 40 satellites in
such an orbit can cover the whole earth.

A satellite in a HEO has a much longer working life than that in an LEO, since it has less
atmospheric effects. Moreover, a satellite in a HEO has a wider coverage range than that in
an LEO. However, due to some specific demands of satellite missions (e.g., satellite imaging
reconnaissance), satellites prefer to work in the LEO.
The minimum altitude at which, in general, a satellite can maintain free flight is a critical

orbital altitude. This altitude is usually 110–120 km. If the satellite’s flight altitude is lower
than this critical orbital altitude, the satellite will fall down to earth in the end due to the effect
of atmospheric drag. In such a case, with the help of the satellite’s power and control system,
the effect of atmospheric drag perturbation can be offset. An orbit with this flight altitude is
defined as an ultra-low earth orbit.

2.1.2.4 Classification by Relationships between Satellite Revolution and Rotation
Periods

According to this classification method, satellite orbits can be classified as geosynchronous
orbit, GEO, sunsynchronous orbit, recursive orbit, quasi-recursive orbit, and so on.

1. Geosynchronous orbit
An orbit in which the speed of a satellite orbiting the earth coincides with the speed of

earth rotation is called a geosynchronous orbit. An orbit in which the period of a satellite
orbiting the earth is an integral multiple of the earth’s rotation period is called a supersyn-
chronous orbit. The synchronous orbit and supersynchronous orbit are designed to synchro-
nize the satellite with the earth.

2. Geostationary orbit
A special case of the geosynchronous satellite is the geostationary satellite. When orbital

eccentricity and inclination are close to zero, a satellite in such an orbit appears stationary
relative to the earth’s location. This type of satellite is called a geostationary satellite. At
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present, many international and domestic communication satellites use this method of syn-
chronization. Besides communication satellites, a great number of satellites such as a TV
broadcast satellite, early warning satellite, navigation satellite, and weather satellite often
use GEOs. A geostationary satellite has the following characteristics:

• Orbital period: 23 hours 56minutes 4.09 seconds;
• Satellite altitude: 35 786.04 km;
• Satellite velocity: 3.074662 km/s;
• Orbit inclination: 0∘; and
• Orbit eccentricity: e= 0.

Currently, there are a great number of satellites in the GEO. Due to limited orbital posi-
tion, in 1979 the World Administrative Radio Conference reduced the minimum spacing
between orbital satellites to 2.5∘.

3. Sunsynchronous orbit
The included angle between a satellite’s orbital plane and equatorial plane usually

remains changeless, but will revolve around the earth’s rotation axis. An orbit in which the
revolution direction of the orbital plane around the earth’s rotation axis is the same as that
of earth revolution and its angular velocity is equal to the average angular velocity of the
earth revolution is called a sunsynchronous orbit. The direction and period of rotation of a
sunsynchronous orbital plane are the same as the direction and period of an earth revolution.
The relationship among the semi-major axis, eccentricity, and inclination of the sunsyn-

chronous orbit is
cos i = −K(1 − e2)2a7∕2, (2.8)

where K > 0 is a constant.
From expression (2.8) it can be seen that the inclination i of the sunsynchronous orbit

must be more than 90∘. In general, the inclination is between 90∘ and 100∘, that is to say,
the sunsynchronous orbit is usually a retrograde inclined orbit and the orbital altitude is
500–1000 km. When the orbit inclination reaches the maximum degree, 180∘, it is not
difficult to realize that the altitude of a circular sunsynchronous orbit will be lower than
6000 km. Orbit inclination will determine satellite altitude. The larger the inclination, the
higher is the satellite.
Due to a retrograde orbit, the satellite will be launched against the direction of the earth’s

rotation. It therefore needs greater thrust from the carrier rocket.
A satellite in a sunsynchronous orbit revolves in such a way that the satellite keeps the

same local time, same direction, and same sunlight condition every time it passes over a
ground emitter of the same latitude. The included angle between the orbital plane of a sun-
synchronous satellite and the sunshine direction will remain changeless during a satellite
revolution. Moreover, the sunsynchronous satellite orbit and sun keep a fixed relative ori-
entation, thus helping long-term and stable satellite work using solar energy and satellite
work for optical imaging.
Based on the above-mentioned characteristics, a sunsynchronous orbit is very useful for

military, remote sensing, weather forecasting, and resources survey satellites.
4. Recursive orbit

An orbit in which a subsatellite track coincides regularly is a recursive orbit. If the num-
ber of regressions is N, the track of the satellite orbiting the earth for N circles in a day just
coincides with the original track, that is, regression to the original orbit. If the regression
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period of the satellite is not a day, but several days or weeks, this type of orbit is called a
quasi-recursive orbit.
If the satellite is required to observe repeatedly a specific area on the earth’s surface

at a specific time every day, a sunsynchronous recursive orbit is required. Combining the
sunsynchronous orbit and the recursive orbit, this type of orbit can be used for repeated
observations at the same local means solar time in most areas on the earth’s surface on
the same latitude at regular intervals. Earth resources survey satellites and reconnaissance
satellites often use this orbit.

5. Polar orbit
An orbit with an inclination i= 90∘ is a polar orbit. Only a satellite in a polar orbit can

pass above or nearly above both poles of the earth on each revolution. In engineering, an
orbit with an inclination deviating 90∘ but in which a satellite can still pass above both poles
is also called a polar orbit, for example, a sunsynchronous orbit. In orbit design, a polar orbit
is often designed for global coverage. Satellites in a polar orbit such as a weather satellite,
photographic reconnaissance satellite, and remote-sensing resources satellite can ‘see’ the
whole earth surface including both poles.

2.2 Orbit Parameters and State of Satellite

2.2.1 Orbit Elements of a Satellite

From theoretical mechanics we can see that, if we take the earth as a regular sphere with
uniformly distributed density, the earth’s attraction to a satellite can be equivalent to a particle,
that is, all the mass is concentrated on the earth’s center. Thus, the earth and the satellite form
a simple two-body system. Since the satellite mass m is very small relative to the mass of the
earth, the effect of the satellite on gravity is negligible. In such a case, according to the law of
universal gravitation, the force of gravity F upon the satellite is [1, 3, 4]

F = −GMm
r2

r
r
, (2.9)

where G is universal gravitational constant, r is the position vector of the satellite in ECI
(earth-center inertial) coordinates, and r is the distance from the center of mass of the satellite
to the earth center, M is the mass of earth.
According to Newton’s Second Law, the satellite motion equation can be expressed as

r̈ = F
m

= −GM
r2

r
r
= −𝜇r

r3
, (2.10)

where 𝜇 = GM is the gravitational constant. According to the latest recommen-
dations of the International Astronomical Union (IAU), the gravitational constant
𝜇 = 3.986 004 415 × 1014m3∕s2. In the case where there are no special instructions,
this value should be used as the gravitational constant in future simulations. From expression
(2.10) we can see that the two-body motion equation is a ternary second-order differential
equation. In solutions of this equation, six integral constants are required to be determined to
describe the motion of the satellite in the inertial coordinates system. We often call these six
integral constants orbit elements.
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Figure 2.3 Satellite orbit elements

The above-mentioned six integral constants are usually expressed by the semi-major axis
a, eccentricity e, inclination i, right ascension of the ascending node (RAAN) Ω, argument
of perigee 𝜔, and mean anomaly M or M0(𝜏). They are called orbit elements. Complete
descriptions are shown in Figure 2.3 [1, 3–5].
As shown in Figure 2.3, the semi-major axis a and eccentricity e determine the size and

shape of an elliptical orbit; inclination i is defined as the angle between the orbital plane and
the earth’s equatorial plane, which is positive at the ascending node anticlockwise from the
equatorial plane, ranging from 0∘ to 180∘; RAAN Ω is defined as the geocentric angle of the
ascending node and the spring equinox in the ECI coordinates system. There are two inter-
section points of the satellite orbit and the terrestrial equator. One is the ascending node, a
point at which the orbit crosses the equator going from south to north. RAAN is expressed
positive anticlockwise from the axis of ECI coordinates pointing to the spring equinox, rang-
ing from 0∘ to 360∘. Inclination i and RAAN Ω determine the location of the orbital plane in
space. Argument of perigee 𝜔 is defined as the angle between the ascending node in the orbital
plane and apse line of the perigee, which is positive from the ascending node in the direction
of satellite revolution, ranging from 0∘ to 360∘. The argument of the perigee determines the
azimuth of the ellipse in the orbital plane. The mean anomalyM determines the location of the
satellite in the orbital plane. Refer to the definition in Section 2.2.2. The mean anomalyM can
also be expressed in 𝜏, whichis the time perigee and is used to describe the starting point of
the satellite revolution time. See the Appendix for the transformational relation between orbit
elements and the ECI coordinates system.
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2.2.2 Definition of Several Arguments of Perigee and Their Correlations

Since the satellite has a periodic motion in an elliptical orbit, assuming the revolution period
T and average angular velocity n, one can obtain [4, 5]

n =
√
𝜇∕a3

T = 2𝝅
√
a3∕𝜇

}
, (2.11)

that is to say, when the semi-major axis a is known, from expression (2.11) one can obtain the
orbit period T and average angular velocity n. An auxiliary value E is introduced. This value
is called the eccentric argument of perigee, as shown in Figure 2.4.
In Figure 2.4, Oe is the earth center, a focal point of the elliptical orbit of the satellite, O′

is the geometric center of the ellipse, and f is the true argument of the perigee of satellite S.
Draw an auxiliary circle with O′ as the center of the circle and semi-major axis a as the radius,
and draw a vertical line SH passing through point S and perpendicular to the direction of the
perigee OeA; take the point of intersection of the extension line of line SH and the auxiliary
circle as S′, and connect points O′ and S′. The angle between O′S′ and O′A is the eccentric
argument of perigee E.
From Figure 2.4 it can be seen that the relation between the eccentric argument of perigee

E and ellipse parameters is ae cosE = a − r, and thus the elliptic equation expressed in the
eccentric argument of perigee E can be obtained as

r = a(1 − e cosE). (2.12)

Since r and E are both functions of time t, by differentiating and simplifying expression (2.12)
one can obtain

E − e sinE = n(t − 𝜏), (2.13)

where 𝜏 is a new integral constant. When t = 𝜏, r is minimum, that is, the perigee of the
satellite. So 𝜏 is the time past perigee. For the convenience of expression, M = n(t − 𝜏) =
nt +M0 is often used, where M is the mean argument of perigee, which represents the angle
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between the perigee of an orbit and the position of the satellite orbiting at an average angular
velocity n;M0 is the initial mean argument of the perigee or epoch mean argument of perigee,
which indicates that the mean argument of perigee of the satellite at t = 0.
The definitions of several most common anomalies f , E, andM and their relationships have

been given. The integral constant 𝜏 can be replaced by these three anomalies (in particularM)
as orbit elements.

2.3 Definition of Coordinate Systems and Their Transformations

When we talk about geolocation, we shall solve the first question of which coordinates system
the location to be localized lies in. In different coordinate systems, the location has different
expressions. Moreover, the motion equation is usually described in the inertial coordinate sys-
tem, while observations of electronic reconnaissance are generally obtained from the satellite
measurement body coordinate system. The satellite itself moves or revolves at a high speed.
Therefore, we must study how to establish the coordinate systems of geolocation and mutual
transformation between coordinate systems.

2.3.1 Definition of Coordinate Systems

In space electronic reconnaissance and geolocation, coordinate systems involved include the
earth-center inertial (ECI) coordinate system, earth-centered earth-fixed (ECEF) coordinates,
geodetic coordinate system, topocentric-horizon coordinate system, and satellite body coordi-
nate system [5, 6], and so on.

2.3.1.1 Earth-Center Inertial (ECI) Coordinate System – {System c: xc, yc, zc}

The ECI coordinate system, also called the geocentric mean equatorial coordinate system,
geocentric equatorial coordinate system, or epoch geocentric coordinate system, is a type of
celestial coordinate system.With the center of the earth as its origin, axes of coordinate systems
are connected to the celestial sphere with the center of the earth as the center in a fixed way.
Axis zc coincides with the earth’s rotation axis, while axes xc and yc are perpendicular to one
another and fixed on epoch equatorial plane. Axis xc points at the spring equinox in the earth’s
orbit around the Sun, while axes yc, xc, and zc constitute a right-handed coordinate system.
Since the earth’s rotation axis is constantly changing, in order to establish a uniform celes-

tial coordinate system, which is close to an inertial coordinates system, a time t0 is selected
as a standard epoch and a celestial coordinate system is established based on the mean pole
and mean equinox of this epoch. A celestial coordinate system established in such a way, in
fact, is an instantaneous mean celestial coordinate system at the t0 epoch, also called a con-
ventional inertial system (CIS). The current system used in the aerospace survey and data
processing is the J2000.0 geocentric coordinate system, which is defined with the mean equa-
tor and mean equinox at the standard epoch of 12:00 1 January 2000, Gregorian calendar.
J2000.0 CIS (celestial coordinate system) is defined as a right-handed Cartersian coordinate
system, with the center of the earth as the origin, the z axis pointing at J2000.0 mean pole and
the x axis pointing at J2000.0 mean equinox.
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If the effects of precession, mutation and polar migration are taken into account, it is
necessary to use a multiple-coordinate system to describe accurately the celestial coordinates
of one object at one time. Reference [4] has given definitions of several coordinate systems.

2.3.1.2 Earth-Centered Earth-Fixed (ECEF) Coordinate System – {System e: xe,
ye, ze}

The origin of ECEF coordinates is at the center of the earth. The axes of the coordinate system
are connected to the earth in a fixed way. Axis ze coincides with the earth’s rotation axis and
axes xe and ye are perpendicular to one another and fixed on the equatorial plane. Axis xe points
outward from the earth’s center at the point of intersection of the Greenwich meridian and the
equator; axes ye, xe, and ze constitute a right-handed coordinate system. Due to the earth’s
rotation, at one time only the right ascension 𝜃 of one prime meridian differs between ECEF
coordinates and the epoch geocentric equatorial coordinate system. Since ECEF coordinates
take a fixed location and direction of the earth as the reference, ECEF coordinates of one point
on the earth are always fixed.
Figure 2.5 shows a general view of the ECI coordinate system and ECEF coordinates.

2.3.1.3 Earth Geodetic Coordinate System – {System L, B, H}

Sometimes for convenience, such parameters as longitude, latitude, and altitude are used to
indicate geographic orientation of point location, that is, point location in geodetic coordinates.
The earth geodetic coordinate system is a coordinate system taking the prime meridian plane,
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Figure 2.5 Relationship between ECI coordinates and ECEF coordinates
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equatorial plane, and spherical surface of the reference ellipsoid as the coordinate planes, that
is, geodetic coordinates of one point on the earth are usually expressed in geodetic longitude
L, geodetic latitude B, and geodetic altitude H.
Geodetic coordinate parameters of point P are defined as follows. The angle between the

prime geodetic meridian plane and another geodetic meridian plane passing through point P
is called the geodetic longitude, expressed as L; if the point is in the eastern hemisphere, its
longitude is called east longitude and if in the western hemisphere, its longitude is called west
longitude. The angle from the normal of the point to the equatorial plane constitutes geodetic
latitude, expressed as B; if the point is in the northern hemisphere, its latitude is called north
latitude and if in the southern hemisphere, its latitude is called south latitude. The distance
between the point along the normal and the surface of the reference ellipsoid is called geodetic
altitude, expressed as H. The altitude is calculated from the surface of the reference ellipsoid,
positive outwards and negative inwards.
Since the earth is not a regular ellipsoid, the definition of different origins of coordinates

and ellipsoidal curvature should correspond to different reference ellipsoid planes to establish
different geocentric coordinate systems, for example, the China Geodetic Coordinate System
1980, the Beijing Geodetic Coordinate System 1954, and the WGS-84 Coordinate System of
the United States Department of Defense (refer to Section 2.4).
Of all the geodetic coordinate systems, the most common one is the geodetic coordinate

system expressed in longitude, latitude, and altitude. It is used in the most common output
forms of navigation systems, such as the GPS (global positioning system) and the INS (inertial
navigation system. However, in some geolocation calculations, Cartesian coordinates may be
more convenient to use. It is necessary to transform the coordinates from one to another.
Due to the effect of polar migration, the direction of the equatorial plane is slowly changing.

Reference [4] defines several different geodetic coordinates with polar migration being
considered.

2.3.1.4 Topocentric-Horizon Coordinates Systems – {System g} and {System n}

The topocentric coordinate system is a coordinate system established with the center of the
observer’s location as the origin of the coordinate system. It has many similar definitions,
for example, the topocentric-horizon coordinate system, north-east-down (NED) coordinate
system, launching coordinate system, vertical measuring coordinate system, and normal mea-
suring coordinate system [7].
The most common definition of the topocentric coordinate system is the topocentric-horizon

coordinate system, expressed in this book as {System g: xg, yg, zg}. This coordinate system
takes the topocenter as the origin of coordinates: the xg axis points due east, the yg axis points
due north, and the zg axis is perpendicular to the horizon surface of the earth and the point
zenith. The zg axis and the other axes constitute a right-handed coordinate system. Since the
earth is not a regular sphere, but an irregular ellipsoid, the pointing of the zg axis deviates an
angle of 𝛿 (𝛿 < 4mrad) from the geocentric direction.
Another topocentric coordinate system is the NED coordinate system, expressed as {System

n: xn, yn, zn}. This coordinate system takes the topocenter as the origin of coordinates: the xn
axis points due north, the yn axis points due east, and the zn axis is perpendicular to the surface
of the earth and points downwards. The zn axis and the otherer axes constitute a right-handed
coordinate system. Since the earth is an ellipsoid, there is also an angle of declination between
the zn axis and the earth center.
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Coordinate transformation between the topocentric-horizon coordinate systems, {System g}
and {System n}, can be obtained as

Xn = RngXg, (2.14)

where

Rng =
⎡⎢⎢⎣
0 1 0
1 0 0
0 0 −1

⎤⎥⎥⎦
and

Rng = Rgn = R−1
ng .

2.3.1.5 Satellite Body Coordinate System – {System b: xb, yb, zb}

The satellite body coordinate system, {System b}, is shown in Figure 2.6. The origin of the
coordinates lies in the center of the platform. The xb axis is the longitudinal axis of the airplane,
with the forward direction being the heading of the airplane (direction of the satellite motion);
the yb axis lies in the starboard of the fuselage plane, perpendicular to the longitudinal axis;
and the zb axis is downwards perpendicular to the fuselage plane. Taking an airplane as an
example, the definition of the coordinate system is as shown in Figure 2.6.
In general, three attitude angles are provided by the navigation equipment: platform yaw

(also called the heading angle or course angle), pitch and roll are Euler angles [8] from the plat-
form NED coordinate system to the body coordinates. For the convenience of expression and
calculation, there is a clear and specific definition of positive and negative values in the mea-
surement of the platform attitude angle in the platform NED coordinates: the yaw angle north
by east is positive; the pitch angle in the head-up direction is positive; and the roll angle is
positive when the right wing is down. Suppose the platform’s yaw angle is 𝛼, the pitch angle
is 𝛽, and roll angle is 𝜀. Figure 2.7 shows all attitude angles.
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Figure 2.6 Platform body coordinates system (example of airplane)
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2.3.2 Transformation between Coordinate Systems

Any coordinate system transformation can be divided into coordinate rotation and coordinate
translation. Coordinate translation is relatively simple. Here coordinate rotation is introduced.

2.3.2.1 Coordinate Rotation

If a vector in an original coordinate system is expressed as r and in a new coordinate system
after rotation as r′, then by rotating the yz plane, zx plane, and xy plane an angle of 𝜃 (counter-
clockwise is positive) around the x axis, y axis, and z axis, respectively, one can obtain [4, 8, 9]

r′ = Rx(𝜃)r, (2.15)

r′ = Ry(𝜃)r, (2.16)

r′ = Rz(𝜃)r, (2.17)

where

Rx(𝜃) =
⎡⎢⎢⎣
1 0 0
0 cos 𝜃 sin 𝜃
0 − sin 𝜃 cos 𝜃

⎤⎥⎥⎦ , (2.18)

Ry(𝜃) =
⎡⎢⎢⎣
cos 𝜃 0 − sin 𝜃
0 1 0

sin 𝜃 0 cos 𝜃

⎤⎥⎥⎦ , (2.19)

Rz(𝜃) =
⎡⎢⎢⎣
cos 𝜃 sin 𝜃 0
− sin 𝜃 cos 𝜃 0

0 0 1

⎤⎥⎥⎦ . (2.20)

The rotation matrix R(𝜃) has the following characteristics:

R−1(𝜃) = RT(𝜃) = R(−𝜃). (2.21)

Any coordinate can be rotated in a certain order by resolving into x, y, and z axes. In such
a case, the final rotation matrix is the rotation matrix product. More attention should be
made to the noncommutative principle of matrix multiplication. The rotation order should
not be commutative. Otherwise a different rotation order would obtain different coordinate
rotation effects.
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2.3.2.2 Transformation Relations between Common Coordinate Systems

1. Transformation from the ECI coordinate system {System c} to the ECEF coordinate system
{System e}

As shown in Figure 2.5, the ECI coordinate system c{xc, yc, zc} rotates in the positive
direction a right ascension 𝜃 around the zc axis, and transforms into the ECEF coordinate
system e{xe, ye, ze}. 𝜃 is the right ascension of the prime meridian of the earth at a certain
time. Due to the rotation of the earth, 𝜃 is changing, with a sidereal day as a period. Suppose
that the epoch geocentric equatorial coordinates and ECEF coordinates of a vector are xc =
(xc, yc, zc)T and xe = (xe, ye, ze)T, respectively; then

xe = Rz(𝜃)xc. (2.22)

2. Transformation from the ECEF coordinate system {System e} to the topocentric-horizon
coordinate system {System g}

Three steps are required:
a. Translate the origin of coordinates of the system e{xe, ye, ze} from Oe to Og.
b. Positively rotate around the ze axis a geodetic longitude L + 𝜋∕2 to make the tangent

direction of the latitude line point to the east and then obtain an intermediate coordinate
system e′{x′e, y

′
e, z

′
e}.

c. Then rotate the coordinate system e′ with 𝜋∕2 − B around the x′e axis to make z′e perpen-
dicular to the surface of the earth and pointing upwards, with y′e pointing north. These
are the coordinates of the topocentric-horizon coordinate system g{xg, yg, zg}.

Suppose that the ECEF coordinates of the topocenter are {xo, yo, zo} and the ECEF
coordinates and topocentric-horizon coordinates of the vectors are xe = (xe, ye, ze)T and
xc = (xc, yc, zc)T, respectively. One can then obtain:

⎡⎢⎢⎣
xg
yg
zg

⎤⎥⎥⎦ = Rx

(
𝜋

2
− B

)
Rz

(
𝜋

2
+ L

) ⎡⎢⎢⎣
xe − xo
ye − yo
ze − zo

⎤⎥⎥⎦ . (2.23)

By substituting Equations (2.18) and (2.20) into Equation (2.2), one can obtain

⎡⎢⎢⎣
xg
yg
zg

⎤⎥⎥⎦ =
⎡⎢⎢⎣

− sinL cos L 0
− sinB cos L − sinB sinL cosB
cosB cos L cosB sinL sinB

⎤⎥⎥⎦
⎡⎢⎢⎣
xe − xo
ye − yo
ze − zo

⎤⎥⎥⎦ . (2.24)

This can be expressed as
xg = Cg

e(xe − u). (2.25)

3. Transformation from a topocentric-horizon coordinate system, {System g}, to ECEF coor-
dinates, {System e}

If the coordinates are transformed from {System g} to {System e}, it can be seen from
expression (2.25) that

xe = (Cg
e)−1xg + u = (Cg

e)Txg + u. (2.26)
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4. Transformation from a NED coordinate system to a body coordinate system
It is obvious that it is only a process of coordinate rotation from platform NED coordi-

nates to platform airplane body coordinates, that is,

rt,b = RT
x (𝜀)RT

y (𝛽)RT
z (𝛼) ⋅ rt,o. (2.27)

2.4 Spherical Model of the Earth for Geolocation

In a wide range of applications of satellite geolocation, it is required to use prior geolocation
knowledge that the emitter should be located on the earth’s surface. Therefore, the methods
used to describe the spherical model of the earth must be studied. There are two frequently
used spherical models of the earth: one is a simple regular spherical model and the other is an
ellipsoid model of the earth [4, 6, 10].

2.4.1 Regular Spherical Model for Geolocation

The regular spherical model of the earth is a model taking the zero-altitude surface of the earth
as a sphere with a given radius. Obviously, as the earth approximates an ellipsoid bulging at
the equator and flattened at the poles, a regular spherical model will lead to a large model error.
One point to make is that in a regular spherical model of the earth, the transformation

relation from its geodetic Cartesian coordinates to longitude, latitude, and altitude geodetic
coordinates is

x = (R + H) cosB cos L
y = (R + H) cosB sinL
z = (R + H) sinB

⎫⎪⎬⎪⎭ , (2.28)

where R is the radius of the zero-altitude surface of the earth and (L, B, H) represents
the longitude, latitude, and altitude of the emitter, respectively. The transformation from
longitude, latitude, and altitude geodetic coordinates to geodetic Cartesian coordinates is

⎧⎪⎨⎪⎩
L = tan−1 (y∕x)
B = tan−1(z∕

√
x2 + y2)

H =
√
x2 + y2 + z2 − R

. (2.29)

2.4.2 Ellipsoid Model of the Earth

An ellipsoidmodel of the earth takes the zero-altitude surface of the earth as a regular rotational
ellipsoid. In fact, due to the uneven geological structure of the earth, the zero-altitude earth sur-
face established based on the gravity potential is an irregular ellipsoid, so an errorless standard
ellipsoid model is impossible. In order to describe the earth’s surface more accurately and give
an accurate description of longitude, latitude, and altitude of geodetic coordinates at one point
on the earth’s surface on that basis, it is necessary to adopt an earth ellipsoid as close to the
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earth’s surface as possible. At present, the description of the earth ellipsoid includes reference
ellipsoids established in a reference-ellipsoid-centric geodetic coordinate system, such as those
defined in the China Geodetic Coordinate System 1980 and in the Beijing Geodetic Coordi-
nate System 1954, which give relatively accurate descriptions of regions and areas in China.
The description also includes the earth ellipsoids established in geocentric geodetic coordinate
systems, such as those defined in the WGS-72 and WGS-84 coordinates of the United States
Department of Defense. All applications represented by GPS now use the WGS-84 coordinate
system [9]. Therefore, the earth surface model used in this book is the WGS-84 earth ellipsoid
surface in the WGS-84 coordinate system.

2.4.2.1 Definition of WGS-84 Earth Ellipsoid

The WGS-84 coordinate system is a Conventional Terrestrial System (CTS). The origin and
axes of theWGS-84 coordinate system are defined as follows: the origin is the earth’s center of
mass; the z axis points in the direction of the Conventional Terrestrial Pole (CTP), as defined by
BIH1984.0; the x axis points to the intersection of the plane of the zero meridian defined by
BIH1984.0 and the plane of the CTP’s equator; and the y axis completes a right-handed coordi-
nate system [4] with the z axis and the x axis.
The geometric center of theWGS-84 ellipsoid coincides with the earth’s center of mass. The

ellipsoid rotation axis coincides with the z axis. The primary geometric parameters include:

Semi-major axis∶ a = 6 37 8 13 7 m ± 2 m

Square of first eccentricity∶ e2 = 0.006 694 379 990 13

TheWGS-84 earth ellipsoid always relates to theWGS-84 coordinate system and theWGS-84
is in ECEF coordinates. Therefore, when we use the WGS-84 earth ellipsoid model, it means
the WGS-84 coordinate system without any other explanation.

2.4.2.2 Transformation between WGS-84 Geodetic Coordinates and Cartesian
Coordinates

The WGS-84 coordinate system is also a type of geodetic coordinate system. Its coordinates
include longitude, latitude, and altitude geodetic coordinates and Cartesian coordinates. We
often use longitude, latitude, and altitude geodetic coordinates to indicate the location of a
point in the WGS-84 coordinate system, but the calculation of Cartesian coordinates is more
convenient. Transformation between both coordinates is often used in geolocation [4].

1. Transformation from the WGS-84 geodetic coordinate system to the ECEF coordinate sys-
tem
Transformation from longitude, latitude, and altitude geodetic coordinates to ECEF coor-

dinates is as follows:

x = (N + H) cosB cos L
y = (N + H) cosB sin L
z =

[
N

(
1 − e2

)
+ H

]
sinB

⎫⎪⎬⎪⎭ , (2.30)
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where N is the curvature radius of local prime vertical circle:

N = a√
1 − e2sin2B

. (2.31)

2. Transformation from the ECEF coordinate system to the WGS-84 geodetic coordinates
system
Since the ellipsoid model is not isotropic, the transformation from Cartesian coordinates

to longitude, latitude, and altitude coordinates is complex. An iterative calculation is there-
fore necessary.
From the first and the second expressions in Equation (2.30) we can obtain:

tanL =
y

x
sinL =

y

(N + H) cosB
=

y√
x2 + y2

cos L = x
(N + H) cosB

= x√
x2 + y2

⎫⎪⎪⎬⎪⎪⎭
. (2.32)

From the first and the third expressions in Equation (2.30) we can obtain:

tanB = (N + H) cos L z[
N

(
1 − e2

)
+ H

]
x
. (2.33)

By combining the third expression in Equation (2.32), we can rewrite the above formula as

B = tan−1
[

z√
x2 + y2

(
1 − e2N

(N + H)

)−1
]
. (2.34)

From the third expression in Equation (2.32),

H =
√
x2 + y2

cosB
− N. (2.35)

Evaluate Equations (2.34) and (2.35) using the iterative method. Before starting the iteration
procedure, set

N0 = a

H0 =
√
x2 + y2 + z2 −

√
ab

B0 = tan−1
⎡⎢⎢⎣ z√

x2 + y2

(
1 −

e2N0(
N0 + H0

))−1⎤⎥⎥⎦ ,
⎫⎪⎪⎬⎪⎪⎭

(2.36)

where b is the minor axis of the ellipsoid meridian plane. Then use the following formulas in
each iteration:

Ni =
a√

1 − e2sin2Bi−1

Hi =
√
x2 + y2

cosBi−1
− Ni

Bi = tan−1
⎡⎢⎢⎣ z√

x2 + y2

(
1 −

e2Ni(
Ni + Hi

))−1⎤⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

(2.37)
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until |Hi − Hi−1| < 𝜀1
and |Bi − Bi−1| < 𝜀2,
where 𝜀1 and 𝜀2 are determined by the required accuracy.

2.5 Coverage Area of a Satellite

The ground coverage of an artificial satellite is also called the visible ground area of the satellite
[1]. In carrying out an electronic reconnaissance task, the satellite will first judge whether the
emitter is within the coverage area of the satellite.

2.5.1 Approximate Calculation Method for the Coverage Area

Only ground coverage of the satellite at a point in the orbit is considered, without taking into
account of the satellite antenna beam direction and size and specific pointing. In actual projects,
the coverage calculation is complex. The coverage can be calculated and analyzed through the
simulation software Satellite Tool Kit® (STK). In order to simplify the calculation process of
satellite coverage, a regular spherical model of the earth can be approximately used to make
an approximate calculation. Suppose that the earth is a round sphere with a radius equal to
Re and Oe is the center of the earth. The height of the satellite at any point in the orbit from
the ground is h and the subsatellite point is S, as shown in Figure 2.8. Also suppose that
the electromagnetic waves propagate in straight lines and the refraction of atmosphere is not
considered. In the figure, draw two tangent lines between satellite O and the spherical surface,
with points of tangency as P1 and P2. The geocentric angle d is called the coverage angle. By
taking 90∘ − d as a half cone angle, OOe as the axis, and OP2 as the generatrix, draw a normal
cone tangent with the earth. The ground area above the tangent lines is the coverage area.
It can be seen from the right triangle OOeP1 that the coverage angle d is

cos d =
Re

Re + h
.

The angle 𝜓 covered by the satellite antenna beam is

sin
𝜓

2
=

Re
Re + h

.

The corresponding coverage area As is

As = 𝜋R2
e

(
2h

Re + h

)
. (2.38)

The above-mentioned calculation takes the tangent of the earth’s surface as the reference. In
fact, this method is not allowed in project applications. If the elevation angle of the ground
emitter is too low, lots of ground reflection and blocking will seriously affect the receiving of
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Figure 2.8 Diagram of the satellite coverage area

transmitting signals. In order to achieve a result in receiving of the reconnaissance satellite,
generally the angle of sight between the satellite and ground emitter should be more than a
given angle 𝜎, which is the minimum observation angle, as shown in Figure 2.8. With the
restriction of a minimum observation angle, the satellite coverage area will decrease.
According to the relationship as shown in the figure, by making derivation by applying the

sine theorem, we can obtain the coverage angle d′ under the restriction of a minimum obser-
vation angle:

d′ = arccos
Re cos 𝜎

Re + h
− 𝜎. (2.39)

The coverage area can be obtained as

AS = 𝜋R2
e(2 − 2 cos d′). (2.40)

It can be seen from the above expression that the satellite coverage area is larger as its distance
from the ground is greater.

2.5.2 Examples of Calculation of the Coverage Area

Suppose the minimum observation angle 𝜎 = 30∘; according to expression (2.40) the relation-
ship between the radius of the instantaneous coverage area of the satellite and satellite altitude
can be obtained, as shown in Figure 2.9. It can be seen from this that a satellite with an altitude
of about 500–1000 km can have a coverage radius of about 2500–3000 km.
The above-mentioned discussion is about ground coverage of a single satellite in the sta-

tionary state or instantaneous state. In fact, the satellite generally moves in an orbit, and the
coverage area on the ground will sweep over a strip of coverage with the movement of the
satellite. For example, for a sunsynchronous orbit with an orbital altitude of 1000 km, by sup-
posing the view-angle coverage of the sensor on the satellite is 90∘, we can obtain a coverage
area in an instantaneous state, as shown by the dotted area in Figure 2.10.
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Figure 2.9 Relationship between the satellite coverage radius and satellite altitude
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Figure 2.10 Single-satellite coverage area (H = 100 km) calculated in STK®

In order to meet continuous regional earth coverage requirements, a single satellite is not
enough. A multisatellite constellation is used to meet continuous coverage requirements for
hotspot area reconnaissance. Then the subsatellite track of multiple satellites on the earth’s
surface constitutes a subsatellite ‘belt’ zone.
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Figure 2.11 Reconnaissance diagram of a satellite side-looking antenna

2.5.3 Side Reconnaissance Coverage Area

In the above-mentioned calculation of the satellite coverage area, we supposed that the satellite
used omnidirectional antenna and had no pattern constraint in earth coverage. However, in
actual coverage, the antenna pattern will be taken into consideration. In some cases, pointing
the antenna of the ground emitter is not in a direction perpendicular to the ground (which is
different from satellite communication and tracking telemetry and command antennas), but has
a small angle of elevation with the horizontal plane of the ground. If pointing downwards to the
earth’s center, the main beams of electronic reconnaissance satellite antennas may point to the
side lobes of the emitter signal (such as the radar) or the main beams of the emitter may point
to the side lobes of reconnaissance antennas. In order to increase the reconnaissance distance,
one option is to install reconnaissance antennas in an offset position, as shown in Figure 2.11.
Suppose that the elevation angle of deviation is 45∘. We can obtain the coverage area of the

satellite by STK, as shown by the dotted area in Figure 2.12. At this moment, satellite coverage
is not bilaterally symmetric. A crescent gap appears at one side. With an offset installation, the
satellite’s reconnaissance range is 1.4–5 times larger than that in the original vertically down
installation of the antenna. The signal has an attenuation of 3–14 dB in free space, but the align-
ment of the main lobes of satellite emitter antennas brings about 20–30 dB gains. Therefore, it
may still obtain a better electronic reconnaissance and interception SNR (signal-to-noise ratio).

2.6 Fundamentals of Geolocation

As viewed from geometry, a point in space can be determined by intersection of three or
more surfaces or planes in 3D space. Geolocation parameters or measurements received by
an electronic reconnaissance receiver from a target emitter, for example, azimuth angle 𝛽 or
𝜑, elevation angle 𝜀, direction cosine l,m, n, slant range r, range sum 𝜌 or s, range difference
Δr, and altitude h, correspond to a plane or surface in geometry, respectively. The plane corre-
sponding to geolocation parameters of the same emitter obtained through the detection system
is defined as a geolocation plane. Through some combinations, two planes intersect in a line



34 Space Electronic Reconnaissance

‒150 ‒120 ‒90 ‒60

‒60

‒30

‒30 0

0

30

60

30 60 90 120 150

Satellite

Figure 2.12 Coverage area of side reconnaissance

or two lines, or a plane and line intersect at a point. The point of the emitter location can be
determined according to the line and the point obtained therefrom. The line of intersection of
planes is the line of position (LOP), and the point of intersection of lines or a line and plane is
a geolocation point [9, 11].

2.6.1 Spatial Geolocation Plane

Suppose the location X of the target emitter is X =
[
x y z

]T
and the station location Xi of

the reconnaissance receiver is Xi = [xi, yi, zi]T. The spatial geolocation plane or surface corre-
sponding to the observations obtained by the electronic reconnaissance receiver, such as the
azimuth angle, elevation angle, direction cosine, range sum and range difference, and their
algebraic expressions, are shown in Table 2.1.

2.6.2 Spatial Line of Position (LOP)

If one receiver can measure two observations at the same time, for example, azimuth and ele-
vation (𝜙 and 𝜀) or azimuth and slant range (𝜙 and r), and if two receivers can measure azimuth
angle (𝜑1, 𝜑2) of one emitter, the geolocation planes corresponding to two measurements will
intersect in a space curve, and the emitter will be located in this line. Therefore the line is
called the LOP. Examples are shown in Table 2.2.
According to the above geometric analysis, at least three or more geolocation planes should

be provided to realize the 3D space geolocation of the emitter. Geometric fundamentals of
space geolocation as discussed above play an important and useful role in understanding geolo-
cation theory, realizability, and the law that geolocation error caused by measurement error
varies with the spatial location of the emitter.
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Table 2.1 List of geolocation planes

Observations Form of geolocation plane Algebraic expression

Azimuth angle 𝛽, 𝜙

x

y

Plane

z

Xi

ϕ
β

Plane

tg𝛽 =
x − xi
y − yi

tg𝜙 =
y − yi
x − xi

or

cos 𝛽(x − xi) − sin 𝛽(y − yi) = 0

sin𝜙(x − xi) − cos𝜙(y − yi) = 0

Elevation angle 𝜀

x

y

z

ε

Xi

Cone

Cone

tg𝜀 =
z − zi√

(x − xi)2 + (y − yi)2

=
z − zi
d

where d is horizontal range of
emitter, or (x − xi)2 + (y − yi)2
−ctg2𝜀(z − zi)2 = 0

Direction cosine l,m, n

x

y

z

Xi

α

β

γ

Cosines in three directions
correspond to three circular conical
surfaces with x, y, and z axes as
conical axes and 𝛼, 𝛽 , and 𝛾 as
semi-vertical angles, respectively.
Direction line 𝛾 from intersection of
two planes is the LOP

l = cos 𝛼 =
x − xi
r

m = cos 𝛽 =
y − yi
r

n = cos 𝛾 =
z − zi
r

=
√
1 − l2 − m2

where
r =

√
(x − xi)2 + (y − yi)2 + (z − zi)2

(continued overleaf )
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Table 2.1 (continued)

Observations Form of geolocation plane Algebraic expression

Slant range r

x

y

z

Xi

ϕ
ε

Spherical surface

r = [(x − xi)2 + (y − yi)2
+(z − zi)2]1∕2

or
r = l(x − xi)

+m(y − yi) + n(z − zi)
where
l = cos𝜙 cos 𝜀 = sin 𝛽 cos 𝜀
m = sin𝜙 cos 𝜀 = cos 𝛽 cos 𝜀
n = sin 𝜀

Range sum 𝜌 or s

y

x

z

Xi

ri

rj
Xj

Spheroidal surface

𝜌 = ri + rj
= [(x − xi)2 + (y − yi)2
+(z − zi)2]1∕2 + [(x − xj)2
+(y − yj)2 + (z − zj)2]1∕2

where Xi = [xi, yi, zi]T and

Xj = [xj, yj, zj]T is the position of
stations i and j;

X = [x, y, z]T is the spatial position of
the emitter; ri, rj is the slant range
between station i and emitter, station j
and emitter

Range difference Δr

x

z

O

y

rj

Xj Xi

ri

Rotary hyperboloid

Δr = ri − rj
= [(x − xi)2 + (y − yi)2
+(z − zi)2]1∕2 − [(x − xj)2
+(y − yj)2 + (z − zj)2]1∕2

Altitude h An ellipsoid with equal
altitude h above the
earth surface, or a plane
that can be seen parallel
to the xy plane in a small
area

WGS-84 ellipsoid or h= z − zi
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Table 2.2 Examples of LOP

Measurements Form of LOP Description

Azimuth 𝛽, 𝜙;
elevation 𝜀

x

y

z

ε

ϕ

β
Xi

Direction vector

A LOP obtained from intersection
of azimuth plane and elevation
cone points in the emitter
direction, or is called direction
vector. Direction cosines of this
vector are:
l = cos𝜙 cos 𝜀 = sin 𝛽 cos 𝜀
m = sin𝜙 cos 𝜀 = cos 𝛽 cos 𝜀
n = sin 𝜀

Azimuth 𝜙,
slant range r

x

z

y

Xi

ϕ

LOP of direction slant range

After intersection of azimuth plane
and slang range spherical surface,
a spatial semicircle arc in azimuth
plane, with start and end points at
±r in z axis is obtained. If Xi is
located at the ground, the LOP is a
circular arc of 90∘

Azimuth 𝜙i,
azimuth 𝜙j

x

y

z
z

y

x
φ

i

φ
j

x
i

x
j

Geolocating straight line

A straight line parallel to the z axis
is obtained from intersection of
azimuth plane 𝜙i of station Xi and
azimuth plane 𝜙j of station Xj. Its
expression is:

Any zT value

{
x = xT
y = yT

Slant range ri,
range sum
𝜌 = ri + rj

x

y

z

Xi Xja

a’Δr d

ri, 𝜌 LOP

When ri = Δr or d + Δr,
ri = Δr + d or Δr, and
𝜌 = ri + rj = d + 2Δr, the slant
range spherical surface and range
sum ellipsoid intersect at a point a
or a′; when Δr< ri < d + 2Δr and
𝜌 = ri + rj = d + 2Δr (fixed value),
a circle will be obtained from the
intersection of the spherical
surface and ellipsoid
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2.7 Measurement Index of Geolocation Errors

In practice, measurement of geolocation parameters always contain some errors that are
affected by various factors. A practical location estimated by the geolocation system is always
prone to error. The size and distribution of geolocation errors are closely correlated to the
geometric scenario, observability, geolocation methods, and parameter measurement error,
which is one of the important technical specifications of the geolocation system. Hence, the
research on geolocation error plays an important role.

2.7.1 General Definition of Error

Suppose the true location of the emitter is x =
[
x y z

]T
, there are i observations z1, … , zi

obtained through measurement, and the estimated result of a geolocation is x̂, which is gen-
erally the function of observations, that is, x̂ = f(z1, … , zi). Then the geolocation error is
expressed as

x̃ = x̂ − x. (2.41)

The measurement error is usually random, and so is the geolocation error. Hence, each geolo-
cation estimation is different.

2.7.1.1 Bias of Geolocation Error

The bias of estimation is expressed as [12]

xbias = E[x̂] − x, (2.42)

where E[⋅] means the expectation of a random vector. If multiple repeated geolocation esti-
mates under the same conditions are made, the estimation bias can be approximated as

xbias = lim
N→∞

1
N

N∑
n=1

(x̂n − x), (2.43)

where x̂n is the result of the nth geolocation. Accurate bias can be obtained whenN approaches
infinity. In fact, people always expect that there is no bias in a geolocation result, that is, E[x̂] =
x. If there is bias in the estimated result, it may be system bias in measurement parameters
or estimation bias in the estimation algorithm. However, some geolocation algorithms is not
unbiased. We may be content with the suboptimal, that is, the algorithm is asymptotically
unbiased. In another words, when the times of measurement meet infinity, the error estimation
is unbiased:

E
[
lim
i→∞

x̂
(
z1, … , zi

)]
= x. (2.44)

2.7.1.2 Variance and Root Mean Square (RMS) of Geolocation Error

Another important index is the variance and root mean square error. The location is generally a
vector, so the location error is not a scalar, but a vector. It is more suitable to use the covariance
matrix to describe the error. The covariance matrix is defined as [12]

P = E[(x̂ − x)(x̂ − x)T]. (2.45)
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Sometimes we still pay more attention to the range error of location, which is usually called
the range variance, expressed as

𝜎2 = E[(x̂ − x)T(x̂ − x)] = tr(P), (2.46)

where tr(⋅) indicates the operation of solving the matrix trace, which is equal to the sum of
diagonal elements of a matrix. The corresponding RMSE (root mean square error) can be
expressed as [11]

𝜎 =
√
tr(P). (2.47)

It is also called the standard deviation if the estimation is unbiased.
After multiple repeated geolocation estimation tests, the empirical estimation of the geolo-

cation error covariance can be obtained:

P̂N = 1
N

N∑
n=1

(x̂n − x)(x̂n − x)T. (2.48)

Then, the range RMSE is [12]

𝜎N =

√√√√ 1
N

N∑
n=1

(x̂n − x)T(x̂n − x). (2.49)

If N is large enough, obviously we can obtain P = lim
N→∞

P̂N and 𝜎 = lim
N→∞

𝜎N . Note that

𝜎N ≠
1
N

N∑
n=1

√
(x̂n − x)T(x̂n − x).

2.7.1.3 Relative Range Error

Generally speaking, the geolocation error of the geolocation system increases as the range
from the receiver increases. For example, for an active radar with a higher ranging accuracy,
when the range is long the geolocation error is 𝜎 ≈ r𝜎𝜃 , which shows that the range is basically
directly proportional to the geolocation error, that is, the relative range error parameter is inde-
pendent of the range. The relative range error is an important index for measuring accuracy of
an active radar. Similarly, the passive geolocation system can use the concept of the relative
range error from active radar system specifications for reference. It is defined as [11]

Relative range error (% R) = 𝜎

r
× 100%.

For a single reconnaissance station, the reference point for calculating range r is the recon-
naissance station itself; for multiple observation stations, the reference point for calculating r
can be the geometric center of multiple reconnaissance stations or one of these stations.
As for error in reconnaissance geolocation, the geolocation error may not be directly pro-

portional to the emitter range. Therefore the relative geolocation error is generally a nonlinear
function of the emitter range and azimuth.
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2.7.2 Geometrical Dilution of Precision (GDOP)

Due to different locations of the target emitters, the uncertainty area for different emitter
positions with the same error of geolocation parameter measurement error may be different.
Geolocation error is also a function of the emitter location. In order to describe this relation-
ship better, the term geometrical dilution of precision (GDOP) is used in engineering, which
is expressed as [9]

GDOP(x, y) =
√
𝜎2x + 𝜎2y , for 2D case, (2.50)

GDOP(x, y, z) =
√
𝜎2x + 𝜎2y + 𝜎2z , for 3D case. (2.51)

GDOP is a factor that describes the distribution of geolocation errors. It can be expressed either
in RMS (root mean square) in expressions (2.50) and (2.51) or in circular error probability
(CEP) in Section 2.7.3.
In order to give a more direct viewing representation of the emitter GDOP, GDOP in one

area can be plotted in the form of a contour map on which contour values are indicated as the
geolocation error.

2.7.3 Graphical Representation of the Geolocation Error

Factors giving rise to the geolocation error may be diversified. According to the central limit
theorem [13], as the common effect of multiple independent factors affects the geolocation
error, the geolocation error usually approaches an approximate normal distribution. A statisti-
cal property of the distribution is expressed by first and secondary moments of the distribution
function. We can use the joint Gaussian distribution to describe approximately the distribution
of the geolocation error in 3D space.
If in 3D space the location error follows the normal distribution, the following expression

can be used to express its spatial probability density distribution [12], that is,

p(x) = 1

(
√
2𝜋)3|P|1∕2 exp

{
−1
2

(
x − x

)T
P−1(x − x)

}
, (2.52)

where the error vector is x = [x y z]T, the mean error vector is x = E[x], and the covariance
matrix of error vector P is a symmetric and positive matrix, that is,

P = E[(x − x)(x − x)T] =
⎡⎢⎢⎣

𝜎2x 𝜌xy𝜎x𝜎y 𝜌xy𝜎x𝜎z
𝜌xy𝜎x𝜎y 𝜎2y 𝜌yz𝜎y𝜎z
𝜌xy𝜎x𝜎z 𝜌yz𝜎y𝜎z 𝜎2z

⎤⎥⎥⎦ . (2.53)

As for 2D geolocation, suppose that the geolocation error follows a 2D normal distribution.
Its probability density function is

p(x) = 1
2𝜋|P|1∕2 exp{

−1
2

(
x̂ − x

)T
P−1(x̂ − x)

}
. (2.54)

Sometimes it may be too complicated to describe the geolocation error with such a complex
probability density function. In order to simplify the description, we may use a confidence
ellipse related to the probability p(x), which can also be called the elliptical error probability
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(EEP). The size and shape of the ellipse indicates the geolocation error. The longer the major
axis a and minor axis b, larger the ellipse is and the worse the geolocation quality becomes
(the larger the geolocation error is).
Since the covariance matrix P is sure to be a real symmetric positively definite matrix,

according to matrix analysis, by decomposing eigenvalues of the covariance matrix P we can
obtain

P = UΣUT, (2.55)

where U is a unitary matrix, meeting the characteristic UUT = I and Σ = diag{𝜆1, 𝜆2, 𝜆3} is
the diagonal matrix of its eigenvalues. We can consider the above eigenvalue decomposition
process as a process of rotation of coordinates. The unitary matrix U is a coordinate rotation
matrix and the obtained eigenvalues are three axes of the ellipse.
As for 2D geolocation, the eigenvalue of the location covariance matrix [9] can be calcu-

lated as

𝜆1,2 =
𝜎2x + 𝜎2y ±

√
(𝜎2x − 𝜎2y )2 + 4𝜎2xy

2
. (2.56)

The semimajor axis of a 1𝜎 error ellipse (defined as the error ellipse when the amplification
factor k= 1) is max(

√
𝜆1,

√
𝜆2), the semiminor axis is min(

√
𝜆1,

√
𝜆2), and the inclination of

the semi-major axis of the ellipse relative to the x axis is

𝜃 = 1
2
arctg

2𝜌𝜎x𝜎y

𝜎2x − 𝜎2y
. (2.57)

The size of the location uncertainty can also be measured by the area of the error ellipse 𝜋𝜆1𝜆2.
An EEP example is shown in Figure 2.13, where points of the geolocation error are distributed
on the earth’s plane according to a variance matrix. By decomposing the eigenvalue of the
error matrix we can obtain a 1𝜎 error ellipse as shown in the figure.
Reference [12] gives another expression of the semi-major axis and semi-minor axis of the

ellipse under the confidence level:

a2 = 2
𝜎2x𝜎

2
y − 𝜌2xy𝜌2x𝜌2y

𝜎2x + 𝜎2y −
√
𝜎2x − 𝜎2y + 4𝜌2xy𝜌

2
x𝜌

2
y

C2, (2.58)

b2 = 2
𝜎2x𝜎

2
y − 𝜌2xy𝜌2x𝜌2y

𝜎2x + 𝜎2y +
√
𝜎2x − 𝜎2y + 4𝜌2xy𝜌

2
x𝜌

2
y

C2, (2.59)

where C = −2 ln(1 − Pe) and Pe is the confidence of the emitter in the error ellipse (e.g., 0.5
represents 50% and 0.9 represents 90%).

2.7.4 Spherical Error Probability (SEP) and Circular Error Probability
(CEP)

In actual applications, it may still be inconvenient to use more parameters such as the major
axis, minor axis, and direction to describe such an oblique ellipse. In an error analysis of
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passive geolocation, it is most common to use CEP to describe geolocation error, as shown in
Figure 2.14 [9, 14, 15].
CEP means the radius of a circle, centered in the mean value of geolocation estimation

points, within which half of the geolocation estimation points are expected to fall. CEP is
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defined as [9, 16]

∫

CEP

0
p(r)dr = 0.5. (2.60)

The original concept of CEP evolved from artillery firing. That is to say, in the case where the
geolocation is repeated 100 times, half of them will fall within the CEP circle and the other
will fall out of the circle. In other words, if a point is located, the true emitter must have a 50%
probability of falling within the circle with this point as the center and CEP as the radius.
As for 3D space, the description of error is not a circle, but an error sphere, which is called

the spherical error probability (SEP).
Johnson et al. calculated the relationship between SEP and CEP and 𝜎y∕𝜎x and 𝜎z∕𝜎x under

different 3D ellipsoid axis ratios in the numerical integration method, as shown in Figure 2.15
[9, 16]. During the calculation, an assumption of 𝜎x ≥ 𝜎y ≥ 𝜎z was used.
As shown in Figure 2.15, the actual shape of the error distribution is an ellipse. CEP, in fact,

is an approximate expression. From the figure it can be seen that as for Gaussian distribution,
here the error is no more than 10%. CEP can be approximately expressed as [9, 12, 16]

CEP ≈ 0.75
√
𝜎2x + 𝜎2y . (2.61)

The radius of CEP can describe the size of the geolocation error, but the error distribution
could not be indicated.
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2.8 Observability Analysis of Geolocation

Observability is a measure for how well the unique initial state of a known system can be
determined by using known finite inputs and outputs. In geolocation, this means determining
whether the system has a unique solution. In geolocation practice, it shows whether the unique
solution of the emitter location can be obtained based on observations. In space electronic
reconnaissance geolocation, the observable condition under which a unique solution of emitter
location can be obtained is one of the key issues researchers must make clear.
To assess whether the system is observable, we can suppose that each observation is free of

noise, because essentially the noise does not affect observability of geolocation. In this case
the observation equation is nonlinear, according to the observability theorem developed by
Sun et al. [9].

Theorem 2.1 With respect to a nonlinear system with:

State definition ∶ ẋ(t) = f (x(t), t); x(t0) = x0, (2.62)

Measurement definition ∶ y(t) = h(x(t), t). (2.63)

If for all x0 in convex set S ∈ Rn,

M(x0) =
∫

t1

t0

ΦT(𝜏, t0)HT(𝜏)H(𝜏)Φ(𝜏, t0)d𝜏, (2.64)

which is positive definite, the system is completely observable in S, where

H(t) = 𝜕h(x, t)
𝜕x

,

and𝚽(t, t0) are transition matrix of 𝜕f∕𝜕x.

The above-mentioned theorem is for a continuous system. If sampling discretiza-
tion of a continuous system, consider using the discrete observation sequence zi+n−1 =
{zi, zi+1,… , zi+n−1} to determine the system state xi at time i. The conclusion equivalent to
the above nonlinear observability theorem is as follows [9].

Theorem 2.2 For an n-dimension vector x∗k0 in the initial set S, given

𝚪(i, i + N − 1) =
⎡⎢⎢⎢⎣

Hi
Hi+1𝚽
…

Hi+n−1𝚽n−1

⎤⎥⎥⎥⎦ ,
where

Hj =
𝜕hj

(
xj

)
𝜕x

|||||x=xj
is the Jacobian matrix. If there is a positive integral N making the rank of 𝚪(i, i + N − 1), then

rank 𝚪(i, i + N − 1) = n. (2.65)

The system is completely observable in S.
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For example, according to the studies of Becker [17], necessary and sufficient conditions of
observability for a bearings-only geolocation are

x(t) =
[
x (t)
y(t)

]
≢ 𝛼(t)Bt, (2.66)

where 𝛼(t) is an arbitrary normalized function, t =
(
1

(
t − t0

)
· · · (t − t0)N

)T
and B is an

arbitrary 2(N + 1) matrix independent of t.
Since the satellite is running in a constraint orbit in accordance with regular laws, an existing

observable conclusion of an angle-measuring geolocation does not directly apply to the satel-
lite geolocation. The issue on geolocation observability in satellite electronic reconnaissance
is related to a specific application scenario and what kind of geolocation parameters are used.
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3
Single-Satellite Geolocation
System Based on
Direction Finding

Direction finding (DF) is the common way of electronic reconnaissance to get the direction
of arrival (DOA), angle of arrival (AOA), or line-of-sight (LOS) information of the emitter
signal. The geolocation system using LOS information is one of the most common systems
applied in space electronic reconnaissance applications. Its basic principles are to take the first
point of intersection of the LOS from the satellite to the emitter obtained from the DF system
and the earth’s surface as the location of the emitter. The advantages of the LOS geolocation
method are a simple geolocation system, available single LOS geolocation, and fast geoloca-
tion. In addition, the emitter DOA, unlike other signal parameters such as carrier frequency and
amplitude which, is instantaneously changing variable, is favorable to signal sorting. However,
the disadvantages are that 2D DF equipment and attitude measurement equipment are required
and the geolocation error is relatively large (especially in HEO).
Before discussing LOS geolocation technology, we first introduce several common elec-

tronic reconnaissance DF technologies, and then discuss single LOS geolocation technology
and multitimes filtering technology for the satellite.

3.1 Direction Finding Techniques

The measurement of the DOA of an emitter fromwhich the received radio signal was transmit-
ted is called the radio direction finding or radio direction, direction finding (DF) for short. The
basic technique of the electronic reconnaissance system for emitter DF is to use the amplitude
or phase response of multiple antennas to judge fromwhich direction the electromagnetic wave
is coming. The DF system can be classified as an amplitude comparison DF system, phase
comparison DF system, array DF system, rotational Doppler DF system, and other systems
according to the DF techniques [1].

Space Electronic Reconnaissance: Localization Theories and Methods, First Edition.
Fucheng Guo, Yun Fan, Yiyu Zhou, Caigen Zhou and Qiang Li.
© 2014 John Wiley & Sons Singapore Pte Ltd. Published 2014 by John Wiley & Sons Singapore Pte Ltd.
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Figure 3.1 Theoretical diagram of a two-antenna amplitude comparison DF system: (a) beam config-
uration and (b) pattern of two-antenna system

3.1.1 Amplitude Comparison DF Technique

The amplitude comparison DF technique refers to the measurement of signal AOA through
comparison of the relative amplitude of intercepted signals of different DF antennas or of the
same DF antenna at different times [1].
In case there are two antennas A and B, suppose that the amplitude of a signal transmitted

from the emitter to the reconnaissance antenna is A(t), the gain of the receivers is KA and KB,
the pattern functions of two antennas nearest to the emitter are FA(𝜃) and FB(𝜃), respectively,
and the axial directions of the two antennas are different, as shown in Figure 3.1. If the included
angle between the axial direction of the two antennas is 𝜃S, as shown in Figure 3.1, and the
intersection angle is 𝜃S∕2, the envelopes of the video frequency signal obtained after detection
of the receiver circuit are

LA = KAA(t)FA
(
𝜃S

2
− 𝜃

)
, (3.1)

LB = KBA(t)FB
(
𝜃S

2
+ 𝜃

)
. (3.2)

After signals LA and LB go through the logarithmic amplifiers and a subtractor, then the
output is

Z = logLA − logLB

= log
LA
LB

= log
KA
KB

+
FA (𝜃S∕2 − 𝜃)
FB (𝜃S∕2 + 𝜃)

. (3.3)
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From expression (3.3) we can see that if KA = KB and the pattern function of the receiving
antennas FA(⋅) and FB(⋅) is known, 𝜃 can be solved from Z.
Different antennas have different pattern functions F(𝜃). The following is an analysis with

F(𝜃) in the form of a Gaussian function as an example. This function can well approximate
that of a wideband spiral antenna typically used in EW (electronic warfare) equipment, and
the ideal antenna pattern function is

FA(𝜃) = FB(𝜃) = exp

[
−K𝜃

2

𝜃2B

]
, (3.4)

where K is the proportional constant and 𝜃B is half of the half-power beam width (HPBW) of
the antenna, that is, 𝜃B = 1∕2𝜃0.5.
Substitute expression (3.4) into expression (3.3) to obtain

Z = log
KA
KB

+ 2𝜃S𝜃
K log e

𝜃2B

. (3.5)

Then obtain

𝜃 =
𝜃2B

2𝜃SK log e

(
Z − log

KA
KB

)
(3.6)

If the channel gain is balanced, that is, KA = KB, expression (3.6) can be simplified to

𝜃 =
𝜃2B

2𝜃SK log e
Z. (3.7)

Expression (3.7) is a relation of the final estimated value 𝜃, which shows that 𝜃 is directly
proportional to Z. DF can be realized through measurement of the video envelope amplitude
of two receiving channels. Since one pulse is the minimum required for DF, this method is
also called the monopulse amplitude comparison DF technique.

3.1.2 Interferometer DF Technique

3.1.2.1 Theory of the Interferometer DF

The interferometer DF technique refers to the method of measuring the direction of incoming
waves using the phase difference of antenna receipt signals in different wavefronts. Since this
method is to obtain the DOA through comparison of the phases between two antennas, it is
also called the phase comparison method. Theoretically, as the phase interferometer can also
achieve monopulse DF, it is also called the phase monopulse DF. The simplest single baseline
phase interferometer consists of two channels, as shown in Figure 3.2 [1, 2].
If an emitter is far away from the DF system, the incoming wave can be approximately seen

as a plane wave. Suppose the plane wave is transmitted from the direction at an angle of 𝜃 with
the antenna boresight and the transmitted narrowband signals received by two antennas are

s1(t) = K1 cos(2𝜋ft + 𝜙0 + 𝜑), (3.8)

s2(t) = K2 cos(2𝜋ft + 𝜙0). (3.9)
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Figure 3.2 Theoretical diagram of a single baseline phase interferometer

In expression (3.9), the phase difference 𝜙 between the two antennas caused by the wave
path DOA of signals to the two antennas is

𝜙 = 2𝜋l
𝜆

sin 𝜃. (3.10)

In expression (3.10), 𝜆 is the signal wavelength and l is the spacing between the two antennas.
Let two signals go through the phase discriminator, which multiples two signals and conducts
lowpass filtering. Then obtain the UC signal, conduct a 90∘ phase shift of the one-channel
signal, multiply by the other channel of the signal, carry out lowpass filtering and then obtain
the US signal. If two correlators have the same phase response, the signal correlated with the
phase difference 𝜙 of the receiver output signal is

UC = K cos𝜙
US = K sin𝜙

}
, (3.11)

where K = K1K2∕2 is the system gain. According to expression (3.11), the following phase
difference can be obtained:

𝜙 = arctg

(
US

UC

)
. (3.12)

After the phase difference is measured, if the signal wavelength 𝜆 and baseline length l are
known, according to expression (3.10), the DOA 𝜃 of the emitter signal can be obtained:

𝜃 = arcsin

(
𝜙𝜆

2𝜋l

)
. (3.13)
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Expressions (3.12) and (3.13) can be established if and only if

|𝜙 ≤ 𝜋|, |𝜃| ≤ 𝜋

2
. (3.14)

It is thus clear that the phase interferometer DF technique changes an estimation of the
azimuth angle to an estimation of the phase difference 𝜙 caused by the path difference. The
phase difference 𝜙 can be measured by quantizing the encoder in the digital signal processing
(DSP) method. In addition, before estimating the phase difference 𝜙, the frequency or wave-
length 𝜆 of the intercepted signal must be measured. That is to say, the phase interferometer
DF (especially the single baseline DF) must be supported by the measurement of frequency f.
The following section discusses special problems in the phase interferometer DF.

3.1.2.2 Phase Ambiguity Problem

As previously mentioned, the phase interferometer DF is used to estimate the emitter arrived
angle 𝜃 by using the measured value of the phase difference 𝜙. The phase difference 𝜙 has a
period of 2𝜋. If the phase exceeds 2𝜋, phase ambiguity may occur, thus preventing the true
direction of the emitter to be found. The following introduces the derivation of the unambigu-
ous visual angle 𝜃u of the phase interferometer.
The interferometer is boresight symmetric and can carry out DF on both sides. Themaximum

phase difference on one side of the boresight is 𝜋, the maximum phase difference on the other
side is −𝜋, and the single value range of 𝜙 is [−𝜋, 𝜋].
Substitute 𝜙max = 𝜋 into expression (3.13) and obtain

𝜃max = sin−1(𝜆∕2l). (3.15)

Similarly, when 𝜙′
max = −𝜋,

𝜃max = −sin−1(𝜆∕2l). (3.16)

The unambiguous visual angle 𝜃u = |𝜃max| + |𝜃′max| = 2𝜃max, that is,

𝜃u = 2sin−1(𝜆∕2l). (3.17)

It is thus clear that to obtain a larger unambiguous angle area, a small antenna distance l
(short baseline) must be adopted. As for the interferometer whose antenna baseline length
l is determined, its unambiguous visual angle changes with the signal frequency. Addition-
ally, from expression (3.17) we can obtain the maximum spacing between two antennas under
which no ambiguity occurs:

lmax =
1
2
𝜆. (3.18)

3.1.2.3 DF Accuracy Analysis

Due to the nonlinear transformation 𝜙→ 𝜃, the 𝜙 measurement error has obviously different
effects on the 𝜃 estimation error when the angle 𝜃 is different. In order to find out the DF error
source, by completely differentiating expression (3.10) one can obtain

d𝜙 = 2𝜋
𝜆
l cos 𝜃d𝜃 − 2𝜋

𝜆2
l sin 𝜃d𝜆 + 2𝜋

𝜆
sin 𝜃dl. (3.19)
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As for two antennas with fixed length l, unstable factors of l can be neglected (i.e., dl = 0)
and the above expression can be simplified to

d𝜙 = 2𝜋
𝜆
l cos 𝜃d𝜃 − 2𝜋

𝜆2
l sin 𝜃d𝜆. (3.20)

Then obtain

d𝜃 = d𝜙
(2𝜋∕𝜆) l cos 𝜃

+
tg𝜃

𝜆
d𝜆. (3.21)

Express the above expression by increment:

Δ𝜃 = Δ𝜙
(2𝜋∕𝜆) l cos 𝜃

+ Δ𝜆
𝜆
tg𝜃. (3.22)

It can be seen from the above expression that:

1. The angle measurement error comes from the phase measurement error Δ𝜙 and the wave-
length (or frequency) measurement error Δ𝜆.

2. The anglemeasurement error value relates to the incoming angle 𝜃.When the azimuth angle
coincides with the antenna axis (𝜃 = 0∘), the angle measurement error is minimum; when
the azimuth angle coincides with the antenna baseline (𝜃 = 90∘), the angle measurement
error is close to infinity and DF cannot be performed. Therefore, the incoming angle should
not be too large, and in general should be limited to within ±45∘.

3. The angle measurement error also relates to the distance l between two antennas. In order
to obtain high angle measurement accuracy, l must be long enough, that is to say, the long
baseline interferometer (LBI) should be used. This conflicts with the unambiguous angle
condition of the interferometer, which demands that l be smaller than 𝜆∕2.

In order to solve the conflict between high angle measurement accuracy and a large unam-
biguous visual angle scope, a multibaseline interferometer is commonly used.

3.1.2.4 Multibaseline Interferometer

As for a single-baseline interferometer, there are irreconcilable conflicts between improving
DF accuracy and enlarging the scope of the visual angle. If the multibaseline interferometer
is used, the conflict between the visual angle 𝜃 scope and angle measurement accuracy can be
resolved. The interferometer with a shorter spacing will determine the visual angle scope and
one with a longer spacing will determine angle measurement accuracy.
Figure 3.3 shows a one-dimensional three-baseline interferometer. Antenna ‘0’ is the ref-

erence antenna, the spacing between antenna ‘1’ and antenna ‘0’ is l1, the spacing between
antenna ‘2’ and antenna ‘0’ is l2, and the spacing between antenna ‘3’ and antenna ‘0’ is l3.
Suppose these antennas are omnidirectional antennas. If the emitter’s plane wave arrives from
the right side, the phase difference between each antenna and the reference antenna increases
one by one from right to left. The unambiguous visual angle is [1–3]

𝜃u = 2sin−1(𝜆∕2l1). (3.23)
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Figure 3.3 Principle diagram of a multibaseline interferometer

If the error caused by frequency variation is neglected, the angle measurement error is

Δ𝜃 = Δ𝜙∕2𝜋(l3∕𝜆) cos 𝜃. (3.24)

Thus the multibaseline interferometer resolves the conflict between the visual angle range
and angle measurement accuracy that exists in a single-baseline interferometer.
Suppose that the number of DF baselines of a one-dimensional multibaseline phase interfer-

ometer is k, the length ratio of adjacent baselines is n, and the angular quantization bits of the
longest baseline encoder are m; in theory DF accuracy is

𝛿𝜃 =
𝜃max

nk−12m−1
. (3.25)

The phase interferometer may provide higher DF accuracy, but it cannot cover all direc-
tions and has no simultaneous resolution to multiple signals. In addition, the phase difference
relates to the signal frequency and frequency measurements are required during DF to obtain
wavelength 𝜆, which thus uniquely determine the DOA of signals.

3.1.2.5 2D Phase Interferometer

For a single-baseline interferometer in 3D space, the obtained angle is a cone angle, that is, the
geolocation plane that can be determined is a conical surface with the interferometer baseline
as its axial direction [1, 3], as shown in Figure 3.4.
In fact, the sight angle of the emitter in 3D space can be obtained through intersection of the

azimuth and elevation planes. It is obvious that a one-dimensional interferometer is not enough
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to obtain azimuth and elevation 2D information. It is natural to wonder about the development
of the interferometer from one dimension to two dimensions, thus measuring the angle both
in the horizontal plane and the vertical plane.
As shown in Figure 3.5, a common 2D interferometer is composed of at least one pair

of interferometers with mutually perpendicular baselines. The 2D angle information of this
2D interferometer includes

𝜑A =
2𝜋lA
𝜆

sin 𝜃 cos 𝛼, (3.26)

𝜑B =
2𝜋lB
𝜆

cos 𝜃 cos 𝛼. (3.27)

The following conclusions can be derived from the above two expressions:

1. When the elevation angle 𝛼 ≠ 0, if approximating the emitter azimuth angle 𝜃 to the angle
of a one-dimensional interferometer, an error factor cos 𝛼will be introduced. If the elevation
angle 𝛼 is small, the corresponding error factor is small and negligible. For example, when
the azimuth angle is 45∘ and the elevation angle is 10∘, the error caused by approximation is
lower than 1∘. However, when the elevation angle is larger, the corresponding error factor
is larger and cannot be neglected. For example, when the azimuth angle and elevation angle
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are both 45∘, the error will reach 15∘. In this case, the 2D interferometer must be used to
measure the azimuth angle 𝜃 and the elevation angle 𝛼 of the emitter.

2. Estimation of the azimuth angle and the elevation angle:

𝜃 = tg−1
(
lB𝜙A
lA𝜙B

)
, (3.28)

𝛼 = ±cos−1
⎛⎜⎜⎝ 𝜆2𝜋

√√√√ 𝜙2
A + 𝜙

2
B

l2Asin
2𝜃 + l2Bcos

2𝜃

⎞⎟⎟⎠ , (3.29)

where ‘±’ used in the above expression refers to the fact that the pointing of the antenna
beam can be used to eliminate the ambiguity due to the interferometer’s failure to distin-
guish up and down.

Like a one-dimensional interferometer, the 2D interferometer also has a conflict between
the DF unambiguous angle area and DF accuracy. Thus, the 2D multibaseline interferometer
should be used.

3.1.3 Array-Based DF Technique

The space spectrum estimation is a new DF technique combining a multiantenna array and
modern digital signal processing (DSP) technology on the basis of a spectrum estimation [1].
For the convenience of discussing questions, a uniform linear array (ULA) is taken as an

example, as shown in Figure 3.6. Suppose there are M antennas in total and the distance
between adjacent antenna elements is d; the time DOA at adjacent elements is

𝜏 = d sin 𝜃∕c, (3.30)

where 𝜃 is the DOA and c is the propagation speed of the radio wave in free space. By taking
the signal received by the first element s(t) as the reference, the output signal of themth element
is

xm(t) = s[t − (m − 1)𝜏] + nm(t) (m = 1, … ,M), (3.31)

where nm(t) is the receiver noise, which is supposed to be neither correlated with the signal nor
the noise of elements. From the above-mentioned expression it can be seen that signals received
by elements are a time delay of the copy of an ideal undistorted signal of the first element s(t)
plus noise.
For a single sine wave signal, suppose that s(t) = s0 exp(j𝜔t); the signal received by the mth

element is

s[t − (m − 1)𝜏] = s0 exp{j𝜔[t − (m − 1)𝜏]}

= s0 exp(j𝜔t) exp[−j2𝜋d(m − 1) sin 𝜃∕𝜆]

= s(t) exp[−j2𝜋d(m − 1) sin 𝜃∕𝜆] (m = 1, … ,M). (3.32)

Let
f ′ = d sin 𝜃∕𝜆. (3.33)
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Figure 3.6 Block diagram of a high-resolution array DF system

This can be seen as a ‘spatial frequency,’ which is correlated with the location and DOA of
the incoming wave. Thus as for a ULA, the phase corresponding to the spatial frequency f ′ is

𝜙m = −2𝜋(m − 1)f ′. (3.34)

This is a linear function of the spatial sample point and is equivalent to uniform sampling of
time-domain signals. Thus, it can be seen from the above expression that, if the spectrum esti-
mation method for time-domain signals is used to process the spatial sample point signal, the
spatial frequency can also be estimated and the angle can be calculated according to expression
(3.34). Thus the DF problem becomes a spatial spectrum estimation problem.
The above-mentioned derivation employs a ULA with spacing as d. If the nonuniform linear

array (NULA) or other shaped arrays like the circular array and the square array are employed,
a space spectrum estimation of direction can also be obtained but the method is different.
Therefore, the space spectrum estimationDF is used to estimate the spatial frequency accord-

ing to the output signal of elements {Xm(t)} and to determine other parameters. Among space
spectrum estimation methods, the multiple signal classification (MUSIC) algorithm proposed
by Schmidt in 1979 [4] is characterized by high accuracy, super-resolution, and so on, shows
strong vitality, and has been widely used. Its basic principle is to correlate array output signal
vectors, perform eigenvalue decomposition through a correlation matrix and obtain a space
spectrum to identify multiple spatial signals and then search the DOA.
Compared with the traditional DF method, the space spectrum estimation method has out-

standing advantages as follows:

1. High accuracy. DSP technology is used in array signals processing; thus various compli-
cated mathematical tools can be used and, compared with traditional methods, the accuracy
is much higher.

2. High resolution, which breaks through the Rayleigh limit and by which multiple signals
falling into one beam can be resolved (thus, it is also called super-resolution DF).
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3. Capability to perform DF of multiple signals arriving at the same time.
4. Capability to perform DF of a certain number of coherent sources and resolve direct signals

and reflected signals under specific conditions.

The main shortcomings of this DF system are sensitivity to signal model distortion, larger
computation load, and data size. Sensitivity is a difficulty in practical application. Large data
size and computation load may affect its real-time capability. However, with the development
of modern computer technology, these issues will finally be reasonably resolved and this sys-
tem will has a very attractive application prospect.

3.1.4 Other DF Techniques

Besidesmonopulse amplitude comparison and phase comparison anglemeasurementmethods,
there aremany other DF techniques, for example, the Adcock antennaDF technique commonly
used in communication reconnaissance, the Wullenweber DF technique, the Doppler DF tech-
nique, and the multibeam DF techniques, like the multimode circular array multibeam DF and
the lens feeder multibeam DF. Here we will not introduce them all. Readers interested in them
may refer to references [1] and [5], and so on.

3.2 Single-Satellite LOS Geolocation Method and Analysis

A single-satellite LOS geolocation, that is, geolocation by azimuth angle and elevation angle
of LOS, means that the satellite utilizes the LOS measured by DF and finds the intersection
point with the earth’s surface with LOS to determine the location of the emitter [6–10].

3.2.1 Model of LOS Geolocation

The satellite is operated in 3D space, so the azimuth angle and the elevation angle are required
for LOS geolocation. Normally, the 2D interferometer is used tomeasure the azimuth angle and
the elevation angle at each arrival signal from emitters on the earth’s surface. Then the location
of the emitter should be computed based on the satellite position (for example, longitude,
latitude, and altitude) and attitude (yaw, pitch, roll angles) at that time.
As shown is Figure 3.7, it is assumed that the position of the satellite in the ECEF

(earth-center earth-fixed) coordinates {System e} is xs,e. Suppose that the longitude of
the subsatellite point is Bs and the latitude is Ls (see Section 2.4.2). While the location of the
emitter assumes xT ,e, the vector of the distance between the emitter and the satellite in the
ECEF coordinates should be

re = xS,e − xT ,e (3.35)

It is assumed that the coordinates could be rotated to measure the angle in the satellite
body coordinates system. There is one way that Bs is rotated by rotating axis z, as shown
in Figure 3.7, and the Ls is rotated upward by rotating axis y; then by reversing the coordi-
nates transform, the LOS vector of the NED (north-east-down) coordinates system should be
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Figure 3.7 Schematic figure of LOS geolocation

obtained. This is expressed mathematically as

rn = RrgRy(Ls)Rz(Bs)re, (3.36)

where

Rrg =
⎡⎢⎢⎣
0 0 1
0 1 0
−1 0 0

⎤⎥⎥⎦ .
It is assumed that the attitude sensor outputs follow three values: (i) yaw angle 𝜓 : the

included angle between the head of the satellite (axis x in {system b}) and the magnetic north
(axis x in {system n}), which is in the forward direction measured clockwise; (ii) pitch angle
𝜃: the included angle between the right wing of the satellite (axis y in {system b}) and the
east (axis y in {system n}), which is in the forward direction measured clockwise; and (iii) roll
angle 𝜑: the included angle between the underbelly (axis z in {system b}) and the downward
direction of the earth’s center (axis z in {system n}), which is in the forward direction mea-
sured clockwise. A 3–2–1 Euler angle attitude rotation sequence is used, that is, a rotate roll
angle horizontally along axis x, a rotate pitch angle along axis y, and then a rotate yaw angle
along axis z. Based on that, we can obtain, in a satellite body coordinates system,

xT ,b = M(xS,e − xT ,e), (3.37)

where M = RT
x (𝜑)RT

y (𝜃)RT
z (𝜓)RrgRy(Ls)Rz(Bs). In such a way, the correlation between the

state and observation is established. The direction cosine angles of 𝛼 and 𝛽 can be derived
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from the expression of [8]

[
𝛼

𝛽

]
=

⎡⎢⎢⎢⎢⎢⎢⎣

arccos
xT ,b√

x2T ,b + y2T ,b + z2T ,b

arccos
yT ,b√

x2T ,b + y2T ,b + z2T ,b

⎤⎥⎥⎥⎥⎥⎥⎦
= f(xT ,e). (3.38)

If we use the WGS-84 mean earth ellipsoid model, and the prior knowledge that the emitter
is on the earth’s surface, the equivalent form for the terrestrial longitude and latitude (LT, BT)
and the terrestrial altitude (HT) on earth and its coordinateXT ,e =

[
xT ,e yT ,e zT ,e]T in the ECEF

system is that

xT ,e =
(
N + HT

)
cosBT cos LT

yT ,e = (N + HT ) cosBT sinLT
zT ,e = (N(1 − e2) + HT ) sinBT

⎫⎪⎬⎪⎭ , (3.39)

where N = a∕
√

1 − e2sin2BT is the local radius of curvature in a prime vertical circle. The
radius of the earth a= 6 378 137m. The square of the first eccentricity e2 = 0.006 694 379
990 13.
Expression (3.39) can be written in another form as

x2T ,e + y2T ,e
(N + H)2

+
z2T ,e

[N(1 − e2) + H]2
= 1. (3.40)

Combined with the measurement expressions (3.38) and (3.40), there are three unknown
values in the three expressions, and by eliminating one result with a longer distance from the
other point on the earth, the location of the emitter can be calculated.

3.2.2 Solution of LOS Geolocation

Here we will discuss the solution of this expression. If the distance between the emitter and
satellite is r, after 𝛼 and 𝛽 are measured, the direction cosine angle measured in the satellite
body coordinates system can be decomposed as

xT ,b = ru , (3.41)

where

u =
⎡⎢⎢⎣

cos 𝛼
cos 𝛽√

1 − cos2𝛼 − cos2𝛽

⎤⎥⎥⎦ .
After expression (3.41) is substituted into expression (3.37), we can obtain

xT ,e = xS,e −M−1xT ,b = xS,e − rM−1u . (3.42)
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A quadratic expressionwith one unknown r can be obtained by substituting expression (3.42)
into expression (3.40). Two roots of r̂1 and r̂2 can be solved using this expression. The min-
imum one is the distance value of the emitter. By substituting the solved distance value into
expression (3.42), the location of the emitter is measured.
In the solution of expression (3.40), the local radius of curvature N of the emitter in a prime

vertical circle is unknown, so the iterative approach should be used for solution. By considering
that the N value of the satellite is close to the N value of the emitter, firstly the value of N0 =
NSat is substituted into expression (3.40) to calculate the iterative distance ri of the ith time,
and then the location of the emitter is measured by expression (3.42). Thus the local radius
of curvature Ni in a prime vertical circle estimated by the ith iteration is measured, and so on,
until the distance of the emitter converges:

|ri − ri−1| ≤ 𝜖r,

where 𝜖r is the set threshold of the small distance error.

3.2.3 CRLB of the LOS Geolocation Error

Based on the analysis above, the factors that affect the accuracy of geolocation include the
direction cosine measurement error, attitude measurement error, altitude error of emitter, posi-
tion error of the satellite, and so on. Themain factors are the measurement error of the direction
cosine and the altitude error of the emitter. Under the two conditions, the Cramér–Rao lower
bound (CRLB) of the geolocation error can be analyzed.
To get the CRLB of LOS geolocation, it is assumed that all these errors are joint Gaussian

distributions with zero mean, where the bm
𝛼𝛽H denotes the measured values of 𝛼, 𝛽, and the

assumed altitude H. This is equal to

bm
𝛼𝛽H = b𝛼𝛽H(xBLH) + n𝛼𝛽H ,

where the true value of b𝛼𝛽H =
[
𝛼 𝛽 H

]T
is the function of the emitter position xBLH , and

n𝛼𝛽H is the error vector of the measured values of 𝛼, 𝛽, and H. By assuming E[n𝛼𝛽H] = 𝟎 and
E[n𝛼𝛽HnT𝛼𝛽H] = Q𝛼𝛽H , the probability density function of the measurement error is

f (b𝛼𝛽H|xBLH) = 1|2𝜋Q𝛼𝛽H|1∕2
exp

{
−
[
bm
𝛼𝛽H − b𝛼𝛽H

(
xBLH

)]T
Q−1
𝛼𝛽H[b

m
𝛼𝛽H − b𝛼𝛽H(xBLH)]∕2

}
. (3.43)

Based on the definition of the Fisher information matrix [11], by differentiating Equation
(3.43) in matrix form, we can obtain

F = −E

[
𝜕2 ln f

(
b𝛼𝛽H|xBLH)
𝜕x2BLH

]
,

= JTQ−1
𝛼𝛽HJ (3.44)
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where

J =

⎡⎢⎢⎢⎢⎢⎣

𝜕𝛼

𝜕B
𝜕𝛼

𝜕L
𝜕𝛼

𝜕H
𝜕𝛽

𝜕B
𝜕𝛽

𝜕L
𝜕𝛽

𝜕H

0 0 1

⎤⎥⎥⎥⎥⎥⎦
is the Jacobian matrix, and the first two items of the last row are 0 because the longitude L,
latitude B, and altitude H are orthogonal.
The solution of the Jacobian matrix J in expression (3.44) is described below. Firstly, by

solving the total differential according to Equation 3.38, we obtain[
d𝛼
d𝛽

]
= J1dXT ,b, (3.45)

where the Jacobian matrix is

J1 =

⎡⎢⎢⎢⎢⎣
𝜕𝛼

𝜕xT ,b

𝜕𝛼

𝜕yT ,b

𝜕𝛼

𝜕zT ,b
𝜕𝛽

𝜕xT ,b

𝜕𝛽

𝜕yT ,b

𝜕𝛽

𝜕zT ,b

⎤⎥⎥⎥⎥⎦
.

By solving the total differential to expression (3.37),

dxT ,b = MdxT ,e. (3.46)

By solving the total differential to expression (3.39),

dxT ,e = J2dxBLH (3.47)

where the Jacobian matrix is

J2 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝜕xT ,e
𝜕B

𝜕xT ,e
𝜕L

𝜕xT ,e
𝜕H

𝜕yT ,e
𝜕B

𝜕yT ,e
𝜕L

𝜕xT ,e
𝜕H

𝜕zT ,e
𝜕B

𝜕zT ,e
𝜕L

𝜕zT ,e
𝜕H

⎤⎥⎥⎥⎥⎥⎥⎦
and

dxBLH =
[
dB dL dH

]T
.

Combined with Equations (3.45) to (3.47), we can obtain[
d𝛼
d𝛽

]
= J3dxBLH (3.48)

where J3 = J1MJ2 is a 2× 3 matrix. Based on the orthogonality between latitude B, longitude
L, and altitude H, we can obtain

J =
[
JT3 l

]T
, (3.49)
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where l =
[
0 0 1

]T
. After expression (3.49) is substituted into expression (3.44), the CRLB

of LOS geolocation for the geodetic coordinate system is

CRLBBLH =
(
JTQ−1

𝛼𝛽HJ
)−1

, (3.50)

where Q𝛼𝛽H is the covariance matrix of the direction cosine angle and altitude error.
The lower bound of the geolocation error for the emitter angle is determined by this covari-

ance matrix:

𝜎pmin
=
{
N2
t

[
CRLBBLH (1, 1) + CRLBBLH(2, 2)

]
+ CRLBBLH(3, 3)

}1∕2
(3.51)

where Nt is the radius of curvature in the local prime vertical circle.

3.2.4 Simulation and Analysis of the LOS Geolocation Error

Suppose the altitude of satelliteHs = 500 km, the longitude and latitude of the subsatellite point
is (Ls,Bs) = (40∘, 120∘), the longitude and latitude of the emitter lies in (Lt,Bt) = (35∘, 116∘),
and the attitude angles of the satellite (yaw angle, pitch angle, roll angle) are equal to (45∘, 0∘,
0∘). If the measurement errors of direction cosine 𝛼 and 𝛽 are zero-mean Gaussian white noise
and uncorrelated with each other, then the angle root mean square error (RMSE) is 𝜎𝛼 = 𝜎𝛽 ,
by assuming that the RMSE of the ground altitude is dH.
When there is an error in the angle measurement, based on the geolocation solution in

Section 3.2.2, the estimated value for geolocation xT ,e in ECEF coordinates at any time can
still be solved, which is converted to an estimated value of the emitter location in the geode-
tic coordinates system (B̂t, L̂t, Ĥt). To reduce the effects of random errors, the RMSE for the
locating position should be counted by repeating the Monte Carlo test (for example,M= 5000
times):

𝜎p =

(
1
M

M∑
m=1

(
B̂t − Bt

)2
N̂2
t + (L̂t − Lt)2N̂2

t + (Ĥt − Ht)2
)1∕2

. (3.52)

When the error of the emitter altitude dH= 10m (with respect to ships in the sea), the relation
between RMSE 𝜎p and the accuracy of the measured angle under different error conditions for
LOS geolocation is stated as shown in Figure 3.8.
As shown in Figure 3.8, in most cases, the results solved by the geolocation solution in

Section 3.2.2 reach to CRLB. However, if the angle error exceeds 2∘, the actual geolocation
error is slightly more than the theoretical CRLB of 1 dB. This shows that the method described
in Section 3.2.2 is the optimal geolocation method if the measured angle error is small, which
approaches the optimal geolocation method if the measured angle error is large.
In Figure 3.8, the geolocation error is exponentially increased over the angle measurement

error. Therefore, the error for the angle measurement should be small enough to minimize the
geolocation error.
When the error of the ground altitude dH= 1000m (with respect to rugged mountain areas in

the land), the relation between the geolocation error and the different accuracy of the measured
angle is stated as shown in Figure 3.9.
As shown in Figure 3.9, since there was an error in the emitter altitude assumption, the geolo-

cation error does not decrease while the error of angle measurement decreases, but is stable
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at a level where the actual error is higher than the emitter altitude error (approximately two
times). This shows that the emitter altitude assumption error affects not only for LOS geolo-
cation itself but also an additional error for LOS geolocation. Consequently, the altitude error
should be eliminated in LOS geolocation. The digital altitude map can be used for eliminat-
ing the geolocation error; that is, firstly the digital altitude at this point is coarsely measured
by the estimated emitter location, followed by a modified estimation of the emitter location,
and then by iteration for a couple of times, until the effect of the altitude error is small enough.

3.2.5 Geometric Distribution of the LOS Geolocation Error

From LOS geolocation research, we should be concerned about the distribution of LOS geolo-
cation error on the earth, especially its distribution near the subsatellite point. Intuitively, the
further from the subsatellite point, the smaller is the elevation angle is, as also is the geoloca-
tion error. The distribution of the geolocation error seems to be in a concentric circle around
the subsatellite point. We will verify this in this section.
If the altitude of satellite Hs = 500 km, the longitude and latitude of the subsatellite point

should be (Ls,Bs) = (40∘, 120∘). By assuming that the LOS angle accuracy is 0.1∘, the attitude
angles of the satellite (heading angle, pitch angle, roll angle) are equal to (40∘, 0.1∘, 2.1∘)
and the prior emitter altitude assumption error is 1000m. As a result, the GDOP (geometric
dilution of precision) distribution of the ground geolocation error is shown in Figure 3.10.
As shown in Figure 3.10, the minimum geolocation error is found at the subsatellite point.

The further from the subsatellite point, the greater is the error. This shows the same as our
intuitive sense. If observed carefully, just as the direction cosine angle features nonlinear
performance, the GDOP distribution graph made by the attitude angles has a certain rotation.
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Figure 3.8 Relation between a LOS geolocation error and an angle error (altitude error dH= 10m)
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Figure 3.9 Relation between a LOS geolocation error and an angle error (altitude error dH= 1 km)

Because of the linear nature of the direction cosine and attitude transformation, as a result the
distribution of the geolocation error is derived from the concentric circle at the subsatellite
point.
If we decompose CRLBBLH using the eigenvalue and the eigenvector, correspondingly the

major axis and the minor axis of the error ellipse may be measured. Readers could make an
analysis if you are interested, so we will leave this problem to readers.

3.3 Multitimes Statistic LOS Geolocation

In actual satellite reconnaissance operation, signals received from the same emitter would
occur more than once. If we process the measured data in multiple measurements, a better
result than that of single-time LOS geolocation may be obtained.
Under multitimes angle measurement, there are various ways to locate the fixed emitter using

a single satellite:

1. By using the intersected LOS lines through multitimes DF measurement of the satellite at
different orbit locations to measure the location of the target emitter. This method is called
multitimes triangulation (or bearings-only localization).

2. Single-satellite LOS geolocation is used for a fixed emitter. Average processing is carried
out based on the point of intersection with the earth’s surface each time, in order to improve
the accuracy of geolocation.

3. Single-satellite LOS geolocation is used for a fixed emitter. Weighted average processing
is carried out based on the point of intersection with the earth’s surface each time, in order
to improve the accuracy of geolocation.

We will analyze the three methods respectively in the following context.



Single-Satellite Geolocation System Based on Direction Finding 65

2000
20

00

2000

2
0
0
0

2500

2500

2005

2
5
0
0

2500
2500

2
5
0
0

30
00

3
0
0
03
5
0
0

3000
3000

3000

3000

35
00

3500

3
5
0
0

4
0
0
0

4000

115 116 117 118 119 120 121 122 123 124
35

36

37

38

39

40

41

42

43

44
L
a
ti
tu

d
e
 (
°)

Longitude (°) 

Figure 3.10 GDOP contour map for a LOS geolocation error

3.3.1 Single-Satellite Multitimes Triangulation

Triangulation is referred to the emitter geolocation by the intersected points of direction lines
via multitimes DF measurements for the same emitter.
If we use the ECEF coordinates system, the state vector of the emitter position is Xk =

[xt(k), yt(k), zt(k)]T. As the emitter is considered as a fixed emitter on earth, we can obtain the
state equation [12]:

Xk = Xk−1. (3.53)

If a 2D interferometer is used for measuring the LOS angle of an incoming wave of the
emitter, the angles may be transformed to an azimuth angle 𝛽(k) and an elevation angle 𝜖(k) in
the ECEF coordinates system based on the attitude parameter of the satellite. The correlation
between the angles and the state is expressed as

𝛽m(k) = arctg
xs(k) − xt(k)
ys(k) − yt(k)

+ 𝑣𝛽(k), (3.54)

𝜖m(k) = arctg
zs(k) − zt(k)√

[xs(k) − xt(k)]2 + [ys(k) − yt(k)]2
+ 𝑣𝜖(k). (3.55)

Let the observation vector hk =
[
𝛽m (k) 𝜖m(k)

]T
. The extended Kalman filter (EKF) algo-

rithm can be used for estimating the position of the emitter Xk. In the EKF, the measurement
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equation can be linearized at the predicted state vector X̂k∕k−1. The Jacobian matrix is
computed by a series of derivative operations:

Hk =
𝜕hk
𝜕X

||||X=X̂k∕k−1 . (3.56)

The expanded EKF algorithm is shown by the following equations [12]:

X̂k∕k−1 = X̂k−1∕k−1, (3.57)

Pk∕k−1 = Pk−1∕k−1, (3.58)

Kk = Pk∕k−1H
T
k (HkPk∕k−1H

T
k + Rk)−1, (3.59)

X̂k∕k = X̂k∕k−1 +Kk[Zk − h(X̂k∕k−1)], (3.60)

Pk∕k = (I −KkHk)Pk∕k−1(I −KkHk)T +KkRkK
T
k , (3.61)

where the initial value X̂0 and the initial variance P0 are the single-time instantaneous geolo-
cation value and the corresponding error variance, respectively.
When the EKF algorithm is used for multitimes geolocation, due to the assumption that

the target emitter on the earth’s surface is not used, the emitter with an unknown altitude
may be located, that is, without prior information of the emitter altitude. Because of that, the
geolocation error is great when the angle error is large, so we need many more observation
times and observed points. Therefore, this algorithm is suitable for the geolocation of a fixed
emitter under a long observation time, a large angle of satellite track, or high angle accuracy.

3.3.2 Average for Single-Satellite Multitimes Geolocation

For single-satellite LOS geolocation, the location of the emitter can be computed via the inter-
secting point of the LOS with the earth’s surface. If the geolocation results at each time are
filtered statistically, the accuracy of geolocation may be improved. Since the location of the
target emitter is fixed in the ECEF coordinates system, the statistical averaging for the results
could be carried out to estimate the location of the target emitter.
By assuming that the estimated value of the emitter location by instantaneous geolocation at

time k is X̂k, we can obtain the estimated geolocation value after K angles:

X̂ = 1
K

K∑
k=1

X̂k. (3.62)

Due to the satellite position at different measurement times being different, the geolocation
error (or uncertainty area) after intersecting with the earth’s surface is also not the same. If we
use the simple averaging method above, the data with many errors may ‘pollute’ the geoloca-
tion data with high accuracy. To avoid this, the range of angles between the emitter and the
subsatellite point is used to weigh the geolocation results, in order to improve the accuracy of
geolocation.
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3.3.3 Weighted Average for Single-Satellite Multitimes Geolocation

If the emitter location calculated by LOS geolocation at time k is X̂k, correspondingly
the measurement error ek is zero-mean and the covariance matrix is Rk. By assuming that two
measurements at any two times are uncorrelated, after the angle of K times is measured, the
expression may be written as

X̂K = HKX + eK , (3.63)

where X̂K =
[
X1 · · · XK

]T
, HK =

[
I3 · · · I3

]T
, and eK =

[
e1 · · · eK

]T
. Based on the

weighted least squares, the optimal weighted matrix corresponding to the expression (3.63)
should be

W =
{
E
[
eK
(
eK
)T]}−1

=
⎡⎢⎢⎣
R−1
1

…
R−1
K

⎤⎥⎥⎦ .
By the weighted least squares (WLS) method, the estimated location is the best linear unbi-

ased estimation (BLUE), which is [11, 12]

X̂ = ((HK)TWHK)−1(HK)TWXK =

(
K∑
k=1

R−1
k

)−1 K∑
k=1

R−1
k X̂k. (3.64)

Since the X̂k is an estimated value in Section 3.2.2, the true value of the emitter is unknown,
so the corresponding error matrix Rk is not able to be measured. However, an approximation
can be made. Based on the estimated location X̂k, the CRLBBLH of the emitter geolocation
error is measured using the algorithm in Section 3.2.3 and the approximate variance matrixRk
of the emitter geolocation error is substituted into Equation 3.64 to give the weighted average.

3.3.4 Simulation of Single-Satellite LOS Geolocation

When the effect of the random angle measurement error on the LOS emitter geolocation
accuracy is evaluated, to eliminate the influence from random noises in single-satellite LOS
geolocation, the Monte-Carlo method is usually used to carry out repeated tests in calculating
the average geolocation error statistically. The Monte-Carlo method needs on average at least
50 times or more simulations.
Assume that the conditions for the simulation scenario is as follows: the satellite orbital

altitude is 600 km, the circular orbit has an inclination of 45∘, orbit elements (6978 km, 0,
45∘, 0, 0, 0), the target emitter is located at Taipei and the method is a single-satellite LOS
geolocation.
By using the STK (satellite tool kit) software, we can acquire data of the satellite operating

process, such as the satellite access area and access time for the emitter. The access area is
shown in Figure 3.11.
The satellite repeated access interval and access duration within a day are shown in Table 3.1.
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Figure 3.11 Coverage information on a subsatellite track

Table 3.1 Statistics of the satellite repeated access interval and access duration

Times Start time End time Duration (s)

1 1 January 2001 09:40:09.26 1 January 2001 09:52:27.26 737.994
2 1 January 2001 11:20:51.09 1 January 2001 11:34:08.46 797.380
3 1 January 2001 13:04:28.31 1 January 2001 13:14:56.93 628.622
4 1 January 2001 14:49:01.89 1 January 2001 14:56:51.62 469.724
5 1 January 2001 16:31:05.18 1 January 2001 16:41:21.02 615.840
6 1 January 2001 18:11:53.76 1 January 2001 18:25:06.11 792.353
7 1 January 2001 19:53:28.67 1 January 2001 20:05:59.83 751.151

Choose satellite data of the coverage track from 11:20:51.09 on 1 January 2001 to
11:34:08.46 on 1 January 2001. Suppose the data rate is T = 10 seconds one time; then we get
the measured angle changing curve shown in Figure 3.12:

1. Simulation of single-satellite triangulation performance
Carry out the Monte-Carlo test for 100 times with different levels of angle measure-

ment error. We can obtain the geolocation error of the triangulation method as shown
in Figure 3.13 by using the recursive nonlinear least squares method mentioned in
Section 3.3.1.
It is known from Figure 3.13 that the geolocation error decreases along with the angle

error, but the angle error changes from 3∘ to 0.5∘, and the final geolocation convergence
error is almost the same, approximately within 8–11 km. However, when the angle mea-
surement error decreases from 0.5∘ to 0.1∘, the geolocation error decreases comparatively
as dramatically and the triangulation accuracy can be within 1 km.
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Figure 3.12 Angle curves

2. Simulation of the single-satellite instantaneous angle measurement geolocation filter
method
If the single-satellite LOS geolocation method is adopted, after the satellite starts to enter

the satellite visible region, as the elevation angle is very large when the satellite is just
entering or leaving the coverage area of emitter illumination, the LOS and earth’s surface
are close to being tangent, which leads to a large geolocation error. When the satellite
passes the zenith of the emitter or reaches the subsatellite point, the geolocation error is
the smallest. Assume that the DF error is 𝜎𝛽 = 𝜎𝜖 = 1∘ and T = 10 seconds. Then changing
the diagram of the satellite theoretical geolocation error during one time coverage period
can be drawn as shown in Figure 3.14.
It is known from Figure 3.14 that the geolocation error is huge when the satellite is just

entering or leaving the coverage area, which is up to tens of thousands of kilometers. There-
fore, this part of the data may impose a bad effect on the average situation of geolocation
statistics.
Suppose the LOS measurement error 𝜎𝛽 = 𝜎𝜖 = 1∘. With the above simulation scenario

and data we can get a discrete distribution on the plane of geolocation points during one time
satellite passing at the zenith, as shown in Figure 3.15, where ‘⊕’ in the figure represents
the actual position of the emitter.
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If an average method is adopted, by using average geolocation points we can acquire the
distribution of geolocation points as shown in Figure 3.16. It is clear that the distribution
area of geolocation points narrows, showing the reduction in geolocation errors. However,
it is easy to find that the distribution center of the average deviates from the actual position
of the emitter. This is because a kind of bias exists in LOS geolocation.
If a weighted average is used, the distribution of geolocation points is as shown in

Figure 3.17.
By comparing Figure 3.17 with Figure 3.16, we can see that the distribution area shrinks

further after taking a weighted average. However, the distribution center still deviates from
the real position of the emitter.
Repeat the Monte-Carlo trials 100 times. We can record the geolocation error under con-

ditions of different angle measurement errors, as shown in Table 3.2.
From Table 3.2 we can see that bias and standard (STD) error of the average method

decrease along with angle error. However, in using the weighted average geolocation
method, bias does not decrease while STD error does. Therefore, we must considering
how to eliminate bias when using the weighted average method. Also, when the case angle
measurement error is large, adoption of the weighted average method can reduce the CEP
(circular error probability) and STD error of the geolocation error.

3. Conclusion
By comparing the triangulation method, average method, and weighted average method,

we know that the triangulation method, though it does not use prior information of
the earth’s surface, can reach comparatively high geolocation accuracy when the angle
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Figure 3.14 Changing curve of a theoretical geolocation error during the process of the satellite one
time passing of zenith
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Figure 3.15 Distribution of geolocation points before average

measurement error is small. The average method is not as good as the weighted average
geolocation method when the angle measurement error is large. However, there is bias
in the weighted average method, which imposes influence on geolocation that cannot be
neglected and can only be solved by using some effort.
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Figure 3.16 Distribution of geolocation points after average
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Figure 3.17 Distribution of geolocation points after weighted average
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Table 3.2 Statistics of the geolocation error under the condition of different
angle measurement errors

Angle
error

Geolocation error of
average (km)

Geolocation error of
weighted average (km)

CEP Bias STD CEP Bias STD

3∘ 30 8.4 39 19 14 14
1∘ 15 3.5 22 10 9.6 5.2
0.5∘ 10.5 2.1 15 9.7 9.6 2.4
0.1∘ 3.8 0.8 5.3 9.6 9.6 0.55

3.4 Single HEO Satellite LOS Geolocation

3.4.1 Analysis of Single GEO Satellite LOS Geolocation

From the analysis above we know that the higher the orbit of satellite, the larger the scope of
satellite coverage. To enlarge the reconnaissance scope of a satellite, therefore, one method we
can adopt is to let the satellite be in a higher orbit. Compared with the LEO (low earth orbit)
satellite, the GEO (geostationary orbit) satellite comes with three unique features:

1. Geostationary
2. Far from earth
3. Large visible coverage area for the earth.

If the GEO electronic reconnaissance satellite is set over a hotspot area, 7/24 monitoring on
electromagnetic emitters in the area can be realized. It is one of the necessary methods used
to carry out reconnaissance and surveillance.
However, when carrying out reconnaissance on GEO, there is a clear difficulty – the great

distance between the satellite and the emitter on the earth brings two adverse factors:

1. Deterioration of LOS geolocation accuracy
A geolocation error diagram can be obtained, as shown in Figure 3.18, by using the geolo-

cation solution method mentioned in Section 3.2.2 and the method stated in Section 3.2.3
of calculating the CRLB of the geolocation error.
From Figure 3.18, we can see that as the altitude of the orbit is too high, for a DF error

of 1∘, the corresponding geolocation accuracy is about 3000 km. As a result, it is almost
impossible to decide the exact position of the target emitter – only a vague idea of the
area containing the emitter can be determined. The only way to improve the accuracy of
the geolocation is to improve the DF measurement accuracy. For example, if we intend to
reach geolocation accuracy of 10 km, the DF accuracy should be up to 0.01∘. Due to various
effects in engineering, such DF accuracy is hard to obtain.

2. Reduction of received signal power
According to the reconnaissance equation of electronic reconnaissance [1], the signal

received by the reconnaissance receiver is inversely proportional to the square of the dis-
tance R2

r between the receiver and the emitter. Comparing this with the LEO electronic
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reconnaissance satellite, the signal-to-noise ratio (SNR) lost is

L(dB) = 10 log

(
R2
r_high

R2
r_lo𝑤

)
, (3.65)

where Rr_lo𝑤 is the distance between the LEO satellite and the emitter, while Rr_high is
the distance between the GEO satellite and the ground emitter. Suppose the height of the
LEO satellite is H= 500 km and the subsatellite points of two satellites are on the equator.
Then at the time when the emitter at the subsatellite point is being received, according to
expression (3.65), the loss of SNR caused by elevation of the orbit is L= 37 dB. Therefore,
the method to increase the antenna aperture can be taken into account to enlarge the antenna
gain resulting from the higher SNR of the receiving signals.

3.4.2 Geosynchronous Satellite Multitimes LOS Geolocation

What we have discussed in the last section is that far distance leads to bad DF accuracy. A
feasible solution is to improve the geolocation accuracy through multiple LOS geolocation of
a moving geosynchronous satellite.
For example, for a geosynchronous satellite with inclination of 20∘ and eccentricity e= 0.1,

the satellite point performs a ‘8’ shape motion (period 24 hours) around the mean subsatellite
point with no inclination and no eccentricity. This can still meet the demand for continuous
reconnaissance coverage, as shown in Figure 3.19.
The geosynchronous electronic reconnaissance satellite makes a good choice. Besides hav-

ing the merits of both kinds of satellite, the geosynchronous satellite has more advantages:
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Figure 3.18 Relation between the GEO LOS geolocation error and the DF error
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GEO_S

Figure 3.19 Subsatellite track of a geosynchronous satellite with inclination 20∘ and eccentricity
e= 0.1

1. Larger surveillance scope
As the satellite drifts across both south and north of the equator, the coverage area over

high latitudes north and south of the equator can be increased.
2. Not restricted by allocation of position on the GEO

There is only one GEO for earth, which holds various GEO satellites needed to be
launched by all countries. Positions on the orbit are managed and allocated by the
International Telecommunication Union (ITU). Thosehose who need to use the orbit
must be approved by the ITU, which is adverse to secrecy of electronic reconnaissance
satellites. By using a geosynchronous satellite, this problem can be completely avoided.

3. More measurement points with higher geolocation accuracy
As a geosynchronous satellite keeps moving all the time, the multichannel amplitude

comparison DF technique can be used. Signals from the same emitter can be received
at different positions of the same reconnaissance beam or at different beams. Using the
optimal estimation method, we can obtain higher geolocation accuracy. Therefore, by
choosing the geosynchronous orbit, the satellite can locate the position of the emitter at
different measurement points, with better geolocation accuracy for the emitter.

Accuracy of single geosynchronous satellite LOS geolocation is not likely to be improved to
any large extent. If, for example, an angle measurement accuracy of 0.5∘ is assumed in a whole
day (24 hours) motion process, the theoretical error change of the CRLB of the geolocation
for a single time for an emitter in Taipei is as shown in Figure 3.20.
By utilizing the nonstatic features of the geosynchronous satellite and building a multitime

statistical method like the average method, the weighted average method, or the EKF method,
geolocation accuracy can be improved.
Suppose the satellite intercepts an emitter signal from Taipei every 20minutes

(1200 seconds), by adopting the weighted average method, as mentioned in Section 3.3.3, we
can make a distribution curve for averaged geolocation points after one day’s reconnaissance,
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Figure 3.21 Geolocation distribution after using the weighted average method

as shown in Figure 3.21. After statistical analysis we know that the CEP of geolocation is
around 60 km. Therefore, we can conclude that there is a practical value to a certain degree if
the geosynchronous satellite is used.
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4
Multiple Satellites Geolocation
Based on TDOA Measurement

In three-dimensional space, according to the signal time difference of arrival (TDOA) of a
transmitter on the earth between two geometric separated satellites, we can draw a revolution
hyperboloid taking the two satellites as the focus. For 3D geolocation, at least four observers
are required to simultaneously receive emitter signals to obtain three groups of uncorrelated
TDOA, according to which three hyperboloids indicating location of the emitter can be formed
and the intersection point is the location of the emitter [1, 2].
To reduce the number of required observers, prior knowledge about the location of the emitter

on the earth’s surface can be utilized. In this way, the location of the ground emitter can be
achieved by obtaining two TDOAs with only three satellites. Two revolution hyperboloids can
be formed through the two TDOAs. By intersecting the two hyperboloids, a location curve
that intersects the earth’s surface can be formed to obtain two intersection points. After the
intersection point (ambiguity point) located on the other side of the earth is deleted, the location
of the emitter can be determined [3–9].
Prior knowledge of the earth’s surface is required during the above location process, so

it is very important to describe the earth model accurately. In general, the WGS-84 ellipse
earth model of the earth can be employed to describe the earth’s surface. This chapter firstly
sets out the most simple location algorithm of the regular spherical model and then analyzes
the multiple satellite geolocation method based on the WGS-84 earth surface model to
research problems of ambiguity and a no-solution situation of geolocation. Last, the error
of three-satellite geolocation is analyzed and several calibration methods using multiple
ground stations to calibrate the errors of the satellite TDOA system and satellite position
are proposed.
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4.1 Three-Satellite Geolocation Based on a Regular Sphere

Compared with the complicated average earth surface model defined by the WGS-84 coordi-
nate system, the earth surface model of a regular sphere is simpler [10]. This section firstly
introduces the three-satellite TDOA algorithm based on a regular sphere and then introduces
the multisatellite TDOA algorithm, and last the osculation error of the regular spherical model
is analyzed.

4.1.1 Three-Satellite Geolocation Solution Method

Assume in ECEF (earth-center earth-fixed) coordinates, the geocentric Cartesian coordi-
nates of three satellites and the emitter at a certain moment respectively are O0(x0, y0, z0),
O1(x1, y1, z1), O2(x2, y2, z2), and T(x, y, z), as shown in Figure 4.1.
By comparing the TOA (time of arrival) of the received signal at three satellites, two TDOAs

can be obtained:
TDOAi = TOAi − TOA0 ≜ Δti (i = 1, 2). (4.1)

The defined range is

ri =
√

(x − xi)2 + (y − yi)2 + (z − zi)2 (i = 0, 1, 2). (4.2)

x

y 

z

T(x,y,z) 
u

O2(x2, y2, z2)

O0(x0, y0, z0)O1(x1, y1, z1)

r1
r0

r2

Figure 4.1 Schematic diagram of the three-satellite geolocation
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Essentially, the TDOAs measured are the range differences [8]:

r1 − r0 = Δr1 = cΔt1
r2 − r0 = Δr2 = cΔt2

}
, (4.3)

where c is the propagating speed of the electromagnetic wave.
Substitute the range definition expression into the TDOA expressions (4.3). If it is then rear-

ranged and squared, one can obtain(
x0 − xi

)
x +
(
y0 − yi

)
y +
(
z0 − zi

)
z = ki + r0Δri (i = 1, 2), (4.4)

where
ki =

1
2

[(
x0

2 + y0
2 + z0

2) − (xi2 + yi
2 + zi

2) + Δri2
]

Suppose the earth is a regular sphere with a radius of R. Then the earth’s surface conforms to
the expression

x2 + y2 + z2 = R2. (4.5)

After subtracting the expression (4.5) from the first r20 squared expression of Equation (4.2)
when i = 0, we can obtain

x0x + y0y + z0z = k3 −
1
2
r0

2, (4.6)

where
k3 =

1
2

(
x0

2 + y0
2 + z0

2 + R2) .
Combine expressions (4.4) and (4.6) as follows:

AX = F, (4.7)

where

A =
⎡⎢⎢⎣
x0 − x1 y0 − y1 z0 − z1
x0 − x2 y0 − y2 z0 − z2
x0 y0 z0

⎤⎥⎥⎦ ,
X = [x, y, z]T,

F =
⎡⎢⎢⎣
k1 + r0Δr1
k2 + r0Δr2
k3 −

1
2
r0

2

⎤⎥⎥⎦ .
When A is invertible, the following expression can be obtained:

X̂ = A−1F ≜ [aij]3×3F. (4.8)

Let

X̂ =
⎡⎢⎢⎣
x̂
ŷ
ẑ

⎤⎥⎥⎦ =
⎡⎢⎢⎣
m1 + n1r0 + p1r0

2

m2 + n2r0 + p2r0
2

m3 + n3r0 + p3r0
2

⎤⎥⎥⎦ , (4.9)
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where
m1 = a11k1 + a12k2 + a13k3
n1 = a11Δr1 + a12Δr2
p1 = − 1

2
a13

m2 = a21k1 + a22k2 + a23k3
n2 = a21Δr1 + a22Δr2
p2 = − 1

2
a23

m3 = a31k1 + a32k2 + a33k3
n3 = a31Δr1 + a32Δr2
p3 = − 1

2
a33

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

. (4.10)

Substitute Equation (4.9) into Equation (4.5) to obtain a quartic equation with r0 unknown:

s1r0
4 + s2r0

3 + s3r0
2 + s4r0 + s5 = 0, (4.11)

where all factors are as follows:

s1 = p1
2 + p2

2 + p3
2

s2 = 2n1p1 + 2n2p2 + 2n3p3
s3 = n1

2 + n2
2 + n3

2 − 1 + 2
(
m1 − x0

)
p1 + 2(m2 − y0)p2 + 2(m3 − z0)p3

s4 = 2(m1 − x0)n1 + 2(m2 − y0)n2 + 2(m3 − z0)n3
s5 = (m1 − x0)2 + (m2 − y0)2 + (m3 − z0)2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Here r̂0 is solved based on expression (4.11); substitute expression (4.9) to obtain the geo-
centric Cartesian coordinates (x, y, z) of the emitter under the spherical model assumption.
Generally speaking, the intersection line of two TDOA curves intersects with the spherical sur-
face at two points, so there is location ambiguity. The problem of ambiguity will be analyzed
in Section 4.3.

4.1.2 Multisatellite TDOA Geolocation Method

Amultisatellite TDOA geolocation method was proposed by Ho and Chan in 1997. For such a
method, a three-satellite geolocation is only one of special cases in their paper [7]. Suppose that
the location of an emitter on the earth is expressed as u = [x, y, z]T in the geocentric coordinates
system and there are M (M≥ 3) measurement satellites, whose positions are si = [xi, yi, zi]T;
thus M1 TDOAs can be obtained: di,1 (i = 2, 3, … ,M).
Suppose that ri represents the range between the ith satellite and the emitter:

ri = |si − u| =√(xi − x)2 + (yi − y)2 + (zi − z)2 (i = 1, 2, … ,M). (4.12)

If c represents the signal propagation speed and cdi,1 is the range difference, the multisatellite
TDOA expression can be expressed as follows:

ri,1 = cdi,1 = ri − r1 (i = 2, 3, … ,M). (4.13)
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Suppose the sum of the altitude of the emitter and the radius of the earth is r; the location of
the emitter satisfies:

uTu = r2. (4.14)

In fact, the measured value is always corrupted by noise, which leads to a geolocation error. For
the purpose of location accuracy analysis, suppose that d = [d2,1, d3,1, … , dM,1]T is the mea-
surement vector of TDOA, the measurement model is d = d0 + Δd, E[Δd] = 0, E[ΔdΔdT] =
Qt, and d0 expresses the true value of the TDOA vector.
Square expression (4.13) and then substitute expression (4.12), which yields

r2i,1 + 2ri,1r1 + r21 = r2 + sTi si − 2sTi u (i = 2, 3, … ,M). (4.15)

From expression (4.12),
r21 = r2 + sT1 s1 − 2sT1u. (4.16)

Substitute expression (4.16) into expression (4.15) yields

r2i,1 + 2ri,1r1 = sTi si − sT1 s1 − 2(si − s1)Tu (i = 2, 3, … ,M). (4.17)

It can be found that the root of Equations (4.13) and (4.14) is the same as those of expressions
(4.16), (4.17), and (4.14). To solve location u, express u as r1 via expressions (4.16) and (4.17),
and obtain r1 through expression (4.14), thereby solving the location u.
For the number of satellites, there are two cases [7]:

1. When the number of satellitesM= 3, the location solution and its covariance are as follows.
Rewrite expressions (4.16) and (4.17) into matrix form to obtain the solution of u expressed
using r1:

u = G−1
1 h, (4.18)

where

G1 = −2
⎡⎢⎢⎢⎣

sT1
sT2 − sT1
sT3 − sT1

⎤⎥⎥⎥⎦ , h =
⎡⎢⎢⎢⎣
−r2 − sT1 s1 0 1

r22,1 − sT2 s2 + sT1 s1 2r2,1 0

r23,1 − sT3 s3 + sT1 s1 2r3,1 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎣
1

r1
r21

⎤⎥⎥⎦ .

Substitute Equation (4.18) into Equation (4.14) to obtain a quartic polynomial expression.
Solve the expression and substitute r1 into Equation (4.18), thereby solving the estimated
location u of the emitter. The polynomial normally has more than one positive root; in this
case, use expression (4.13) to eliminate uncertainty – sometimes prior knowledge about
the emitter is required for this purpose.
During solution, the matrix G1 is required to be not invertible, which is equivalent to

the fact that any three points among {O, s1, s2, s3} cannot be in a straight line, where O
represents the earth’s center. In addition, the spatial distance between three satellites should
be sufficient to eliminate an ill-conditioned matrix.
The location solution is obtained from expressions (4.13) and (4.14). Take u as a variable

and differentiate the location solution of Equation 4.18; then calculate it at the real value,
which yields

HΔu = c

[
Δd
0

]
, (4.19)
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where

H = −
⎡⎢⎢⎢⎣
(
s2 − u0

)T∕r02 − (s1 − u0)T∕r01
(s3 − u0)T∕r03 − (s1 − u0)T∕r01

u0T

⎤⎥⎥⎥⎦ .
When the number of satellites is M= 3, the covariance matrix of the geolocation solution
error is

𝛙 = cov(u) = c2H−1
[
Qt 𝟎
𝟎T 0

]
H−T. (4.20)

2. When the number of satellites M> 3, the geolocation methods are as follows. This case is
a redundant case, that is, the number of expressions is more than the number of unknowns.
The solution can be obtained by minimizing the error of expression (4.16), that is, the
least squares estimation or the maximum likelihood estimation under the two nonlinear
constraints of Equations (4.16) and (4.14). The cost function is as follows:

𝜉 ≡ (h −G1u − g2r1)TW(h −G1u − g2r1)

+ 𝜆1(2sT1u − sT1 s1 − r2 + r21) + 𝜆2(u
Tu − r2), (4.21)

where

h =

⎡⎢⎢⎢⎢⎣
r22,1 − sT2 s2 + sT1 s1
r23,1 − sT3 s3 + sT1 s1

⋮

r2M,1 − sTMsM + sT1 s1

⎤⎥⎥⎥⎥⎦
,G1 = −2

⎡⎢⎢⎢⎢⎣
sT2 − sT1
sT3 − sT1

⋮

sTM − sT1

⎤⎥⎥⎥⎥⎦
, g2 = −2

⎡⎢⎢⎢⎢⎣
r2,1
r3,1
⋮
rM,1

⎤⎥⎥⎥⎥⎦
,

and W is the weighting matrix. By differentiating expression (4.21) with respect to u and
r1 and letting them equal 0, one can obtain

u = G4(GT
1WG5r1 − 𝜆1s1), (4.22)

where

G4 = (GT
1WG1 + 𝜆2I)−1, r1 = [1, r1, r21]

T,G5 = [h,−g2, 𝟎], and

− gT2W(G5r1 −G1u) + 𝜆1r1 = 0. (4.23)

Let g3 = [sT1 s1 + r2, 0,−1]T. The expression (4.16) can be transformed to 2sT1u = gT3r1.
Substitute u in expression (4.22) into expression (4.16), which yields

𝜆1 = gT6r1 and gT6 =
2sT1G4G

T
1WG5 − gT3

2sT1G4s1
. (4.24)

Substitute expression (4.24) into expression (4.22), which yields

u = G7r1 and G7 = G4(GT
1WG5 − s1g

T
6 ). (4.25)

Substitute expressions (4.24) and (4.25) into expression (4.23) to obtain a polynomial
expression of r1:

r1g
T
6r1 − gT8r1 = 0, (4.26)
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where gT8 = gT2W(G5 −G1G7) . When 𝜆2 is specified, use the above expression to solve r1.
In most circumstances, only one positive root can be solved. Substitute the positive r1 into
expression (4.25) to obtain the estimated location of the emitter with 𝜆2 as its parameter.
Use Equation (4.14) to solve 𝜆2. If expression (4.26) has more than one positive root, prior
information about the emitter is required to select the correct roots.
The Newton method is an efficient one to solve the expression 𝜌(𝜆2) = uTu − r2. Since

nonlinearity of such an expression leads to more solutions, when 𝜆2 = 0 the altitude infor-
mation is not used. Therefore, if the Newton method is used, the initial value of 𝜆2 is 0.
According to G4 in expression (4.22), it is shown that 𝜆2 is only used to modify the eigen-
value of such a matrix, so matrix inversion can be avoided. Therefore the Newton method is
more effective than the grid search method and other iteration methods requiring an initial
value (such as the Taylor expanding method).

4.1.3 CRLB of a Multisatellite TDOA Geolocation Error

To compute the Cramér–Rao lower bound (CRLB) under constraint conditions, reference [7]
gives the estimation u for an unbiased constraint as

cov(u)min = J−1 − J−1F(FTJ−1F)−1FTJ−1|u=u0 , (4.27)

where J is the Fisher information matrix and F is the gradient matrix of unknown variable
constraint expressions. The CRLB without constraint conditions is J−1. It is shown that from
expression (4.27) of prior information the constraint condition can decrease the CRLB. In
this section, accuracy of the foregoing solution is compared with the CRLB under constraint
conditions.
When the measurement noise is Gaussian noise, the Fisher information matrix is

JTDOA =
(
𝜕d0T

𝜕u
Q−1
t
𝜕d0

𝜕u

)|||||u=u0 , (4.28)

where

𝜕d0

𝜕u
= −

⎡⎢⎢⎢⎢⎣

(
s2 − u

)T∕r2 − (s1 − u)T∕r1
(s3 − u)T∕r3 − (s1 − u)T∕r1

⋮
(sM − u)T∕rM − (s1 − u)T∕r1

⎤⎥⎥⎥⎥⎦
.

With respect to the location with earth sphere constraint conditions, it can be derived from
expression (4.14) that F is equal to u. To find the CRLB of the constraint condition, substitute
Equation (4.28) into Equation (4.27).
Suppose that the location of the emitter is (75.9∘W, 45.35∘N), the altitude of the emitter is

zero, and the local radius of the earth is r= 6367.287 km. The receiver is a geostationary satel-
lite 42 164 km away from the earth’s center, with the location being s1 = (53.0oW, 2.0oN),
s2 = (47.0oW, 0.0oN), and s3 = (53.0oW, 0.0oN), respectively. The measured TDOA error is
Gaussian noise and the covariance matrix of Gaussian noise is Qt, whose diagonal element
is c2𝜎2d . The other elements are 0.5c2𝜎2d , where 𝜎

2
d is the variance of the TDOA measure-

ment error. The relationship between the theoretical and actual geolocation error ifM= 3 (the
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Figure 4.2 Relationship between the error of three HEO satellite geolocations and the TDOAmeasure-
ment error

methods in Section 4.1.2 are used) can be obtained with RMS (root mean square) of the TDOA
measurement error, as shown in Figure 4.2.
From Figure 4.2, it is shown that the geolocation error is increased with an increasing TDOA

error. When M= 3, the algorithm referred to in Section 4.1.2 can achieve the CRLB.

4.1.4 Osculation Error of the Spherical Earth Model

In this section, osculation bias of a regular spherical earth model and the resulting geolocation
bias are analyzed.
Take the WGS-84 earth ellipsoid as the reference to investigate the osculation bias of a

regular sphere (see Figure 4.3). For the earth ellipsoid, a spheroid with its radius having a
geocentric radius vector of point P on the earth’s surface is used. E′ is a point different from
point P with a normal direction of a prime vertical circle O′E′, which intersects the spherical
model at point D; the line OD between the earth’s center and point D intersects the earth
ellipsoid at point E. It can be concluded that the osculation error of a regular sphere can be
measured by the altitude difference DE′ [8].
Since the angle bias between the local normal direction of the prime vertical circle O′E′ and

the geocentric direction OE of point D is no more than 4mrad, the length difference will be no
more than 4‰ofO′E′. Therefore, the direction differencemay be omittedwhen calculating the
altitude. Suppose the radius of the regular sphere is R. The altitude DE′ can be approximately
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Figure 4.3 Osculation bias of a regular sphere

expressed as
DE′ ≈ DE = OE − R (4.29)

To minimize the osculation bias, the radius of the spherical model will be close to the geo-
centric radius vector at a local emitter. Due to the constraint by height of the satellite, the
observation beam angle, and the minimum observation angle, the location where three satel-
lites intercepts the emitter will be adjacent to the subsatellite point; therefore, the radius vector
of the subsatellite point can be taken as the radius of the spherical model to achieve the opti-
mum spherical approximation.
After converting the osculation bias of the spherical model into the altitude error, the alti-

tude error analytic method can be used to investigate the influence caused by the spherical
osculation error. In Figure 4.4, the osculation altitude error of the spherical model and the
geolocation error distribution incurred therefrom are provided, where the simulation param-
eters are: satellite height, 1000 km; subsatellite locations of the satellites respectively are O0
(125.21∘E, 24.44∘N), O1 (125.68

∘E, 25.09∘N), and O2 (125.99
∘E, 24.44∘N). The radius of the

spherical model is the radius of the subsatellite point of the primary satellite O0. In Figure 4.4b,
‘* represents the location of the subsatellite points and the marks on the curves represent the
location accuracy in meters.
It is revealed from the simulation results that there is about 3∘ (300 km) of deviation on

latitude, the altitude error will be up to 1 km, and the geolocation error caused thereby will
amount to 500–600m, which is similar to the case with the random measurement geolocation
error with typical measurement accuracy. It can be concluded that the osculation bias of the
spherical model is relatively obvious. Therefore, if a highly accurate location is required, the
simple regular spherical model cannot be used and the more accurate WGS-84 earth ellipsoid
method should be employed.
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Figure 4.4 Osculation altitude difference and bias distribution of a spherical model. (a) Relation of
height difference (meter) between a regular sphere and an ellipsoid and latitude and (b) osculation error
using a regular spherical model in a three-satellite TDOA geolocation

4.2 Three-Satellite Geolocation Based on the WGS-84 Earth
Surface Model

The geoidal surface of the earth is an irregular sphere that osculates with an approximate
ellipsoid with a long equatorial radius and a short polar radius. It is therefore obvious that
errors will be caused if the sphere is taken as the regular sphere surface model and so the more
accurate ellipse model of the earth should be employed for accurate location. For this purpose,
the ellipsemodel of the earth’s sphere defined by theWGS-84 earth coordinates system is used.
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From the earth ellipsoid defined by expression (2.30) we get

x2

(N + H)2
+

y2

(N + H)2
+ z2

[N(1 − e2) + H]2
= 1, (4.30)

whereN is the radius of curvature in the prime vertical of the point where the emitter is located.
Expression (4.30) defines a group of ellipsoid surfaces with altitude as the parameter. If the
altitude H is unknown, it is impossible to get the emitter location from the TDOA expression
(4.3) and ellipsoid expression (4.30). Therefore, the location will not be implemented until
the altitude parameter is able to determine the geolocation ellipsoid surface. To achieve this,
prior knowledge about the emitter is required, that is, which location ellipsoid surface will
be located. In general, for the emitter located adjacent to the geoidal surface (such as marine
emitters), H = 0 can easily be determined. Error is introduced into the prior assumption about
the emitter altitude; such errors will be analyzed in Section 4.4.2.
Assume that the altitude is zero. The location ellipsoid surface (Equation (4.30)) can be

expressed in standard ellipsoid form as

x2

a2
+
y2

a2
+ z2

(1 − e2)a2
= 1, (4.31)

where a is the major axis of the earth. Combine it and the TDOA expression (4.3) to use
three-satellite geolocation expressions with a zero-altitude ellipsoid surface as the geolocation
plane:√(

x − x1
)2 + (y − y1)2 + (z − z1)2 −

√
(x − x0)2 + (y − y0)2 + (z − z0)2 = cΔt1√

(x − x2)2 + (y − y2)2 + (z − z2)2 −
√
(x − x0)2 + (y − y0)2 + (z − z0)2 = cΔt2

x2 + y2 + z2∕(1 − e2) = a2

⎫⎪⎬⎪⎭ . (4.32)

Thenalytical method and the iteration method may be used to solve such expressions, which
are respectively introduced below.

4.2.1 Analytical Method

Reference [7] provides an analytical method which is introduced below. For the location
expression (4.32), consider that

r0
2 = (x − x0)2 + (y − y0)2 + (z − z0)2. (4.33)

The first and second formulas in expression (4.32) can be translated into

(x0 − xi)x + (y0 − yi)y + (z0 − zi)z = ki + r0Δri (i = 1, 2). (4.34)

Through the expression above, a linear combination of z and r0 can be used to express x, y,
that is,

x = a1r0 + b1z + c1
y = a2r0 + b2z + c2

}
, (4.35)
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where a1, b1, c1, a2, b2, c2 can be expressed with known constants as follows:

a1 =
[(
y0 − y2

)
Δr1 − (y0 − y1)Δr2

]
∕J

b1 = [(y0 − y1)(z0 − z2) − (y0 − y2)(z0 − z1)]∕J
c1 = [k1(y0 − y2) − k2(y0 − y1)]∕J
a2 = [(x0 − x1)Δr2 − (x0 − x2)Δr1]∕J
b2 = [(x0 − x2)(z0 − z1) − (x0 − x1)(z0 − z2)]∕J
c2 = [k2(x0 − x1) − k1(x0 − x2)]∕J

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (4.36)

where
J = (x0 − x1)(y0 − y2) − (x0 − x2)(y0 − y1).

The third formula in expressions (4.32) and (4.33) can be used to define E′ = e2∕(1 − e2) to
get

E′z2 + 2x0x + 2y0y + 2z0z = a2 − r0
2 + x0

2 + y0
2 + z0

2. (4.37)

Substituting expression (4.35) and simplifying yields

E′z2 + (2x0b1 + 2y0b2 + 2z0)z + (2x0a1 + 2y0a2)r0 + 2x0c1 + 2y0c2

− a2 + r0
2 − x0

2 − y0
2 − z0

2 = 0. (4.38)

Replace the known constant to obtain

z2 + mz + nr0 + pr0
2 + q = 0, (4.39)

where

m =
2x0b1 + 2y0b2 + 2z0

E′

n =
2x0a1 + 2y0a2

E′

p = 1
E′

q =
2x0c1 + 2y0c2 − a2 − x0

2 − y0
2 − z0

2

E′

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
Solving the quadratic expressions of z in expression (4.39) yields

z =
−m ±

√
m2 − 4(nr0 + pr02 + q)

2
. (4.40)

Let

A = −m
2

B = m2

4
− q

C = −n
D = −p

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.
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We can obtain
z = A ±

√
B + Cr0 + Dr02. (4.41)

Substitute expression (4.41) inversely into expression (4.35) to yield

x = a1r0 + b1
(
A ±
√
B + Cr0 + Dr02

)
+ c1

y = a2r0 + b2(A ±
√
B + Cr0 + Dr02) + c2

z = A ±
√
B + Cr0 + Dr02

⎫⎪⎬⎪⎭ . (4.42)

According to expression (4.42), x, y, and z can be expressed by functions of r0. Therefore, if
r0 is solved, the locations of x, y, and z can be solved. The solution of r0 is given below.
Firstly substitute expression (4.35) into the third formula in expression (4.32), which yields(
a1

2 + a2
2) r02 +(b12 + b2

2 + 1(
1 − e2

)2
)
z2 + 2(a1b1 + a2b2)r0z + 2(a1c1 + a2c2)r0.

+2(b1c1 + b2c2)z + c1
2 + c2

2 − a2 = 0 (4.43)

Replacing the variable in the expression above yields

n1r0
2 + n2z

2 + n3r0z + n4r0 + n5z + n6 = 0, (4.44)

where
n1 = a1

2 + a2
2

n2 = b1
2 + b2

2 + 1(
1 − e2

)
n3 = 2(a1b1 + a2b2)
n4 = 2(a1c1 + a2c2)
n5 = 2(b1c1 + b2c2)
n6 = c1

2 + c2
2 − a2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

Substituting expression (4.41) into expression (4.44) yields

(n1 + n2D)r02 + (n4 + n2C + n3A)r0 ± n3r0

√
B + Cr0 + Dr02

± (2n2A + n5)
√
B + Cr0 + Dr02 + n6 + n2(A2 + B) + n5A = 0. (4.45)

Replacing the parameter yields

r0
2 + m1r0 + m2r0

√
B + Cr0 + Dr02 + m3

√
B + Cr0 + Dr02 + m4 = 0, (4.46)

where

m1 =
n4 + n2C + n3A

n1 + n2D

m2 = ±
n3

n1 + n2D

m3 = ±
2n2A + n5
n1 + n2D

m4 =
n6 + n2

(
A2 + B

)
+ n5A

n1 + n2D

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.
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Translate expression (4.46):

r0
2 + m1r0 + m4 = (−m2r0 − m3)

√
B + Cr0 + Dr02.

Square both sides of the expression and simplify it to get a quartic equation:

r0
4 + s1r0

3 + s2r0
2 + s3r0 + s4 = 0. (4.47)

The parameters are

s1 =
2m1 −

(
m2

2C + 2m2m3D
)

1 − m2
2D

s2 =
m1

2 + 2m4 − (m2
2B + 2m2m3C + m3

2D)
1 − m2

2D

s3 =
2m1m4 − (m3

2C + 2m2m3B)
1 − m2

2D

s4 =
m4

2 − m3
2B

1 − m2
2D

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

.

Solve the quartic equation (Equation (4.47)) to obtain r0, and then substitute it into expres-
sion (4.42) to solve (x, y, z). In fact, eight groups of solutions can be obtained by using the
above method to solve the expression. Only four groups conform to the system of geoloca-
tion expression (4.32), while the other four groups are the extraneous roots generated in the
expression solving process. In the four groups of geolocation solutions, only one group is the
location of the emitter and the others are the imaginary roots. Therefore, operations of root
verification and ambiguity solving are required.

4.2.2 Spherical Iteration Method

Under the spherical model, the algebraic method is discussed in Section 4.2.1. Therefore, the
earth ellipsoid expression (4.31) in geolocation expressions may be modified into a spherical
iteration scheme, in order to implement an iterative calculation under theWGS-84 ellipse earth
model (see Figure 4.5 for this concept). Firstly, use a sphere with a radius as the geocentric
radius vector of a known point (A0) to approximate the earth ellipsoid and obtain a locating
point (B1), use the spherical algebraic algorithm and project coordinates of point (B1) on the
earth ellipsoid surface to get (A1), and then use the radius vector of such a point to approximate
the earth’s surface as the radius to obtain locating points (B2) and (A2). Make successive calcu-
lations to obtain project points (A3), (A4), … to gradually approach the intersection point (J) of
the ellipsoid and TDOA surface. Convergence of this iteration method is analyzed as follows.
For the final convergence of iteration, ‖JAk‖ > ‖JAk+1‖ will be satisfied according to the

convergence requirements. Since the curvature radius of the earth ellipsoid and geocentric
vector radius sphere adjacent to point (J) is quite large and the location bias is very small
compared with the satellite height and earth radius, the straight line and plane can be
approximately used to replace the intersection line of the TDOA surface and the earth’s
surface. In triangle ΔJAk+1Bk+1, ‖JAk+1‖ ≤ ‖JBk+1‖, so only if ‖JAk‖ > ‖JBk+1‖ are
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Figure 4.5 Iteration principle of the spherical iteration method

the convergence conditions wholly satisfied. In triangle ΔJAkBk+1, if ‖JAk‖ > ‖JBk+1‖,
∠JAkBk+1 < ∠JBk+1Ak, so inclination between the intersection line of the TDOA hyperboloid
and the earth ellipsoid is∠BkJAk > 2∠JAkBk+1, while the projected angle∠JAkBk+1 is smaller
than angle 𝛿 (<4mrad) between the regular sphere and the earth ellipsoid. Therefore, only if
the inclination ∠BkJAk > 2𝛿 can iterative convergence be ensured; obviously, it is possible to
meet this condition. However, it cannot be achieved when the intersection line of the TDOA
hyperboloid is tangent to the earth ellipsoid. As the distance between satellites is far smaller
than the height of the satellite, the TDOA surface where the emitter is under subsatellite
coverage will the earth’s surface inevitably intersect at a large inclination. Therefore, only if
the expressions can be solved can the condition ∠BkJAk > 2𝛿 be satisfied. According to the
forgoing, it is concluded that the iteration method is effective in the geolocation area.
Suppose location Bk(x

(k), y(k), z(k)) of the emitter is obtained via k iterations. Suppose location
Bk+1(x

(k+1), y(k+1), z(k+1)) of the emitter can be obtained via k+ 1 iterative calculations:

Step 1. Use expressions (2.32) to (2.37). Conduct coordinate transformation to the location
of the emitter Bk(x

(k), y(k), z(k)) and work out the previous time to obtain longitude, latitude,
and altitude coordinates of Bk(L

(k),B(k),H(k)). Then use the projecting location coordinate
of such a point on the earth ellipsoid surface to find Ak(L

(k),B(k), 0). Use expression (2.30)
to transform the longitude, latitude, and altitude coordinates of Ak to geocentric Cartesian
coordinates Ak(xp

(k), yp
(k), zp

(k)).
Step 2. Approximate the sphere with a location ellipsoid surface taking the geocentric radius
vector of Ak(xp

(k), yp
(k), zp

(k)) as the radius:

x(k+1)2 + y(k+1)2 + z(k+1)2 = x(k)2p + y(k)2p + z(k)2p . (4.48)

The point Ak(xp
(k), yp

(k), zp
(k)) on the earth ellipsoid satisfies

x(k)2p + y(k)2p + 1
1 − e2

z(k)2p = a2. (4.49)
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Therefore,

x(k+1)2 + y(k+1)2 + z(k+1)2 = a2 +
(
1 − 1

1 − e2

)
zp

(k)2 ≜ R(k)2. (4.50)

Taking the first expression of Equation (4.2) from expression (4.50) yields

x0x
(k+1) + y0y

(k+1) + z0z
(k+1) = k ′

3 − 1
2
r0

(k+1)2, (4.51)

where

k ′
3 = 1

2

[
R(k)2 + (x20 + y20 + z20)

]
,

r0
(k+1)2 =

(
x(k+1) − x0

)2 + (y(k+1) − y0
)2 + (z(k+1) − z0

)2
,

and r0
(k+1) is the distance between the (k + 1)th iterative location point Bk+1(x

(k+1), y(k+1),
z(k+1)) and the primary satellite, serving as an intermediate variable to solve expressions.

Step 3. Combine the first two expressions in Equations (4.32) and (4.51) and use the
spherical mode expression solution method indicated in expressions (4.7) to (4.11)
(replace k3 with k3

′) to solve the location of the emitter Bk+1(x
(k+1), y(k+1), z(k+1)). Define

d(k) =
√(

x(k)p − x(k−1)p

)2
+
(
y(k)p − y(k−1)p

)2
+
(
z(k)p − z(k−1)p

)2
and stop the iteration in the

case of d(k) < 𝜀, thereby obtaining the accurate location of the emitter.
The initial location result of the regular spherical model set out in Section 4.1.1 is used.

To reduce excessive iteration caused by a large initial error, R will be approximated to the
geoidal altitude of the emitter. Assuming that the location of the satellite is available, the
geocentric radius vector range of the subsatellite point of the primary satellite (or auxiliary
satellite) can be deemed to be the initial radius R of the location sphere.
For the projection process in Step 1, as an iterative calculation is required when geocen-

tric Cartesian coordinates are transformed to longitude, latitude, and altitude coordinates,
the computational load is relatively heavy. To reduce the operation workload, considering
that the altitude H is subject to location is very small compared with the radius of the earth,
zero-altitude deformation can be used to implement an approximate projection to expres-
sions (4.7) to (4.11). This is known as the simplified spherical iteration algorithm, with
expressions as follows:

B(k) = tan−1
⎛⎜⎜⎜⎝

z(k)

(1 − e2)
√
x(k)2 + y(k)2

⎞⎟⎟⎟⎠ , (4.52)

L(k) = tan−1
(
y(k)∕x(k)

)
. (4.53)

4.2.3 Newton Iteration Method

The Newton iteration method of nonlinear expressions is a typical iteration method, which is
proposed based upon the concept of successive linearization to nonlinear expressions. Gener-
ally speaking, Newton iteration features fast convergence speed, but it is required to change
differential quotients to nonlinear functions.
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Consider the nonlinear expressions

F(x) = 𝟎. (4.54)

Let x∗ be the solution of this expression; then x(k) is the approximate solution. If F(x) is
differentiable near x(k), the F(x) can be linearized near x(k) to obtain the approximate linear
expression:

F (x) = F
(
x(k)
)
+ F′ (x(k)) (x − x(k)

)
= 0. (4.55)

When F′ (x(k)) is nonsingular, the expression (4.54) has only one solution, that is, x(k+1). In
this way, the Newton iteration scheme [11] is obtained:

x(k+1) = x(k) −
[
F′ (x(k))]−1F (x(k)) . (4.56)

Rewrite the location expression (4.40) as follows:

f1 =
√(

x − x1
)2 + (y − y1)2 + (z − z1)2 −

√
(x − x0)2 + (y − y0)2 + (z − z0)2 − cΔt1

f2 =
√
(x − x2)2 + (y − y2)2 + (z − z2)2 −

√
(x − x0)2 + (y − y0)2 + (z − z0)2 − cΔt2

f3 =
x2

a
+
y2

a
+ z2(

1 − e2
)
a
− a

⎫⎪⎪⎬⎪⎪⎭
.

(4.57)

Let x =
[
x y z
]T

and F(x) =
[
f1 f2 f3

]T
. Then

F′(x) =

⎡⎢⎢⎢⎢⎢⎣

𝜕f1
𝜕x

𝜕f1
𝜕y

𝜕f1
𝜕z

𝜕f2
𝜕x

𝜕f2
𝜕y

𝜕f2
𝜕z

𝜕f3
𝜕x

𝜕f3
𝜕y

𝜕f3
𝜕z

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

x − x1
r1

−
x − x0
r0

y − y1
r1

−
y − y0
r0

z − z1
r1

−
z − z0
r0x − x2

r2
−
x − x0
r0

y − y2
r2

−
y − y0
r0

z − z2
r2

−
z − z0
r0

2x∕a 2y∕a 2z(
1 − e2

)
a

⎤⎥⎥⎥⎥⎥⎦
. (4.58)

Substitute Equation (4.58) into the iteration scheme (Equation (4.56)) to implement successive
iterations and stop the iterations when ‖x(k) − x(k−1)‖ < 𝜀 is achieved.
With respect to the Newton iteration method, matrix inversion [F′(x(k))]−1 is required to

be calculated for each iteration, which may cause a heavy computational load. To reduce the
computational load, a simplified Newton iteration method may be employed, that is, always
take F′(x(k)) to be F′(x(0)) during the iteration process:

x(k+1) = x(k) − [F′(x(0))]−1F(x(k)). (4.59)

After this, the computational load will decrease while the convergence speed is decreasing and
only the linear convergence speed is implemented.
Similarly, the initial location result of the spherical model set out in Section 4.1.1 is used to

estimate the value of the initial iteration point.
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Table 4.1 Operation time required by the three expression solution methods

Initial
operation
time (s)

Ambiguity
resolution
time (s)

Average
iteration
time (s)

Iteration
time (s)

Operation
time (s)

Analytical algorithm 46.5640 22.0650 0 0 68.6290

Spherical iteration
method

𝜀= 1m 41.6380 15.6060 2.2269 204.3630 261.6070
𝜀= 0.001m 41.5130 15.6440 3.1423 272.0520 329.2090

Simplified spherical
iteration method

𝜀= 1m 41.1260 15.5560 2.2000 99.6840 156.3660
𝜀= 0.001m 41.1940 15.4120 3.1423 144.6350 195.8910

Newton iteration
method

𝜀= 1m 40.9080 15.3410 2.0654 45.7690 102.0180
𝜀= 0.001m 40.9470 15.4210 2.8615 62.6220 118.9900

Simplified Newton
iteration method

𝜀= 1m 41.0640 15.3770 2.0654 37.9660 94.4070
𝜀= 0.001m 41.0300 15.3630 2.9846 50.7620 107.1550

4.2.4 Performance Comparison among the Three Solution Methods

We introduced three location methods based on the WGS-84 earth ellipsoid model. A compar-
ison among the three methods will be given below, focusing on computing time and numerical
error implemented by computer and algorithm implementation conditions.

4.2.4.1 Computing of Three Solution Methods

The given locations of the satellites are O0 (125.765∘E, 9.87∘N), O1 (126.166∘E, 10.54∘N),
and O2 (126.54

∘E, 9.87∘N), the distance between the satellites is about 100 km, the height of
the satellites is 1000 km, and the minimum observation angle 𝜎 = 25∘. The aim is to carry out
geolocation calculations to the same quantity of points on the earth’s surface from nearby sub-
satellites without noise or supposed altitude error; the consumed time is as shown in Table 4.1.
Supposing that geolocation ambiguity can be solved correctly, and each iteration method starts
with a spherical model, the iterative calculation is implemented after the ambiguity resolution
is implemented, where 𝜀 is the termination condition of iterative convergence.
From Table 4.1, some conclusions can be made:

1. Comparatively speaking, the solution process of the analytical method based on the
WGS-84 earth ellipsoid model required a heavier computational load and longer ambigu-
ity resolution time than that required by the initial location solution via a regular spherical
model. However, the former method only requires a small computational load because the
iterative calculation is not required. Therefore it features the smallest computational load
and fastest speed.
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2. Among all iteration processes, the Newton iteration method produces the fastest conver-
gence speed and the least iterative times, but its computing time is longer than the analytical
method although far superior than the spherical iteration method. The simplified Newton
iterationmethod has increased iterations but because only one time of the partial differential
matrix is calculated, its computational load is less than the Newton iteration method.

3. Iterative convergence is time consuming when the spherical iteration method is used. Its
operational consumption includes: firstly, a regular spherical geolocation calculation is
required for each iteration, during which a quartic equation is required to be solved, so
the computational load is heavy; secondly, geocentric Cartesian coordinates need to be
transformed into longitude, latitude, and altitude coordinates during each iterative projec-
tion process, which requires implementation of iteration. According to the foregoing, the
spherical iteration method has the slowest computation speed. A simplified spherical itera-
tion method uses zero-altitude to approximately simplify the projection process and causes
projection error, which will not create obvious influence under small altitudes, so the com-
putational load is reduced and the projection time shortened.

In a word, the analytical method enjoys the fastest computation speed, followed by the New-
ton iteration method, with the spherical iteration algorithm having the slowest speed.

4.2.4.2 Numerical Error Simulation

When a computer or hardware equipment is used to implement the foresaid algorithms, numer-
ical error will inevitably be caused by a limited accuracy finite word length, which is one of the
important constraints of implemention by a control algorithm. Obviously, numerical accuracy
of an analytical calculation is only limited by finite word length, but numerical accuracy of an
iteration method is correlated to iterative convergence conditions.
Suppose the constellation parameters of the satellite are as follows: the orbit height of the

primary satellite is 1000 km, the eccentricity is 0 (elliptical orbit), the orbit inclination is 60∘,
the right ascension of the ascending node (RAAN) is 120∘, the argument of perigee is 0∘, the
time of perigee is 0 second, the same orbit auxiliary satellite is 100 km ahead of the primary
satellite, and the ascending node of the satellite not on the same track moves 100 km to the
east. Suppose there are no bias and errors in the TDOAmeasurement, the numerical calculation
error investigated is from t= 300 to 700 seconds for the three algorithms, amongwhich the data
are expressed with the double data format, and 𝜀= 10−6 is taken as the termination condition
of the iteration method. The maximum error value curve of the subsatellite point location of
the primary satellite is shown in Figure 4.6.
It is shown from Figure 4.6 that the analytical method is influenced greatly by the numerical

quantization error. There is a centimeter-level numerical error even in absence of the TDOA
measurement error. Although such an error is relatively small compared with the geolocation
error caused by bias and the random measurement error, it indicates that numerical stability
of the analytical method is not as good as the iteration method, which will arouse attention
during practical application.
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Figure 4.6 Numerical error quantity of the three methods. Numerical error of (a) the analytical method,
(b) the spherical iteration method, and (c) the Newton iteration algorithm
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Figure 4.6 (continued)

4.2.4.3 Algorithm Implementation Conditions

Each of the geolocation solutionmethods above has its own application condition, which deter-
mines its application scope and serves as an important index of algorithm efficiency. In the
analytical method, to get the parameter substitution expression (4.36), we propose the factor

J = (x0 − x1)(y0 − y2) − (x0 − x2)(y0 − y1) ≠ 0

for the denominator. This is an application condition of the analytical algorithm. The square
root of the expression (4.41) is used to solve z and an imaginary number will theoretically
be created; in fact, however, the location surface can intersect at least one point if there is no
observation noise. Therefore, zmust have a real number solution. If the location surface cannot
intersect due to noise influence, this would indicate that accuracy of the system at this point is
poor. No restriction is demanded by this geolocation solution method.
The spherical iteration method is mainly composed of regular special model algorithms.

Therefore, its application conditions are the same as the spherical model algorithm, that is,
matrix A in expression (4.7) should be invertible. When A is not invertible, such an itera-
tion method cannot be implemented. For the Newton iteration method, the Jacobi matrix is
generally invertible (the condition number of the Jacobi matrix is large when a three-satellite
projection approaches collineation and the emitter is located on such a line). If the optimum
initial value can be obtained, the application conditions are the same as those of the spherical
iteration method.
According to the above, the factor J and cond(A) can be used to express application condi-

tions of the analytical method and the iteration method, respectively.
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Figure 4.7 shows the fluctuation curve of J and cond(A) under the circumstance where the
constellation orbits the earth for a complete revolution; in this case, orbiting the earth for a
complete revolution, the satellite will spend

T = 2𝜋

√
(a + H)3

𝜇
≈ 6307 seconds,

where 𝜇 is the gravitational constant. For the three expression solution methods, commencing
from t=−100 seconds and ending on t= 6300 seconds, take the three-satellite location at an
interval of 1 second to calculate J and cond(A) and one can obtain Figure 4.7.
According to Figure 4.7, during one cycle of the constellation orbits, J crosses the zero

point four times but log10cond(A) tends to be infinity for two times and corresponds to two
zero-point locations of J. As the location of the two infinity points of log10cond(A) corresponds
to the system’s weak observation condition, the other two zero-points of J are introduced dur-
ing the expression solution. Therefore, application conditions of the analytical method are
more rigorous than those of the iteration method, which damages the system’s geolocating
capacity to some extent.
According to the above, it can be concluded that the analytical method is fast in computing

speed but may cause blind areas of geolocation where there should be optimum geolocation
areas according to further research. Therefore the analytical method is not ideal. The iteration
method maintains the system’s locating capacity but requires heavier computational load and
slow computational speed. Therefore, the foregoing two methods can be combined, that is, the
analytical method is used in general circumstances and the simplified Newton iteration method
can be used when the constellation enters the blind area of the analytical method, in order to
get fast computational speed and high accuracy.

4.2.5 Altitude Input Location Algorithm

When the location algorithm based on the WGS-84 earth ellipsoid surface was discussed in
the section above, a zero-altitude assumption is used to calculate data for the emitter and
is effective for sea emitters and low-altitude emitters, but large bias may be introduced for
high-altitude emitters. To minimize bias, several methods like the geographical information
system (GIS) can be used to provide approximate altitude data of the emitter, in order to locate
the emitter accurately under altitude input.
For application of the altitude input location algorithm, the following aspects may be

considered: firstly, use the zero-altitude assumption method to roughly locate the emitter
and analyze the location of the locating point. If the altitude on which the emitter point
is located cannot approximate to zero, use the GIS to find the altitude data. If the altitude
fluctuates mildly, such a method is effective in making an altitude estimation. Lastly, utilize
the estimated altitude to implement the altitude input location to the emitter. The altitude
input algorithm is discussed below.
When the emitter has altitude dH, rewrite the earth surface equation on which the emitter is

located:
x2

(N + dH)2
+

y2

(N + dH)2
+ z2

[N(1 − e2) + dH]2
= 1, (4.60)
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Figure 4.7 Fluctuation of J and cond(A) with time: (a) curve of J and (b) curve of log10cond(A)

where N is the curvature radius of the local prime vertical circle and a function of the emit-
ter location coordinate. Combine the expression above and expression (4.3), which is the
three-satellite geolocation expression taking the input altitude ellipsoid surface as the geolo-
cation plane.
Obviously, Equation (4.60) is more completed than the earth ellipsoid surface equation

(Equation (4.31)). It is not a regular ellipsoid surface, so it is difficult to establish analyti-
cal methods and the Newton iteration method. Therefore, the spherical iteration method is
considered, with calculation procedures as follows:
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Step 1. Use the location algorithm under the zero-altitude assumption to get an initial geolo-
cation B0

(
x(0), y(0), z(0)

)
and transform it into longitude, latitude, and altitude coordinates

B0

(
L(0),B(0), 0

)
.

Step 2. Suppose the altitude of the emitter is dH. Project Bk(L
(k), B(k), 0) to the location on the

earth’s surface with dH of altitude, that is, Ak(L
(k),B(k), dH), and transform it into Cartesian

coordinates Ak(x
(k)
p , y

(k)
p , z

(k)
p ). Then calculate the curvature radius of the prime vertical circle

of a point such as N(k).
Step 3. Take the approximated sphere of the earth’s surface, taking the geocentric radius vector
of location Ak(x

(k)
p , y

(k)
p , z

(k)
p ) as the radius:

x(k+1)2 + y(k+1)2 + z(k+1)2 = x(k)2p + y(k)2p + z(k)2p (4.61)

Substitute surface expression (4.60), which met at point Ak(x
(k)
p , y

(k)
p , z

(k)
p ), into expression

(4.61). Then

x(k+1)2 + y(k+1)2 + z(k+1)2 = (N(k) − dH)2 +

[
1 −

(
N(k) + dH

)2
[N(k)(1 − e2) + dH]2

]
z(k)

2
≜ R(k)2.

(4.62)
Use expression (4.31) and expressions (4.33) to (4.47) to find the locating point of emitter
Bk+1(x

(k+1), y(k+1), z(k+1)).
Step 4. Repeat Steps 2 and 3, until

d(k) =
√(

x(k)p − x(k−1)p

)2
+
(
y(k)p − y(k−1)p

)2
+
(
z(k)p − z(k−1)p

)2
< 𝜀.

Then the output result is the location of the emitter under the altitude assumption.

4.3 Ambiguity and No-Solution Problems of Geolocation

4.3.1 Ambiguity Problem of Geolocation

In the three-satellite geolocation system, we employ two TDOA geolocation surfaces and the
earth’s surface to solve the location of the emitter. In terms of a physical concept, TDOA
geolocation surfaces determined by two independent TDOA intersect on a quadric curve, the
intersection point of the curve and the earth surface being the location of the emitter. Since the
earth’s surface is a closed surface, the TDOA quadric curve must intersect the earth’s surface
at two points. Therefore, if a solution exists, the three-satellite geolocation system is always
challenged by the geolocation ambiguity problem. This is shown in Figure 4.8.
According to Figure 4.8, the intersection line of general TDOAs always intersects the earth’s

surface at two points (J0 and J1). In most circumstances, the two intersection points are not all
located in the threesatellite coverage area at the same time. Therefore, the ambiguity problem
can be solved by determining whether the locating point is located within the satellite coverage
area. The process falls into two parts:

1. Delete the intersection point of the TDOA curve at the other hemisphere, that is, calculate
the distance between the locating point and the satellite. If the distance is larger than the
sum of the satellite height and the earth radius, the locating point is located on the other
hemisphere of the earth and it should be deleted.
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2. Calculate the intersection angle between the location coordinate point and each satellite
subsatellite point, and observe whether such an angle is smaller than the coverage angle (𝜃)
of the satellite against the earth; if not, the locating point is not within the coverage area of
the satellite and it must be the ambiguous point.

This ambiguity solution judge process requires calculating different reference parameters.
As it is complicated, simplification can be implemented:

1. The distance between satellites is much smaller compared with the satellite height, so inves-
tigation of all three satellites can be simplified to an investigation of the reference index of
the primary satellite. This slightly decreases the success rate of ambiguity resolution but
greatly reduces the computational load.

2. Whether the emitter is located within the satellite coverage area can be judged by the dis-
tance r0 of the emitter from the satellite, which is subject to a limitation. Under the spherical
model, draw a conical surface with coverage angle 𝜃 of the satellite; the emitter point must
be within the satellite coverage area when r0 is smaller than the length of the generatrix
of the conical surface. Under the ellipse model, such an approximation will cause a slight
change of the ambiguity resolution performance. However, considering that the system does
not be precise to the point at the coverage area edge, the influence caused by such a change
is not serious and can be mitigated by overlapping the design to the coverage area.

By ambiguity resolution methods above, the ambiguous point can be effectively deleted.
Figure 4.9 shows the distribution of normalized residual ambiguity under different satellite
geometric configuration conditions after the foregoing ambiguity resolution processing is
implemented. Suppose the geometric configuration of the satellite constellation is as shown
in Figure 4.8, with O1 and O2 fixed. Take the perpendicular bisector of the line between O1
and O2 as the xaxis and the connecting line as the yaxis. The location of O3 changes within
the rectangular area, as indicated in the Figure 4.9.

TDOA Quadric Curve  

J0

J1

Earth
Surface

Satellite Coverage
Area 

Figure 4.8 Ambiguity problem of the three-satellite geolocation
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Figure 4.9 Schematic diagram of the constellation geometric configuration
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Figure 4.10 Residual ambiguity area distribution under different constellation geometric configuration
conditions

Suppose the location of O0, O1 is fixed and O2 changes in the rectangular area between O0
and O1, and the satellite height is 1000 km. The distribution of residual ambiguity under dif-
ferent satellite constellation geometric configuration conditions is as shown in Figure 4.10,
according to which, most of the three-satellite constellation structures has no residual ambigu-
ity after ambiguity resolution of the coverage area. The residual ambiguity area will increase
rapidly only when the projection of all satellites is in approximately a straight line.
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Figure 4.11 Fluctuation of the residual ambiguity area and log10(cond(A))when the satellite orbits the
earth for a complete revolution

The constellation structure is always changing when satellites are orbiting the earth. It is
therefore necessary to research the fluctuation rule of the residual ambiguity area when a satel-
lite orbits the earth for a complete revolution. Figure 4.11 provides the fluctuation rule of the
normalized residual ambiguity area and log10(cond(A)) when the satellite orbits the earth for
a complete revolution after the foregoing ambiguity resolution method is used. The constel-
lation parameters of the satellite are the same as given above, and the minimum observation
angle of the satellite is 𝜀= 25∘.
It is revealed from Figure 4.11 that the satellite’s coverage area has no geolocation ambiguity

area against the emitter location under the subsatellite coverage area during most of the time
when the satellite orbits the earth for a complete revolution after ambiguity resolution process-
ing. There is residual ambiguity of geolocation only within a small area (simulation indicates
that the period during which the ambiguity exists is less than 4‰). According to this figure,
the constellation is within a weak observation period while the residual ambiguity exists. In
fact, the constellation is incapable of geolocating ground emitters within this period, so it is
meaningless to discuss the geolocation ambiguity problem in this situation.
The foregoing research reveals that the ambiguity problem of the three-satellite geolocation

system can be effectively resolved in most cases.
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Figure 4.12 Schematic diagram of the no-solution problem of a three-satellite geolocation system

4.3.2 No-Solution Problem of Geolocation

There are always noise interference and measurement error in the TDOA geolocation system,
which may cause deviation of the TDOA hyperboloid. In terms of algebra, such a deviation
will cause the three location surfaces to intersect not at a common point but in a small area.
As shown in Figure 4.12, the intersection lines of two TDOA hyperboloids located above the
earth’s surface do not intersect. In this case, location expressions have no real solution.
The no-solution problem is caused by observation error but is restricted by the satellite

constellation geometric configuration. Figure 4.13a shows the normalized no-solution area
distribution when there is no solution in the subsatellite area under different satellite geomet-
ric configuration conditions (the same as Figure 4.9), where the TDOA measurement RMS
𝜎Δt = 100 ns, and the measurement error of the satellite position 𝜎s is 30m in all directions
and does not correlate to each other. If the error quantity is increased to make the TDOA mea-
surement RMS 𝜎Δt = 300 ns and the measurement error of satellite position 𝜎s = 100m in all
directions, the normalized no-solution area distribution is as shown in Figure 4.13b.
According to Figure 4.13, it can be concluded that:

1. The no-solution problem will arise when three satellites are approximately in the same line.
At this time, the observability of the system is quite poor. There will not be a no-solution
problem when observability of the three-satellite geometric structure is good. Therefore,
the no-solution problem is a representation where the system is in weak observability.

2. The no-solution areamay be reduced under the same conditions by improvingmeasurement
accuracy. However, such an improvement will impose little influence upon the no-solution
area distribution with a geometric configuration change. Therefore, if the constellation is
designed carefully, there will not be a no-solution problem. Nevertheless, the movement of
the satellites will change the constellation geometric structure, so both the no-solution area
and the no-solution duration should be optimized in satellite constellation design.
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Figure 4.13 Influence of the constellation on the no-solution area distribution under different noise
intensities: (a) 𝜎Δt = 100 ns, 𝜎s = 30m and (b) 𝜎Δt = 300 ns, 𝜎s = 100m

Similarly, Figure 4.14 shows the change in the rules of statistics value of the no-solution
spatial coverage of a satellite with time when the constellation orbits the earth for a complete
revolution. Here, the constellation parameters are the same as in Section 4.3.1. Carry outMonte
Carlo tests, repeating it 100 times, and such a point is deemed as a no-solution area if there has
been a no-solution case more than 10 times (10%). This figure clearly reveals the relationship
between a no-solution area and observability, indicating that the time of a no-solution case
accounts for a conditional number of matrix A in Equation (4.8).
To deal with no-solution problems in the three-satellite TDOA geolocation system, the

point that minimizes the squared distance between the earth and two TDOA surfaces can be
taken as the suboptimal location solution. Given the distance between a point P(x, y, z) on the
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Figure 4.14 Fluctuation of the no-solution area when a constellation orbits the earth for a complete
revolution

earth’s surface and the two TDOA surfaces, respectively, is d1(x, y, z) and d2(x, y, z), the cost
function is

F(x, y, z) = d21(x, y, z) + d22(x, y, z). (4.63)

Find the partial derivative of F(x, y, z) and let it be zero. Then

𝜕 (F (x, y, z))
𝜕(x)

= 0

𝜕 (F (x, y, z))
𝜕 (y)

= 0

𝜕 (F (x, y, z))
𝜕 (z)

= 0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
. (4.64)

The solution can be considered as a suboptimal solution of the corresponding measurement
value of location expressions. In this case, the appropriate point may be selected as the
location of the emitter according to other rules.
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4.4 Error Analysis of Three-Satellite Geolocation

Firstly, location accuracy index should be defined. In a three-satellite geolocation system, we
focus on the geodetic distance between the estimated position of the emitter and its actual
position. The influence of the earth curvature error can be omitted because it is small; therefore,
we can make the geodetic distance between the estimated position of the emitter and its actual
position equivalent to the horizontal bias of the located position in the local top-centric horizon
coordinates system. Suppose the coordinates of the estimated position of the emitter in the local
top-centric horizon coordinate system at the actual point is (x′, y′, z′). Define the 2D locating

accuracy index as the horizontal distance d =
√
x′2 + y′2.

For the WGS-84 ellipsoid earth surface model, the osculation error of it and the earth geoid
is within 30m [12] and can be omitted. Therefore, the major errors will be the bias caused by
altitude assumption and the random geolocation error caused by random TDOA measurement
noise; these two errors will arouse different influences. The fixed geolocation bias caused by
bias should be measured by the locating distance, while the random geolocation error reflects
the distribution of random location points and should be measured by the location error vari-
ance. Location accuracy under certain constellation geometric configuration conditions is also
analyzed in this section.

4.4.1 Analysis of the Random Geolocation Error

4.4.1.1 Error Analysis Method

In three-satellite TDOA geolocation system, the random observation error basically includes
the TDOA measurement errors dΔt1, dΔt2 and the position error of each satellite (dxi, dyi, dzi,
i= 0, 1, 2).
In the ECEF coordinates, by differentiating the first two expressions of expression (4.32) at

the emitter point (x, y, z), one can obtain

x − xi
ri

(dx − dxi) +
y − yi
ri

(dy − dyi) +
z − zi
ri

(dz − dzi)

−
[
x − x0
r0

(
dx − dx0

)
+
y − y0
r0

(dy − dy0) +
z − z0
r0

(dz − dz0)
]
= d(cΔti) (i = 1, 2).

(4.65)

This can be transformed into

(Cix − C0x)dx + (Ciy − C0y)dy + (Ciz − C0z)dz = c d(Δti) + ui ⋅ di − u0 ⋅ d0, (4.66)

where

Cix = (x − xi)∕ri,Ciy = (y − yi)∕ri,Ciz = (z − zi)∕ri,

ui =
[
Cix Ciy Ciz

]
,

di =
[
dxi dyi dzi

]
(i = 0, 1, 2).
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By differentiating ellipsoid surface expression (4.31) and defining k = 1∕(1 − e2), one can
obtain

x
a
dx +

y

a
dy + k

z
a
dz = 0. (4.67)

Combine Equations (4.66) and (4.67) to get

⎡⎢⎢⎣
C1x − C0x C1y − C0y C1z − C0z
C2x − C0x C2y − C0y C2z − C0z

x∕a y∕a kz∕a

⎤⎥⎥⎦
⎡⎢⎢⎣
dx
dy
dz

⎤⎥⎥⎦ =
⎡⎢⎢⎣
c d
(
Δt1
)

c d(Δt2)
0

⎤⎥⎥⎦ +
⎡⎢⎢⎣
u1 ⋅ d1 − u0 ⋅ d0
u2 ⋅ d2 − u0 ⋅ d0

0

⎤⎥⎥⎦
This can be expressed as

C dX = dY = c dT + dU. (4.68)

Assume that the position error of all satellites is uncorrelated with each other and is also uncor-
related with the TDOA measurement, the geolocation error caused by the satellite position
random error and the TDOA measurement error can be expressed separately, so the geoloca-
tion covariance matrix in ECEF coordinates is

Pdx = E
{
dXdXT} = E

{
C−1dYdYTC−T} = C−1 [c2E {dTdTT} + E

{
dUdUT}]C−T.

(4.69)
Expression (4.69) obtains the 3D geolocation covariance matrix of the geolocation error in
ECEF coordinates. Considering that accuracy index of the ground emitter location is the hor-
izontal geolocation error, the covariance matrix should be transformed into the top-centric
horizon coordinates system of the emitter and its horizontal component should be taken out as
the geolocation error:

P′
dX = (Cg

s )tPdX(C
g
s )Tt , (4.70)

where (Cg
s )t represents the coordinate transformation matrix at the emitter point. The random

horizontal geolocation error is

GDOP =
√
P′
dX(1, 1) + P′

dX(2, 2).

4.4.1.2 Calculation of the Theoretical Geolocation Error Distribution

For a random observation error, the geolocation error caused by the measurement error can be
determined separately when the TDOAmeasurement is uncorrelated with the satellite location
measurement. The simulation parameter is listed as below: the satellite altitude is 1000 km
and the positions of the satellites, respectively, are O0 (125.21∘E, 24.44∘N), O1 (125.68∘E,
25.09∘N), and O2 (125.99

∘E, 24.44∘N). The radius of the spherical model is the radius vec-
tor of the subsatellite geocenter of the earth at the subsatellite of the primary satellite O0.
Figure 4.15a shows the geolocation error GDOP (geometric dilution of precision) distribution
when the correlation coefficient of the TDOA measurement is 0.5 and the TDOA accuracy
𝜎Δt = 100 ns. Figure 4.15b shows the geolocation error GDOP distribution when the satellite
position error is 𝜎s = 30m in each direction of ECEF coordinates. In the figure, ’* represents
the subsatellite position of the satellites and the number on each curve represents the contour
of locating accuracy, with the unit of meter.
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Figure 4.15 The GDOP distribution of the randommeasurement error (meter): (a) 𝜎Δt = 100 ns and (b)
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It is shown from Figure 4.15 that the contour of geolocation accuracy caused by the TDOA
error and the satellite location error basically is an ellipse centering on the subsatellite point of
a three-satellite constellation. Geolocation accuracy near the center of the subsatellite point is
the highest. The further the emitter point is away from the center, the larger the geolocation
error is and the denser the contour line of the error is, which indicates an increase in the error
increment. However, the error increment near the subsatellite point is relatively slow. In the
case of normal TDOA accuracy, geolocation accuracy of the three-satellite TDOA method
near the subsatellite point can reach about 1 km, which shows that it may be a highly accurate
geolocation method.
Under the circumstance of highly accurate satellite navigation (e.g., use of the differential

GPS (global positioning system) equipment), the relative location error of satellites can be
decreased to decimeter-level and, at such a time, the location error can be omitted. However,
when the GPS satellite resource is not available, the satellite location error may be a significant
error factor.

4.4.2 Analysis of Bias Caused by Altitude Assumption

In Section 4.2, we assumed a zero-altitude to solve the emitter location with two TDOA obser-
vations, and further specified the equation of the earth’s surface where the emitter is located.
The altitude assumption will inevitably lead to bias in geolocation of the emitter. Sensitivity
of the three-satellite system to altitude error determines whether the system can be useful in
practice.
For the convenience of research, this problem is discussed in the local top-centric horizon

coordinates system of the emitter. Refer to Section 2.2 for the transformation relationship
between the top-centric horizon coordinates system and the ECEF coordinates. As the emit-
ter altitude is very small compared with the height of the satellite, the locating surface can
be approximated with its tangent plant near the emitter point. Suppose the local top-centric
horizon coordinates of the satellite are O0

′ = (x0′, y0′, z0′), O1
′ = (x1′, y1′, z1′), and O2

′ =
(x2′, y2′, z2′) after the coordinate transformation and the coordinate of the emitter is T′ =
(x′, y′, z′). Rewrite the hyperboloid equation as follows:

Δri = c Δti =
√

(x′ − xi′)2 + (y′ − yi′)2 + (z′ − zi′)2

−
√

(x′ − x0′)2 + (y′ − y0′)2 + (z′ − z0′)2 (i = 1, 2). (4.71)

The two TDOA hyperboloids represented by expression (4.71) can be replaced with its tangent
plane in the vicinity of the emitter, where the tangent plane at the emitter location (0, 0, 0) is(

x0
′

r0′
−
xi
′

ri′

)
x′ +
(
y0

′

r0′
−
yi
′

ri′

)
y′ +
(
z0

′

r0′
−
zi
′

ri′

)
z′ = 0 (i = 1, 2), (4.72)

where

ri
′ =
√
xi′

2 + yi′
2 + zi′

2 (i = 0, 1, 2).
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Table 4.2 Difference of analytical values of the altitude error and the geolocation error

Location of emitter point Distance of the emitter
away from the geometric
center subsatellite point
of constellation/km

Theoretic
value of

geolocation
error (m)

Location
solution
error (m)

Theoretic
value
error (m)

Longitude/∘ Latitude/∘

126.37 25.80 0 5.2 6.9 1.7
126.37 23.89 212.5 299.0 301.8 2.8
126.37 21.98 425.1 602.0 604.9 2.9
128.28 25.80 191.5 273.0 273.4 0.4
130.19 25.80 383.1 548.2 549.0 0.8

When the altitude assumption error is dH, the locating surface of the zero-altitude earth ellip-
soid can be replaced with the tangent plane z′ = −dH, giving

⎡⎢⎢⎢⎣
x0

′

r0′
−
x1

′

r1′
y0

′

r0′
−
y1

′

r1′
x0

′

r0′
−
x2

′

r2′
y0

′

r0′
−
y2

′

r2′

⎤⎥⎥⎥⎦
[
x′

y′

]
=
⎡⎢⎢⎢⎣
z0

′

r0′
−
z1

′

r1′
z0

′

r0′
−
z2

′

r2′

⎤⎥⎥⎥⎦ dH. (4.73)

This is simply expressed as
GXg = H dH.

According to expression (4.73),

Xg = G−1H dH ≜ D dH, (4.74)

whereD is only determined by the geometric distribution of the three satellites against the emit-
ter. It is revealed from expression (4.74) that the altitude bias can be approximately expressed
by a kind of linear relation, where D represents the GDOP of such a linear relation.
Define the bias index as

𝜎sH =
√
x′2 + y′2. (4.75)

Under the simulation conditions listed in Section 4.4.1, Table 4.2 shows the difference
between the geolocation error from the altitude error analysis and the geolocation error
from the geolocation solution in the case of 1 km altitude assumption. Figure 4.16 shows the
altitude bias when the altitude of the emitter is 1 km to 200m without a TDOA measurement
error, respectively.
According to Table 4.2 and Figure 4.16, it can be concluded that:

1. The theoretic value of the altitude assumption error is consistent with the geolocation error
distribution obtained by a location solution, and the difference is less than several meters,
which is very small compared with other geolocation errors and can be omitted. Therefore,
the theoretic method of altitude assumption error is effective.

2. For the geolocation error caused by the altitude assumption, the error near the subsatellite
point is the smallest and the influence incurred by the altitude assumption error will be more
intensive if further away from the subsatellite center. The reason is that the inclination of
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the TDOA surface and the earth’s surface is approximately 90∘ near the subsatellite point;
therefore, the altitude error vertical to the earth’s surface imposes only a small effect upon
the horizontal geolocation error (as listed in Table 4.2). When the emitter is far away from
the subsatellite point, the included angle between the TDOA surface where the emitter is
located and the earth’s surface becomes small, and the influence caused by the altitude error
is more obvious.

3. Bias caused by the altitude assumption is basically distributed in an ellipse shape centering
on the subsatellite point at the location of the satellite constellation center, and the error
contour line is basically distributed in an even way.

4. When the emitter prior altitude assumption bias is about 1 km, the geolocation error caused
by the zero-altitude assumption is relatively large, so the geolocation accuracy is not very
good. However, as shown in expression (4.74), the geolocation error caused by the altitude
assumption is in an approximate linear relation with the altitude bias. Therefore, the alti-
tude bias can be omitted compared with the random geolocation error when the emitter
altitude is about 100–200m. The location algorithm is applicable to locating the emitter
adjacent to the geoidal surface.

4.4.3 Influence of Change of the Constellation Geometric Configuration
on GDOP

The geolocation accuracy distribution under certain satellite geometric configuration condi-
tions were researched in Section 4.4.1. In fact, three satellites may not be located in the same
orbit, so the constellation geometric structure is changed continuously when the satellite orbits
the earth. It is required to analyze the influence of constellation configuration structure upon
geolocation accuracy of the emitter within a coverage area. Figures 4.17 to 4.19 show the
distribution of the geolocation error respectively caused by the zero-altitude assumption, the
TDOAmeasurement error, and the satellite position measurement error when the constellation
runs at different times (corresponding to different constellation structures). Parameters of the
constellation are as follows: the orbital altitude of the primary satellite is 1000 km, eccentricity
is 0 (circular orbit), orbit inclination is 60∘, RAAN is 120∘, argument of perigee is 0∘, and time
of perigee is 0 second; auxiliary satellites on the same track are 100 km ahead of the primary
satellite and the ascending node of the primary satellite not on the same track moves 100 km
to the east. The minimum observation angle of the satellite is 25∘ and the TDOAmeasurement
error is 𝜎Δt = 100 ns.
It is revealed from the figures that different structures of the constellation have different

geolocation performances to the subsatellite coverage area. Intuitively, when the constella-
tion is located in a low-latitude area and the triangle formed by the ground projection of
the three satellites is close to a regular triangle, its geolocation accuracy stays at the highest
level; the flatter the projection triangle, the more influence the error imposes and the more
the geolocation error is. When the projection of the three satellites is nearly a line in the
high latitude area, the geolocation error is very large – sometimes even the no-solution case
will happen.
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Figure 4.17 (continued)

4.5 Calibration Method of the Three-Satellite TDOA Geolocation
System

Besides the altitude assumption error and the TDOA random error, measurement of the
TDOA may be influenced by clock drift, delay of a receiver channel, intersatellite clock
synchronization error, and so on. Therefore, the measurement of TDOA may suffer bias.
Meanwhile, the satellite position (Ephemeris) may also have errors, which may result in bias
in the three-satellite TDOA geolocation system. If there are some emitters whose positions
are known on the ground, the calibration method can be used to reduce this bias, thereby
improving geolocation accuracy. This section will introduce the method to improve accuracy
of the geolocating system by calibration.

4.5.1 Four-Station Calibration Method and Analysis

The error in the position of the overall satellite constellation should have little influence upon
geolocation accuracy, but an error in the relative position of an auxiliary satellite and clock
synchronization to the primary satellite may be the main influencing factor. Without consid-
ering the location error of the primary satellite, we hope to get an analytical solution of the
relative position of auxiliary satellites and the clock synchronization error. Suppose bias of the
clock synchronization between auxiliary satellites and the primary satellite are 𝛿ΔT01 and 𝛿ΔT02 ,
respectively, and the relative position errors of two auxiliary satellites are ΔX1(Δx1,Δy1,Δz1)
and ΔX2(Δx2,Δy2,Δz2), including eight unknown numbers in total. Without considering an
intersatellite data link, four ground stations and the corresponding eight TDOA measurement
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Figure 4.18 Error GDOP caused by a 100 ns TDOA measurement error at different times. Error
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Figure 4.18 (continued)

equations are required to get a solution. If an intersatellite data link exists, that is, the distance
between satellites information, there are two relative distance (range) expressions. In this case,
only three ground calibration stations and six TDOA equations are required to find a solution.
A four-station calibration algorithm is derived as follows.

4.5.1.1 Four-Station Calibration Method

Assume there are four calibration stations on the ground, respectively written as bi (i= 1, 2,
3, 4), and suppose its position under ECEF coordinates is Xbi

=
[
xbi ybi zbi

]T
. Suppose the

position of the primary satellite is X0 =
[
x0 y0 z0

]T
and the positions of auxiliary satellites 1

and 2, respectively, are X1 =
[
x1 y1 z1

]T
and X2 =

[
x2 y2 z2

]T
. Then the TDOA between the

primary satellite and the auxiliary satellite 1 is

cΔTbi1 =
√

(Xbi
− X0)T(Xbi

− X0) −
√

(Xbi
− X1)T(Xbi

− X1) (i = 1, 2, 3, 4), (4.76)

where c is the propagation speed of the electromagnetic wave.
Errors always exist in actual TDOA measurements with bias and random error. Suppose all

random errors are zero-mean and smaller than bias. Therefore, only the influence from the
relative position error of auxiliary satellite 1 is taken into account here (as auxiliary satellite
2 is similar to auxiliary satellite 1, here we will only take auxiliary satellite 1 as the example)
and only the relative position error and the TDOA measurement error of auxiliary satellite 1
is considered (as the error of the overall constellation position has little influence on TDOA
geolocation accuracy but only causes horizontal movement of the locating plane, its influence
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Figure 4.19 (continued)

can be omitted during the following derivation). Thus the TDOA of auxiliary satellite 1 that is
actually measured is

cΔTbi1m =
√

(Xbi
− X0)T(Xbi

− X0) −
√

(Xbi
− X1)T(Xbi

− X1) + c𝛿ΔT1s (i = 1, 2, 3, 4).
(4.77)

The bias in the relative position of auxiliary satellite 1 is aliased into the relative position
of auxiliary satellite 1. Therefore, only if the relative position Xd1s of auxiliary satellite 1 is
estimated accurately can the bias of the auxiliary satellite’s position be eliminated. Now, the
problem is how to estimate 𝛿ΔT1s and Xd1s based on ΔT

bi
1m (i= 1, 2, 3, 4). Since there are four

unknowns, four calibration stations are required to fully solve 𝛿ΔT1s and Xd1s.
Transposing expression (4.77) yields√

(Xbi
− X1)T(Xbi

− X1) =
√

(Xbi
− X0)T(Xbi

− X0) − cΔTbi1m + c𝛿ΔT1s (i = 1, 2, 3, 4),
(4.78)

where √
(Xbi

− X1)T(Xbi
− X1)

=
√

(Xbi
− X0 + Xd1s)T(Xbi

− X0 + Xd1s)

=
√

(Xbi
− X0)T(Xbi

− X0) + 2(Xbi
− X0)TXd1s + XT

d1sXd1s
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Square expression (4.78) and let rbi0 =
√

(Xbi
− X0)T(Xbi

− X0). Simplifying it yields

2
(
Xbi

− X0

)T
Xd1s + XT

d1sXd1s =
(
cΔTbi1m

)2
+
(
c𝛿ΔT1s

)2
− 2rbi0 cΔT

bi
1m + 2

(
rbi0 − ΔTbi1m

)
c𝛿ΔT1s (i = 1, 2, 3, 4) .

(4.79)

Subtract the equation in which i= 2, 3, 4 and the one in which i= 1 of expression (4.79). Then

2
(
Xbi

− Xb1

)T
Xd1s =

(
cΔTbi1m

)2
−
(
cΔTb11m

)2
− 2rbi0 cΔT

bi
1m + 2rb10 cΔT

b1
1m

+ 2
(
rbi0 − ΔTbi1m − rb10 + ΔTb11m

)
c𝛿ΔT1s (i = 2, 3, 4). (4.80)

Let

kbi1 = 2c
(
rbi0 − ΔTbi1m − rb10 + ΔTb11m

)
, kbi2 =

(
cΔTbi1m

)2
−
(
cΔTb11m

)2
− 2rbi0 cΔT

bi
1m + 2rb10 cΔT

b1
1m.

Expression (4.80) can be expressed as

2
(
Xbi

− Xb1

)T
Xd1s = kbi1 𝛿ΔT1s + kbi2 (i = 2, 3, 4) . (4.81)

Let

A =
[(
Xb2

− Xb1

) (
Xb3

− Xb1

) (
Xb4

− Xb1

)]T
,

K1 =
(
kb21 kb31 kb41

)T
, and K2 =

(
kb22 kb32 kb42

)T
.

One can obtain
Xd1s =

1
2
A−1K1𝛿ΔT1s +

1
2
A−1K2 = K3𝛿ΔT1s +K4. (4.82)

Substitute expression (4.82) of Xd1s into expression (4.79), where

(Xbi
− X0)TXd1s = (Xbi

− X0)T(K3𝛿ΔT1s +K4)

= (Xbi
− X0)TK3𝛿ΔT1s + (Xbi

− X0)TK4

and

XT
d1sXd1s = (K3𝛿ΔT1s +K4)T(K3𝛿ΔT1s +K4)

= KT
3K3𝛿

2
ΔT1s + 2KT

3K4𝛿ΔT1s +KT
4K4.

After i= 1 is substituted, expression (4.79) can be written as

a1𝛿
2
ΔT1s + b1𝛿ΔT1s + c1 = 0, (4.83)
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where a1 = KT
3K3 − c2, b1 = 2KT

3K4 + 2(Xbi
− X0)TK3 − 2(rbi0 − cΔTbi1m), and c1 = KT

4K4 +
2(Xbi

− X0)TK4 − (cΔTbi1m)
2 + 2rbi0 cΔT

bi
1m.

One can solve the quadratic equation and find roots, from Equation (4.83):

𝛿ΔT1s =
−b1 ±

√
b21 − 4a1c1

2a1
. (4.84)

Substitute this into expression (4.82) to get

Xd1s = K3𝛿ΔT1s +K4. (4.85)

The expression above has two groups of solutions. As one group of solutions is inconsistent
with the physical circumstances it should be deleted.We can then obtain the analytical solution
of the clock synchronization error and the relative position of the auxiliary satellite in the
three-satellite geolocation system. Use the solution of the clock synchronization error and the
relative position to compensate for TDOA measurement bias and use the satellite positions to
solve the position of the emitter, thereby reducing the influence of TDOA bias and improving
geolocation accuracy.

4.5.1.2 Four-Station Calibration Geometric Configuration

The principle of four-station calibration is the same as that of four-station TDOA location,
which is similar to the inverse of ground multistation TDOA location. Therefore, we can
employ research achievements about multistation TDOA location to research the geometric
configuration problem of multistation calibration. According to research achievements about
geometric configurations in references [8] and [13], the inverted triangle-shape station geo-
metric configuration and the ‘Y’-shape (also called star-shape) station geometric configuration
enjoy the highest geolocation accuracy among all geometric configuration modes. Compared
with the ‘Y’-shape (star-shape) station geometric configuration, the inverted triangle-shape
configuration is more accurate in geolocation accuracy. However, such a configuration is diffi-
cult to realize in practice and its geolocation accuracy is obvious in anisotropic directions (the
geolocation accuracy stays relatively poor in some directions). The longer the length of the
baseline between stations, the higher is the geolocation accuracy.
It is revealed from expressions (4.81) and (4.82) that expression (4.82) has solutions when

the four calibration stations are not within the same plane, that is, rank(A) = 3. Considering
the actual station geometric configuration status, three calibration stations can be arranged in
one plane and the fourth calibration station may be arranged on another plane. The longer the
length of the baseline, the higher is the geolocation accuracy; however, an appropriate baseline
length can be selected due to limitations of various factors, such as the satellite instantaneous
coverage area and geographical conditions. Refer to Figure 4.20 for two typical station geo-
metric configurations.
Considering various factors, the ‘Y’-shape (star-shape) station geometric configuration is

more suitable for the geometric configuration of the three-satellite geolocation system with
ground four-station calibration.
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Figure 4.20 Two typical station geometric configurations. (a) Inverted triangle-shape station geometric
configuration and (b) ‘Y’-shape station geometric configuration

4.5.1.3 Simulation

In this section, computer simulation is used to verify the accuracy of the four-station calibration
algorithm and its improvement effects upon the system’s geolocation accuracy.
The simulation conditions are as follows: the actual location data of the satellites is gen-

erated by the STK (satellite tool kit); the location of the four ground stations are respectively
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set as (102.7064∘E, 25.0366∘N), (109.4927∘E, 18.2588∘N), (109.3735∘E, 24.3152∘N), and
(112.9685∘E, 28.1976∘N) to form an approximate ‘Y’-shape geometric configuration; the
location of the three satellites is O0 (122.0357

∘E, 36.4243∘N), O1 (120.9255
∘E, 36.3627∘N),

and O2 (121.6992
∘E, 37.2870∘N); the bias of the TDOA measurement is 60 ns; the RMS of

the random error is 20 ns (normal distribution); the overall location error of the constellations
is 150m; the relative position error of the satellites is 50m; ;O’ in simulation results represents
the location of calibration stations; and ‘*’ represents the position of the satellites’ subsatellite
point. Carry out the Monte Carlo tests 100 times to evaluate the geolocation error. We can
obtain simulation results of the geolocation error as shown in Figure 4.21. In this figure,
the error unit is the meter, and the X axis and Y axis, respectively, serve as the longitude
and latitude.
It is revealed from Figure 4.21 that the contour map of the accuracy distribution is changed

before and after calibration and that the accuracy distribution contour after calibration is more
like a circle. Geolocation error within 1000 km2 of the vicinity of the subsatellite point is
decreased to within 200 and 500m after calibration from 500 to 1000m before calibration.
This represents a double increase in accuracy. However, if the emitter is 2000 km away from
the subsatellite point, the geolocation accuracy is not obviously improved.

4.5.2 Three-Station Calibration Method

If there is ranging equipment on the satellites, the distance between satellite information can
be measured. Common ranging ways including transponder and laser ranging.
Transponder ranging means that an enquiring signal is transmitted by the primary satellite

to an auxiliary satellite, which will transmit an answering signal upon receipt of the enquiring
signal. A time mark is attached in the answering signal based on its own clock. After receiv-
ing the acknowledgment signal, the primary satellite will calculate the transmission time of
the signal among satellites to obtain the distances between the primary satellite and the auxil-
iary satellites.
The laser ranging mode involves a laser transmitter carried by the primary satellite and a

corner reflector by the auxiliary satellite. The distance between the satellites can be obtained
by measuring the time delay value of the laser pulse reflection.
A three-station calibration algorithm employing the two different calibration algorithms is

derived as follows.

4.5.2.1 Three-Station Calibration Method

If intersatellite range information exists, the relative position error and the clock synchroniza-
tion error of the auxiliary satellite can be solved via only three ground calibration stations. Two
different calibration methods of three-station location to estimate the bias are listed below:

1. Method I
Assume that there is ranging information between the primary satellite and auxiliary

satellite 1. Let the distance be
r1 =
√

XT
d1sXd1s, (4.86)

where Xd1s is the distance vector between the primary satellite and auxiliary satellite.
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Figure 4.21 GDOP of geolocation for the four-station calibration algorithm. GDOP contour of the
geolocation error (a) before calibration and (b) after calibration
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When transponder ranging is used, due to bias of intersatellite clock synchronization, the
measured distance between the primary satellite and auxiliary satellite 1 is

r1 =
√

XT
d1sXd1s + c𝛿ΔT1s. (4.87)

Then we can get
XT
d1sXd1s = r21m + (c𝛿ΔT1s)2 − 2r1mc𝛿ΔT1s. (4.88)

Substituting this into expression (4.79) gives

2
(
Xbi

− X0

)T
Xd1s = 2r1mc𝛿ΔT1s − r21m +

(
cΔTbi1m

)2
+ 2rbi0 cΔT

bi
1m

+ 2
(
rbi0 − ΔTbi1m

)
c𝛿ΔT1s (i = 1, 2, 3) . (4.89)

Then let

kbi1 = 2
(
rbi0 − cΔTbi1m

)
+ 2r1mc, k

bi
2 =
(
cΔTbi1m

)2
− 2rbi0 cΔT

bi
1m − r21m (i = 1, 2, 3) .

Expression (4.89) can therefore be expressed as

2
(
Xbi

− X0

)T
Xd1s = kbi1 𝛿ΔT1s + kbi2 (i = 1, 2, 3) . (4.90)

Let A =
[(
Xb2

− Xb1

) (
Xb3

− Xb1

) (
Xb4

− Xb1

)]T
, K1 =

(
kb21 kb31 kb41

)T
, and

K2 =
(
kb22 kb32 kb42

)T
, which yields

Xd1s =
1
2
A−1K1𝛿ΔT1s +

1
2
A−1K2 = K3𝛿ΔT1s +K4. (4.91)

Therefore

XT
d1sXd1s = (K3𝛿ΔT1s +K4)T(K3𝛿ΔT1s +K4) = KT

3K3𝛿
2
ΔT1s + 2KT

3K4𝛿ΔT1s +KT
4K4.

Substituting this into expression (4.88) gives

a1𝛿
2
ΔT1s + b1𝛿ΔT1s + c1 = 0, (4.92)

where a1 = KT
3K3 − c2, b1 = 2KT

3K4 − 2r1mc, and c1 = KT
4K4 − r21m.

The expression above is a quadratic equation. Solve it and find the roots:

𝛿ΔT1s =
−b1 ±

√
b21 − 4a1c1

2a1
. (4.93)

Substituting this into expression (4.91) gives

Xd1s = K3𝛿ΔT1s +K4. (4.94)
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This expression has two groups of solutions. As one group of solution in inconsistent
with physical circumstances should be deleted. We can obtain the analytical solution of
the clock synchronization error of the three-satellite geolocation system and the relative
position of the auxiliary satellite.

2. Method II
Suppose there is intersatellite distance information between the primary satellite and

auxiliary satellite 1. Let the distance be

r1 =
√

XT
d1sXd1s. (4.95)

When the laser ranging mode is used, the ranging information is accurate and does not
contain clock synchronization bias or error. One can obtain

2
(
Xbi

− X0

)T
Xd1s =

(
cΔTbi1m

)2
− r21m +

(
c𝛿ΔT1s

)2 − 2rbi0 cΔT
bi
1m

+ 2
(
rbi0 − ΔTbi1m

)
c𝛿ΔT1s (i = 1, 2, 3) . (4.96)

So let k1 = c2, kbi2 = 2
(
rbi0 − cΔTbi1m

)
, and kbi3 =

(
cΔTbi1m

)2
− 2rbi0 cΔT

bi
1m − r21m. This can

be written in the following matrix form:

2AXd1s = K1

(
𝛿ΔT1s
)2 +K2𝛿ΔT1s +K3, (4.97)

where A =
[(
Xb2

− Xb1

) (
Xb3

− Xb1

) (
Xb4

− Xb1

)]T
, K1 =

(
kb21 kb31 kb41

)T
, and K2 =(

kb22 kb32 kb42

)T
. Then

Xd1s =
1
2
A−1K1

(
𝛿ΔT1s
)2 + 1

2
A−1K2𝛿ΔT1s +

1
2
A−1K3 = K4

(
𝛿ΔT1s
)2 +K5𝛿ΔT1s +K6.

(4.98)
Substitute expression (4.88) and square it, to obtain

a𝛿4ΔT1s + b𝛿3ΔT1s + c𝛿2ΔT1s + d𝛿ΔT1s + e = 0,

where a = KT
4K4, b = 2KT

4K5, c = KT
5K5 + 2KT

4K6, d = KT
5K6, and e = KT

6K6 − r21. The
expression above is a quartic equation. Therefore, the analytical solutionmethod of a quartic
equation can be used to solve the clock synchronization error of a three-satellite geolocation
system and the relative position of the auxiliary satellite.

4.5.2.2 Simulation

In this section, computer simulation is used to verify the accuracy of the three-station cal-
ibration algorithm and its improvement effects upon the system’s geolocation accuracy. A
large number of simulations show that the calibration effects of two ranging modes are the
same. Therefore, only simulation results of the laser ranging mode are taken as an example for
analysis in this section.
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Figure 4.22 Comparison between GDOP contours of the geolocation error before and after
three-station calibration. GDOP contour of the geolocation error curve (a) before calibration and (b)
after calibration
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Use the location scenario similar to that described in the section above. The location of
the three ground stations are respectively set as (102.7064∘E, 25.0366∘N), (109.4927∘E,
18.2588∘N), and (112.9685∘E, 28.1976∘N) to form an approximate equilateral triangle-shape
geometric configuration; the location of the three satellites is O0 (108.7248∘E, 19.1027∘N),
O1 (107.6106∘E, 19.0373∘N), and O2 (108.1702∘E, 20.0204∘N); the bias of the TDOA
measurement is 60 ns; the RMS of the random error is 20 ns (normal distribution); the
absolution location error of the constellations is 150m; the relative position error of the
satellites is 50m; the intersatellite measurement error is 0.3m; and the other conditions are
the same as those specified in the section above. In this way, the simulation result shown
in Figure 4.22 can be obtained. ‘O’ in the simulation results represents the location of the
calibration stations, and ‘*’ represents the position of the satellites’ subsatellite point. In this
figure, the error unit is the meter and the X axis and Y axis, respectively, serve as the longitude
and latitude.
By comparing the simulation results before and after calibration, Figure 4.22 shows that the

geolocation error within 1500 km2 in the vicinity of a subsatellite point is decreased to within
200 and 500m after calibration from 500, 1000, and 2000m before calibration, indicating an
increase of one to two times. However, for the emitters 2500 km away from the subsatellite
point, the geolocation accuracy is not obviously improved.
By comparing the three-station calibration results shown in Figure 4.22b and the four-station

calibration results in Figure 4.21b, it is shown that the effect of three-station calibration is
better than that of four-station calibration, which is attributed to accurate ranging formation in
three-station calibration.
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5
Dual-Satellite Geolocation Based
on TDOA and FDOA

The dual-satellite TDOA–FDOA (time difference of arrival–frequency difference of arrival)
geolocation method uses two geometrically separated satellites to passively intercept the
signal from the noncooperative emitter on the earth and then calculate the location of the
emitter according to the TDOA and FDOA of the signal from the emitter to the satellite.
Because both TDOA and FDOA are nonlinear functions of the emitter position in 3D space,
the position of the emitter can be determined according to prior information of the emitter
on the earth’s surface. In the research on dual-satellite TDOA–FDOA geolocation, much
concern has been given on how to calculate the location of the emitter, whose parameters have
a greater influence on geolocation accuracy, and to what extent the parameter measurements
should be accurate. Therefore, geolocation accuracy under different parameter measurement
error levels will be analyzed.
Therefore, this chapter first introduces the principle of dual-satellite TDOA–FDOA geolo-

cation and then discusses the solution of the dual LEO (low earth orbit) satellite geolocation
expression with two satellites running in and then not in the same orbit, respectively. Finally
a geolocation method of TDOA–FDOA geolocation by two HEO (high earth orbit) satel-
lites based on reference stations is introduced, the geolocation accuracy is analyzed, and the
technology for measuring TDOA–FDOA from the signal waveform is described.

5.1 Introduction of TDOA–FDOA Geolocation by a Dual-Satellite

5.1.1 Explanation of Dual-Satellite Geolocation Theory

In the dual-satellite geolocation system, each satellite intercepts the radio signals from the
transmitters (or emitters, jamming sources) on earth. TDOA and FDOA can be measured via
correlation of the intercepted signals from two satellites. Based on TDOA and FDOA, the
position information of the emitter may be obtained. For example, an equal-TDOA hyper-
boloid can be determined via TDOAmeasurement and an equal-FDOA surface determined via
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Figure 5.1 Sketch of the dual-satellite TDOA–FDOA combined geolocation principle

FDOA measurement. For the emitter on land or the emitter on the ocean surface at a known
altitude, if the TDOA and FDOA are measured simultaneously, a circle taking the line of two
satellites as the axis can be formed by intersecting the equal-TDOA revolution hyperboloid
by the equal-FDOA revolution surface. Two points can be obtained by intersecting this cir-
cle by the earth’s surface if the ambiguous geolocation point can be eliminated and the other
point can be the actual location of the emitter, as shown in Figure 5.1 [1–4].
Compared with the single-satellite LOS (line of sight) geolocation method and the

three-satellite TDOA geolocation method, the dual-satellite TDOA–FDOA geolocation
method is featured with no requirement for a satellite platform attitude measurement and
is not affected by a larger geolocation error. The three-satellite TDOA geolocation system
requires three satellites at least, so it may be expensive in system realization. In addition,
there are always some satellite configurations that cannot perform the geolocation, sometimes
because these satellites are not in the same orbit (for example, in the high latitude area). In
the dual-satellite TDOA–FDOA geolocation system, two satellites can be configured in the
same orbit so as to ensure the consistency of global geolocation accuracy.
For the LEO dual-satellite TDOA–FDOA geolocation system, if the baseline between two

satellites is long enough, geolocation accuracy can reach a high level due to the fast moving
velocity of the LEO satellite relative to the earth and the great Doppler frequency difference
generated therefrom. Compared with other multiplatform geolocations, the TDOA–FDOA
geolocation mode reduces the number of platforms and decreases the difficulty of system
realization and launching cost, and compared with the single-platform geolocation mode, its
geolocation accuracy is relatively high.

5.1.2 Structure of Dual-Satellite TDOA–FDOA Geolocation System

As shown in Figure 5.2, the dual-satellite TDOA–FDOA geolocation system uses two satel-
lites to passively intercept signals from the noncooperative emitter on the earth and then
estimate the location of the emitter according to the TDOA and FDOA of the signal from the
emitter to the satellite with the known satellite ephemeris and satellite moving velocity and by
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Figure 5.2 Sketch of the dual-satellite geolocation system
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Figure 5.3 Sketch of dual-satellite geolocation processing

supposing the emitter to be on the earth’s surface. The system also has a ground geolocation
station, used by the user for processing and analysis of the data received by the satellites so as
to monitor their operating states, as shown in Figure 5.2.
Generally, one of the two satellites is the primary satellite (satellite A) and the other is the

auxiliary satellite (satellite B), as shown in Figure 5.2. The primary satellite receives the main
lobe signal of the emitter and the auxiliary satellite receives the side lobe signal (or main lobe
signal in certain cases) of the emitter. The two satellites may run in or not in the same orbit. A
sketch of the dual-satellite geolocation system is shown in Figure 5.3.
During geolocation, the receivers of the two satellites receive the transmitted signal of an

emitter, implement analog-to-digital conversion (A/D), carry out signal processing and FDOA
and TDOA parameter estimation, and finally calculate the geolocation results with a satellite
orbit parameter (obtained and known by a ground TTC&M (telemetry, tracking, command,
and monitoring) system). Signal processing and data processing work can be completed on
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the satellite on a real-time basis or on the ground to post-processing after being sent to the
ground station through a satellite-to-ground data link or relay satellite.

5.2 Dual LEO Satellite TDOA–FDOA Geolocation Method

To localize an emitter, the double dual LEO satellite geolocation system utilizes the measured
TDOA–FDOA parameters of the emitter signals in combination with the restriction condi-
tion that the emitter is on the earth’s surface and then finds out the solution to the emitter’s
location. There are two methods for the dual-satellite TDOA–FDOA geolocation: one is to
obtain the emitter location by directly solving multivariant nonlinear equations using the ana-
lytics method and the other is to obtain the emitter location by solving multivariant nonlinear
equations using the iterative method. The analytic method is relatively better for the initial
location of the emitter required by the iterative method and its calculation is complex. If the
analytic method is adopted to solve the TDOA–FDOA geolocation equation, two cases also
exist, that is, two satellites running in or not in the same orbit. In the case of two satellites run-
ning in the same orbit, an approximation algorithm is used to simplify the process of finding
the solution.

5.2.1 Geolocation Model

In this section, the ECEF (earth-center earth-fixed) coordinates system and the geolocation
model will be established. In the dual-satellite geolocation system, two satellites and the emit-
ter are as shown in Figure 5.4.
In Figure 5.4, the emitter is located at E, with its position given as u = [x, y, z]T. The coor-

dinates of two satellites S1 and S2 are defined as s1 = [x1, y1, z1]T and s2 = [x2, y2, z2]T, and
their velocities as v1 = [𝑣x1, 𝑣y1, 𝑣z1]T and v2 = [𝑣x2, 𝑣y2, 𝑣z2]T, respectively.
The two satellites receive a signal transmitted from the emitter on earth to obtain the mea-

sured value of TDOA and FDOA. Define the TDOA of the electromagnetic wave from the
emitter to satellite 1 and to satellite 2 as Δt and the corresponding FDOA as Δfd.
Supposing the distance from satellite i to the emitter is ri, then

ri = ((si − u)T(si − u))1∕2 (i = 1, 2). (5.1)

The TDOA measurement can be seen as the distance difference of the emitter to two satel-
lites. Because the propagation speed of the electromagnetic wave is constant, the measurement
expression can be obtained as

Δr = cΔt = r1 − r2, (5.2)

where c is the propagation speed of the electromagnetic wave. Because the distance difference
Δr can be obtained by measuring TDOA Δt multiplied by constant c, expression (5.2) is the
TDOA measurement expression.
By differentiating expression (5.2), one can obtain

Δṙ = cΔṫ = ṙ1 − ṙ2 = Δ𝑣r, (5.3)
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where the change rate of TDOA Δṫ can be indirectly measured through Doppler FDOA Δfd,
and their relationship is as follows:

Δfd = −f0 Δṫ, (5.4)

where f0 is the frequency of the signal from the emitter. Therefore, the FDOA measurement
expression can be obtained:

Δṙ = − c
f0
Δfd = −Δfd𝜆, (5.5)

where 𝜆 = c∕f0 is the wavelength of the emitter signal.
The emitter is generally located on the earth’s surface, which is also a prior information

for geolocation. As for geolocation of the fixed emitter on the earth, the altitude is generally
supposed to be known, that is, the emitter is located on the earth’s surface with known radius,
even though the earth’s surface is not a spherical surface. It would be more accurate to use the
average earth surface model defined by the WGS-84 coordinates system, but the method and
conclusion obtained in this way are much closer to the method discussed in this section. For
simplicity, a spherical surface is applied. Suppose the earth is a regular sphere with a radius of
R; then the earth’s surface is applicable to the expression:

uTu = R2. (5.6)

The location of the emitter can be accurately solved by combining the above three expres-
sions (5.2), (5.5), and (5.6), but the solving process would be complex for such expressions
are nonlinear. Finding the solution of the above expressions is the process of dual-satellite
TDOA–FDOA geolocation.
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Combine Equations (5.2), (5.3), and (5.6) and rewrite a system of equations as follows:

Δ𝑣r = cΔṫ = ṙ1 − ṙ2
Δr = cΔt = r1 − r2
uTu = R2

⎫⎪⎬⎪⎭ . (5.7)

Substitute the geocentric coordinate of satellites and the emitter into the above system of
expressions, which yields

𝑣x1
(
x − x1
)
+ 𝑣y1(y − y1) + 𝑣z1(z − z1)√

(x − x1)2 + (y − y1)2 + (z − z1)2
−
𝑣x2(x − x2) + 𝑣y2(y − y2) + 𝑣z2(z − z2)√

(x − x2)2 + (y − y2)2 + (z − z2)2
= Δ𝑣r√

(x − x1)2 + (y − y1)2 + (z − z1)2 −
√
(x − x2)2 + (y − y2)2 + (z − z2)2 = Δr

x2 + y2 + z2 = R2

⎫⎪⎪⎬⎪⎪⎭
.

(5.8)

In applying the dual-satellite geolocation method, the velocities of two satellites are always
different whether two satellites are in or not in the same orbit, which increases the difficulty of
the solving process. In general, in order to maintain relatively stable geolocation accuracy for a
long time, two satellites are required to maintain a certain configuration. Therefore, two satel-
lites often run in the same orbit or in two adjacent orbits. Compared with the radius of the earth,
the distance between two satellites is very short, that is, the included angle between the lines
of two satellites to the earth’s center is very small (for example, if the distance between two
satellites is 100 km, the corresponding included angle will be 0.77∘). Therefore, as the velocity
directions of the two satellites are almost the same, it can be approximately deemed that the
moving velocities of the two satellites are the same, that is, 𝑣x1 ≈ 𝑣x2 = 𝑣x, 𝑣y1 ≈ 𝑣y2 = 𝑣y,
and 𝑣z1 ≈ 𝑣z2 = 𝑣z. The system of geolocation equations (Equation (5.8)) can be rewritten as

𝑣x
(
x − x1
)
+ 𝑣y(y − y1) + 𝑣z(z − z1)√

(x − x1)2 + (y − y1)2 + (z − z1)2
−
𝑣x(x − x2) + 𝑣y(y − y2) + 𝑣z(z − z2)√

(x − x2)2 + (y − y2)2 + (z − z2)2
= Δ𝑣r√

(x − x1)2 + (y − y1)2 + (z − z1)2 −
√
(x − x2)2 + (y − y2)2 + (z − z2)2 = Δr

x2 + y2 + z2 = R2

⎫⎪⎪⎬⎪⎪⎭
.

(5.9)
The usual method for solving the above nonlinear expressions is Newton’s iteration method,
but the stability of this algorithm is poor even though the numerical results can be obtained
because the effect of iteration computation depends on the selection of an initial value point.
Therefore, for the specific application of dual-satellite geolocation, an analytical algorithm is
explored here to directly obtain the analytic solution of the system of expressions.

5.2.2 Solution Method of Algebraic Analysis

In 1997, Ho and Chan proposed an algebraic solution method [5] for the TDOA–FDOA
dual-satellite geolocation problem, which is described as follows. Rearranging the second
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equation of expression (5.7) yields

Δr2 + 2Δrr1 + r21 = r22. (5.10)

The following expression is obtained according to the definition of r1, r2 and the third equation
of Equation (5.7):

r2i = R2 + sTi si − 2sTi u (i = 1, 2). (5.11)

Substituting this expression into the third equation of Equation (5.9) yields

Δr2 + 2Δrr1 = sT2 s2 − sT1 s1 − 2(s2 − s1)Tu. (5.12)

Differentiate both sides of expression (5.12) with respect to the time to obtain an equivalent
expression to the first equation of expression (5.7):

2ΔrΔṙ + 2Δrṙ1 + 2Δṙr1 − 2sT2 ṡ2 + 2sT1 ṡ1 = −2(ṡ2 − ṡ1)Tu. (5.13)

The following expression can be obtained according to expressions (5.11) to (5.13):

u = G−1
1 h = G4r1 + g5ṙ1, (5.14)

where

G1 = −2
⎡⎢⎢⎢⎣

sT1
sT2 − sT1
ṡT2 − ṡT1

⎤⎥⎥⎥⎦ ,

h = G2r1 + g3ṙ1 =
⎡⎢⎢⎢⎣

−R2 − sT1 s1 0 1

Δr2 − sT2 s2 + sT1 s1 2Δr 0

2ΔrΔṙ − 2sT2 ṡ2 + 2sT1 ṡ1 2Δṙ 0

⎤⎥⎥⎥⎦ ×
⎡⎢⎢⎣
1
r1
r21

⎤⎥⎥⎦ +
⎡⎢⎢⎣

0
0

2Δr

⎤⎥⎥⎦ ṙ1,
G4 = G−1

1 G2,

g5 = G−1
1 g3,

r1 =
[
1 r1 r

2
1

]T
.

Expression (5.14) is equivalent to expression (5.7). Next, the solution of expression (5.14) is
introduced.
By differentiating expression (5.1), we can obtain

ṙiri = (si − u)Tṡi (i − 1, 2). (5.15)

Substitute expression (5.14) into expression (5.15) and set i= 1:

ṙ1 =
1

r1 + p
gT6r1, (5.16)

where

p = ṡT1g5 and g6 =
⎡⎢⎢⎣
sT1 ṡ1
0
0

⎤⎥⎥⎦ −GT
4 ṡ1.
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Substitute expression (5.16) into expression (5.14) to derive

u =
G7r2
r1 + p

, (5.17)

where
G7 =
[
pG4 + g5g

T
6 𝟎3×1

]
+
[
𝟎3×1 G4

]
and r2 =

[
1 r1 r

2
1 r31
]T
.

Substitute the above expression into the third expression, uTu = R2, of Equation (5.17), which
yields

gT
8
⋅ r3 = 𝟎, (5.18)

where

g8 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

G8 (1, 1) − g7(1)
G8(2, 1) +G8(1, 2) − g7(2)
G8(3, 1) +G8(2, 2) +G8(1, 3) − g7(3)
G8(4, 1) +G8(3, 2) +G8(2, 3) +G8(1, 4)
G8(4, 2) +G8(3, 3) +G8(2, 4)
G8(4, 3) +G8(3, 4)
G8(4, 4)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

G8 = GT
7G7,

g7 = R2[p2 2p 1 0
]T
,

r3 =
[
1 r1 r

2
1 r31 r41 r51 r61

]T
.

Expression (5.18) is a polynomial equation with respect to r61. Such expressions have no ele-
mentary solution from the point of view of algebraic theory, while a numerical solution can be
constructed.
Express the polynomial equation (Equation (5.18)) with respect to r1 in the following form:

a6r
6
1 + a5r

5
1 + a4r

4
1 + a3r

3
1 + a2r

2
1 + a1r1 + a0 = 0. (5.19)

Define the companion matrix A as follows:

A =

⎛⎜⎜⎜⎜⎜⎜⎝

−a5∕a6 −a4∕a6 −a3∕a6 −a2∕a6 −a1∕a6 −a0∕a6
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎠
. (5.20)

The eigenvalue of matrix A is the same as the solution of expression (5.19). The eigenvalue of
thematrix can easily be calculated using the numerical method. Certainly, the classical Newton
iteration method can also be used to solve expression (5.19) to obtain r1, and by substituting
r1 into expression (5.14) to obtain the geolocation solution.
No matter what kind of method is adopted to solve expression (5.19), six solutions will be

obtained but only one will be the true solution with respect to the geolocation. Therefore, the
ambiguity of solutions is caused. These ambiguous geolocation solutions can be divided into
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two categories. One comprises ambiguous geolocation solutions as a result of the extraneous
roots introduced in the expression solving process, which can be removed by verifying the root
of these expressions. The other comprises ambiguous geolocation solutions introduced due to
the existence of multiple points of intersection on the geolocation surface of dual-satellite
geolocation, which can be removed through system design, as described in Section 5.2.4.
In the derivation of the algorithm, pay attention to the fact that expression (5.14) requires

matrix G1 to be invertible. By observing G1, it can be invertible when:

1. Satellite 1, satellite 2 and the earth center are not in a same line, which is satisfied in most
cases.

2. The direction of the relative velocity of satellite 2 and satellite 1 is neither in the line between
the earth center and satellite 1/satellite 2, nor the line between satellite 1 and satellite 2.
Condition 2 means that if two satellites are in the same orbit and are very close, the G1

matrix would be close to being not invertible and its geolocation effect would be poor.

5.2.3 Approximate Analytical Method for Same-Orbit Satellites

When two satellites running in the same orbit or in two adjacent orbits are close to each other,
their velocities are very close to each other or can be approximately deemed as being the
same. In this case, the G1 matrix is close to being not invertible and its geolocation accuracy
would be poor. The problem of a dual-satellite in this case is called the same-orbit satellites
geolocation problem. (When two satellites are in the same orbit, if their distance is long, the
velocity difference will be large. However, it is not applicable to cooperative geolocation due
to the small common coverage area of satellites. Therefore, such a circumstance is not under
consideration.)
Based on the analysis of the previous section, when the velocities of two satellites are the

same, geolocation expression (5.8) can be simplified to expression (5.9). Methods of solving
the system of nonlinear expression (5.9) are discussed below.
Rewrite expression (5.1) as follows:

r1 =
√

(x − x1)2 + (y − y1)2 + (z − z1)2, (5.21)

r2 =
√

(x − x2)2 + (y − y2)2 + (z − z2)2. (5.22)

Substituting the above two expressions into the second expression of (5.9) yields

(x1 − x2)x + (y1 − y2)y + (z1 − z2)z = k1 − r1Δr, (5.23)

where
k1 =

1
2

[(
x21 + y21 + z21

)
−
(
x22 + y22 + z22

)
+ Δr2
]

(5.24)

Square Equation (5.21) and then subtract it from the third expression of Equation (5.9):

x1x + y1y + z1z = k2 −
1
2
r21, (5.25)

where
k2 =

1
2

[
x21 + y21 + z21 + R2] . (5.26)
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Rewrite the first expression in the system of expression (5.9) as

𝑣x(x − x1) + 𝑣y(y − y1) + 𝑣z(z − z1)
r1

−
𝑣x(x − x2) + 𝑣y(y − y2) + 𝑣z(z − z2)

r1 − Δr
= Δ𝑣r. (5.27)

Rearranging it then yields

𝑣xx + 𝑣yy + 𝑣zz = k3 + k4r1 + k5r
2
1, (5.28)

where

k3 = 𝑣xx1 + 𝑣yy1 + 𝑣zz1, k4 = Δ𝑣r − [𝑣x(x1 − x2) + 𝑣y(y1 − y2) + 𝑣z(z1 − z2)]∕Δr, and

k5 = −Δ𝑣r∕Δr.

Solve the system of linear expressions of Equations (5.23), (5.25), and (5.27), which yields

Au = f, (5.29)

where

A =
⎡⎢⎢⎣
x1 − x2 y1 − y2 z1 − z2
x1 y1 z1
𝑣x 𝑣y 𝑣2

⎤⎥⎥⎦ and f =
⎡⎢⎢⎢⎣

k1 − r1Δr
k2 −

1
2
r21

k3 + k4r1 + k5r
2
1

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎣
f1
f2
f3

⎤⎥⎥⎦ .
The following discusses the two cases of A invertible and A not invertible:

1. Matrix A invertible
Directly solve the expression (5.29) to yield

û = A−1f. (5.30)

Substitute Equation (5.29) into the third expression of Equation (5.9) to obtain a quartic
expression with r1 as the unknown number:

s1r
4
1 + s2r

3
1 + s3r

2
1 + s4r1 + s5 = 0. (5.31)

Solve the quartic expression (5.31) to find the root of r1, and then substitute this into expres-
sion (5.30) to get (x, y, z). In fact, eight groups of solutions can be obtained by using the
above method to solve the expression, and only four groups are consistent with the sys-
tem of geolocation expression (5.9), while the other four groups are the extraneous roots
generated in the expression solving process. In four groups of geolocation solutions, only
one group is the location of the emitter and the others are the imaginary roots. Therefore,
operations of root verification and solving geolocation ambiguity are required.

2. Matrix A not invertible
By observing matrixA, the corresponding physical situations of A that are not invertible

are as follows:
a. The direction of the velocity of two satellites is the same as that of the line between the

earth center and any satellite.
b. The direction of the velocity of two satellites is the same as that of the line between

them.
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As for the first situation, two satellites have radial motion relative to the earth center,
which does not exist in actual application. As for the latter, the location of the emitter can
still be obtained for satellites at a certain height. Express the second case ofA not invertible
as follows:

𝑣x
x1 − x2

=
𝑣y

y1 − y2
=

𝑣z

z1 − z2
= K. (5.32)

Substitute the above expression into expressions (5.23) and (5.28), which yields

K(k1 − r1Δr) = k3 + k4r1 + k5r
2
1. (5.33)

Solving the above quadratic expression with respect to r1 yields two roots:

r̂1 =
−(k4 + KΔr) ±

√
(k4 + KΔr)2 − 4k5(k3 − Kk1)

2k5
. (5.34)

Substitute Equation (5.34) into Equation (5.32), with expression (5.25) and the third expres-
sion in the system of expression (5.9), and solve these three equations to obtain the solution
of the emitter location (x, y, z). Suppose x is known; the following expression can then be
obtained according to expressions (5.23) and (5.25):

B
[
y
z

]
= G, (5.35)

where

B =
[
y1 − y2 z1 − z2
y1 z1

]
and G =

[
f1
f2

]
−
[(
x1 − x2

)
x

x1x

]
.

If two satellites and the earth center are not in the same line andB is invertible, the following
expression can be obtained: [

y
z

]
= B−1G. (5.36)

Substitute y and z into the third expression of (5.9) and solve a quadratic expression with
respect to x:

px2 + nx + m = 0. (5.37)

Therefore, the following expression can be obtained:

x =
−n ±
√
n2 − 4pm

2p
. (5.38)

For each r1, two solutions can be obtained. Substitute them into expression (5.36) to obtain
y and z. The true solution (x, y, z) can be obtained after removal of the imaginary roots.

5.2.4 Method for Eliminating an Ambiguous Geolocation Point

According to the observation of the above equations solving process, the two real solutions
u and u′ obtained in dual-satellite geolocation are symmetrical on both sides of the line
connecting the satellites with the subsatellite point, which cannot be distinguished when
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Figure 5.5 Method for solving ambiguity in dual-satellite geolocation

only based on TDOA and FDOA from mathematics. Other information should be introduced
to make the distinction. For example, make the main lobe of the receiving antenna of the
satellite at the left side or the right side and the ambiguous geolocation point u′ will be in the
direction of the other side. In such a situation, the signals transmitted from the ambiguous
point cannot reach the receiver of the satellite. Alternatively, set the right and left antennas for
the primary satellite and then compare the amplitudes of the right and left antennas to roughly
determine the direction of arrival, so as to remove the ambiguous point in the geolocation
solving process. The principle of this scheme is shown in Figure 5.5.
However, this method is not applicable for the emitter near the subsatellite point, due to

the large error of TDOA–FDOA geolocation, which causes great uncertainty for direction
determination.

5.3 Error Analysis for TDOA–FDOA Geolocation

The actual dual-satellite system measurement is always affected by noise, which definitely
causes error to the measurement of TDOA, FDOA, and location. Therefore, influences of such
error on the TDOA-FDOA geolocation system must be analyzed.

5.3.1 Analytic Method for the Geolocation Error

Differentiate the second expression of Equation (5.9) at the emitter point (x, y, z), which yields

(gx1 − gx2)dx + (gy1 − gy2)dy + (gz1 − gz2)dz

= dΔr + (gx1dx1 − gx2dx2) + (gy1dy1 − gy2dy2) + (gz1dz1 − gz2dz2), (5.39)
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Where
gsi =

s − si
ri

(s = x, y, z, i = 1, 2).

Differentiate the first expression of Equation (5.9) at the emitter point (x, y, z), which yields

(cx1 − cx2)dx + (cy1 − cy2)dy + (cz1 − cz2)dz

= dΔ𝑣r + (cx1dx1 − cx2dx2) + (cy1dy1 − cy2dy2) + (cz1dz1 − cz2dz2),

+ (gx1 − gx2)d𝑣x + (gy1 − gy2)d𝑣y + (gz1 − gz2)d𝑣z (5.40)

where

csi =
𝑣sri − Δ𝑣ri(s − si)

r2i
(s = x, y, z, i = 1, 2),

𝑣ri =
[
𝑣x
(
x − xi
)
+ 𝑣y
(
y − yi
)
+ 𝑣z
(
z − zi
)]

∕ri.

Differentiate the third expression of Equation (5.9) at the emitter point (x, y, z), which yields

xdx + ydy + zdz = RdH, (5.41)

where dH= dR, the error of the earth radius, is equivalent to the error of the emitter altitude.
Rearrange the above expressions (5.39) to (5.41) into matrix form:

Cdu = dz + Uds1 −Wds2 + Vdv, (5.42)

where

C =
⎛⎜⎜⎝
cx1 − cx2 cy1 − cy2 cz1 − cz2
gx1 − gx2 gy1 − gy2 gz1 − gz2

x y z

⎞⎟⎟⎠ ,U =
⎛⎜⎜⎝
cx1 cy1 cz1
gx1 gy1 gz1
0 0 0

⎞⎟⎟⎠ ,

W =
⎛⎜⎜⎝
cx2 cy2 cz2
gx2 gy2 gz2
0 0 0

⎞⎟⎟⎠ , V =
⎛⎜⎜⎝
gx1 − gx2 gy1 − gy2 gz1 − gz2

0 0 0
0 0 0

⎞⎟⎟⎠ ,

dz =
⎛⎜⎜⎝
dΔ𝑣r
dΔr
RdH

⎞⎟⎟⎠ , ds1 =
⎛⎜⎜⎝
dx1
dy1
dz1

⎞⎟⎟⎠ , ds2 =
⎛⎜⎜⎝
dx2
dy2
dz2

⎞⎟⎟⎠ , dv =
⎛⎜⎜⎝
d𝑣x
d𝑣y
d𝑣z

⎞⎟⎟⎠ .
When measuring the position of two satellites, measure the relative location between satel-

lites (baseline) to obtain a more accurate relative location of the satellites, that is, s2 = s1 + l,
where

[
x2 − x1 y2 − y1 z2 − z1

]T
is the vector of the satellite baseline. In this way, ds2 =

ds1 + dl can be obtained. Therefore, the above expression can be written as

Cdu = dz + (U −W)ds2 +Wdl + Vdv. (5.43)

Suppose that all errors are zero-mean and Gaussian distributed, are uncorrelated, the mea-
surement covariance matrix is Rz=E[dz dzT], the covariance matrix of the satellite location
error isRs = E[ds2dsT2 ], the covariance matrix of the satellite velocity error isR𝑣=E[dv dvT],
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Figure 5.6 The mean square error (MSE) and theoretical error when the distance between satel-
lites= 50 km, 𝜎Δt = 80 ns, and 𝜎Δfd = 10Hz. (a) GDOP of the MSE obtained through Monte Carlo simu-
lation statistics and (b) theoretic GDOP of the geolocation error

and the covariance matrix of the satellite baseline error isRl=E[dl dlT]. Then the geolocation
covariance matrix in the ECEF coordinates system will be

Pdu = E[du duT] = C−1(Rz + (U −W)Rs(U −W)T +WRlW
T + VR𝑣V

T)(C−1)T. (5.44)

The range error of geolocation is

GDOP(x, y, z) =
√
tr(Pdu) (5.45)

where tr(⋅) represents the matrix trace.

5.3.2 GDOP of the Dual LEO Satellite Geolocation Error

In the dual-satellite geolocation system, the velocity direction of the two satellites and the
direction of the line between the two satellites will form different angles at different times
(if satellites are in different orbits), and, accordingly, the geolocation accuracy distribution of
the system will be different. Next, three cases will be discussed where the angle between the
velocity direction of the satellites and their connecting line is 90∘, 0∘, and between 0∘ and 90∘,
to observe the geolocation error distribution:

I. Geolocation accuracy when the velocity direction of satellites is vertical to their connect-
ing line (suppose two satellites are in different orbits).
Suppose that the subsatellite points of satellite 1 and satellite 2 are as shown by ‘⊕1’

and ‘⊕2’ in the center of the parts of Figure 5.6. Assume that the distance between the
two satellites is 50 km, the orbital altitude of satellite is 700 km, the direction of the
satellite motion is vertical to their connecting line, and the measurements of TDOA and
FDOA are zero-mean Gaussian white noise with 𝜎Δt, 𝜎Δfd as their root mean square error
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(RMSE). Adopting the method described in Section 5.2.3 to calculate the location, using
the method of the Monte Carlo test, and supposing the test is repeated 100 times, the
theoretic geolocation error near the subsatellite point on the earth’s surface and GDOP
(geometric dilution of precision) of the RMSE can be obtained, as shown in Figure 5.6.
By comparing Figure 5.6a and b, it can be observed that the GDOP of geolocation

accuracy obtained through Monte Carlo simulation statistics is almost the same as the
theoretic GDOP, which verifies the correctness of theoretic GDOP.
In this simulation, from Figure 5.6 it can be observed that:

1. Two sides of the subsatellite track have a better geolocation effect, and the geolocation
error can be lower than 2 km even in a large area.

2. In the direction of satellite motion, the geolocation error is relatively greater, which is
consistent with the analysis in Section 5.1. The reason is that the CEP (circular error
probability) error is geometrically magnified and is tangent to the earth’s surface at this
moment.

3. There is an area with a large geolocation error both 700 km above or below the satellite
at the same latitude, because the emitter cannot be located when it is in the direction of
the line between the satellite and the subsatellite points. However, in 3D geolocation,
such an unobservable area is the area on both sides of the line connecting the two
satellites and its location is related to the altitude of satellites.
In fact, in the area both 700 km above and below the satellite at the same latitude in

Figure 5.6, the geolocation error is large, which is caused by satellite altitude and earth
curvature. GDOPs of the geolocation error will be obtained if the altitude of the satellite
is changed, as shown in Figure 5.7.
By comparing Figure 5.7a to d, it can be seen that when the satellite is at a low altitude,

the matter of 3D geolocation can be construed as the matter of 2D geolocation. The GDOP
near the subsatellite point of the satellite conforms to the above law of 2D unobservability.
However, with the increase of satellite altitude, the unobservable area in the direction of
the line between the satellite and the subsatellite points will be gradually divided into
two parts. Therefore, the two unobservable areas with the same latitude in Figure 5.6 are
caused by the satellite altitude and the earth’s surface.

II. Geolocation accuracy and observability when the velocity direction of satellites and their
connecting line are the same (in the same orbit). If the direction of satellite motion is
changed to be in the same direction as the connecting line, the theoretic GDOP in Section
5.3.1 can be obtained, as shown in Figure 5.8.
From Figure 5.8 the following can be noted:

1. Two sides of the satellite orbit have better geolocation accuracy, and the geolocation
error can be lower than 5 km, even in a large area.

2. The geolocation error in the direction of satellite motion is great, which is the same as
shown in Figure 5.6.

3. There is no area with as great a geolocation error, both 1000 km above or below the
satellite, as the result shown in Figure 5.6.
In fact, if the two satellites run in the same orbit, the direction of satellite motion can

always be maintained to be the same as the line between the satellites, even though the
time when they arrive at perigee is a little different. In this way, the unobservable area in
the same latitude in Figure 5.6 can be eliminated.
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Figure 5.7 GDOP when the distance between satellites= 50 km, 𝜎Δt = 80 ns, and 𝜎Δfd = 10Hz. (a)
H= 50 km, (b) H= 100 km, (c) H= 300 km, and (d) H= 600 km
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Figure 5.8 GDOP when the distance between satellites= 50 km, 𝜎Δt = 80 ns, and 𝜎Δfd = 10Hz
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III. Geolocation accuracy and observability when the velocity direction of the satellite is nei-
ther the same as nor vertical to their connecting line. If the direction of satellite motion
is neither vertical to nor the same as the connection line, and supposing that there is a
certain angle 𝜃 instead between them, theoretic GDOPs under different 𝜃 can be obtained,
as shown in Figure 5.9.
By comparing Figures 5.6b, 5.8, and 5.9a to c, the influence of the satellite motion direc-

tion change on the GDOP distribution can be observed. If the direction of satellite motion
is different from the line between the satellites, the unobservable geolocation area is nei-
ther in the direction of satellite motion nor in the direction of the line between the satellites.
Summarizing the analysis of this section, the following conclusions can be obtained:

1. When the velocity direction of the satellite is vertical to the line between the satellites,
the observability in the area of velocity direction of the satellite is worse. In addition,
with the change of satellite altitude, there exists an unobservable strip area at a certain
distance from and parallel to the lines between the subsatellite points. Such strip areas
represent longitudinal symmetry. However, for the area in the middle of such strip
areas, geolocation accuracy is good.
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Figure 5.9 GDOP when the distance between satellites= 50 km, 𝜎Δt = 80 ns, and 𝜎Δfd = 10Hz.
(a) 𝜃 = 22.5∘, (b) 𝜃 = 45∘, and (c) 𝜃 = 67.5∘
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2. When the velocity direction of the satellite is the same as the line between the satellites,
the observability in the velocity direction of the satellite (also the direction of the line
between the satellites) is poor. The geolocation accuracy in the large area on both sides
of the line between the satellites is good.

3. When the velocity direction of the satellite is neither vertical to nor the same as the line
between the satellites, the area with a large geolocation error (i.e., poor observability)
is expanded in the form of a strip in the middle of the satellite, and is not in the direction
of satellite motion nor the line between the satellites.

From the above conclusions, we prefer to select the case when two satellites run in the
same orbit, so the same orbit distribution should be adopted as much as possible for dual
LEO satellites TDOA–FDOA geolocation. Next, we will analyze the relationship between
the geolocation distribution of satellites running in the same orbit and the parameter accuracy.
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Figure 5.10 GDOP when the distance between satellites= 50 km, 𝜎Δt = 80 ns, and 𝜎Δfd = 10Hz.
(a) H= 1000 km and (b) H= 300 km

–1500
–1500

1500

1500

–1000

–1000

1000

1000

–500

–500

500

500

0

0

Y
(k

m
)

X(km)

(a)

–1500
–1500

1500

1500

–1000

–1000

1000

1000

–500

–500

500

500

0

0

Y
(k

m
)

X(km)

(b)

Figure 5.11 GDOP when 𝜎Δt = 80 ns, 𝜎Δfd = 10Hz, 𝛿l= 50m, 𝛿x= 150m, 𝛿𝑣= 1m/s, and 𝛿H = 10m.
(a) Distance between satellites= 200 km and (b) distance between satellites= 50 km
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5.3.3 Analysis of Various Factors Influencing GDOP

When two satellites run in the same orbit, the velocity direction of the satellite is consistent with
the direction of the line between the satellites. The following is an analysis of the influence
of error factors on the geolocation error under typical scenarios. Such factors are satellite
altitude, distance between satellites, TDOA measurement error, FDOA measurement error,
velocity measurement error, altitude assumption error, measurement error of distance between
satellites, and so on.

1. Influence of satellite altitude on geolocation accuracy
When two satellites run in the same orbit, the direction of satellite motion can be main-

tained the same as the direction of the lines between them, even though the time when they
arrive at the perigee is a little different.
Set the distance between satellites as 50 km, the TDOA measurement error RMS (root

mean square) 𝜎Δt = 80 ns, and the FDOA measurement error RMS 𝜎Δfd = 10Hz. What is
shown in Figure 5.8 is the simulation accuracy and theoretical accuracy localized at a satel-
lite altitude of 700 km.
The GDOPs localized when the satellite altitude is changed to 1000 and 300 km are

shown in Figure 5.10. In Figure 5.10a and b, for the geometric distribution of geoloca-
tion accuracy, the results are based on a theoretical calculation because the empirical error
by statistical calculation is the same. By comparing Figure 5.8 with Figure 5.10a and b, the
geolocation accuracy improves when the orbital altitude is decreasing.

2. Influence of distance between satellites on geolocation accuracy
For two satellites run in the same orbit at an altitude of 700 km, if the influence of such

factors as the measurement error of satellite velocity 𝛿𝑣, the ground altitude error 𝛿H, the
measurement error of the satellite relative to position 𝛿l, and the measurement error of the
primary satellite location 𝛿x are taken into consideration, theoretic GDOPs as shown in
Figure 5.11 will be calculated when the distances between the satellites are respectively
200 and 50 km and other conditions are the same as simulation 1.
By comparing and analyzing Figure 5.11a and b, increasing the distance between the

satellites will effectively improve the geolocation accuracy.
3. Influence of TDOA measurement error on geolocation accuracy

When the satellite altitude is 700 km, the distance between the satellites is 50 km, the
TDOA measurement error is changed to 40 and 200 ns, respectively, and other conditions
are the same as simulation 1, the GDOPs shown in Figure 5.12 will be obtained.
By comparing and analyzing Figure 5.12, the GDOPs under different TDOA measure-

ment accuracy are almost the same, which indicates that if the TDOA measurement error
is less than 200 ns, its influence on the satellite geolocation error will be very small if
𝜎Δfd = 10Hz in this case.

4. Influence of FDOA measurement error on geolocation accuracy
When the satellite altitude is 1000 km, the distance between the satellites is 100 km, the

FDOA measurement accuracy is changed into 1, 5, and 100Hz, respectively, and other
conditions are the same as simulation 1, the GDOPs shown in Figure 5.13 will be obtained.
By comparing and analyzing Figure 5.13a to c, the GDOPs under different FDOA

measurement accuracy are quite different, which indicates that when 𝜎Δt = 80 ns, the
influence of the FDOA measurement error on the satellite geolocation error is great.
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Therefore, the key point in dual-satellite TDOA–FDOA geolocation is to improve the
FDOA measurement accuracy.

5. Influence of satellite velocity measurement error on geolocation accuracy
When the satellite altitude is 700 km, the distance between the satellites is 50 km, and

other conditions are the same as simulation 1, the GDOPs are as shown in Figure 5.14,
when the satellite velocity measurement error is changed to 0.1 and 10m/s, respectively.
From Figure 5.14 we know that the satellite velocity measurement error has some influ-

ence on the geolocation error. When the velocity error is up to 𝛿𝑣= 10m/s, the geolocation
accuracy decreases to some extent.

6. Influence of altitude error on geolocation accuracy
When the satellite altitude is 700 km, the distance between the satellites is 50 km, and

other conditions are the same as simulation 1, the GDOPswhen the emitter altitude assump-
tion errors are 100 and 1000m, respectively, shown in Figure 5.15 will be observed.
From Figure 5.15 we know that if the altitude assumption error is less than 1000m, its

influence on the geolocation error is small.

From the above analysis, we know that the error of dual LEO satellite geolocation is inversely
proportional to the satellite altitude and the distance between satellites, and is directly pro-
portional to the TDOA and FDOA error. The FDOA error affects satellite geolocation error
most. Therefore, the key point of dual-satellite TDOA–FDOA geolocation is to improve the
measurement accuracy of the FDOA.

5.4 Dual HEO Satellite TDOA–FDOA Geolocation

5.4.1 Dual Geosynchronous Orbit Satellites TDOA–FDOA Geolocation

Two satellites running in the geosynchronous orbit can also be used to realize TDOA–FDOA
geolocation. Its typical application is to localize the jammer for the satellite broadcasting sys-
tem. Two satellites used for dual HEO satellite geolocation are generally two geosynchronous
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Figure 5.12 GDOP when the distance between satellites= 50 km, 𝜎Δfd = 10Hz, 𝛿l= 50m, 𝛿x= 150m,
𝛿𝑣= 1m/s, and 𝛿H = 10m. (a) 𝜎Δt = 40 ns and (b) 𝜎Δt = 200 ns
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Figure 5.13 GDOP when the distance between satellites= 50 km, 𝜎Δt = 80 ns, 𝛿l= 50m, 𝛿x= 150m,
𝛿𝑣= 1m/s, and 𝛿H = 10m. (a) 𝜎Δfd = 1Hz, (b) 𝜎Δfd = 5Hz, and (c) 𝜎Δfd = 100Hz

or geostationary satellites close to each other. One is the primary satellite and the other one is
the auxiliary satellite, which locates at the adjacent position and assists in geolocation. Nor-
mally, the main lobe of the beam of emitters (such as the user of a satellite communication
system) aims at the primary satellite, and some side lobes of the emitter will point to the
adjacent satellite (the auxiliary satellite) due to the wide beam-width antenna feature of the
emitter. The two satellites will down-convert the uplink signals received and retransmit them
to the ground station. The ground station within the coverage of the satellites may receive such
signals, as shown in Figure 5.16.
Because the main lobe and side lobe of the same source signal differ only in power level

and the propagation path of signals after being retransmitted by the two satellites is different,
TDOA between the signals is generated. TDOA can be obtained by correlation of two received
signals from the same source. For the location of two confirmed satellites, a hyperboloid rev-
olution can be determined by TDOA with the locations of two satellites as its focus.
A synchronous satellite orbit is affected by the perturbation caused by the asymmetry of the

earth’s gravitational field, the gravitational field of the sun/moon, sunlight pressure, and so on,
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Figure 5.14 GDOP when the distance between satellites= 50 km, 𝜎Δt = 80 ns, 𝜎Δfd = 10Hz, 𝛿l= 50m,
𝛿x= 150m, and 𝛿H = 10m. (a) 𝛿𝑣= 0.1m/s and (b) 𝛿𝑣= 10m/s
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Figure 5.15 GDOP when the distance between satellites= 50 km, 𝜎Δt = 80 ns, 𝜎Δfd = 10Hz, 𝛿l= 50m,
𝛿x= 150m, and 𝛿𝑣= 1m/s. (a) 𝛿H = 100m and (b) 𝛿H = 1000m

so the inclination i and eccentricity e of the actual geosynchronous orbit cannot absolutely be
zero, but vary regularly around a small value.
The perturbation of two satellites is different, which makes the radial velocity component

of two satellites relative to the transmitting station on earth different most of the time. Thus,
different Doppler shifts are caused on the main lobe and side lobe signals of the emitter and
retransmitted signals by satellites. The doppler shift will be retransmitted along with the sig-
nals and little FDOA will be embodied in the frequency of two signals received by the ground
station. An equal-FDOA surface can be determined in 3D space according to FDOA and
the location of the emitter can be determined according to an equal-FDOA surface and an
equal-TDOA surface [6, 7].
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Figure 5.16 Diagram of the principle of HEO dual-satellite TDOA–FDOA geolocation

Because the radial component of satellite velocity is different and the velocity component
varies with the variation of satellite perturbation, the FDOA line varies continuously all day
during a period of 12 hours. In the actual geolocation system, if the geolocation error is within
100 km, the accuracy of the FDOA estimation must be at the level of about 10mHz. Because
the frequency resolution is determined by data length, difference of channel features, and local
oscillator (LO) drift of the satellite transmitter, the influence on the estimation of FDOA,makes
the level of accuracy difficult to reach in actual estimations of FDOA. In addition, inaccuracy of
the satellite ephemeris directly increases the geolocation error. In order to reduce these geolo-
cation errors, a special calibration process must be adopted before TDOA–FDOA geolocation
takes place.

5.4.2 Calibration Method Based on Reference Sources

The propagation error of the satellite signal, the satellite ephemeris error, and the error caused
by satellite-borne equipment will greatly affect the geolocation error. The propagation error
and the delay of satellite-borne equipment will influence TDOA of signals. Error caused by
LO drift of a satellite transmitter will directly affect the measurement of FDOA. Error of a
satellite location will directly affect the TDOA and error of satellite velocity will directly affect
the FDOA of signals. In order to decrease the influences of such errors, reference [6] suggests
using the auxiliary method of the reference signal to localize.
Suppose a signal that is applicable to the corresponding frequency band and polarization

of the two satellites can be received when receiving signals from the emitter. The propaga-
tion path after they enter the receiving antenna of the satellite is the same, so satellite delay,
error of the transmitter, and the LO frequency error can mostly be eliminated. In addition,
the reference signal is transmitted from a known location, which correlates the geolocation of
the emitter with the location of the reference signal. Therefore, the influence of the error of the
satellite location and velocity is decreased. The reference signal can also be used to improve
geolocation accuracy as well as improving the accuracy of parameter estimation.
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Figure 5.17 Sketch of the geolocation method based on the reference station

As shown in Figure 5.17, suppose r, r0, and rm are the vectors of the emitter, the reference
station and the ground station in the ECEF coordinates system, respectively, c is the velocity
of light, f r and f u are the frequency of reference signal and emitter signal, l21(r) = |lu2 − lu1| and
l21(r0) = |lr2 − lr1| are the range differences of reference signals to two satellites, 𝑣1(r), 𝑣2(r),
and 𝑣1(r0), 𝑣2(r0) are the components of the velocity vectors v1 and v2 of two satellites in the
radial directions of the emitter and reference station, and 𝑣1(rm) and 𝑣2(rm) are the components
of the velocity vectors v1 and v2 of two satellites in the radial directions of ground station:

𝑣1
(
rm
)
= vT1 ⋅ u1(rm)

𝑣2(rm) = vT2 ⋅ u2(rm)

}
, (5.46)

where u1(rm) and u2(rm) are the unit vectors of LOS between the primary/auxiliary satellite
and the ground station, respectively:

u1
(
rm
)
=

lr
1|lr
1
|

u2(rm) =
lr
2|lr
2
|
⎫⎪⎬⎪⎭ . (5.47)

According to the geometric relationship described in Figure 5.17, TDOAs of the emitter
signal and the reference signal can be obtained as

TDOAu =
1
c

(
lu2 + l2 − lu1 − l1

)
TDOAr =

1
c
(lr2 + l2 − lr1 − l1)

}
. (5.48)

Perform the subtraction between TDOA of the emitter signal and TDOA of the reference sig-
nal, which yields

TDOAu − TDOAr =
1
c
(lu2 + l2 − lu1 − l1) −

1
c
(lr2 + l2 − lr1 − l1)

= 1
c
(lu2 − lu1) −

1
c
(lr2 − lr1)
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= 1
c
[l21(r) − l21(r0)]. (5.49)

FDOAs of the emitter signal and reference signal are

FDOAr =
f r

c
𝑣1
(
r0
)
+ (f r−fT)

c
𝑣1(rm) −

f r

c
𝑣2(r0) −

(f r−fT)
c

𝑣2(rm)

FDOAu =
f u

c
𝑣1 (r) +

(f u−fT)
c

𝑣1(rm) −
f u

c
𝑣2(r) −

(f u−fT)
c

𝑣2(rm)

⎫⎪⎬⎪⎭ , (5.50)

where f T is the local retransmitting frequency of the transceiver of the HEO satellite. Per-
form the subtraction between FDOA of the emitter signal and FDOA of the reference signal,
which yields

FDOAu − FDOAr =
f u

c
𝑣1(r) −

f r

c
𝑣1(r0) −

f u

c
𝑣2(r) +

f r

c
𝑣2(r0) −

f u − f r

c
[𝑣2(rm) − 𝑣2(rm)]

= −
f u

c
[𝑣2(r) − 𝑣1(r)] +

f u

c
[𝑣2(r0) − 𝑣1(r0)] −

f u − f r

c
[𝑣2(r0) − 𝑣1(r0)]

−
f u − f r

c
[𝑣2(rm) − 𝑣2(rm)]. (5.51)

Let 𝑣21(r) and 𝑣21(r0) be the components of the satellite velocity vector difference in the radial
direction of the transmitting station and the reference station, that is,

𝑣21 (r) = 𝑣2(r) − 𝑣1(r)
𝑣21(r0) = 𝑣2(r0) − 𝑣1(r0)
𝑣21(rm) = 𝑣2(rm) − 𝑣1(rm)

⎫⎪⎬⎪⎭ . (5.52)

The above expressions can be simplified as

FDOAu − FDOAr = −
f u

c
[𝑣21(r) − 𝑣21(r0)] −

f u − f r

c
[𝑣21(r0) + 𝑣21(rm)]. (5.53)

Combine with the earth’s surface expression and suppose that the earth’s surface is a regular
spherical surface: |r| = R, (5.54)

where R is the radius of the earth. Combine expressions (5.49), (5.53), and (5.54), and then
solve to obtain the geolocation solution.
Because the TDOA expression and the FDOA expression are nonlinear functions of the emit-

ter position, and it is difficult to obtain an effective analytic solution, the Taylor series method
[8] can be used. Perform Taylor’s expansion of l21(r) and 𝑣21(r) in geolocation expressions at
the reference station r0. Then, the following will be obtained:

l21 (r) = l21(r0) + (r − r0)T∇l21(r0) + HOT

𝑣21(r) = 𝑣21(r0) + (r − r0)T∇𝑣21(r0) + HOT

}
.

Omit the higher order terms (HOTs) and substitution into the geolocation expression yields

rT∇l21(r0) = R ||∇l21(r0)|| cos𝛾 ≈ ΔKl
21(r, r0) + rT0∇l21(r0)

rT∇𝑣21(r0) = R|∇𝑣21(r0)|sin𝛿 ≈ ΔK𝑣21(r, r0) + rT0∇𝑣21(r0)

}
, (5.55)
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where 𝛾 is the included angle between the vector ∇l21(r0) and the emitter position vector r,
𝛿 is the included angle between the vector ∇𝑣21(r0) and the emitter position vector r, ∇ =[
𝜕∕𝜕x 𝜕∕𝜕y 𝜕∕𝜕z

]
is the derivative vector of measurement, and:

ΔKl
21(r, r0) = l21(r) − l21(r0) = c[TDOAu − TDOAr],

ΔKl
21(r, r0) = 𝑣21(r) − 𝑣21(r0) = − c

f u
[FDOAu − FDOAr] −

f u − f r

c
[𝑣21(r0) + 𝑣21(rm)].

By analyzing expression (5.55) we know that the values of the items on both sides of the
expression depend on the measured values of TDOA and FDOA, the location and velocity
of the primary satellite and the auxiliary satellite, the location of the reference station and
the ground station, and that these conditions and data can be measured. The gradient vector
on the left side of the geolocation expressions also depends on the location and velocity of
the primary satellite and the auxiliary satellite as well as the location of the reference station.
Therefore, in the geolocation equations, only the angle of 𝛾 and 𝛿 are unknown and can to
be solved according to expression (5.55). Suppose the earth is a regular spheroid; establish
a coordinate system with the auxiliary satellite as the center and the two orthogonal vectors
∇l21(r0) and ∇𝑣21(r0) as the x and y axes. Use the radials forming the two angles of 𝛾 and 𝛿 to
intersect the spherical surface of the earth and then use the method described in Section 3.2 to
determine the vector r of the target emitter on ECEF coordinates, so as to determine the true
location of the emitter according to the earth’s surface.
The extended linearization solution of the above equations is based on the Taylor expanding

method. The precondition for such a solution is that r is located within the adjacent area of
r0, so that HOTs can be omitted without causing great error. If the coordinates of the target
transmitting station is not known, it is difficult to find a reference station that is close to the
true emitter. Thus, errors are introduced during the actual extended linearization solution of
the equations. In order to decrease such errors, the iteration method can be used to improve
geolocation accuracy.
Firstly, use the vector r0 of the initial location of the reference station to solve expression

(5.55) in order to obtain the geolocation solution r1. Then substitute r1 for r0 as the reference
station for the new solution and equations will then become

rT∇l21
(
r1
)
= R|∇l21(r0)| cos 𝛾 ≈ ΔKl

21(r, r1) + rT1∇l21(r1)
rT∇𝑣21(r1) = R|∇𝑣21(r1)| sin 𝛿 ≈ ΔK𝑣21(r, r1) + rT1∇𝑣21(r1)

}
,

where ΔKl
21(r, r1) and ΔK𝑣21(r, r1) are iterated according to the following expression:

ΔKl
21

(
r, r1
)
= ΔKl

21(r, r0) − [l21(r1) − l21(r0)]
ΔK𝑣21(r, r1) = ΔK𝑣21(r, r0) − [𝑣21(r1) − 𝑣21(r0)]

}
.

Solve these equations again to obtain a new geolocation solution r2, which can be used as
the reference station of the new round of solutions. With the continuous renewal of locations of
such equivalent reference stations, the geolocation calculation enters into an iterative process.
In general, the reference station is not close to the emitter, so the solution of expressions will be
much closer to the true location of the emitter than the reference station. When the equivalent
reference station is gradually close to the true emitter, the fluctuation of the geolocation error
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becomes smaller. Therefore, iterative times can be set to end such iterations or the difference
between two geolocations can be set as the converged condition of stopping iteration:

|rj − ri| < 𝜀.
Tests show that when parametric errors in equations are small, the convergence of such iterative
processes is good. Generally a geolocation accuracy of dozens of kilometers can be achieved
through three to five iterations.

5.4.3 Calibration Method Using Multiple Reference Sources

In the previous analysis, the error of satellite ephemeris is not taken into consideration or the
influences caused by satellite ephemeris are considered to have been omitted. However, in
the actual geolocation process, this assumption cannot hold. For example, for a signal in the
Ku-band of 14GHz, if the velocity error of satellite motion is 0.02mm/s, a 1mHz Doppler
frequency error will be caused and the resulting geolocation error will be 1 km. The actual
radial velocity error of the satellite can be up to 0.2m/s, which will cause a geolocation error
of thousands of kilometers, so a proper handling method must be adopted.
Therefore, reference [6] suggests taking the measurement results of multiple reference sta-

tions as references and calibrating the ephemeris error to achieve a better effect.

5.4.3.1 Theory of Multiple Reference Stations Calibration Geolocation

In order to analyze and derive the calibration method using a multiple reference station, let us
start with the analysis of the following system of geolocation expressions:

c
[
TDOAu − TDOAr

]
= l21(r) − l21(r0)

−c
f u
[FDOAu − FDOAr] = 𝜈21(r) − 𝜈21(r0) +

f u−f r

f u
[𝜈21(r0) + 𝜈21(rm)]

}
. (5.56)

Firstly, consider the influence of the satellite velocity error on geolocation. Because 𝜈21(r) =
v2 ⋅ u2(r) − v1 ⋅ u1(r), the above FDOA expression can be rewritten as

−c
f u

[FDOAu − FDOAr] = 𝜈21(r) −
f r

f u
𝜈21(r0) +

f u − f r

f u
𝜈21(rm)

= v2 ⋅ u2(r) − v1 ⋅ u1(r) −
f r

f u
[v2 ⋅ u2(r0) − v1 ⋅ u1(r0)].

+
f u − f r

f u
[v2 ⋅ u2(rm) − v1 ⋅ u1(rm)] (5.57)

Fundamentally, FDOA caused by satellite velocity is the effect on the corresponding radial
component generated by it only, and this effect is a scalar. In other words, if the quantity
equivalent to the scalar can be determined, it can be used for the final geolocation, while the
accurate velocities of two satellites are not required to be determined. Because FDOA is caused
by the relative velocity between two satellites, if the accurate velocity of two satellites is v1 and
v2, the same FDOA effect can be generated by using satellite velocity v′1 and v

′
2 with error and
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a velocity increment Δv between the two satellite velocities, that is, the following expression
will be obtained according to the FDOA expression (5.56):

v2 ⋅ u2(r) − v1 ⋅ u1(r) −
f r

f u
[v2 ⋅ u2(r0) − v1 ⋅ u1(r0)]

+
f u − f r

f u
[v2 ⋅ u2(rm) − v1 ⋅ u1(rm)]

= (v′2 + Δv) ⋅ u2(r) − v′1 ⋅ u1(r) −
f r

f u
[(v2′ + Δv) ⋅ u2(r0) − v′1 ⋅ u1(r0)].

+
f u − f r

f u
[(v2′ + Δv) ⋅ u2(rm) − v′1 ⋅ u1(rm)] (5.58)

Because Δv is a vector in 3D space with three unknowns, it can certainly be applicable
to expression (5.58) for at least the following system of expressions has positive definite
solutions:

v2 ⋅ u2 (r) − v1 ⋅ u1(r) = (v′2+𝚫v) ⋅ u2(r) − v′1 ⋅ u𝟏(r)
v2 ⋅ u2(r0) − v1 ⋅ u1(r0) = (v′2+𝚫v) ⋅ u2(r0) − v′1 ⋅ u𝟏(r0)
v2 ⋅ u2(rm) − v1 ⋅ u1(rm) = (v′2+𝚫v) ⋅ u2(rm) − v′1 ⋅ u𝟏(rm)

⎫⎪⎬⎪⎭ . (5.59)

In fact, solution of expression (5.59) is only required to satisfy the special cases of conditional
infinite Δv, because expression (5.58) is a scalar expression. Only the comprehensive scalars
of the expression are required to be equal, while three subitems are not required to be equal.
Accurate velocity is not required for the right side of expression (5.58), so in the actual analysis,
ephemeris with error can be obtained by directly using ephemeris forecast or via other means.
From expression (5.58) we know that despite the influence on r (the radial direction of the

emitter), the velocity increment Δv also has an influence on r0 (the radial direction of the ref-
erence station). Because the position of the reference station is accurate and known, if the
equivalent Δv is reversely analyzed by using the geolocation bias of the reference station
caused by several Δv, such influences can be eliminated by localizing the emitter. This is
the method for ephemeris calibration using a multiple reference station.

5.4.3.2 Four-Station Calibration Method

In order to determine the soleΔv to correct the influence of the satellite velocities v′1 and v
′
𝟐 on

geolocation, supposing there are M reference stations, which is similar to expression (5.58),
we can obtain M systems of expressions [6]:

c
[
TDOAu − TDOAri

]
= l21 (r) − l21

(
ri
)

(i = 1, … ,M)

−c
f u

[
FDOAu − FDOAri

]
=
(
v′2 + Δv

)
⋅ u2 (r) − v′1 ⋅ u1(r)

−
f ri

f u
[(
v′2 + Δv

)
⋅ u2
(
ri
)
− v′1 ⋅ u1

(
ri
)]

+
f u − f ri

f u
[(
v′2 + Δv

)
⋅ u2
(
rm
)
− v′1 ⋅ u1

(
rm
)]

|r| = R

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

. (5.60)
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In expression (5.60), onlyΔv and the emitter r are unknown.Δvwill not exceed the possible
maximum value of perturbation velocity, that is, Δv varies only in a certain velocity range
because the range of satellite perturbation is relatively fixed. If a value of Δv is taken from
this range, the system of expression (5.60) can be solved to obtain r(Δv, ri). If the value of Δv
cannot correct the influence of satellite velocity v′𝟏 and v

′
𝟐 on geolocation, r(Δv, ri)will deviate

from the true emitter location r. If the value of Δv can be adjusted so that it can correct the
influence of the satellite velocities v′𝟏 and v

′
𝟐 with error on geolocation, r(Δv, ri) is the emitter

location r. Thus, accurate geolocation is achieved.
Certainly, r(Δv, ri) − r can be used to perform theoretic analysis, but in reality the emitter

location r is unknown and cannot be used for the determination of Δv. Therefore, other mea-
surement factors must be used. For each reference station, a solution can be obtained by solving
expression (5.60), and such solutions are relatively accurate and close to the true emitter loca-
tion r. Therefore, whether the selected value of Δv is optimal can be judged by the degree of
concentration of such solutions [6]. The simple function reflecting the degree of concentration
is the sum of the Euclidean distance between two solutions, that is,

J =
M∑
i=1

M∑
j=1,j≠i
|r(Δv, ri) − r(Δv, rj)|. (5.61)

As Δv is a 3D vector, the process of adjusting its value in fact is to minimize the error of
the 3D cost function,M ≥ 4. Figure 5.18 is the sketch of the four-reference station ephemeris
calibration.
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Figure 5.18 Sketch of four-reference station ephemeris calibration
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In the above ephemeris calibration process, only when the TDOA–FDOA parameter, the
carrier frequency of the reference signal and the emitter signal, and the coordinates of the
receiving station and the reference station have no error, can optimal results be achieved for
the whole process, but in actual application that is not possible. The error of such factors makes
unpredictable local minima exist in the process of iterative search. If the ideal iterative process
is compared to a process continuously heading to the ‘bowl bottom’ representing the minimum
error, the aforesaid error will bring about more bumpy ‘traps’ of the ‘bowl’ rather than making
it smoothly slide downwards. The local minima will not generate effective results from the
iterative searching process for determining actual Δv, but will cause incorrect calibration.
Generally speaking, more samples can be provided by adding the number of reference

stations. However, adding samples alone can only decrease the probability of local minima,
but cannot essentially eliminate such influences. Thus, the direct criterion for judging local
optimum and global optimum cannot be provided; in other words, the cost function can only
provide a local optimal result instead of a global optimal result, as shown in the following
expression:

J =
M∑
i=1

M∑
j=1,j≠i
|r(Δv, ri) − r(Δv, rj)|

=
M∑
i=1

M∑
j=1,j≠i
|[r(Δv, ri) − r] − [r(Δv, rj) − r]| ≠ M∑

i=1
|r(Δv, ri) − r|. (5.62)

5.4.3.3 Five-Station Calibration Geolocation Algorithm

In expressions (5.56) to (5.61), what we considered was using reference stations to complete
ephemeris calibration and the unknown location of the emitter. If five reference sources are
provided, we can separate the two parts of the work. Firstly, only ephemeris calibration is
considered. Substitute a reference station with a known location for the original emitter, adjust
Δv and compare with the location of the reference station, and provide a direct judge criterion
of the local optimum and global optimum, in order to complete the ephemeris calibration.
Finally, use this ephemeris value to complete geolocation, so as to obtain improved geolocation
accuracy [6].
After substituting the reference station r0 for the unknown emitter, the system of geolocation

expressions is turned to become

c
[
TDOAr0

− TDOAri

]
= l21(r0) − l21(ri) (i = 1, … ,M)

−c
f r0

[FDOAr0
− FDOAri

] = (v′2 + Δv) ⋅ u2(r0) − v′1 ⋅ u1(r0)

−
f ri

f r0
[(v′2 + Δv) ⋅ u2(ri) − v′1 ⋅ u1(ri)]

+
f r0 − f ri

f r0
[(v′2 + Δv) ⋅ u2(rm) − v′1 ⋅ u1(rm)]

|r0| = R

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

. (5.63)
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Solve the above system of geolocation expressions to obtain the geolocation solution r(Δv, ri)
of reference station r0. Generally, there is a certain degree of error between the geolocation
solution r(Δv, ri) and the true location due to the influence of the parameter estimation error.
Now we can directly define the error as 𝜀 = r(Δv, ri) − r0, in order to realizecalibration pro-
cessing by defining the following cost function:

J =
M∑
i=1
|𝜀| = M∑

i=1
|r(Δv, ri) − r0|. (5.64)

Certainly, when defining the cost function, |𝜀|2 can be used as the measurement of error, which
is equivalent to expression (5.64). No matter what kind of error is adopted, remember that in
iterative processing the emitter to be localized is on the earth’s surface. Therefore, it is least
squares (LS) processing with a spherical constraint condition. If this fact is ignored, unneces-
sary error will be caused. Compared with Figure 5.18, Figure 5.19 is a sketch of the ephemeris
calibration by five known reference stations (including r0).
Compared with the ephemeris calibration method, which directly localizes the emitter

(Section 5.4.3.2), accurate coordinates of r0 can ensure that an iterative search will not be
caught in local optimization, accuracy of f r0 is known, and its error is smaller than that of f u

obtained through measurement. In addition, even though M + 1 reference stations are used
in Figure 5.19, the locating point r0(Δv, ri) is not used to establish the cost function; in fact
only M reference stations are needed. Any one of these reference stations can be used as the
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Figure 5.19 Sketch of five-station ephemeris calibration
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reference station of the emitter, to provide a calibration result. Thus, the fusion of several
results can be performed and better geolocation accuracy can be obtained [6].
Use the similar analytical method to calibrate the error of satellite location. Because l21(r) =|r2 − r| − |r1 − r|, the TDOA expression of (5.56) can be turned into

c[TDOAu − TDOAr] = |r2 − r| − |r1 − r| − (|r2 − r0| − |r1 − r0|)
= |r′2 + Δrs − r| − |r′1 − r| − (|r′2 + Δrs − r| − |r′1 − r0|). (5.65)

This includes the satellite locations, r′1 and r′2, with error includinging a location increment
Δrs, which can also be applicable to the TDOA geolocation expression as the true satellite
locations, r𝟏 and r2. In order to calibrate the influence of ephemeris and avoid the location
optimization indicated in expression (5.62), we directly use M + 1 reference stations to form
the following expressions:

c
[
TDOAu − TDOAri

]
= |r′2 + Δrs − r0| − |r′1 − r0| − (|r′2 + Δrs − ri| − |r′1 − ri|)

−c
f u

[FDOAu − FDOAri ] = 𝜈21(r0) −
f ri

f r0
𝜈21(ri) +

f r0 − f ri

f r0
𝜈21(rm) (i = 1, … ,M)

|r0| = R

⎫⎪⎪⎬⎪⎪⎭
.

(5.66)

Supposing the solution of above expressions is r0(Δrs, ri), we still need at least three samples
for the proper location increment Δrs, which is found by iterative search, that is, whenM ≥ 4,
the cost function can be established:

J =
M∑
i=1
|𝜀| = M∑

i=1
|r0(Δrs, ri) − r0|. (5.67)

We can know that the conditions required by calibration of the satellite position error are
completely the same as those required by calibration of the satellite velocity error, and there
is no contradiction between them. Thus, the same condition of the reference station can be
used to realize the complete calibration of the satellite’s ephemeris. When calibrating one, the
other one is supposed to be correct. Therefore, the satellite velocity is usually calibrated first,
followed by the satellite location. There remains an error due to the small influence between
them. In order to obtain a better calibration result, one way is to add a reference station to
increase redundancy for fusion processing; the other way is to continuously calibrating one
satellite perturbation period in the time domain and perform time domain fusion to obtain a
complete ephemeris calibration function.

5.4.4 Flow of Calibration and Geolocation

By summarizing the above ephemeris calibration method, the following steps can be
adopted [6]:

1. Select a sufficient number of reference stations, at least four usually, and then acquire sig-
nals and estimating parameters. The selection principle of reference station is as follows.

2. Estimate the TDOA–FDOA parameter of all signals.
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3. Use expression (5.64) to calibrate the satellite velocity error.
4. Use expression (5.67) to calibrate the satellite position.
5. Perform the necessary calibration fusion or form a calibration function.
6. Carry out the final emitter geolocation.

According to the derivation of the ephemeris calibration method, we know that reference
stations must be properly selected in order to realize effective calibration.

1. In order to achieve a good ephemeris calibration result, especially in order to overcome the
error influence on the satellite ephemeris, at least five reference stations must be selected
so that redundant information can assist in improving calibration accuracy.

2. When using multiple reference stations for ephemeris calibration, how to find roots in 2D
space is involved and an ill-conditioned coefficient matrix should be avoided to some extent.
For selection of the reference station, it is better to select spatial separated stations rather
than two stations in the same place.

3. The optimal case is for reference stations to be distributed around the emitter area, and
on that basis the less distribution area there is for these reference stations the better the
geolocation accuracy will be. Such a case is for all the reference stations to around the
emitter, which is favorable for reducing measurement error.

4. Selecting a reference station close to the emitter for ephemeris calibration is favorable for
improving calibration accuracy, because it helps to correct the channel difference of the
uplink path of signals. In practice, it is feasible to loosely localize the area of the emitter
and then select proper reference stations according to the general area.

We can use the above method to calibrate the ephemeris error of satellites. The satellite
ephemeris after calibration can be used for geolocation and it will obviously improve system
accuracy. In the actual geolocation, requirement for satellite location accuracy is not very high,
but the requirement for relative velocity accuracy of the satellite is high. Thus, the FDOA
expression can be used alone to correct satellite velocity. A good improvement effect can be
achieved after fitting the FDOA data obtained at different times and reducing the error caused
in parameter estimation.

5.5 Method of Measuring TDOA and FDOA

5.5.1 The Cross-Ambiguity Function

In order to estimate and obtain the accurate TDOA and FDOA between two signals, Stein [9]
proposed a method based on the cross-ambiguity function (CAF) for a TDOA–FDOA joint
estimation. Under the condition of a high SNR (signal-to-noise ratio) (when the SNR of the
input signal is higher than 10 dB), the joint estimation of the time delay and frequency shift
based on the CAF is effective, unbiased, and close to the CRLB (Cramér–Rao lower bound).
For any signal r1(t) and r2(t), the CAF denoted as A(𝜏, 𝜈) can be defined as [9]

CAF(𝜏, 𝜈) =
∫

T

0
r1(t)r∗2(t + 𝜏)e

−j2𝜋𝜈t dt. (5.68)
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Figure 5.20 Cross-ambiguity function for the BPSK modulated signal

In dual-satellite geolocation, the noise in r1(t) and r2(t) are not correlated while the signal
in r1(t) and r2(t) are correlated because they are from the same emitter. If the same signal is
received by the receivers of two satellites, when TDOA and FDOA of signal r1(t) and signal
r2(t), respectively, are equal to 𝜏 and 𝑣 after the time-domain accumulation for a period of T ,
the peak value will appear on the surface form by the 2D matrix of CAF(𝜏, 𝜈). For example,
if the symbol rate of a BPSK (binary phase-shift keying) modulated signal is 1MBaud/s and
the duration is 10ms, the SNR=−10 dB. The graph of the CAF is shown as in Figure 5.20.
Because measurement accuracy of TDOA and FDOA depends on the accumulated time T

and the signal bandwidth B, in order to obtain measurement results of high accuracy, enough
signal time of integration must have accumulated to perform the CAF calculation. However,
as the computation load is very large, in order to decrease the computation load to satisfy
real-time processing requirements, the sampling point with a duration of T can on average
be divided into K segments, each with a duration of T∕K. Calculate the ambiguity function
CAF(𝜏, 𝜈, k) (k= 1, 2, … , K) on such time intervals and then correlate and plus them to obtain
a total cross-ambiguity function CAFC(𝜏, 𝜈). Perform a 2D search in the CAF matrix to find
the TDOA and FDOA corresponding to the peak value.

5.5.2 Theoretical Analysis on the TDOA–FDOA Measurement Performance

5.5.2.1 FDOA and TDOAMeasurement Accuracy

For each given time delay 𝜏 and frequency shift 𝑣, the calculation results of the CAF include
the product of signals and noises. In order to accurately obtain the required peak position, the
SNR of input signals will be higher than 10 dB. Under such a restriction, the estimation error
comes from noise accumulated around the true peak value. This shows that the CAF method
for TDOA and FDOA estimation is unbiased and its variance can reach the CRLB.
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Stein [9] provides the CRLB of TDOA–FDOA as

𝜎TDOA = 0.55
B

1√
BnT𝛾

𝜎FDOA = 0.55
T

1√
BnT𝛾

⎫⎪⎪⎬⎪⎪⎭
, (5.69)

where B is the signal bandwidth, Bn is the input noise bandwidth, T is the accumulated time
of signals, and 𝛾 is the equivalent input SNR of input signals:

1
𝛾
= 1

2

[
1
𝛾1

+ 1
𝛾2

+ 1
𝛾1𝛾2

]
, (5.70)

where 𝛾1 and 𝛾2 are the input SNRs of the two receivers. If 𝛾1 and 𝛾2 are far higher than 0 dB, the
third item in the above expression can be ignored. If 𝛾1 = 𝛾2, then 𝛾 = 𝛾1 = 𝛾2 can be obtained.
If 𝛾1 << 𝛾2 and 𝛾2 >> 1, then 𝛾 ≈ 2𝛾1. If 𝛾1 and 𝛾2 are much lower than 0 dB, the equivalent
input SNR 𝛾 can be approximately calculated as 𝛾 = 2𝛾1𝛾2.
Remark. The SNR in the above two expressions is inversely proportional to the bandwidth

Bn (for wider bandwidths of the receiver, the stronger the noise), so the TDOA measurement
error 𝜎TDOA can be deemed to be inversely proportional to the signal bandwidth B and the
FDOA measurement error 𝜎TDOA is inversely proportional to the duration of accumulated
time T .
For example, supposing the SNR of input signals 𝛾 = 0 dB, the noise bandwidth Bn = 1MHz,

the signal bandwidth (or receiver bandwidth) B= 100 kHz, and the accumulated time
T = 10ms, then according to the above expression, the CRLB of the TDOA and FDOA
measurement error can be calculated as

𝜎TDOA = 0.55
B

1√
BnT𝛾

= 0.55

100 × 103
1√

106 × 10−2 × 1
= 55 ns

𝜎FDOA = 0.55
T

1√
BnT𝛾

= 0.55

10 × 10−3
1√

106 × 10−2 × 1
= 0.55 Hz

⎫⎪⎪⎬⎪⎪⎭
.

5.5.2.2 Theoretical Accuracy of TDOA-FDOA for Pulse Signal

If the SNR is higher than 10 dB, the estimation variance of the frequency is much closer to the
Cramér-Rao bound. Its expression is [10]

𝜎fd =
1

𝜋Ne
√
Ne𝛾e

, (5.71)

where Ne is the sampling point of the estimation expression and 𝛾e is the equivalent SNR.
Convert the CRLB of the estimated fd into the CRLB of the FDOA measurement error;

then [10]

𝜎FDOA = 1

𝜋TM
√
PN𝛾

, (5.72)
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Table 5.1 List of the FDOA measurement error with different PRF values

Precision/PRF PRF= 100Hz PRF= 1 kHz PRF= 10 kHz PRF= 100 kHz

𝜎FDOA (Hz) 0.04 0.01 0.004 0.001

where TM is the total time of the pulse series (start from the beginning of the first pulse to the
end of the last pulse), TM = P ⋅ PRI (where PRI is the mean pulse repetition interval), P is the
pulse number, and N is the sampling point of a pulse.
For a conventional radar signal, only the time shift is needed. By aligning the two pulses of

signals, the number of effective intrapulse sampling points is increased. The time shift has no
influence on the accuracy of the FDOA estimation, so its accuracy expression (5.72) can be
rewritten as

𝜎FDOA = 1

𝜋TM
√
PN𝛾

. (5.73)

These expressions show that with the increase of accumulated time TM , the FDOA estimation
error decreases and with the increase of intrapulse sampling points N, FDOA decreases as the
square root of intrapulse sampling points N.
For a certain signal, suppose its B= 1MHz, pulse width= 1 μs, and N = 60. For

T = 0.1 second, suppose its PRF= 100 and its pulse number P= 10. Therefore, the accuracy
of 𝜎FDOA = 0.04 Hz can be calculated. Suppose the sampling frequency is fs = 56MHz;
Table 5.1 can then be obtained.
When the pulse repetition frequency (PRF) is low, for example, PRF= 100Hz, and if the

Doppler shift of signals is larger than the PRF, a problem of FDOA ambiguity may happen.
Some other ways may be required to be adopted to solve such problems of FDOA ambiguity.

5.5.2.3 Resolution of Time Delay and Frequency Shift

The CAFs of different signals are different and the width of the CAF main peak on the time
delay and frequency shift is also different. Here, taking the chirp signal as an example, the
use of the width of its CAF main peak as the resolution of the time delay ΔTDOA and the
frequency shift ΔFDOA gives

ΔTDOA = 1∕B
ΔFDOA = 1∕T

}
, (5.74)

where T is the signal duration time and B is the signal bandwidth at such a time.
When adopting the fast algorithm to calculate piecewise the CAF, the form of the func-

tion is almost the same. Thus, resolution of FDOA and TDOA measurements is almost kept
the same.

5.5.3 Segment Correlation Accumulation Method for CAF Computation

Because the computation load of the CAF is very large, some measures need to be adopted.
One of the effective measures is to use the segment correlation accumulation method.
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5.5.3.1 Segment Correlation Accumulation Method

Supposing the transmitting signal of the emitter is

s(t) = m(t)e j2𝜋f0t, (5.75)

wherem(t) is the complex baseband signal and f0 is the signal carrier frequency, then the signal
received by the two satellites will be

r1(t) = s((1 − d11)t − d10), (5.76)

r2(t) = s((1 − d21)t − d20), (5.77)

where d11 = v1/c, d21 = v2/c, v1 and v2 are the radial velocities of two satellites relative to the
emitter, and c is the signal propagation speed,

d10 = (1 − d11)t1, (5.78)

d20 = (1 − d21)t2, (5.79)

where t1 and t2 are the propagation times of the signal from the emitter to the satellites.
Define

𝜏1(t) = d10 + d11t, (5.80)

𝜏2(t) = d20 + d21t, (5.81)

𝜏21(t) = 𝜏2(t) − 𝜏1(t) = d20 − d10 + (d21 − d11) t = 𝜏0 + 𝛼 t, (5.82)

where 𝜏0 = d20 − d10 is the TDOA at t = 0 of two signals r2(t) and r1(t), 𝛼 = d21 − d11 =
(v2 − v1)∕c ≈ 𝜈0∕f0, and 𝑣0 is the Doppler FDOA of two signals.
Substitute expressions (5.76) and (5.77) into expression (5.68) and combine expressions

(5.80) and (5.81), which yields

CAF(𝜏, 𝜈) =
∫

T

0
m(t − 𝜏1)e j2𝜋f0(t−𝜏1)m∗(t − 𝜏1 − 𝜏21 + 𝜏)e−j2𝜋f0(t−𝜏1−𝜏21+𝜏)e−j2𝜋𝜈tdt (5.83)

=
∫

T

0
rm(t, 𝜏)e j2𝜋(−𝜈t+f0𝜏21−f0𝜏)dt = ∫

T

0
rm(t, 𝜏)e j2𝜋[(𝜈0−𝜈)t+f0(𝜏0−𝜏)]dt, (5.84)

where
rm(t, 𝜏) = m(t − 𝜏1)m∗(t − 𝜏1 − 𝜏21 + 𝜏).

Divide the signal with a duration of T into K segments of equal length, each with a duration
of T∕K, remark as T1 and the signal of the k th segment as [11]:

r1k(t) = r1(t + kT1), t ∈ [0,T1), (5.85)

r2k(t) = r2(t + kT1), t ∈ [0,T1). (5.86)

Define the calculation method of the CAF(𝜏, 𝜈, k) of the segment signal as

CAF(𝜏, 𝜈, k) = e j𝜙k
∫

T1

0
r1k(t)r∗2k(t + 𝜏)e

−j2𝜋𝜈tdt, (5.87)

where 𝜙k is the phase item and its value will be given below.
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Substitute expressions (5.85) and (5.86) into expression (5.87) to derivate [11]

CAF(𝜏, 𝜈, k) = e j𝜙k
∫

T1

0
r1(t + kT1)r∗2(t + kT1 + 𝜏)e−j2𝜋𝜈t dt

=
∫

T1

0
rm(t + kT1, 𝜏)e j2𝜋(−𝜈t+f0𝜏21k−f0𝜏+𝜙k∕2𝜋) dt (5.88)

where
𝜏21k = 𝜏21(t + kT1) = 𝜏0 + 𝛼(t + kT1). (5.89)

Change expression (5.84) to

CAF(𝜏, 𝜈) =
K∑
k=1

∫

(k+1)T1

kT1

rm(t, 𝜏)e j2𝜋(−𝜈t+f0𝜏21−f0𝜏)dt

=
K∑
k=1

∫

T1

0
rm(t + kT1, 𝜏)e j2𝜋[−𝜈(t+kT1)+f0𝜏21k−f0𝜏]dt =

K∑
k=1

CAFk(𝜏, 𝜈), (5.90)

that is,

CAFk(𝜏, 𝜈) = ∫

T1

0
rm(t + kT1, 𝜏)e j2𝜋[−𝜈(t+kT1)+f0𝜏21k−f0𝜏]dt. (5.91)

Let CAFk(𝜏, 𝜈) = CAF(𝜏, 𝜈, k) and compare expression (5.88) with expression (5.91); then

𝜙k = −2𝜋𝜈kT1. (5.92)

When expression (5.92) holds, then

CAF(𝜏, 𝜈) =
K∑
k=1

CAF(𝜏, 𝜈, k). (5.93)

In the fast algorithm of calculating piecewise CAF, because piecewise CAF is correlation
accumulated and equivalent to the overall calculation of the CAF, the FDOA of the algorithm
and TDOA measurement accuracy will remain the same.

5.5.3.2 Method for Further Decrease of the Computation Load

According to expression (5.87), for the data of the kth segment of the two signals, the discrete
expression of the CAF is

CAF

(
mTs,

p

Q
Fs, k

)
= exp

(
j2𝜋

kpN

Q

) kN+(N−1)∑
n=kN

r1(n)r∗2(n + m) exp
(
−j2𝜋

pn

Q

)
, (5.94)

where N is the number of sampling points in the kth segment data, Ts is the sampling period,
the time delay 𝜏 = mTs, Fs = 1∕Ts is the sampling frequency, and Fs∕Q is the resolution unit
of the frequency shift.
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The FFT (fast Fourier transform) calculation is adopted by expression (5.94). Let Q=N;
then its computation load (number of complex multiplications) is about

G1 ≈ M(Nlog2N + 2N), (5.95)

where M is the number of resolution units of time delay.
In order to further decrease the computation load, the following approximation is made to

expression (5.94):

CAF

(
mTs,

p

N1
Fs, k

)
≈ exp(j2𝜋kpN2)

N2−1∑
l=0

u1(l,m) exp
(
−j2𝜋

pl

N2

)
, (5.96)

where

u1(l,m) =
1
N1

lN1+N1−1∑
n=lN1

r1(n)r∗2(n + m) (l = 0, 1, … ,N2 − 1), (5.97)

that is, divide the N-point instantaneous correlation function r1(n)r∗2(n + m) into N2 segments,
calculate the average value of N1 points for each segment, and then calculate the CAF of N1
points. Now the computation load is decreased to

G2 ≈ M(N2log2N2 + N2 + N), (5.98)

that is, the computation load is decreased by N1 times.
Calculate the CAF according to expression (5.93) in one time segment and suppose the total

number of samples is Na = KN= KN1N2; then the total number of complex multiplications of
CAF calculation is about

G3.19 ≈ KG2 ≈ M
(
KN2log2N2 + KN2 + KN

)
≈ MNa

1
N1

(
log2

Na
KN1

+ 1 + N1

)
(5.99)

Calculate the CAF according to expression (5.68) in one time segment, suppose the total num-
ber of samples is Na, and use the FFT calculation method; then the total number of complex
multiplications is about

G3.1 ≈ MNalog2Na. (5.100)

The number of complex multiplications using the calculation method of expression (5.93)
is the same as that of expression (5.99). The computation load ratio dcomp between the two
calculation methods is

dcomp ≈
N1log2Na

N1 + log2Na − log2N1 − log2K
. (5.101)

Certainly, in the above analysis, the time-consuming additive operation is ignored. For
the floating-point DSP (digital signal processor) or field-programmable gate array (FPGA),
the time consumption of floating-point addition and floating-point multiplication is almost
the same.
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Figure 5.21 Graph of the single-signal CAF

5.5.4 Resolution of Multiple Signals of the Same Time and Same Frequency

In Section 5.5.1, the method of CAF is used for TDOA and FDOA estimations. Next, we will
discuss the multisignal resolution performance of this method in detail.
As shown in Figure 5.21, for a single signal, there are three kinds of lobes: one is the signal

main lobe, whose corresponding time and frequency value is the estimated value of the true
TDOA and FDOA; the second is the signal side lobe, of which there are generally several; and
the last one is the noise lobe. The signal side lobe is generally lower than the signal main lobe.
When the SNR is low, the noise lobe may exceed the signal side lobe or even the signal main
lobe. In order to detect the signal main lobe from intensity and ensure the pre-set TDOA and
FDOA estimation accuracy, the SNR must be higher than a certain threshold. This is a neces-
sary condition for single-signal detection as well as the precondition of multisignal resolution.
In addition, the relative intensity of signals is also an important factor influencing signal

resolution. We will discuss signal resolution for the following two cases by taking two aliasing
signals A and B as an example.
Suppose the power of signal A isPA and the power of signal B isPB without loss of generality

and suppose PA >PB.

Case 1. PA >PB but their difference is not great, and the main lobe of signal B is weaker than
that of signal A, but much stronger than the side lobe and background noise lobe of signal A.
In this case, even if the main lobe of signal B is aliasing with the side lobe or background

noise lobe of signal A, the mixed lobe will not deviate from the position of the main lobe
of signal B, so the mixed lobe can be equivalent to the main lobe of signal B. That is to say,
the resolution of the main lobe of signal B and the side lobe and background noise lobe of
signal A is not required to be considered; only the resolution of the main lobe of signal B
and the main lobe of signal A is required.
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When the distance between the main lobes of the two signals is larger than the resolution
distance, the lobes of the two signals can be resolved on the CAF graph, to obtain the correct
estimated TDOA–FDOA value of each signal. On the contrary, if the distance between the
two main lobes is shorter than the resolution distance, the two lobes will fuse together and
form a mixed lobe with an estimation of the TDOA–FDOA value between the two lobes,
which deviates the stronger one, as shown in Figure 5.22.

Case 2. PA >PB and their difference is large. The main lobe of signal B is weaker than that of
signal A, but its intensity is close to that of the side lobe of signal A.
In this case, two things need to be considered. One is the resolution of the main lobes of

signal B and signal A, and the other is the influence of the side lobe of signal A on the main
lobe of signal B.
When the distance between the main lobes of signal A and signal B is larger than the

resolution distance, the two lobes can be resolved on the CAF graph, to obtain the correct
estimated TDOA–FDOA value of each signal. On the contrary, if the distance between the
two lobes is shorter than the resolution distance, the two lobes will fuse to form amixed lobe
with location on the TDOA–FDOA surface between the two lobes, deviating the stronger
one, as shown in Figure 5.23.
The influence of the side lobe of signal A on the main lobe of signal B has the follow-

ing effects. If the distance between the two lobes is larger than the resolution distance, the
influence of the side lobe of signal A on the main lobe of signal B is small; if the distance
between the two lobes is smaller than the resolution distance, two lobes will be combined
to a mixed lobe and the TDOA and FDOA estimation will be somewhere between the two
lobes. The smaller the distance between the two lobes, the smaller is the strength ratio of
the signal B main lobe to the signal A side secondary lobe and the larger is the deviation of
the mixed lobe relative to the signal B main lobe. If the location of the mixed lobe is used
to represent that of the signal B main lobe, a bias will be caused.
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Figure 5.22 Graph of the CAF when the two signals have almost the same power
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We can obtain the following conclusions:

1. The CAFmethod has a certainmultisignal resolution capability. Among the TDOAdistance
and FDOA distance of two signals, if either one is larger than the corresponding resolution,
the two signals can be resolved in the graph of CAF.

2. Generally speaking, the TDOA resolution between the two signals is determined by their
bandwidth and is not easy to be changed. The FDOA resolution between the two signals
is determined by the integration time of the signal, which is controllable. The increase in
cumulative time of the signal will help to improve the multisignal resolution performance.
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6
Single-Satellite Geolocation
System Based on the Kinematic
Principle

As a satellite orbits the earth at a high speed, parameters such as signal frequency, time of
arrival (TOA), and phase rate measured by the interferometer always change with time. How-
ever, such variation is correlated with emitter locations on the earth’s surface. For example, as
relative motion always exists between the satellite and the target emitter, the signal received
by the satellite is affected by the Doppler effect. Obviously, the signal instantaneous carrier
frequency or the pulse repetition interval (PRI) for the pulse signal changes with time, and
the change of signal frequency produces parameters such as the frequency change rate. These
parameters essentially reflect relations of relative location andmotion between the satellite and
the target emitter at that time. By utilizing the satellite-borne navigation system or the ground
TTC&M (telemetry, tracking, command, and monitoring) system, the position and speed of
the satellite can be obtained. Considering the fixed target emitter on the earth’s surface, the
expressions of parameters mentioned above are actually expressions in relation to unknown
parameters like the emitter position.

6.1 Single-Satellite Geolocation Model

Assume that the coordinates of an ground emitter in the ECEF (earth-center earth-fixed) coor-
dinates system are (x, y, z) and that a satellite can intercept the signal N times from t1 to tN .
Suppose the position (xi, yi, zi), velocity vi, and acceleration ai of the satellite at the ith moment
can bemeasured by the satellite navigation system or the ground TTC&M system, but the posi-
tion (x, y, z), signal carrier frequency f0, or pulse PRI of the signal target emitter transmitted
will be unknown. Figure 6.1 shows the relations between the known and unknown elements.

Space Electronic Reconnaissance: Localization Theories and Methods, First Edition.
Fucheng Guo, Yun Fan, Yiyu Zhou, Caigen Zhou and Qiang Li.
© 2014 John Wiley & Sons Singapore Pte Ltd. Published 2014 by John Wiley & Sons Singapore Pte Ltd.



178 Space Electronic Reconnaissance

ri

vi

Satellite
Trail

(x,y,z)

X

Y

Z

O

ai

t = t1

t = ti

t = tN

Figure 6.1 Sketch of localization based on the kinematic principle

Suppose that 𝜃 is a parameter measured by a single-satellite geolocation system obtained at
the moment i:

𝜃i = f (x, y, z, 𝜃0) + 𝜉i (i = 1, 2, … ,N), (6.1)

where 𝜃0 represents the real value of the emitter transmitted signal and 𝜉i is the measurement
error. If 𝜃i can be measured with different times i = 1, 2, … ,N and at various positions on the
satellite orbit, then we can acquire a system of expressions. Theoretically, where the number of
expressions in the system is larger than that of the unknown numbers, the position coordinates
of the emitter can be estimated. As a result, the geolocation of the emitter is realized.
As the emitter on the earth’s surface or in the air moves much slower than the satellite, so

the emitter can be deemed as static during a small period when the LEO (low earth orbit)
satellite is passing by. We therefore assume that the emitter is fixed on the earth’s surface in
the following analysis of the article. The coordinates of the emitter on the earth’s surface are
also supposed to match the earth surface expression, for example, that of the WGS-84 ellipse
surface model is

g(x, y, z) = 0. (6.2)

If the earth’s surface in Equation (6.2) or (2.30) is taken into account in the geolocation, the-
oretically, of the minimum number of observations the demand can be reduced by one and
geolocation accuracy is improved at the same time. Each kind of single-satellite geolocation
system based on the kinematics explored in this chapter all take the earth’s surface as a prior
known localizing surface.
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6.2 Single-Satellite Single-Antenna Frequency-Only Based Geolocation

6.2.1 Frequency-Only Based Geolocation Method

According to the Doppler effect resulting from relative motion between the satellite and the
emitter, the instantaneous frequency of the intercepted signal is

f = f0 + fd, (6.3)

where the Doppler frequency is

fd = −f0
ṙ(t)
c
. (6.4)

Here ṙ(t) is the derivative of the range between the satellite and the emitter, or the radial velocity
of relative motion. According to various definitions in Section 6.1, assume that ui = ri∕‖ri‖
is the unit vector of the line of sight (LOS). Then ṙi(t) at the moment i can be related to the
emitter coordinates by the following expression:

ṙi(t) = uTi ⋅ vi =
𝑣xi(xi − x) + 𝑣yi(yi − y) + 𝑣zi(zi − z)

ri
, (6.5)

Where
ri =
√

(xi − x)2 + (yi − y)2 + (zi − z)2.

According to expressions (6.3) and (6.5), therefore, the signal frequency received by the
satellite at the moment i is

f̂i = f0

[
1 −

𝑣xi
(
xi − x

)
+ 𝑣yi(yi − y) + 𝑣zi(zi − z)

cri

]
+ 𝜉i = f0fi(x, y, z) + 𝜉i, (6.6)

where, as defined above, 𝜉i is the noise for the frequency measurement at the moment i, and
the noise for the frequency measurement at each moment is subject to independent Gaussian
distribution. Frequencies measured at the total of N moments are expressed in matrix form as

𝛙 = f0 ⋅ F + 𝛏, (6.7)

where 𝛙 = [̂f1, … , f̂i, … , f̂N]T, F = [f1(x, y, z), … , fi(x, y, z), … , fN(x, y, z)]T, and
𝛏 = [𝜉1, … , 𝜉i, … , 𝜉N]T.
Replace the position coordinates (x, y, z) of the emitter inFwith transformation of expression

(2.30); then we get the matrix expression in relation to the geodetic coordinates (L,B) of the
emitter (H is assumed to be known by prior information). Only four variables are unknown.
Thus, the static emitter on the earth’s surface can be localized [1], theoretically, if N ≥ 4. Now
carry out a grid search in the area containing the emitter by longitude and latitude. Define

∑
as

a 2D grid set of points. For each grid point (Lk,Bk) ∈
∑
, count the least squares solution of f0:

f̂k = (FT
kFk)

−1FT
k𝛙, (6.8)

where Fk = [f1(Lk,Bk), … , fi(Lk,Bk), … , fN(Lk,Bk)]T.
Substitute the result of expression (6.8) into the expression below, and solve the expression

by the grid search method:
J(Lk,Bk) = ‖𝛙 − f̂k ⋅ Fk‖2. (6.9)
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Construct a cost function. Then the least minimum of J(Lk,Bk) is the optimum estimate of the
emitter location.

6.2.2 Analysis of the Geolocation Error

As errors always exist in frequency measurement, we are now going to derive the Cramér–Rao
lower bound (CRLB) in the case when the position and frequency of the emitter are being
estimated and the transmitted frequency of the emitter is unknown.
Assume that N independent frequency measurements have been performed and the fre-

quency measurement error complies with zero-mean, independent Gaussian distributions, that
is, 𝜉1, … , 𝜉i, … , 𝜉N →  (0, 𝜎2). Then the joint probability density of f1, … , fN is

p(f1, … , fN ;L,B, f0) =
1

(2π𝜎2)N∕2
exp

⎧⎪⎪⎨⎪⎪⎩
−

N∑
i=1

[
fi − fi

(
L,B, f0

)]2
2𝜎2

⎫⎪⎪⎬⎪⎪⎭
, (6.10)

where fi(L,B, f0) = f0fi(L,B). Take the logarithm of both sides of expression (6.10). The
result is

ln(p) = −

N∑
i=1

[fi − fi(L,B, f0)]2

2𝜎2
− N

2
ln(2π𝜎2). (6.11)

Let 𝛉 = [L,B, f0]T; then the derivative of the above expression about 𝛉 is

𝜕 ln(p)
𝜕𝛉

= 1
𝜎2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N∑
i=1

[
fi − fi

(
L,B, f0

)]𝜕fi(L,B, f0)
𝜕L

N∑
i=1

[fi − fi(L,B, f0)]
𝜕fi(L,B, f0)

𝜕B

N∑
i=1

[fi − fi(L,B, f0)]
𝜕fi(L,B, f0)

𝜕f0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

. (6.12)

We therefore get the Fisher information matrix

[I(𝛉)]mn = −E
[
𝜕2 ln (p)
𝜕𝜃m𝜕𝜃n

]
= 1
𝜎2

HTH, (6.13)
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where

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜕f1
(
L,B, f0

)
𝜕L

· · ·
𝜕fN(L,B, f0)

𝜕L
𝜕f1(L,B, f0)

𝜕B
· · ·

𝜕fN(L,B, f0)
𝜕B

𝜕f1(L,B, f0)
𝜕f0

· · ·
𝜕fN(L,B, f0)

𝜕f0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

T

. (6.14)

According to the transformational relation of expression (2.30), we know that f0 does not
need to be transformed, so the parameter transformation matrix can be built as follows:

⎡⎢⎢⎢⎣
x
y
z
f0

⎤⎥⎥⎥⎦ = 𝛟(𝛉) =
⎡⎢⎢⎢⎣
Nt cosB cos L
Nt cosB sinL

Nt
(
1 − e2

)
sinB

f0

⎤⎥⎥⎥⎦ . (6.15)

According to the CRLB definition of vector parameter transformation [2], the CRLB is

CRLB(x,y,z,f0) =
𝜕𝛟(𝛉)
𝜕𝛉

I−1(𝛉)𝜕𝛟(𝛉)
T

𝜕𝛉
= 𝜎2tr

(
𝜕𝛟 (𝛉)
𝜕𝛉

(HTH)−1
𝜕𝛟(𝛉)T
𝜕𝛉

)
, (6.16)

where tr(⋅) represents the trace of the matrix.

6.2.3 Analysis of the Frequency-Only Based Geolocation Error

Assume that the carrier frequency of the emitter signal f0 = 1.3GHz and f0 = 130MHz. The
position, speed, and acceleration of the satellite with total time of T = 60 seconds is obtained
from the ephemeris report by STK® software (satellite tool kit). Then compute the lower
bounds of the error of frequency-only based geolocation methods under this condition. Take
the RMS (root mean square) of the frequencymeasurement error as the theoretical lower bound
value 𝜎f0 ≈ 0.053 Hz; then we get a GDOP (geometric dilution of precision) graph as shown
in Figure 6.2a under the above condition, where the unit of geolocation error in the graph is the
kilometer. The bold line in the middle of the graph is the subsatellite track during 1minute.
Obviously, the equal-error curves are basically in the form of a symmetric distribution on
both sides of the subsatellite track. The best effect of geolocation appears on both sides of the
subsatellite track, while the worst occurs near the subsatellite point.
From Figure 6.2a we know that when accuracy of the frequency measurement is high, this

geolocation method enjoys a small error in a considerably large area. In practice, the error of
frequencymeasurement will be larger and the geolocation error will increase due to factors like
the geolocation method. For an area monitoring reconnaissance satellite, however, accuracy to
this extent is still acceptable in some cases.
We know that the signal frequency imposes an influence on geolocation accuracy from the

analysis in Section 6.2.2. Therefore, we now assume that the signal frequency is lowered to be
1/10 of the original but the variance of frequency measurement error remains the same; this
gives a GDOP graph as shown in Figure 6.2b.
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Figure 6.2 GDOP graph for the single-satellite frequency-only based geolocation: (a) f0 = 1.3GHz and
(b) f0 = 130MHz

Table 6.1 Theoretical lower bound of the geolocation error at a certain point under
conditions of different accuracy of frequency measurements

RMS of frequency
measurement error (Hz)

0.053 0.53 5.3 53 530

Geolocation error (km) 0.004285 0.04285 0.4285 4.285 42.85

Obviously, when the frequency is lowered to be 1/10 of the original, the geolocation error will
be 10 times larger. From this, it is known that when accuracy of the frequency measurement
of the receiver can remain the same, a better geolocation performance occurs for a signal of
high frequency.
Choose a certain point with coordinates of (25∘N,137.5∘E) and a signal frequency

f0 = 1.3GHz. Now analyze the lower bounds of the error when the supposed emitter at this
point is being localized under a scenario of different amounts of accuracy of frequency mea-
surement. As shown in Table 6.1, in the same scene as aforesaid, choose a series of frequency
measurement RMS errors, where the theoretical lower bound values of the geolocation error
at this point are obtained separately.
From Table 6.1 and expression (6.16), the increase of geolocation error is shown to be in

proportion to the frequency measurement error. Therefore, improvement in frequency mea-
surement accuracy is an important approach to use to decrease the geolocation error.
According to the process of calculation, when the satellite is on the zenith of a subsatellite

track center, the distance between it and the emitter is about 645.17 km. Therefore, when the
signal f0 is 1.3GHz and accuracy of the frequency measurement is under about 70Hz, the
geolocation error will be less than approximately 6.5 km. This is acceptable.
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6.3 Single-Satellite Geolocation by the Frequency Changing Rate Only

6.3.1 Model of Geolocation by the Frequency Changing Rate Only

In the last section of frequency-only geolocation, an accurate value of frequency is not, in fact,
necessary before the process of geolocation; however, it must be evaluated during the process
of geolocation. What is really useful in the process of frequency measurement geolocation is
the changing information of the frequency. Therefore, if the frequency changing rate (FCR) in
the whole process is measured to execute geolocation, then estimation of the signal frequency
in an exact way is unnecessary (only a rough estimation of frequency is needed to obtain
the wavelength 𝜆 measurement). According to the principle of kinematics of particles [3],
essentially the changing rate of signal frequency reflects the radial acceleration of the relative
motion between the satellite and the target emitter:

a = −
r̈i
𝜆

(6.17)

where r̈i is the radial acceleration of relative motion at the moment i. According to kinematics
principles, the radial velocity is [3]

ṙ = uT ⋅ v = rT ⋅ v
r

. (6.18)

Taking the derivative of this, we get

r̈ = dṙ
dt

=
r

(
drT

dt
⋅ v + rT ⋅

dv
dt

)
− (rT ⋅ v)dr

dt

r2

=
r(vT ⋅ v + rT ⋅ a) − (rT ⋅ v)r

T ⋅ v
r

r2
,

= (vT ⋅ v + rT ⋅ a)
r

− (rT ⋅ v)2

r3
(6.19)

where v and a are the velocity vector and acceleration vector of the satellite separately, and in
practical applications of single-satellite geolocation, they and the position of the satellite are
known; r = [xs − x, ys − y, zs − z]T is the relative motion vector of the two. Note that (xs, ys, zs)
are the position components of the satellite in the ECEF coordinates system and (x, y, z) are
the position coordinates of the target emitter in the ECEF coordinates system.
It is known from expressions (6.17) and (6.19) that the FCR acquired by measuring param-

eters of the received signal at any ith moment is

𝛼i =
1
𝜆

⎡⎢⎢⎣
(
rTi ⋅ vi

)2
r3i

−
vTi ⋅ vi + rTi ⋅ ai

ri

⎤⎥⎥⎦ + 𝜉i (i = 1, … ,N). (6.20)
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The expression reflects the relation between observations and the unknown value (emitter posi-
tion). In the expression, 𝜉i means the error of the measured FCR, and 𝜆 is the wavelength of the
signal, which can be obtained by the coarse frequency measurement f0. Though it may cause
error, taking the relational expression 𝜆 = c∕f0 of the wavelength and frequency gives

d𝜆 = −
c df0
f 20

. (6.21)

It is clear that the error of frequency measurement has little influence on the wavelength.
Suppose the position (xi, yi, zi), velocity (𝑣xi, 𝑣yi, 𝑣zi), and acceleration (axi, ayi, azi) of the

satellite at the moment i are known. Assume that the longitude and latitude of the emitter is
(Bt,Lt); then ri can be expressed according to expression (2.30) as

ri = (xi − Nt cosBt cos Lt, yi − Nt cosBt sinLt, zi − Nt(1 − e2) sinBt). (6.22)

Therefore, expression (6.20) can be written as

𝛼i =
1
𝜆
gi(B,L) + 𝜉i (i = 1, … ,N), (6.23)

where gi(B,L) is a function of the radial acceleration with a format like Equation (6.20). Turn-
ing expression (6.23) into the format of a matrix, we get

𝛂 = 1
𝜆
G(B,L) + 𝛏, (6.24)

where 𝛂 = [𝛼1, … , 𝛼i, … , 𝛼N]T,G(B,L) = [g1(L,B), … , gi(L,B), … , gN(L,B)]T, and
𝛏 = [𝜉1, … , 𝜉i, … , 𝜉N]T.
Perform grid searching in the same way as described in Section 6.2.1. For each grid

(Lk,Bk) ∈
∑
, calculate the cost function

J(Lk,Bk) = 1∕
‖‖‖‖𝛂 − 1

𝜆
Gk

‖‖‖‖2. (6.25)

In the expression Gk = [g1(Lk,Bk), … , gi(Lk,Bk), … , gN(Lk,Bk)]T. Choose the point that
maximizes the cost function as an optimum estimate of the emitter position.
According to expression (6.25), calculate the cost function at each grid point and obtain cost

functions of all grid points. A 3D distribution graph of the cost functions example is shown as
Figure 6.3.
After the cost function J(Lk,Bk) is obtained as Figure 6.3, separately search the points with

the maximum value of cost function at the left lower and right lower parts of the figure and
find the coordinates of the corresponding maximum grid points. Change the coordinates into
those of longitude and latitude and record them separately as (⌢x u,

⌢yu) and (
⌢x d,

⌢yd). There are
two possible geolocation points. Normally, the subsatellite track of the observer is the axis
of the two symmetrical points, and one point is on the left side of the subsatellite track (left
geolocation point) and the other is on the right side (right geolocation point).
Because of ambiguity of the two geolocation points caused by the method, other information

must be used to eliminate the geolocation ambiguity. Similar methods, such as given in Section
5.2.4, are suggested to increase the direction finding information that can be used to solve
ambiguity.
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Figure 6.3 Graph of the cost function J(Lk,Bk)

6.3.2 CRLB of the Geolocation Error

Asmeasurement accuracy of the wavelength is comparatively high, the influence of the estima-
tion error of wavelength 𝜆 can be neglected. Assuming that each error of the measured FCR is
mutually independent and complies with 𝜉1, … , 𝜉i, … , 𝜉N →  (0, 𝜎2), the joint probability
density function of 𝛼1, … , 𝛼N is

p(𝛼1, … , 𝛼N ;L,B) =
1

(2π𝜎2)N∕2
exp

⎧⎪⎪⎨⎪⎪⎩
−

N∑
i=1

[
𝛼i −

1
𝜆
gi (L,B)

]2
2𝜎2

⎫⎪⎪⎬⎪⎪⎭
. (6.26)

Then the Fisher information matrix is

I(𝛉) = 1
𝜆2𝜎2

HTH, (6.27)

where 𝛉 = [B,L]T and

H =
⎡⎢⎢⎢⎣
𝜕g1 (L,B)

𝜕L
· · ·

𝜕gN(L,B)
𝜕L

𝜕g1(L,B)
𝜕B

· · ·
𝜕gN(L,B)

𝜕B

⎤⎥⎥⎥⎦
T

. (6.28)
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Figure 6.4 GDOP graph for the single-satellite frequency changing rate only geolocation: (a)
f0 = 1.3GHz and (b) f0 = 130MHz

After variable transformation, the CRLB in each direction of (x, y, z) is

CRLB(x,y,z) =
𝜕𝛟(𝛉)
𝜕𝛉

I−1(𝛉)𝜕𝛟(𝛉)
T

𝜕𝛉
= 𝜎2𝜆2tr

(
𝜕𝛟 (𝛉)
𝜕𝛉

(HTH)−1
𝜕𝛟(𝛉)T
𝜕𝛉

)
, (6.29)

where tr(⋅) represents the trace of the matrix.

6.3.3 Geolocation Simulation

Use the same geolocation scenario as described in Section 6.2.3, where the error RMS of the
FCR measured is 𝜎𝛼 ≈ 1 Hz∕s. The GDOP graph of the same subsatellite area with different
frequencies is shown in Figure 6.4.
It is clear that the error of themeasured FCR is higher than that of the frequencymeasurement

and the geolocation performance of the former is poorer than the latter.
From Figure 6.4 it can be seen that for the same accuracy of FCR measured, the geolocation

error will be increased for the low frequency emitter. The reason is that when the frequency is
low, its changing rate should be lower. For this reason, the measuring error of the same chang-
ing rate of frequency, the geolocation performance is worse for the signal of lower frequency.
Choose the true emitter location as (137.5∘E, 25∘N), assume the signal frequency

f0 = 1.3GHz, and then analyze the influence on geolocation accuracy of different fre-
quency measurement errors. This is shown by Table 6.2, which, as found in expression (6.29),
indicates that the increase of RMS of the changing rate error of frequency is in proportion to
the geolocation error.

6.4 Single-Satellite Single-Antenna TOA-Only Geolocation

6.4.1 Model and Method of TOA-Only Geolocation

For a pulse signal with a fixed pulse repetition frequency (PRF), the Doppler effect of the satel-
lite to the emitter will definitely cause a change of PRF, which is shown by the fact that the TOA
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Table 6.2 CRLB of the geolocation error at a certain point with different
accuracy of frequency changing rates

RMS of changing rate error
of frequency (Hz/s)

1 10 100

Geolocation error (km) 0.6926 6.926 69.26

of each pulse intercepted by the satellite is no longer with the same interval. Changing infor-
mation of pulse TOA series also implies information of the emitter position which, therefore,
can be localized.
The first step in an analysis of the TOA change of pulse signal is to build a model of the

PRI for it. We assume that the radar pulse signal with duration Δt from the target emitter is
received by the satellite. The signal duration contains n pulses with a signal PRI Tr and pulse
width 𝜏 << Tr, as shown in the following function:

p(t) =

{
1, 0 < t ≤ 𝜏

0, others
. (6.30)

Then the pulse signal is

s(t) = A(t)
n−1∑
k=0

p(t − t0 − kTr), (6.31)

where t0 is the moment of the first pulse sent and A(t) is the signal wave including amplitude,
carrier frequency, modulation, and other factors.
Similar to the analysis of the Doppler effect of the signal frequency domain, the pulse signal

periods received by the satellite are also a function of the distance between the satellite and
the emitter, which is shown as

sr(t) = Ar

[
t − r (t)

c

] n−1∑
k=0

p

[
t − t0 − kTr −

r (t)
c

]
, (6.32)

where c represents the signal wave propagation speed, Ar[t − r(t)∕c]means modulation of the
signal received after time scaling has been considered, and r(t) is the distance between the
satellite and the emitter at the moment t.
Assume that the receiver records the arrival time when it receives the first pulse, that is,

the TOA of the first pulse is t = 0. Then the corresponding time system of the receiver can
be obtained from expression (6.32), from which it is found that the value of t0 will be equal
to (−r∕c) where r = r(0) is the distance between the satellite and the emitter at the moment
of t = 0. If Δt is a very short time and motion acceleration is taken into account, then the
second-order model for r(t) at any moment in the receiving signal duration can be built as
follows by using r, radial velocity ṙ of the satellite to the emitter, and radial acceleration r̈ at
the moment of t = 0:

r(t) ≈ r + ṙt + r̈t2

2
. (6.33)
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Substituting into Equation (6.32), we get

sr(t) ≈ Ar
[(

1 − ṙ
c
− r̈

2c
t
)
t − r

c

] n−1∑
k=0

p(t − Tr,k) (6.34)

Of course, the approximation in expression (6.34) is due to the negligence of width change
of the received pulse caused by the relative theory effect. In the expression, Tr,k is the TOA
of each pulse measured by the receiver, when r̈ ≠ 0. According to the expressions (6.30) and
(6.34), its expression is

Tr,k =

(
1 − ṙ

c

)
−
√(

1 − ṙ
c

)2
− 2r̈

c
kTr

r̈∕c
. (6.35)

It is known that the TOA of each pulse is affected by the Doppler effect and relative radial
motion between the satellite and the emitter. As analyzed in Sections 6.1 to 6.3, such a relation
can be used in geolocation of the emitter.
Therefore, conduct a second-order Taylor series expansion to the square root term in the

numerator of expression (6.35). Then the approximate expression of Tr,k is acquired:

Tr,k ≈
kTr

1 − ṙ
c

+

r̈
c
(kTr)2

2
(
1 − ṙ

c

)3 . (6.36)

Through one observation by the satellite in a very short duration Δt, we can get a series of Tr,k
values because in the observation, r, ṙ, and r̈ are fixed values. Then let

a = 1∕
(
1 − ṙ

c

)
b =
( r̈
c

)
∕2
(
1 − ṙ

c

)3 ⎫⎪⎬⎪⎭ (6.37)

and estimate PRI Tr according to the TOA of the pulse measured. For example, get T̂r by
subtracting TOAs of pulse series from each other and then averaging the difference obtained
therefrom. Then replace Tr in expression (6.36) with T̂r. Expression (6.36) can become a
quadratic polynomial with a constant coefficient of k:

Tr,k = 𝜃1k
2 + 𝜃2k (k = 0, 1, 2, … , n), (6.38)

where 𝜃1 = bT̂2
r and 𝜃2 = aT̂r. Let Tr,k = [Tr,0,Tr,1, … ,Tr,n−1]T, 𝛉 = [𝜃1, 𝜃2]T, and

K =
[
0 1 4 · · · (n − 1)2
0 1 2 · · · n − 1

]T
.

Then expression (6.38) can be written in the format of a matrix as

Tr,k = K𝛉. (6.39)
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Therefore, the least squares solution of 𝛉 is

�̂� = (KTK)−1KTTr,k. (6.40)

Substitute �̂� separately into expressions 𝜃1 and 𝜃2 to obtain an equation system, where a and
b can be solved to give

r̂ = 2b̂
â3
c. (6.41)

After radial acceleration is obtained, a similar geolocation solution can be performed by the
single-satellite frequency measurement as introduced in Section 6.2.1, that is, i represents a
total N times of observation by the satellite, vi and ai are separately the relative velocity vec-
tor and acceleration vector when the satellite is at the observation position i, ri is the radial
vector of the emitter to the satellite at the observation position i, and ri = ‖ri‖. Use geodetic
coordinates to represent the position of the emitter, giving the following expression:

r̂i =
vTi ⋅ vi + rTi ⋅ ai

ri
−

(rTi ⋅ vi)
2

r3i
+ 𝜉i = gi(L,B) + 𝜉i. (6.42)

In this expression, 𝜉i is the error of the estimated radial acceleration, which can be assumed to
be mutually independent of each other, and its variance is decided by the error variance of TOA
measurement; the specific deduction will be shown in the next section. For a static emitter on
the earth’s surface, N different r̂i can be acquired by the satellite at N observation positions,
where N expressions of r̂i can be written down in the format of the matrix as follows:

ra = G(L,B) + 𝛇, (6.43)

where ra = [̂r1, r̂2, … , r̂N]T, G(B,L) = [g1(L,B), … , gi(L,B), … , gN(L,B)]T, and
𝛏 = [𝜉1, … , 𝜉i, … , 𝜉N]T.
As for the two geolocation methods mentioned in the last two sections establish a grid of

the subsatellite area and decide the size of the grid according to the coverage area and the
subsatellite point. Define the grid set of points as

∑
, for each (Lk,Bk) ∈

∑
, and calculate the

cost function:
J(Lk,Bk) = ‖ra −Gk‖2. (6.44)

The point minimizing the cost function J(Lk,Bk) is the localization output point.

6.4.2 Analysis of the Geolocation Error

6.4.2.1 Analysis of the TOA Measurement Error

At present, a popular way of measuring the TOA is that take the threshold detection moment
of the pulse signal as the measurement value of the TOA. Within the limits of the SNR
(signal-to-noise ratio), for example, the thermal noise caused by the receiver and the transmis-
sion noise coming from the outside environment will cause distortion of the ideal waveform,
creating an error of the threshold-detection moment during TOA measurement. Reference [4]
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provides the information that under conditions of high SNR, using a fixed threshold and linear
rising edge, the measurement error of the TOA is

𝜎t =
tR√
2SNR

, (6.45)

where tR is the rising-edge time of the pulse, that is, the duration time of the pulse amplitude
from a range of 10 to 90%, a typical value of tR being 10–100 ns for a wideband receiver [5].

6.4.2.2 CRLB of the Geolocation Error

As the existence of the TOA measurement error can give rise to deviation of the final geolo-
cation result, we shall research the influence imposed by the measurement error of TOA on
geolocation accuracy. Assume that errors of the pulse TOA measurement are independent of
each other and the Gaussian distribution with zero mean and variable 𝜎t

2. Then according to
expression (6.39), we obtain its derivative as

dTr,k = Kd𝛉 (6.46)

Therefore, the covariance matrix of 𝛉 is

C𝜃 = E[d𝛉d𝛉T] = (KTK)−1KTCTr,k
K(KTK)−1. (6.47)

According to the assumption above,

CTr,k
= diag{𝜎t2, 𝜎t2, … , 𝜎t

2}n×n = 𝜎t
2I. (6.48)

Expression (6.48) is the covariance matrix of the Tr,k measurement error and I is an n × n
identity matrix. Simplifying Equation (6.47) gives

C𝜃 = 𝜎t
2(KTK)−1. (6.49)

Therefore,
𝜎𝜃1

2 = k′11𝜎t
2, (6.50)

where k′11 is an element of (KTK)−1 in the first row and the first column. According to the
expression for K, we can deduce that

k′11 =
120(2n − 1)

n(n2 − 1)(3n3 − 9n2 + 8n − 4)
. (6.51)

According to the expression (6.40) to obtain b and if (1 − ṙ∕c)3 ≈ 1, when the error is analyzed,
the following approximation can be found:

r̈ ≈ 2cb (6.52)

Get b = 𝜃1∕T̂2
r from the equation for �̂� and then substitute it into expression (6.52). This gives

r̈ ≈ 2c

T̂2
r

𝜃1. (6.53)
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To summarize, we can get the following relation between the estimated error variance of
radial acceleration and the error variance of time determination:

𝜎r̈
2 ≈ 4c2

T̂4
r

𝜎𝜃1
2 ≈ 480(2n − 1)c2

n(n2 − 1)(3n3 − 9n2 + 8n − 4)T̂4
r

𝜎t
2. (6.54)

Neglect the tiny bias resulting from substitution of Tr with T̂r; the estimated error of radial
acceleration is approximately subject to the Gaussian distribution, of which 𝜎r̈

2 is the variance
and the mean value is 0. In fact, the error caused by the substitution of Tr with T̂r mainly comes
from the Doppler effect. Now assume that the bias is 𝜕T; by differentiating expression (6.53)
we can obtain

𝜕r̈ ≈ −
4c𝜃1
Tr

3
𝜕T . (6.55)

Taking the LEO satellite and the fixed emitter on earth, for example, generally the relative
radial velocity between the satellite and the emitter around the subsatellite point will not exceed
10 km/s. According to expression (6.55), we get 𝜕T and then obtain

||||𝜕r̈0r̈0 |||| ≈ ||||2𝜕TTr |||| ≈ |||| 2ṙ
c − ṙ

|||| < 0.000 067. (6.56)

It is thus clear that by making T̂r approximate to Tr, there is small bias that can be completely
ignored.
After the error variance of radial acceleration has been obtained, we take the geolocation

of the ground emitter as an example to analyze the CRLB of the geolocation error. We still
adopt theWGS-84 earth model [6, 7] and neglect the effect caused by the altitude of the earth’s
surface, that is, H = 0, and indicate the position coordinates of the emitter with the geodetic
longitude and latitude (L,B). Thenwe get the joint probability density function of r̂1, r̂2, … , r̂N
according to expression (6.42):

p(r;L,B) = 1
(2π𝜎r̈2)N∕2

exp

⎧⎪⎪⎨⎪⎪⎩
−

N∑
i=1

[̂
ri − gi (L,B)

]2
2𝜎r̈2

⎫⎪⎪⎬⎪⎪⎭
. (6.57)

By differentiating its logarithm with respect to 𝛈 = (L,B)T, we obtain

𝜕 ln p(Y;L,B)
𝜕𝛈

= 1
𝜎r̈

2

[
N∑
i=1

[̂
ri − gi (L,B)

] 𝜕gi(L,B)
𝜕L

,

N∑
i=1

[̂ri − gi(L,B)]
𝜕gi(L,B)
𝜕B

]
. (6.58)

This gives the Fisher information matrix

I(X) = 1
𝜎r̈

2
HTH, (6.59)
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where

H =
⎡⎢⎢⎢⎣
𝜕g1 (L,B)

𝜕L

𝜕g2(L,B)
𝜕L

· · ·
𝜕gN(L,B)

𝜕L
𝜕g1(L,B)
𝜕B

𝜕g2(L,B)
𝜕B

· · ·
𝜕gN(L,B)

𝜕B

⎤⎥⎥⎥⎦
T

.

After variable transformation, the CRLB in the ECEF coordinate system is

CRLB(x,y,z) = 𝜎r̈
2

[
𝜕F (𝛈)
𝜕𝛈

(HTH)−1
𝜕F(𝛈)T
𝜕𝛈

]
jj

. (6.60)

Suppose c11, c22, c33 are elements on the diagonal line of the right matrix in the expression
above; then according to the definition of geometric dilution of the geolocation error,

GDOP = 𝜎r̈

√√√√ 3∑
i=1

cii ≈
21.91c

√
(2n − 1)(c11 + c22 + c33)√

n(n2 − 1)(3n3 − 9n2 + 8n − 4)Tr2
𝜎t

≈
21.91tRc

√
(2n − 1)(c11 + c22 + c33)√

2SNR ⋅ n(n2 − 1)(3n3 − 9n2 + 8n − 4)Tr2
. (6.61)

6.4.3 Geolocation Simulation

Assuming that the rising-edge time of a radar pulse is 20 ns and the SNR of the received signal
is up to 13 dB, then according to expression (6.45), the RMS of the TOA measurement error
𝜎t = 3.166 ns. Suppose the TOA error of each pulse measurement is the zero-mean Gaussian
noise, which is independent of each other; we then carry out calculations according to the
deduction in Section 6.4.2. Assuming the total observation time is 0.6 second, then n = 465.
T̂r is the actual PRI, which equals 1.29 × 10−3 seconds. This is then substitute into expression
(6.54) to get the RMS of the estimated error of radial acceleration, which is about 2.2m∕s2.
After the estimated error of radial acceleration has been obtained, the GDOP graph of the

same area as mentioned Section 6.3 can be acquired through calculation, which is shown in
Figure 6.5.
The essence of the TOA-only passive geolocation method and the FCR measured geoloca-

tionmethod is to estimate the radial acceleration in order to carry out geolocation bymeasuring
signal parameters. They have similar GDOP graphs. Only because of different parameter mea-
surement errors do they have different performances of geolocation.

6.5 Single-Satellite Interferometer Phase Rate of Changing-Only
Geolocation

6.5.1 Geolocation Model

Using two antennas consisting of an interferometer carried by a satellite, the information
of the phase difference rate of changing �̇�(t) of the transmitted signal from the emitter at
an unknown position can be measured, where �̇�(t) implies the position information of the
emitter.
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Figure 6.5 Ground GDOP graph for the single-satellite TOA-only measured passive geolocation

Assume in the system {n} for the NED (north-east-down) coordinate system that the vectors
of the emitter position and the observer position are separately xT ,n and xO,n. Then the position
and velocity of the observer can be obtained from a navigation system such as the GPS (global
positioning system). Suppose the yaw angle 𝜓 , pitch angle 𝜃, and roll angle 𝜑 are output
by the attitude sensor of the observer; then definitions of the three angles are as shown in
Section 2.3.1.
Assume that the ‘3–2–1’ Euler angles attitude rotation order is adopted, that is,𝜑 rolls along

the x axis first, then 𝜃 rolls along the y axis, and 𝜓 rolls along the z axis last. In System {b} of
the body coordinates system, the position vector of the emitter is

xT ,b = An2b(xT ,n − xO,n), (6.62)

where

An2b = RT
x (𝜑)RT

y (𝜃)RT
z (𝜓),

Rx(𝜃) =
⎡⎢⎢⎣
1 0 0
0 cos 𝜃 sin 𝜃
0 − sin 𝜃 cos 𝜃

⎤⎥⎥⎦ ,Ry(𝜃) =
⎡⎢⎢⎣
cos 𝜃 0 − sin 𝜃
0 1 0

sin 𝜃 0 cos 𝜃

⎤⎥⎥⎦ ,
Rz(𝜃) =

⎡⎢⎢⎣
cos 𝜃 sin 𝜃 0
− sin 𝜃 cos 𝜃 0

0 0 1

⎤⎥⎥⎦ .
Assume two receivers are installed on the satellite. The interferometer vector in System {b} of
the body axis system of the receivers is Bb and the interferometer baseline vector Bb in System
{n} is

Bn = Ab2nBb. (6.63)
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Then the phase difference received by the interferometer is

𝜙(t) =
(
2π

BT
n ⋅ xn
𝜆 ‖‖xn‖‖ + 𝜙0

)
mod 2π, (6.64)

where 𝜆 is the signal wavelength, 𝜙0 is a fixed phase bias brought by the amplitude or phase
inconsistency between the two interferometer channels, and xn = xT ,n − xO,n. For the conve-
nience of description, define the unit vector in the direction of the emitter as

un ≜
xn‖xn‖ . (6.65)

Therefore, expression (6.64) can be transformed into the following format:

𝜙(t) =
(
2π
𝜆
BT
n ⋅ un + 𝜙0

)
mod 2π. (6.66)

Differentiating it with respect to the expression, we can get

�̇�(t) = 2π
𝜆

(
dBT

n

dt
⋅ un + BT

n ⋅
dun
dt

)
. (6.67)

Changing the rate of the interferometer baseline vector in the process of rotation gives

dBT
n

dt
= BTb

dAT
b2n

dt

= BT
b

(dA
b2n

d𝜓
�̇� +

dA
b2n

d𝜃
�̇� +

dAb2n

d𝜑
�̇�

)T

, (6.68)

where �̇� , �̇�, and �̇� are 3D attitude changing rates output by the gyroscope. Define

Ȧb2n =
[
𝜕AT

b2n

𝜕𝜓

𝜕AT
b2n

𝜕𝜃

𝜕AT
b2n

𝜕𝜑

]T
and Ȧ =

[
�̇�I3 �̇�I3 �̇�I3

]T
.

The above expressions can now be written in matrix form:

dBT
n

dt
= BT

b Ȧ
TȦb2n (6.69)

The derivative of expression (6.65) can be found as

dun
dt

= d

(
1‖‖xn‖‖
)/

dt ⋅ xn +
ẋn‖xn‖ = −

xTn ẋn‖xn‖3 xn + ẋn‖xn‖
= −

xnx
T
n ẋn‖xn‖3 +

ẋn‖xn‖
=

(
I3 −

xnx
T
n‖xn‖2
)
ẋn‖xn‖ =

(I3 − unu
T
n )ẋn‖xn‖ (6.70)

Substituting this into expression (6.67) gives

�̇�(t) = 2π
𝜆
BT
b

(
ȦTȦb2n ⋅ un + AT

b2n
⋅

(
I − unu

T
n

)
ẋn‖xn‖
)
. (6.71)
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6.5.2 Geolocation Algorithm

Estimate the emitter position to be xt =
[
L B
]T
. Then �̇�nm observed at the nth moment with

the emitter position is

�̇�nm = f (xt) + 𝑣n (n = 1, … ,N). (6.72)

Suppose that the measurement errors 𝑣n are not coherent with each other and comply with the
Gaussian distribution of N(0, 𝜎2

�̇�
). As �̇�nm is the nonlinear function of the emitter position xt,

various methods can be adopted to carry out estimations of geolocation, such as grid search,
Newton iteration, nonlinear least squares, extended Kalman filter, and other nonlinear filtering
methods. However, as the calculation burden is heavy and geolocation accuracy is also affected
by the size of the grid, the grid search method cannot be very effective. The initial value is
indispensable in calculations using the Newton iteration, nonlinear least squares, extended
Kalman filter, and other methods. A ‘bad’ choice of the initial value leads to ‘bad’ stability of
the algorithm. As the geolocation process is by nature a process with nonlinear optimization
under constraint, we will consider using the particle filter method here.
Assume the position of the i particle at the nth moment is xn,i, the probability weighting value

is 𝜔n,i , and they are expressed as (xn,i, 𝜔n,i). The probability weighting value at the initial zero
moment (x0,i, 𝜔0,i) meets the probability density distribution:

x0,i → p0 (x)
𝜔0,i = p0(x0,i)

(i = 1, … , I)

}
. (6.73)

Without prior information, we can suppose that the initial particles (x0,i, 𝜔0,i) present a uniform
distribution in the reconnaissance covering area of the satellite:

p0(x0,i) = 1∕I. (6.74)

Suppose that n observation values are obtained. Let �̇�nm =
[
�̇�1, … , �̇�n

]
; then the posterior

probability for each corresponding particle is

𝜔n,i = p(xn,i|�̇�nm) = n∏
l=1

cl exp

⎧⎪⎨⎪⎩−
(𝜙nm − f

(
xn,i
)2

2𝜎2
�̇�

⎫⎪⎬⎪⎭,

= 1
cn

exp

⎧⎪⎨⎪⎩−
n∑
l=1

(𝜙nm − f
(
xn,i
)2

2𝜎2
�̇�

⎫⎪⎬⎪⎭ (6.75)

where cn is the normalization coefficient with

cn =
I∑
i=1

exp

⎧⎪⎨⎪⎩−
n∑
l=1

(𝜙nm − f
(
xn,i
)2

2𝜎2
�̇�

⎫⎪⎬⎪⎭.



196 Space Electronic Reconnaissance

The estimated output at the final nth moment is

x̂t,n =
I∑
i=1

𝜔n,ixn,i. (6.76)

Here the particle distribution at the current nth moment will be used to produce the particle
distribution at the (n + 1)th moment, which is called the importance resampling technique.
Resampling contains many methods. This article uses a method called Gaussian resampling,
that is, calculating the weighted secondary moment of the current particle:

Pn =
I∑
i=1

𝜔n,i(xn,i − x̂t,n)(xn,i − x̂t,n)T. (6.77)

Using Cholesky’s method of decomposing the secondary moment, we get

Pn = RT
nRn. (6.78)

Let the random vector yi → N(0, I), where I is the identity matrix. It is clear that the particle
at the (n + 1)th moment is

xn+1,i = x̂t,n + RT
nyi. (6.79)

Obviously, according to expressions (6.78) and (6.79), we know that

E[(xn+1,i − x̂t,n)(xTn+1,i − x̂t,n)] = E[RT
nyiyiRn] = RT

nE[yiyTi ]Rn = Pn. (6.80)

The expression above shows that xn+1,i still remains the weighted variance Gaussian dis-
tribution obtained by calculation at the nth moment, which is consistent with the Gaussian
distribution of N(xt,n,Pn).

6.5.3 CRLB of the Geolocation Error

Let

G(xn) =
(I − unu

T
n )ẋn‖xn‖ .

Then the phase rate of changing can be written as

�̇�(t) = 2π
𝜆
BT
b
(ȦTȦb2n ⋅ un + AT

b2n
⋅G(xn)). (6.81)

By differentiating with respect to the emitter position, we get

𝜕�̇�

𝜕xT ,n
= 2π
𝜆
BT
b

(
ȦTȦb2n ⋅

𝜕un
𝜕xT ,n

+ AT
b2n

⋅
𝜕G
(
xn
)

𝜕xn

)
. (6.82)

The definition of each derivative is shown as follows:

𝜕un
𝜕xT ,n

=
𝜕un
𝜕xn

= xnd
(

1‖‖xn‖‖
)/

dxn +
I3‖xn‖ =

‖xn‖2I3 − xnx
T
n‖xn‖3
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and

𝜕G(xn)
𝜕xn

=
𝜕

(
ẋn‖‖xn‖‖ − xnx

T
n ẋn‖xn‖3
)

𝜕xn
=
𝜕

(
ẋn‖‖xn‖‖ − (xTn ẋn)xn‖xn‖3

)
𝜕xn

= −
ẋnx

T
n‖xn‖3 −

[
−3
(
xTn ẋn
)
xnx

T
n‖xn‖5 +

xnẋ
T
n + xTn ẋnI3‖xn‖3

]
.

= 3
(xTn ẋn)xnxTn‖xn‖5 −

ẋnx
T
n + ẋTnxn + xTn ẋnI3‖xn‖3

Then the Fisher information matrix is obtained as follows:

J = 1

𝜎2
�̇�

HTH, (6.83)

where

H =
(
𝜕�̇�1

𝜕xT
…

𝜕�̇�N

𝜕xT

)T

.

According to reference [2], we obtain the CRLB under the constraint condition as

CRLB = J−1 − J−1F(FTJ−1F)−1FTJ−1. (6.84)

In this expression, F is the gradient vector of the constraint equation. If the regular spherical
constraint of the earth of xTTxT = R2 is met, it is clear that F = xTT .

6.5.4 Calculation Analysis of the Geolocation Error

Assume that the signal frequency is 1GHz, the baseline length is 10m, the rotational velocity
of the interferometer baseline is 10 seconds per round, the total observation time is 10 seconds,
and the observation interval is 0.1 second. As the relative relationship between the antenna
rotation plane and the satellite orbital plane is different, we can get the geometric distribution
of the geolocation error CRLB under three different conditions as follows:

1. Case 1. Antenna rotation plane parallel to the satellite orbital plane
When the antenna rotation plane is parallel to the satellite orbital plane, the phase dif-

ference curve of the emitter on the earth’s surface at the subsatellite point and the phase
rate of the changing curve are obtained as shown in Figure 6.6a and b. The GDOP of the
geolocation error CRLB of the emitter at different positions in the area near the subsatellite
point is shown in Figure 6.6c.
It can be seen from Figure 6.6a and b that both the phase difference curve and the phase

rate of the changing curve comply with the rule of sine curve. From Figure 6.6c we can
see that there is an unobservable strip of area along the flight direction of the satellite
subsatellite track, where for the geolocation error of the area on both sides, the CRLB can
be within kilometers.
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Figure 6.6 Simulation result under the condition that the antenna rotation plane is parallel to the satel-
lite orbital plane. (a) Phase difference curve of the emitter at the subsatellite point, (b) phase rate of the
changing curve of the emitter at the subsatellite point, and (c) contour map of the geolocation error near
the subsatellite point

2. Case 2. Antenna rotation plane perpendicular to the velocity vector of the satellite at the
initial moment
When the antenna rotation plane is perpendicular to the velocity vector of the satellite

at the initial moment, the phase difference curve of the emitter on the earth’s surface at
the subsatellite point and the phase rate of the changing curve are obtained as shown in
Figure 6.7a and b. The GDOP of the geolocation error CRLB of the emitter at different
ground positions in the area near the subsatellite point is shown in Figure 6.7c.
It can be seen from Figure 6.7a and b that both the phase difference curve and the phase

rate of the changing curve comply with the rule of sine curve. From Figure 6.7c we can
see that there is an unobservable strip of area along the ground projection direction of the
rotating satellite antenna, where for the geolocation error for both sides of subsatellites the
CRLB can be within kilometers.
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Figure 6.7 Simulation results under the condition that the antenna rotation plane is perpendicular to
the velocity vector of the satellite at the initial moment. (a) Phase difference curve of the emitter at the
subsatellite point, (b) phase rate of the changing curve of the emitter at the subsatellite point, and (c)
contour map of the geolocation error near the subsatellite point

3. Case 3. Antenna rotation plane perpendicular to the position vector of the satellite at the
initial moment
When the antenna rotation plane is perpendicular to the position vector of the satellite

(the starting point of the vector is the earth center and the ending point is the position)
at the initial moment, the phase difference curve of the emitter on the earth’s surface at
the subsatellite point and the phase rate of the changing curve are obtained as shown in
Figure 6.8a and b. The GDOP of the geolocation error CRLB of the emitter at different
positions in the area near the subsatellite point is shown in Figure 6.8c.
It can be seen from Figure 6.8a and b that the phase difference curve and the phase

rate of the changing curve still comply with the rule of sine curve. From Figure 6.8c,
we can see that, in this case, for the geolocation error of the emitter in the large area
near the subsatellite point, the CRLB can be within kilometers. There is no unobservable
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Figure 6.8 Simulation result under the condition that the antenna rotation plane is perpendicular to
the position vector of the satellite at the initial moment. (a) Phase difference curve of the emitter at the
subsatellite point, (b) phase rate of the changing curve of the emitter at the subsatellite point, and (c)
contour map of the geolocation error near the subsatellite point

strip of area, as in Cases 1 and 2, and the distribution of the geolocation error is
comparatively ideal.

From the analysis above, geolocation by measuring the phase rate of changing the long base-
line interferometer (LBI) through the rotation motion of the satellite, for the emitter on earth,
will adopt the mode in which the antenna rotation plane of the interferometer is perpendic-
ular to the position vector of the satellite at the initial moment. The benefit of the mode is a
comparatively ideal distribution of the geolocation error, in which case geolocation accuracy
below 1 km in a large coverage area can be achieved.
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7
Geolocation by Near-Space
Platforms

7.1 An Overview of Geolocation by Near-Space Platforms

7.1.1 Near-Space Platform Overview

‘Near-space’ is also known as ‘near aerospace,’ ‘terrestrial space,’ or ‘transition zone between
aerospace and atmosphere’ [1–3]. In general, the aerospace is defined as the space over 100 km
above the earth’s surface, for which the spacecraft could reach, and the aerial space is the
space below 20 km above the earth’s surface, for which the aircraft could reach, as shown in
Figure 7.1. However, as a widely accepted concept at present, the ‘near-space’ mentioned here
is defined as the space from the altitude about 20 km (which is close to the internationally rec-
ognized upper limit of the controlled airspace) to 100 km (which is close to the internationally
recognized lower limit of the aerospace). Therefore, ‘near-space’ can be briefly considered
as the airspace from the highest flight altitude of existing aircraft (about 20 km) to the lowest
altitude of satellite orbits (about 100 km) [3].
Since the near-space flight vehicle first appeared in Schriever-III space warfare exercises by

the US army, the near-space flight vehicle has aroused widespread concern around the world.
Especially in the United States, a number of positive discussions and researches were devel-
oped with respect to the correlated techniques, functions, and military applications. In their
opinion, the near-space is a space environment with low risks and high returns. The mili-
tary near-space fight vehicle is rarely affected by weather conditions, so the risk of the flight
vehicle being attacked by a ground station is usually lower than that of an aircraft. Because the
near-space flight vehicle is closer to the earth than the LEO (low earth orbit) satellite, as a result
it can provide more accurate information than satellites. As mentioned above, the near-space
reconnaissance application is a promising research area.
Viewed from the current development, the near-space flight vehicles mainly include the

free-floating balloon, airship, unmanned aircraft, hypersonic flight vehicle, and aerospace
plane [1–3]. Owing to the fact thatthe near-space flight vehicle is superior to aircraft and
satellite platforms in electronic reconnaissance applications, it has great application potential.

Space Electronic Reconnaissance: Localization Theories and Methods, First Edition.
Fucheng Guo, Yun Fan, Yiyu Zhou, Caigen Zhou and Qiang Li.
© 2014 John Wiley & Sons Singapore Pte Ltd. Published 2014 by John Wiley & Sons Singapore Pte Ltd.
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Figure 7.1 Near-space view

7.1.2 Geolocation by the Near-Space Platform

Due to the characteristic of the near-space platform having a ‘large coverage area,’ it
has a potential for detecting distant emitters in a large area by comparing them with the
ground-based or airborne electronic reconnaissance platforms. Since the features and speed of
the free-floating balloon, airship, unmanned aircraft, hypersonic flight vehicle, and aerospace
plane are different from each other, the geolocation method of a near-space platform electronic
reconnaissance system is closely related to the type of platform.
For the free-floating balloon and airship, which have a rather slow moving speed, the

single-platform LOS (line-of-sight) geolocation, multistation triangulation, or the TDOA
(time difference of arrival) geolocation algorithm can be used. For high-altitude unmanned
aerial vehicles (UAVs) or hypersonic flight vehicles, geolocation for a fixed or moving emitter
on the earth’s surface may be achieved by utilizing the platform’s movement, combined with
the single-station passive geolocation theories based on particle kinematics.

7.2 Multiplatform Triangulation

7.2.1 Theory of 2D Triangulation

Assuming that two observers are located at (x1, y1) and (x2, y2), the emitter with an unknown
position is at (x, y), and twomeasured angles are 𝜃1 and 𝜃2 respectively, the two LOSs from two
different directions will meet at the point where the emitter is located, as shown in Figure 7.2.
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Figure 7.2 The dual-station triangulation sketch

Based on the definition of an angle, we find that

tg𝜃1 =
y−y1
x−x1

tg𝜃2 =
y−y2
x−x2

}
. (7.1)

This may be written as (
x − x1

)
tg𝜃1 = y − y1(

x − x2
)
tg𝜃2 = y − y2

}
(7.2)

or in a matrix form as
AX = Z, (7.3)

where

A =
[
−tg𝜃1 1
−tg𝜃2 1

]
, X =

[
x
y

]
, Z =

[
−x1tg𝜃1 + y1
−x2tg𝜃2 + y2

]
.

From these we can obtain

X = A−1Z = 1
tg𝜃2 − tg𝜃1

[
x2tg𝜃2 − x1tg𝜃1 − y2 + y1

x2tg𝜃1tg𝜃2 − x1tg𝜃1tg𝜃2 − y2tg𝜃1 + y1tg𝜃2

]
.

If there are more observers, this can be solved by expanding the expression (7.2) to more rows
and using the least squares method [4].

7.2.2 Error Analysis for Dual-Station Triangulation

Since errors will exist when measuring 𝜃1 and 𝜃2, we assume that the two measured angle
errors are 𝛿𝜃1 and 𝛿𝜃2, corresponding to 𝜃1 and 𝜃2 respectively. The measuring angle errors
can be divided into a random error and bias, where the bias may be calibrated. Therefore
the random error will have a significant influence on geolocation. In the analysis mentioned
below, it is assumed that the measuring angle errors follow the Gaussian distribution with
zero mean and the measuring errors for the two stations are independent of each other.
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In order to analyze the error of triangulation, by finding the partial derivative of expression
(7.2) and making a proper rearrangement, we can obtain

−𝛿xtg𝜃1 + 𝛿y =
(
x − x1

)
sec2𝜃1𝛿𝜃1

−𝛿xtg𝜃2 + 𝛿y =
(
x − x2

)
sec2𝜃2𝛿𝜃2

}
, (7.4)

or in a matrix form as
A𝛿X = B, (7.5)

where

𝛿X =
[
𝛿x
𝛿y

]
, B =

[(
x − x1

)
sec2𝜃1𝛿𝜃1

(x − x2)sec2𝜃2𝛿𝜃2

]
.

We can the obtain
𝛿X = A−1B△ T ⋅ B. (7.6)

Let

T =
[
T11 T12
T21 T22

]
and B =

[
B1𝛿𝜃1
B2𝛿𝜃2

]
.

The above expression may then be written as

𝛿X =
[
T11B1𝛿𝜃1 + T12B2𝛿𝜃2
T21B1𝛿𝜃1 + T22B2𝛿𝜃2

]
. (7.7)

We can obtain the covariance matrix as

P = E[𝛿X𝛿XT] =

[
T2
11B

2
1𝜎

2
𝜃1 + T2

12B
2
2𝜎

2
𝜃2 T11T21B

2
1𝜎

2
𝜃1 + T12T22B

2
2𝜎

2
𝜃2

T11T21B
2
1𝜎

2
𝜃1 + T12T22B

2
2𝜎

2
𝜃2 T2

21B
2
1𝜎

2
𝜃1 + T2

22B
2
2𝜎

2
𝜃2

]
. (7.8)

Therefore the GDOP (geometric dilution of precision) is obtained as

GDOP(x, y) =
√
tr(P)

=
√

(T2
11 + T2

21)B
2
1𝜎

2
𝜃1 + (T2

12 + T2
22)B

2
2𝜎

2
𝜃2. (7.9)

Based on

T =
[
T11 T12
T21 T22

]
= 1

sin(𝜃1 − 𝜃2)

[
− cos 𝜃1 cos 𝜃2 cos 𝜃1 cos 𝜃2
cos 𝜃1 sin 𝜃2 sin 𝜃1 cos 𝜃2

]
,

by substituting it into the expression above we can obtain

GDOP(x, y) = 1|sin(𝜃1 − 𝜃2)|
√
r21𝜎

2
𝜃1 + r22𝜎

2
𝜃2, (7.10)

where r1 and r2 are the distances from the emitter to the two observers. The above expression
indicates that the error of triangulation is equal to the quadratic sum of the polygon’s side
lengths of the crossing area of LOSs divided by the sine of their included angle, as shown in
Figure 7.3.
The circular error probability (CEP) is typically used as an indicator, which has an approxi-

mately relationship with the GDOP as

CEP(x, y) = 0.75GDOP(x, y) = 0.75|sin(𝜃1 − 𝜃2)|
√
r21𝜎

2
𝜃1 + r22𝜎

2
𝜃2. (7.11)
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Figure 7.3 Area of triangulation error

When the distance between the two stations is 40 km, the error distribution of triangulation is
as shown in Figure 7.4.
Figure 7.4 shows that the geolocation error in the line direction of the two stations approaches

infinity, so it cannot be located in the line direction between the two stations. However, the best
geolocation accuracy is perpendicular to the direction of the line between the two stations. Note
that the contour value in Figure 7.4a is flatter than that in Figure 7.4b, obviously showing that
the distributions for both of them are slightly different.

7.2.3 Optimal Geometric Configuration of Observers

A series of simplified assumptions may be made to find the optimal geometric configuration of
observers for 2D triangulation. For simplicity, it is assumed that the two observer stations have
the same angle measuring accuracy, that is, 𝜎𝜃 = 𝜎𝜃1 = 𝜎𝜃2. The origin of the reference coor-
dinate system is at the center of the line between the two stations, where the x axis represents
the direction of the line between the two stations and the y axis conforms to the right-hand
rule. As a result, the positions of the two stations are symmetrical in the Cartesian coordinate
system, that is, (−l, 0) and (l, 0). Now the question becomes one of finding a point that has a
minimum error for triangulation when the emitter is at this point.
Therefore, expression (7.10) can be further simplified as

GDOP(x, y) =
𝜎𝜃|sin(𝜃1 − 𝜃2)|

√
r21 + r22. (7.12)

Based on law of sines, we find that⎧⎪⎪⎨⎪⎪⎩
r1 =

2l sin 𝜃2
sin

(
𝜃1 − 𝜃2

)
r2 =

2l sin 𝜃1
sin(𝜃1 − 𝜃2)

. (7.13)
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Figure 7.4 Error distribution of triangulation, 𝜎𝜃 = 1∘. (a) Distribution of the absolute geolocation error
(CEP, km) and (b) distribution of the relative geolocation error (CEP, %R)

After expression (7.13) is substituted into expression (7.12), we find that:

GDOP(x, y) = 2l𝜎𝜃

√
sin2𝜃1 + sin2𝜃2

sin2(𝜃1 − 𝜃2)
. (7.14)
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To find the minimum values of 𝜃1 and 𝜃2, the following extremum must be satisfied:

𝜕GDOP
𝜕𝜃1

= 0

𝜕GDOP
𝜕𝜃2

= 0

⎫⎪⎬⎪⎭ . (7.15)

Then the equation may be established:

sin 𝜃1 cos 𝜃1 sin
(
𝜃1 − 𝜃2

)
= 2(sin2𝜃1 + sin2𝜃2) cos(𝜃1 − 𝜃2)

sin 𝜃2 cos 𝜃2 sin(𝜃1 − 𝜃2) = −2(sin2𝜃1 + sin2𝜃2) cos(𝜃1 − 𝜃2)

}
. (7.16)

We find that

sin 2𝜃1 = sin(−2𝜃2). (7.17)

If only the range of 0 ≤ 𝜃2 ≤ 𝜋∕2 is considered, there are three conditions that can be dis-
cussed:

1. If 𝜃1 = −𝜃2, the two lines do not intersect and the extreme value of the localization error at
this point is the maximum value.

2. If 𝜃1 = 𝜃2 = 0 or 𝜃1 = 𝜃2 = 𝜋∕2, the two DF lines are parallel but do not intersect, so the
value is also the maximum value.

3. If 𝜃1 = 𝜋 − 𝜃2, that is, the two DF lines intersect as an isosceles triangle, the point of
intersection is at the y axis, that is, the optimal geolocation accuracy is at x= 0. Make
𝜃1 = 𝜋 − 𝜃2 = 𝜃 the lowest geolocation error that can be obtained by substituting expres-
sion (7.14):

GDOP(x, y) =

√
2l𝜎𝜃|2 sin 𝜃cos2𝜃| . (7.18)

The GDOP takes the minimum value when sin 𝜃cos2𝜃 has the maximum value. By differen-
tiating sin 𝜃cos2𝜃 with respect to 𝜃 and letting the derivative equal 0, we can obtain

𝜃GDOPmax = arctg(1∕
√
2) = 35.3∘ (7.19)

Conclusion 1 can be drawn from the above:

Conclusion 1. If the distance between two DF stations is specified, when the emitter is at
the central line of two DF stations and their included angle is about 109.4∘, the error for
triangulation reaches the minimum value. After expression (7.14) is transformed based on
the trigonometric function, another expression for the GDOP can be obtained:

GDOP(x, y) =
R𝜎𝜃

sin(𝜃1 − 𝜃2)

√
1

sin2𝜃1
+ 1

sin2𝜃2
, (7.20)
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where R represents the distance from the emitter to the center of two DF stations. The lowest
geolocation error can be obtained by repeating the same process as Conclusion 1:

GDOP(x, y) =

√
2l𝜎𝜃|2sin2𝜃 cos 𝜃)| , (7.21)

that is, the GDOP is the minimum value when sin2𝜃 cos 𝜃 obtains the maximum value. By
differentiating sin2𝜃 cos 𝜃 with respect to 𝜃 and letting the derivative equal 0, we can obtain

𝜃GDOPmax = arctg
√
2 = 54.7∘. (7.22)

Conclusion 2 is drawn from the above:

Conclusion 2. If the emitter distance R is specified, when the emitter is at the central line of
two DF stations and their included angle is about 70.6∘, the error for triangulation reaches
the minimum value.In many cases, the relative geolocation accuracy (%R) is used for mea-
suring the geolocation accuracy of the passive geolocation system. By defining the center
point of the line between the two stations as the origin, the relative geolocation error can be
obtained as

GDOP(x, y)
R

=
𝜎𝜃

sin(𝜃1 − 𝜃2)

√
1

sin2𝜃1
+ 1

sin2𝜃2
. (7.23)

The analyzed result is the same as Conclusion 2, that is, the condition for the relative geolo-
cation error to be the minimum value can be obtained by differentiating sin2𝜃 cos 𝜃 with
respect to 𝜃 and letting the derivative equal 0:

𝜃GDOPmax = arctg
√
2 = 54.7∘. (7.24)

Conclusion 3 is drawn from the above:

Conclusion 3. When the emitter is at the central line of two DF stations and their included
angle is about 70.6∘, the relative error for triangulation reaches the minimum value.

(‒l, 0) (l, 0)

35.3° 35.3°

54.7°

r2 r1

x

y

(a) (b)

T

r1r2

A2 A1

x

y

T

P

Figure 7.5 The optimal geolocation accuracy under different geolocation conditions. (a) The optimal
locating point when the space between the reconnaissance stations is specified and (b) the optimal station
deployment when the reconnaissance distance is specified
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Owing to the fact that judging rules for optimal station deployment are different, the
results of Conclusions 1 to 3 are not the same. As shown in Figure 7.5, when the reconnais-
sance distance is specified, the two stations should be preferably located at A1 and A2 to
ensure that the emitter located at point T with a distance of R has the minimum geoloca-
tion error. Although the minimum geolocation error of the triangulation system at A1 and
A2 is not obtained at point T but at point P, the geolocation error at that time has been the
minimum error for all modes of deployment under the equal distance. When the relative
error index is used, the optimal relative geolocation accuracy of the triangulation system is
obtained at point T.

7.3 Multiplatform TDOA Geolocation

7.3.1 Theory of Multiplatform TDOA Geolocation

TDOAgeolocation, also known as hyperbola geolocation, is achieved by processing the TDOA
data of the arrival time of the signals that are transmitted from the emitter and are received by
multiplatforms. The hyperbola TDOA system consists of onemain platform (station) andmore
than two auxiliary stations. The geolocation theory of the TDOA is shown in Figure 7.6 [5].
The geometric configuration of the passive TDOA system is shown as Figure 7.6a. This

system consists of a main station and two or three auxiliary stations, where the main station
is not only receiving signals directly from an emitter, but is receiving the transmitted signals
forwarded from the auxiliary stations. These signals are processed in the main station, so
the TDOA between the arrival time when the transmitted signal arrived at the main station
and that of transmitted signal when it arrived at the auxiliary station is obtained. The location
of the emitter can be estimated after intercepting and recognition of the emitter signal. The
receiver between the auxiliary station and the main station receives signals transmitted from
the emitter and forwards these signals to the main station. The baselines are the lines between
the main station and the auxiliary stations. The angle of the baseline is the included angle
between the baselines.

Transmitter

E(xe,ye)

Sub Station

A(x1,y1)
Sub Station

B(x2,y2)

Main Station

C(x0,y0)

L1L2
Signal 

Transmitted by

Transmitter E
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Transmitted to

Sub Station A

Signal 

Transmitted to

Main Station C
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Transmitted to

Sub Station BT

T

T

T

T1

T3

T2

(a) (b)

Figure 7.6 Theory of hyperbola TDOA geolocation. (a) Geometric theory of TDOA geolocation and
(b) pulse signal waveform of each station



212 Space Electronic Reconnaissance

For a radar pulse signal, if the locations of the main station and each substation in Figure 7.6a
are known and all stations receive transmitted signals from a radar emitter, correspondingly
the TDOA between the arrival time that the signal transmitted from the same emitter arrives at
the main station and that arrives at each station can be measured (Figure 7.6b), so the measured
time difference from the main station C to the auxiliary station A is proportional to the distance
difference from the emitter to the two stations. As a result, one hyperbola line L1 focused
at station A and station C can be determined, and the other hyperbola line L2 can also be
determined by the TDOAmeasured between the main station C and the other auxiliary station
B. The point of intersection is the place where the emitter is located. It can be seen that the
hyperbola TDOA geolocation system consists of at least three receivers, in order to achieve the
geolocation for an emitter on a 2D plane. For a long-distant moving emitter, the approximately
2D geolocation algorithm can be used, even if errors exist.
The TDOA geolocation technique features high accuracy and is independent of the carrier

frequency of the signal, which is helpful when forming an accurate flight track. In addition, the
system covers a certain area of a sector with high accuracy. Currently the typical geolocation
accuracy of an existing system is specified as follows: for an emitter from 150 km right ahead,
the distance error (RMS error value) is approximately 250m and the tangential error (RMS
(root mean square) error value) is approximately 25m [5].

7.3.2 2D TDOA Geolocation Algorithm

When the time of arrival (TOA) of the same signal from an emitter and the two TDOAs are
measured by at least three observers in a group, the emitter can be located in a 2D plane, shown
as Figure 7.7. If the geolocation system consists of one main station and n (n≥ 2) auxiliary
stations, the 2D geolocation for an emitter can be achieved. The location of each observer
station is written as (xj, yj)T, j = 0, 1, 2, … , n, where j = 0 represents the main station and
j = 1, 2, … , n represents the auxiliary station. Suppose the location of the emitter is (x, y)T
and rj is the distance between the emitter and the jth (j = 0, 1, 2, … , n) station. Then Δri is

Target 

Aircraft 1 

Aircraft 2 

Aircraft 3

Base Line 

Base Line 2

r

b2

r2

r1

b3

b1

Figure 7.7 Sketch of TDOA geolocation by three observers
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the distance difference between the emitter to the jth station with an expression as follows [6]:

r20 =
(
x − x0

)2 + (y − y0)2

r2j = (x − xj)2 + (y − yj)2 (j = 1, 2, … , n)

Δrj = rj − r0

⎫⎪⎪⎬⎪⎪⎭
. (7.25)

The above expression can be simplified as(
x0 − xj

)
x +

(
y0 − yj

)
y = kj + r0Δrj, (7.26)

where
kj =

1
2

[
Δr2j +

(
x20 + y20

)
−

(
x2j + y2j

)]
(j = 1, 2, … , n) . (7.27)

Expression (7.26) shows a nonlinear equation set constructed by n equations, with a matrix
form of

AX = F, (7.28)

where

A =
⎡⎢⎢⎣
x0 − x1 y0 − y1

⋮ ⋮
x0 − xn y0 − yn

⎤⎥⎥⎦ , (7.29)

X =
[
x, y

]T
, (7.30)

F =
⎡⎢⎢⎣
k1 + r0Δr1

⋮
kn + r0Δrn

⎤⎥⎥⎦ . (7.31)

When n= 2, that is, for the three-station TDOA geolocation system, if rank (A) = 2, the loca-
tion of emitter X̂ is determined by

X̂ = A−1F. (7.32)

Due to errors measured by the observer position measurement and the TDOA measurement,
X̂ represents the estimated location of the emitter:

If n> 2 and the station geometry is satisfied with rank (A) = 2, the location of the emitter X̂
is obtained by solving expression (7.28) using the pseudo-inverse method:

X̂ =
(
ATA

)−1
ATF. (7.33)

If n= 2, let

A−1 =
[
a11 a12
a21 a22

]
=

[
aij

]
2×2. (7.34)

If n> 2, let (
ATA

)−1
AT =

[
a11 · · · a1n
a21 · · · a2n

]
=

[
aij

]
2×n. (7.35)
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The following expression can be obtained based on Equations (7.32) and (7.33):

x̂ = m1 + n1r0
ŷ = m2 + n2r0

}
, (7.36)

where

mi =
n∑
j=1

aijkj

ni =
n∑
j=1

aijΔrj

(i = 1, 2)

⎫⎪⎪⎬⎪⎪⎭
. (7.37)

After expression (7.36) is substituted into the first equation in expression (7.25), we can obtain

𝛼r20 + 2𝛽r0 + 𝛾 = 0, (7.38)

where
𝛼 = n21 + n22 − 1
𝛽 =

(
m1 − x0

)
n1 +

(
m2 − y0

)
n2

𝛾 =
(
m1 − x0

)2 + (
m2 − y0

)2
⎫⎪⎬⎪⎭ . (7.39)

Expression (7.38) is used to find the root of r0 and then the solved r0 is substituted into Equation
(7.32) to measure the location of the emitter. In fact, two values r01 and r02 related to r0 can
be obtained through solution of Equation (7.38):

1. If r01r02 < 0, the positive one is taken as r0.
2. If r01 and r02 are both positive values, the geolocation cannot be determined. It is called the

ambiguous geolocation case.

Ambiguous geolocation may be caused by two points of intersection of a hyperbola crossing.
In the case of three stations, some information is needed in order to ascertain the ambiguous
point, such as an azimuth angle measured from one station. If r01 and r02 are substituted into
expression (7.32) to obtain two points and then the values of two points are calculated to get
two azimuth angles, by comparing the two azimuth angles with the measured angles, the value
of r0 is determined correctly.
Reference [6] gives an easier method for judging the ambiguous point. By using this method,

only the location of the baseline against the emitter (in front or behind of the baseline) is
required without other supporting measured data.
For the 2D geolocation system, the following conclusion is made based on the geometric

algorithm. In a three-station geolocation system, two sets of hyperbolas determined by the
geolocation equation have no more than two points of intersection. If there is only one inter-
sected point, there is no ambiguous geolocation problem. However, if there are two points
of intersection, the location of two points must be located on each side of the baseline. In a
defense system, the TDOA system is generally deployed in front of the transmitter of the inter-
ested area, so that if an ambiguous geolocation exists during 2D geolocation of the transmitter,
the locating point behind the baseline is not the true point.
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7.3.3 TDOA Geolocation Using the Altitude Assumption

The 2D TDOA algorithm mentioned above is used only for geolocating the emitter placed in
the same plane as observers. In the case of the three-station TDOA geolocation system, if only
the 2D coordinates (i.e., x and y coordinates) of the emitter are required, the 3D geolocation
of the emitter is achieved by assuming the height of the emitter via three observers. If the
assumed altitude error of the emitter is not zero, there is a systematic error for the emitter
geolocation, which is caused by the assumption above. We should make a reasonable altitude
assumption based on prior knowledge or supporting data, in order to minimize the geolocation
error caused by the assumption of the emitter altitude [6].
By assuming the emitter altitude, the three observers are utilized for 3D geolocating the

emitter. The position of an observer is assumed to be
(
xi, yi, zi

)T (i = 0, 1, 2), where i= 0 rep-
resents the main station and i= 1,2 represents the auxiliary station. The position of the emitter
is (x, y, z)T and in 3D space is given as the expression

r20 =
(
x − x0

)2 + (
y − y0

)2 + (
z − z0

)2
r2i =

(
x − xi

)2 + (
y − yi

)2 + (
z − zi

)2
Δri = ri − r0

⎫⎪⎬⎪⎭ ( i = 1, 2) , (7.40)

where ri is the distance between the emitter and the ith station (i= 0,1,2) and Δri is the differ-
ence in distance between the emitter and the ith station. Expression (7.40) includes only two
geolocation equations, which cannot be used to solve 3D geolocation problems. By properly
assuming the altitude of the emitter, it is assumed that z = ẑ for the emitter is known and can
be substituted to solve the sets of equations (Equation (7.40)). Only a few steps should be
modified, as in the algorithm in Section 7.3.2.
Expression (7.27) is modified to

ki =
1
2

[
Δr2i +

(
x20 + y20

)
−

(
x2i + y2i

)
−

(
z0 − zi

)
ẑ
]
(i = 1, 2) . (7.41)

Expression (7.39) is modified to

𝛼 = n21 + n22 − 1

𝛽 =
(
m1 − x0

)
n1 +

(
m2 − y0

)
n2

𝛾 =
(
m1 − x0

)2 + (
m2 − y0

)2 + (̂
z − z0

)2
⎫⎪⎬⎪⎭ . (7.42)

Then the geolocation of the emitter in 3D space using the altitude assumption can be realized.

7.3.4 3D TDOA Geolocation Algorithm

Only three stations are required for 2D geolocation of the emitter. If there is no assumption
of the emitter altitude, 3D geolocation for the emitter needs at least four stations. Suppose
the geolocation system consists of one main station and n (n ≥ 3) auxiliary stations and the
position of the jth station is

(
xj, yj, zj

)T
, j = 0, 1, 2, … , n, where j = 0 represents the main sta-

tion and j = 1, 2, … , n represents the auxiliary station. The position of the emitter is (x, y, z)T,
which is unknown, and rj is the distance between the emitter and the jth (j = 0, 1, 2, … , n)
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station. Δri is the distance difference between the emitter to the jth (j = 0, 1, 2 … n) station
and the emitter to the primary station, with the following expression:

r20 =
(
x − x0

)2 + (
y − y0

)2 + (
z − z0

)2
r2i =

(
x − xi

)2 + (
y − yi

)2 + (
z − zi

)2 (i = 1, 2, … , n)
Δri = ri − r0

⎫⎪⎬⎪⎭ . (7.43)

Expression (7.43) can be simplified to(
x0 − xi

)
x +

(
y0 − yi

)
y +

(
z0 − zi

)
z = ki + r0Δri, (7.44)

where
ki =

1
2

[
Δr2i +

(
x20 + y20 + z20

)
−

(
x2i + y2i + z2i

)]
(i = 1, 2, … , n) (7.45)

Expression (7.44) shows that nonlinear equations can be rewritten in matrix form as

AX = F, (7.46)

where

A =
⎡⎢⎢⎣
x0 − x1 y0 − y1 z0 − z1

⋮ ⋮ ⋮
x0 − xn y0 − yn z0 − zn

⎤⎥⎥⎦ , (7.47)

X =
[
x y z

]T
, (7.48)

F =
⎡⎢⎢⎣
k1 + r0Δr1

⋮
kn + r0Δrn

⎤⎥⎥⎦ . (7.49)

When n = 3, that is, for a four-station TDOA geolocation system, if rank (A) = 3, the location
of the emitter is determined by

X = A−1F. (7.50)

If n> 3 and the station site is satisfied with rank (A) = 3, the following is obtained by solving
expression (7.46) using the pseudo-inverse method:

X̂ =
(
ATA

)−1
ATF. (7.51)

If n= 3, let

A−1 =
⎡⎢⎢⎣
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤⎥⎥⎦ =
[
aij

]
3×3. (7.52)

If n> 3, let (
ATA

)−1
AT =

⎡⎢⎢⎣
a11 · · · a1n
a21 · · · a2n
a31 · · · a3n

⎤⎥⎥⎦ =
[
aij

]
3×n. (7.53)
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Therefore, an estimation of the emitter can be computed based on Equations (7.50) and (7.51):

x̂ = m1 + n1r0
ŷ = m2 + n2r0
ẑ = m3 + n3r0

⎫⎪⎬⎪⎭ , (7.54)

where

mi =
n∑
j=1

aijkj

ni =
n∑
j=1

aijΔrj

⎫⎪⎪⎬⎪⎪⎭
(i = 1, 2, 3) . (7.55)

After expression (7.54) is substituted into the first equation of expression (7.40), we obtain

𝛼r20 + 2𝛽r0 + 𝛾 = 0, (7.56)

where
𝛼 = n21 + n22 + n23 − 1

𝛽 =
(
m1 − x0

)
n1 +

(
m2 − y0

)
n2 +

(
m3 − z0

)
n3

𝛾 =
(
m1 − x0

)2 + (
m2 − y0

)2 + (
m3 − z0

)2
⎫⎪⎬⎪⎭ . (7.57)

Note that r0 is solved by expression (7.56), and then the solved r0 is substituted into Equation
(7.50) or (7.5 to get the estimated value of the emitter location. Two values of r01 and r02
related to r0 can be obtained through solution of the quadratic equation (Equation (7.56)), so
the ambiguous geolocation also exists in 3D geolocation for the emitter. For the 3D geolocation
system, the following conclusion can be made based on geometric theory. In a four-station
TDOA geolocation system, two hyperbolas determined by the geolocation equation have no
more than two points of intersection. If there is one intersected point, there is no ambiguous
geolocation case. However, if there are two points of intersection, the location of the two points
must be located on each side of the area constructed by the four stations.
When n> 3, in addition to themethods above that eliminate the problem of ambiguous geolo-

cation, there is another method to use: the TDOAmeasurement is divided into two subsets, the
3D geolocation of the emitter is performed, and then the minimum range matching criterion
is used to recognize the false locating point. In fact, from the 3D station geometric configura-
tion, rank (A) = 3 is required and the necessary condition of 3D geolocation demands that all
observer stations should not deploy on the same plane.

7.4 Localization Theory by a Single Platform

Based on kinematic principles, there is relativemovement between the emitter and the observer
platform (a near-space platform such as a hypersonic vehicle), which has an antenna array
with at least two spatial separated units (consisting of an interferometer) and can be utilized to
measure the phase rate of changing (PRC) information of a transmitted electromagnetic wave
from the unknown emitter with an unknown position. The intercepted signal contains the infor-
mation that affects the location of the emitter. Then the azimuth angle and the elevation angle
of the emitter measured by the attitude sensor are utilized for localization of the emitter [7].
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7.4.1 Measurement Model of Localization

In a 3D Cartersian coordinates system, it is assumed that the vector of the baseline of the
interferometer on the observer platform is

d =
[
dx dy dz

]T
, (7.58)

where the length of the baseline of the interferometer is d = ‖d‖. The relative position vector
between the observer and the emitter is

X =
[
x y z

]T
,

= XT − XO (7.59)

where XT =
[
xT yT zT

]T
and XO =

[
xO yO zO

]T
, and the cosine of the included angle

between X and d is

cos 𝜃A = (d ⋅ X)‖d‖ ‖X‖ = dTX
d ‖X‖ =

dxx + dyy + dzz

d
√
x2 + y2 + z2

. (7.60)

From the definition of the phase difference of the interferometer in Equation (3.10), its phase
difference equals the length of the propagation path divided by the wavelength 𝜆 multiplied
by 2𝜋, that is

𝜙 =mod
(
2𝜋

d
𝜆
cos 𝜃A, 2𝜋

)
=mod

(
2𝜋
𝜆

dxx + dyy + dzz√
x2 + y2 + z2

, 2𝜋

)
. (7.61)

Assume that an interferometer is mounted on a near-space platform, as shown in Figure 7.8.
The heading (yaw) angle of the near-space platform is 𝛼. The pitch angle is 𝜃. By assuming
that the baseline has a fixed azimuth angle 𝜓 and a fixed elevated angle 𝛾 between the axis of
platform, the vector of the baseline can be measured as

dx = d sin (𝛼 − 𝜓) cos(𝜃 − 𝛾)
dy = d cos (𝛼 − 𝜓) cos(𝜃 − 𝛾)
dz = d sin (𝜃 − 𝛾)

⎫⎪⎬⎪⎭ . (7.62)

The phase difference can be obtained as

𝜙 = mod

(
2𝜋d
𝜆

sin (𝛼 − 𝜓) cos (𝜃 − 𝛾) x + cos (𝛼 − 𝜓) cos (𝜃 − 𝛾) y + sin (𝜃 − 𝛾) z√
x2 + y2 + z2

, 2𝜋

)
.

(7.63)
By differentiating the phase difference in Equation (7.63) with respect to time, we obtain

�̇� = 2𝜋
𝜆

{
1(

x2 + y2 + z2
)3∕2 [dxẋ (y2 + z2

)
+ dyẏ

(
x2 + z2

)
+ dzż

(
x2 + y2

)
− xẋ

(
ydy + zdz

)
−yẏ

(
xdx + zdz

)
− zż

(
xdx + ydy

)
] +

ḋxx + ḋyy + ḋzz(
x2 + y2 + z2

)1∕2
}
. (7.64)
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Figure 7.8 Established angle of the baseline of the interferometer diagram

It is considered that the mounted angle of the baseline remains the same, so the vector of the
baseline is differentiated by

ḋx = d
[
�̇� cos (𝛼 − 𝜓) cos (𝜃 − 𝛾) − �̇� sin (𝛼 − 𝜓) sin (𝜃 − 𝛾)

]
ḋy = d

[
−�̇� sin (𝛼 − 𝜓) cos (𝜃 − 𝛾) − �̇� cos (𝛼 − 𝜓) sin (𝜃 − 𝛾)

]
ḋz = d�̇� cos (𝜃 − 𝛾)

⎫⎪⎬⎪⎭ (7.65)

The vector is substituted to obtain a measurement equation for the PRC.
As shown in Figure 7.9, the angle of arrival (AOA) interferometer with a short baseline at

that time can be measured as

𝜃A,m = arccos

(
dxx + dyy + dzz

d
√
x2 + y2 + z2

)
+ 𝛿𝜃A

= arccos

(
sin (𝛼 − 𝜓) cos (𝜃 − 𝛾) x + cos (𝛼 − 𝜓) cos (𝜃 − 𝛾) y + sin (𝜃 − 𝛾) z√

x2 + y2 + z2

)
+ 𝛿𝜃A ,

(7.66)

where 𝛿𝜃A is the angle measurement error of the interferometer with a short-length baseline.

7.4.2 A 2D Approximate Localization Method

For 2D localization, compared by the distance of the emitter, the flying height of the aircraft is
very low. It could approximately be considered as a 2D plane localization for the aircraft and
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Figure 7.9 Direction finding of an interferometer on the 2D plane

the emitter. It is assumed that the altitude of the target emitter zT and the altitude of observation
aircraft zO are known, so if z = zT − zO is known, only XT = (xT y

T
)T needs to be estimated.

Under this assumption, the elevation angle and the elevated angle of the mounted interferom-
eter could be assumed to be zero only when the interferometer is moving on the horizontal
plane, that is, 𝜃 = 𝛾 = 0. The actual angle of the interferometer is measured as

𝜃A,m = arccos

(
sin

(
𝛼m − 𝜓

)
x + cos

(
𝛼m − 𝜓

)
y√

x2 + y2 + z2

)
+ 𝛿𝜃A ,

= f𝜃 (X) + 𝛿𝜃 (7.67)

where 𝛿𝜃A is a measured angle error of the interferometer and X = (x y)T = XT − XO. If
z= 0, the angle of the interferometer is measured approximately as

𝜃A,m = 𝛼 − 𝜓 − arctg
x
y
+ 𝛿𝛼 + 𝛿𝜃A . (7.68)

In fact, z ≠ 0, so only the model of expression (7.67) is used for localization. The ambiguous
phase difference can be modeled as

𝜙m = 2𝜋d
𝜆

sin (𝛼 − 𝜓) x + cos (𝛼 − 𝜓) y√
x2 + y2 + z2

− N2𝜋 + 𝛿𝜙 △ f𝜙 (X,N) + 𝛿𝜙, (7.69)

where N is an unknown integer.
If the observer is moving horizontally, the PRC is

�̇�m = 2𝜋d
𝜆

⎧⎪⎪⎨⎪⎪⎩
sin (𝛼 − 𝜓) ẋ

(
y2 + z2

)
+ cos (𝛼 − 𝜓) ẏ

(
x2 + z2

)
−xy

[
ẋ cos (𝛼 − 𝜓) + ẏ sin (𝛼 − 𝜓)

](
x2 + y2 + z2

)3∕2
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+ �̇�
cos (𝛼 − 𝜓) x − sin (𝛼 − 𝜓) y(

x2 + y2 + z2
)1∕2

⎫⎪⎪⎬⎪⎪⎭
+ 𝛿�̇�

△f�̇� (X) + 𝛿�̇�. (7.70)

The measurement model of localization for the angle and the PRC is constructed from the
expressions (7.68) and (7.70).
For the localization process mentioned above, there is another problem in practical mea-

surement, which is that the phase difference 𝜙 has a period of 2𝜋 and if the phase difference
exceeds 2𝜋, ambiguity might happen. The minimum length of the baseline d is usually used
for an unambiguous wide angle of sight. The maximum distance between the two antennas
without ambiguity is dmax = 𝜆∕2.
For an interferometer used in single-platform high accuracy localization, to obtain a larger

baseline-to-wavelength ratio, the distance of baseline d is typically far longer than the max-
imum distance of the unambiguous baseline length dmax, so the phase measured may con-
tain ambiguity. We usually combine several interferometers with different lengths to solve the
ambiguity problem. However, we can select another method. As only the PRC is required for
localization, apparently the PRC is derived from the received original phase difference (dif-
ferential), but an unknown number of 2𝜋 could appear because of the ambiguous phase. As
a result, the phase difference should be solved for its ambiguity. If the baseline of the inter-
ferometer is long, the ambiguity cannot be solved by a single-base-line interferometer. If the
same signal is received multiple times, the ambiguous phase differences measured at different
times would be utilized to solve the PRC without time-domain ambiguity.
As shown in Figure 7.10, the measured phase difference 𝜙 with a range of [0, 2𝜋) shows

ambiguity. The difference between the two phases can be solved at adjacent times if a less
than 𝜋 jump appears. The unambiguous phase difference rate of the changing result could
then be obtained. Therefore, if the rate of changing between the two phases does not exceed
𝜋, there will be no ambiguity in the PRC measurement. If exceeded, the phase compensation
±2𝜋 is needed to obtain the correct PRC for solving ambiguity.

7.4.3 MGEKF (Modified Gain Extended Kalman Filter) Localization
Method

Based on the models above, a nonlinear filtering method such as the EKF (extended Kalman
filter) in Section 3.3.1 can be used to estimate the emitter location.
From the previous section, we obtained the 3Dmeasurement model for an approximate angle

and the PRC. Based on the models above, the effect of the observer altitude z should be consid-
ered. In practice, normally the distance of the emitter is far more than the altitude of observer;
thus the localization model may be seen as a 2D localization condition.
For simplicity, the state equation and measurement equation can be modified. Let the

observer state be defined as XOi =
[
xOi yOi ẋOi ẏOi

]T
and the emitter state vector as
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Figure 7.10 Time-domain ambiguity solved by the phase rate of changing

XTi =
[
xTi yTi ẋTi ẏTi

]T
. Therefore the state equation may modified as

XTi = 𝚽i,i−1XTi−1 (7.71)

The state transition matrix is

𝚽i,i−1 =
[
I2

(
ti − ti−1

)
I2

O2 I2

]
,

where I2 and O2 are the 2× 2 identity matrix and the 2× 2 zero matrix, respectively.
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Figure 7.11 Scenario of localization simulation
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The observed results in expressions (7.68) and (7.70) can be used as observation models, in
such a way that if the observed condition is satisfied, the estimated values of X̂T0 and P0 can
first be measured by the first two measurements and then the estimated value of filter X̂Ti can
be obtained by the EKF recursion formula in Section 3.3.1.

7.4.4 Simulation

The scenario of the single-platform passive localization simulation is shown in Figure 7.11.
To simplify the analysis, the following assumptions are made. The azimuth angle of the

mounted interferometer is 0∘ (in the same direction as the platform movement). The elevation
angle of the mounted interferometer is 0∘. The observer is moving with uniform linear motion.
In the case of a fixed emitter, the PRC is calculated by the least squares method. The EKF
method for the angle and the PRC in Section 7.4.3 is utilized to locate the emitter. By repeating
the Monte Carlo tests to calculate the CEP 100 times, the statistical curve of the localization
error versus time is calculated, as shown in Figure 7.11. It is assumed that the DF accuracy of
the system is 1∘. The measured accuracy of the phase difference is 10∘/s. The altitude of the
operating near-space platform is 5 km, with speeds of (250, 0, 0) km/h at the x, y and z axes,
respectively. The random error of the platform attitude is 0.2∘, with 0.003∘/s of attitude rate.
The random error of the platform location is 15m and the platform speed is 0.5m/s. The initial
location of the observer is at (118.8∘E, 24.1∘N) and the emitter is at (119∘E, 25∘N). The data
measurement rate is 1000 times per second and the signal frequency f= 2GHz.
At first it is assumed that the length of baseline is d= 10m. The phase difference curve of

the interferometer is shown in Figure 7.12 and the angle and the PRC curve are shown in
Figure 7.13.
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Figure 7.12 Phase difference measurement curve
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By repeating the Monte Carlo localization tests 100 times, the statistical curve of the relative
localization error (%R) can be obtained, as shown in Figure 7.14.
In Figure 7.14, the dotted line shows a curve of the CRLB (Cramér–Rao lower bound)

versus time and the solid line is a curve of the localization error versus time by statistics.
It may therefore take about 40 seconds to converge below 2%R of relative range error. This
shows that to obtain high accuracy of localization needs much more time for single-platform
localization.
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8
Satellite-to-Satellite Passive Orbit
Determination by Bearings Only

8.1 Introduction

For surveillance of a space target such as a satellite or debris, angle information is the basic
measurement that can be acquired in comparison with frequency information. For example, the
angle information or line-of-sight (LOS), can be acquired using the direction finding method
as described in Section 3.1 or optical imaging by the camera on the satellite. Therefore, passive
tracking of a satellite target by the satellite using a bearings-only measurement is possible.
Assuming that there is one observing satellite and one target satellite, respectively (see

Figure 8.1 for the relative geometrical relationship), the observing satellite measures the LOS
of the target signal. Thus the orbit of the target satellite can be inferred through accumulating
angle information of a certain period of time [1].
According to the definition of angle (LOS) measurement information, it is correlated with

the position and the velocity component of the target satellite. Therefore, it is possible to deter-
mine the position and velocity estimation of the target satellite based on angle measurement
information. To avoid the singularity issue possibly caused by adopting the classical orbit ele-
ment as the state variable, as suggested in reference [1], in this chapter the position and velocity
vector of the target satellite under the J2000.0 coordinate system are used as the state variables.
Two models of the satellite-to-satellite bearings-only passive tracking problem are established
under two system models: one is for the two-body model and the other takes the J2 pertur-
bation into consideration (i.e., assuming that the earth is oblate). The corresponding tracking
methods are derived in detail.

8.2 Model and Method of Bearings-Only Passive Tracking

In this section, the position and velocity vector of the target satellite in the J2000.0 coordi-
nate system are used as the state variable. Firstly, the state model and measurement model
of satellite-to-satellite passive bearings-only tracking under the simplest two-body model are

Space Electronic Reconnaissance: Localization Theories and Methods, First Edition.
Fucheng Guo, Yun Fan, Yiyu Zhou, Caigen Zhou and Qiang Li.
© 2014 John Wiley & Sons Singapore Pte Ltd. Published 2014 by John Wiley & Sons Singapore Pte Ltd.
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Figure 8.1 Schematic sketch of satellite-to-satellite passive orbit determination

analyzed. This is followed by the situation of J2 perturbation assuming that the earth is oblate,
which leads to asymmetry of the earth’s gravitational field. Then the EKF (extended Kalman
filter) tracking method is also derived in detail.

8.2.1 Mathematic Model in the Case of the Two-Body Problem

8.2.1.1 State Model

Take the position and velocity vector of the target satellite in the inertial system J2000.0 as the
state variable X, that is,

X =
[
rT ṙT

]T
. (8.1)

Therefore, the state equation of satellite motion is expressed as

Ẋ = F(X) =
[
ṙT r̈T

]T
, (8.2)

where r =
[
x y z

]T
and ṙ =

[
ẋ ẏ ż

]T
are the position and velocity vector of the target satellite

in the J2000.0 coordinate system, respectively, and F(⋅) is the nonlinear transformation of the
state variable X. In the two-body motion model, from expression (2.10) the satellite motion
equation can be expressed as

r̈ = −𝜇 r
r3
, (8.3)

where 𝜇 is the gravitation constant, also referred to as the Kepler constant, and
r =

√
x2 + y2 + z2 is the distance from the target satellite to the center of the earth.

8.2.1.2 Measurement Model

Assuming that the observing satellite could measure the azimuth angle 𝛽k and the elevation
angle 𝜀k of the target satellite at the kth moment by means of optics or radio, their definitions



Satellite-to-Satellite Passive Orbit Determination by Bearings Only 229

can be written as follows:

𝛽k = arctan

(
𝜌y (k)
𝜌x(k)

)
+ n𝛽k, (8.4)

𝜀k = arctan

⎛⎜⎜⎜⎝
𝜌z (k)√

𝜌2x(k) + 𝜌2y(k)

⎞⎟⎟⎟⎠ + n𝜀k, (8.5)

where n𝛽 and n𝜀 are measurement noises at the azimuth angle and the elevation angle, where
the measurement noise is supposed to be zero mean and the variances are Gaussian white
noises of 𝜎2

𝛽
and 𝜎2

𝜀
, respectively. Then 𝝆 =

[
𝜌x (k) 𝜌y(k) 𝜌z(k)

]T
is the relative position vector

of the target satellite in the coordinate system of the observing satellite as the origin and k= 0,
1, … , Ns − 1 (where Ns is the total number of points being observed).
The measurement vector is defined as Z(k) =

[
𝛽k 𝜀k

]T
, and the measurement vector could

be expressed as a nonlinear function of state variable X:

Z(k) = H(X(k)) + n(k) (8.6)

whereH(⋅) is the nonlinear transformation of themeasurement vector consisting of expressions
(8.4) and (8.5) about the state variable X,

n(k) =
[
n𝛽 (k) n𝜀(k)

]T
is the measured noise vector of the azimuth angle and elevation angle, and its corresponding
covariance matrix is expressed as

E[n(k)n(k)T] = R(k) =
[
𝜎2
𝛽

0
0 𝜎2𝜀

]
.

8.2.2 Tracking Method in the Case of the Two-Body Model

As the state equation is a continuous nonlinear equation and the measurement equation is a
discrete nonlinear equation, here the EKF can be adopted to estimate the state of the target
satellite. Therefore, discretization and linearization are required for the state equation and the
measurement equation.
After discretization of the state equation of the target satellite (Equation (8.2)), the following

can be obtained:

X(k + 1) − X(k) =
∫

tk+1

tk

F(X(t))dt. (8.7)

When the time interval tk+1 − tk = T is short enough, F(X(t)) can be expanded to the Taylor
series with time tk:

F(X(t)) ≈ F(X(k)) + A(X(k)) ⋅ F(X(k))(t − tk), (8.8)

where
A(X(k)) = 𝜕F(X(t))

𝜕X
|t=tk
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is a 6× 6 matrix. Substitute expression (8.8) into expression (8.7) and the following can be
obtained:

X(k + 1) = X(k) + F(X(k))T + A(X(k)) ⋅ F(X(k))T
2

2
+W(k), (8.9)

whereW(k) is the state noise when applying linearization to the nonlinear state equation. This
is on the same order with |X(k) − X̂(k∕k)|2, but we can approximately assume E[W(k)] = 0
and suppose that E[W(k)W(k)T] = Q is the state noise covariance matrix.
By expression (8.2) and vector differentiation law, A(X(k)) can be expressed as follows:

A(X(k)) =
⎡⎢⎢⎢⎣
𝜕ṙ
𝜕r3×3

𝜕ṙ
𝜕ṙ3×3

𝜕r̈
𝜕r3×3

𝜕r̈
𝜕ṙ3×3

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

𝜇

r3

(
3x2

r2
− 1

)
𝜇

r3

(
3xy

r2

)
𝜇

r3

(3xz
r2

)
0 0 0

𝜇

r3

(
3yx

r2

)
𝜇

r3

(
3y2

r2
− 1

)
𝜇

r3

(
3yz

r2

)
0 0 0

𝜇

r3

(3zx
r2

) 𝜇

r3

(
3zy

r2

)
𝜇

r3

(
3z2

r2
− 1

)
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
t=tk

, (8.10)

where r, ṙ, and r̈ are respectively the position, velocity, and acceleration vector of the target
satellite in the J2000.0 coordinate system.
Substitute the filtered state value X̂(k∕k) into expressions (8) and (8.9), respectively. The

state prediction equation can then be expressed as

X̂ (k + 1∕k) = X̂ (k∕k) + F
(
X̂ (k∕k)

)
T + A

(
X̂ (k∕k)

)
⋅ F

(
X̂ (k∕k)

) T2

2
. (8.11)

According to the definition [2] of the state transition matrix 𝚽(t, tk), this can be expanded to
the Taylor series with time tk:

𝚽(t, tk) = 𝚽(tk, tk) +
d𝚽(t, tk)

dt
|t=tk (t − tk) + O(t − tk), (8.12)

whereO(t − tk)means the higher order terms (HOT). Using the property of the state transition
matrix, the following can be obtained [3]:

𝚽(tk, tk) = I, (8.13)

d𝚽(t, tk)
dt

|t=tk = A(X(k)). (8.14)

Substitute the above two expressions into expression (8.12), respectively, which can be
expressed as

𝚽(t, tk) = I + A(X(k))(t − tk) + O(Δt). (8.15)
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Likewise, after discretization of the continuous state transition matrix, the following can be
obtained:

𝚽(k + 1∕k) = I + A(X̂(k∕k))T . (8.16)

As the measurement equation is a discrete nonlinear equation, only linearization is required.
The measurement equation can be expanded as a Taylor series at X̂(k + 1∕k). As the angle
is measured in the observing satellite body coordinate system and the state variable is in the
J2000.0 coordinate system, the observing satellite body coordinate system needs to be con-
verted to the J2000.0 coordinate system in order to calculate the Jacobian matrix.
Assume that rax. =

[
xax. yax. zax.

]T
and ṙax. =

[
ẋax. ẏax. żax.

]T
are respectively the position

and velocity vector of the observing satellite (let the subscript ‘ax’ appear as O) and the target
satellite (let the subscript ‘ax’ appear as T) in the J2000.0 earth centered inertial (ECI) coor-
dinate system, while 𝝆 =

[
𝜌x 𝜌y 𝜌z

]T
and �̇� =

[
�̇�x �̇�y �̇�z

]T
are respectively the position and

velocity vector of the target satellite in the observing satellite body coordinate system. From
the above definition of the coordinate system, the expression for converting from the inertial
system of the geocentric epoch J2000.0 to the coordinate system of the observing satellite
centroid measurement station can be expressed as

𝝆 = GT(rT − rO), (8.17)

where G is the transfer matrix between the coordinate systems. According to the definition of
the satellite body coordinate system, the following can be obtained:

G(i, 3) = −rO∕|rO|, (8.18)

G( j, 2) = −rO × ṙO∕|rO × ṙO|, (8.19)

G(k, 1) = G( j, 2) × G(i, 3), (8.20)

where G(i, 3), G( j, 2), and G(k, 1) are columns 3, 2, and 1 of matrix G, respectively.
By the vector differentiation law, the measured Jacobian matrix is expressed as

H(k + 1∕k) =

⎡⎢⎢⎢⎢⎣
𝜕𝛽k
𝜕r1×3

𝜕𝛽k
𝜕ṙ1×3

𝜕𝜀k

𝜕r1×3

𝜕𝜀k

𝜕ṙ1×3

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
𝜕𝛽k
𝜕𝝆

⋅
𝜕𝝆

𝜕r1×3
01×3

𝜕𝜀k

𝜕𝝆
⋅
𝜕𝝆

𝜕r1×3
01×3

⎤⎥⎥⎥⎥⎦2×6
(8.21)

By expressions (8.4), (8.5), and (8.17), the following can be obtained:

𝜕𝛽k

𝜕𝝆
=
[ −𝜌y
𝜌2x + 𝜌2y

𝜌x

𝜌2x + 𝜌2y
0
]
1×3
, (8.22)

𝜕𝜀k

𝜕𝝆
=
⎡⎢⎢⎢⎣

−𝜌x𝜌z

𝜌2r

√
𝜌2x + 𝜌2y

−𝜌y𝜌z

𝜌2r

√
𝜌2x + 𝜌2y

√
𝜌2x + 𝜌2y

𝜌2r

⎤⎥⎥⎥⎦1×3
, (8.23)

𝜕𝝆

𝜕r
= GT

3×3. (8.24)
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See expression (8.17) for the definitions of 𝝆 and G, 𝜌r =
√
𝜌2x + 𝜌2y + 𝜌2z is the distance

between the observing satellite and the target satellite, and 01×3 is the zero vector of 1 × 3.
After the state equation and measurement equation are linearized and discretized, they can

be substituted into the EKF expression for iterative calculation [2]. For a simple expression,
here the recursive moments are expressed as subscripts of the matrix:

1. Calculate the state prediction estimation X̂k+1∕k for one step as given by expression (8.11)
and calculate its corresponding covariance matrix by the following expression:

Pk+1∕k = 𝚽k+1∕kPk∕k𝚽T
k+1∕k + Q. (8.25)

Here matrix Q is the covariance of the error introduced when the nonlinear state equation
is linearized. It can generally be selected as a smaller constant matrix [2] by experience.

2. Compute the gain matrix:

Kk+1 = Pk+1∕kH
T
k+1∕k

(
Hk+1∕kPk∕kH

T
k+1∕k + Rk+1

)−1
. (8.26)

3. Update the state and the corresponding covariance matrices:

X̂k+1∕k+1 = X̂k+1∕k + Kk+1
(
Zk+1 −Hk+1∕k

(
X̂k+1∕k

))
, (8.27)

Pk+1 =
(
I − Kk+1Hk+1∕k

)
Pk+1∕k. (8.28)

8.2.3 Mathematical Model Considering J2 Perturbation of Earth
Oblateness

When only a two-body problem is being considered, the difference between the result of orbit
extrapolation and the actual orbit (which is influenced by various perturbative forces) increases
rapidly with the increase in extrapolation time. Take the LEO (low earth orbit) satellite with an
orbital altitude of 800 km as an example; an extrapolation error of around 1000 seconds can be
up to an order of 20 km when the two-body model is directly adopted for orbit extrapolation.
While the J2 perturbation system model is adopted for extrapolation, such an error of around
1000 seconds is on an order of 100m. Therefore, to analyze the passive tracking performance
of satellite-to-satellite tracking seems too idealized. The orbit perturbation influence will be
considered based on the two-body model in this section. For the purpose of analysis, here the
influence from J2 perturbation of the earth’s oblateness, which has the largest influence, is
preferably under consideration, and the analysis and solutions are given. Such approximation
for satellite-to-satellite bearings-only passive tracking may be accurate enough in most appli-
cations. Based on such an analysis, add the partial derivative of the corresponding perturbative
force on the position vector.
The position and velocity vectors of the target satellite in the J2000.0 coordinate system are

taken as the state variable X, as shown in expression (8.1). Using expression (8.1), the state
differential equation for satellite motion considering J2 perturbation can be expressed as

Ẋ = F(X) =
[
ṙT r̈T

]T
. (8.29)
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To find the difference between results in the case of the two-body model, here F(⋅) is the
nonlinear transformation against the state variable. From reference [4], the perturbed motion
equation of the satellite in the J2000.0 coordinate system can be expressed as

ẍ = − 𝜇
r3
x + 𝜕R

𝜕x

ÿ = − 𝜇
r3
y + 𝜕R

𝜕y

z̈ = − 𝜇
r3
z + 𝜕R

𝜕z

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (8.30)

where R is the perturbation function, which mainly refers to the corresponding perturbation
function of J2 perturbation. If other perturbative forces are to be added, we just need to expand
the perturbation function R. Obviously, when R = 0, the above expression becomes the motion
equation of the two-body model.
After derivation and simplification, the equation of satellite motion considering J2 perturba-

tion can be expressed as

ẍ = − 𝜇
r3
x

[
1 − J2

(
Re
r

)2(
7.5

z2

r2
− 1.5

)]

ÿ = − 𝜇
r3
y

[
1 − J2

(
Re
r

)2(
7.5

z2

r2
− 1.5

)]

z̈ = − 𝜇
r3
z

[
1 − J2

(
Re
r

)2(
7.5

z2

r2
− 4.5

)]

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
. (8.31)

The differential equation of the satellite motion state considering term J2 can be obtained by
substituting the above expression into expression (8.29).
As the orbit perturbation does not correlate with the observations, the measurement model

considering J2 perturbation of the earth oblateness is the same as that in the case of the
two-body model.

8.2.4 Tracking Method Considering J2 Perturbation of Earth Oblateness

When considering J2 perturbation of earth oblateness, only the differential equation of the
satellite motion state is different from that in the case of the two-body model, so the corre-
sponding state prediction equation and state transition matrix are also different from those of
the two-body model. The following is the derivation of differences from the results in the case
of the two-body model.
Similarly, after discretizing the state differential equation (Equation (8.29)) for the target

satellite, it can be found that

X(k + 1) − X(k) =
∫

tk+1

tk

F(X(t))dt. (8.32)
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When the time interval tk+1 − tk = T is short enough, F(X(t)) can be expanded as the Taylor
series with time tk:

F(X(t)) ≈ F(X(k)) + A(X(k)) ⋅ F(X(k))(t − tk), (8.33)

where

A(X(k)) = 𝜕F(X(t))
𝜕X

|||t=tk
is a 6× 6 matrix. Substitute expression (8.33) into expression (8.32) to obtain

X(k + 1) = X(k) + F(X(k))T + A(X(k)) ⋅ F(X(k))T
2

2
+W(k), (8.34)

whereW(k) is the error vector introduced when the nonlinear state equation is linearized. This
is in a different order fromW(k), forW(k) is in the same order as |X(k) − X̂(k∕k)|2. Suppose
that E

[
W (k)W(k)T

]
= Q is the state noise covariance matrix.

From expression (8.29) and the vector differentiation law [5], A(X(k)) can be expressed as
follows:

A(X(k)) =
⎡⎢⎢⎢⎣
𝜕ṙ
𝜕r3×3

𝜕ṙ
𝜕ṙ3×3

𝜕r̈
𝜕r3×3

𝜕r̈
𝜕ṙ3×3

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎣
03×3 I3×3
𝜕r̈
𝜕r3×3

03×3

⎤⎥⎥⎦
t=tk

, (8.35)

where r, ṙ, and r̈ are respectively the position, velocity, and acceleration vectors of the target
satellite in the J2000.0 coordinate system and 𝜕r̈∕𝜕r can be solved by expressions (8.31) and
(8). After simplification, it can be found that

𝜕r̈
𝜕r

= 𝜇

r3
B = 𝜇

r3

⎡⎢⎢⎣
B11 B12 B13
B21 B22 B23
B31 B32 B33

⎤⎥⎥⎦ , (8.36)

where the components in matrix B are expressed as follows:

B11 =
3x2

r2
− 1 − 3x2

r2
J2

(
Re
r

)2(
17.5

z2

r2
− 2.5

)
+ J2

(
Re
r

)2(
7.5

z2

r2
− 1.5

)
B12 =

3xy

r2
−

3xy

r2
J2

(
Re
r

)2(
17.5

z2

r2
− 2.5

)
B13 =

3xz
r2

− 3xz
r2
J2

(
Re
r

)2(
17.5

z2

r2
− 7.5

)
B22 =

3y2

r2
− 1 −

3y2

r2
J2

(
Re
r

)2(
17.5

z2

r2
− 2.5

)
+ J2

(
Re
r

)2(
7.5

z2

r2
− 1.5

)
B23 =

3yz

r2
−

3yz

r2
J2

(
Re
r

)2(
17.5

z2

r2
− 7.5

)
B33 =

3z2

r2
− 1 − 3z2

r2
J2

(
Re
r

)2(
17.5

z2

r2
− 12.5

)
+ J2

(
Re
r

)2(
7.5

z2

r2
− 4.5

)
B21 = B12, B31 = B13, B32 = B23

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (8.37)
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Obviously, matrix B considering term J2 perturbation is much more complicated than that in
the case of the two-body model, but now matrix B is still symmetric. Substituting expressions
(8.36) and (8.37) into expression (8.35), A(X(k)) can be obtained.
Substitute the filtered state X̂(k∕k) into expressions (8.35) and (8.34), respectively, and the

state prediction equation considering J2 perturbation of earth oblateness can be expressed as

X̂(k + 1∕k) = X̂(k∕k) = F(X̂(k∕k))T + A(X̂(k∕k)) ⋅ F(X̂(k∕k))T
2

2
. (8.38)

The state transition matrix can be calculated as a method similar to that in the case of the
two-body model. Firstly, the continuous state transition matrix is obtained. Then expand it as
the Taylor series with time tk. Finally, discretize it. The state transition matrix after discretiza-
tion is noted to be 𝚽(k + 1∕k) and its expression is as follows:

𝚽(k + 1∕k) = I + A(X̂(k∕k))T . (8.39)

The state noise covariance matrix Q considering J2 perturbation can be selected as a small
constant matrix by experience to reduce the computational load [2].

8.3 System Observability Analysis

8.3.1 Description Method for System Observability

Methods for measuring the system observability include the condition number of the observ-
able matrix [6–8] and the method for adopting the eigenvalue and eigenvector [9]. Generally
speaking, it is not easy to get an analytic solution of the eigenvalue and eigenvector, and the sys-
tem observability obtained by the above measurement methods cannot show the influence of
measurement noise. Therefore, it is necessary to find a kind of system observability description
method that can better reflect the measured noise.
By the theorem of observability in Section 2.8, for a nonlinear equation set Z = h(Xk), the

approximate first-order Newton iteration solution is

Xk = X∗
k + 𝚪−1(k − N + 1, k)[Z − h(X∗

k )], (8.40)

where Z = [ZTk−N+1, … ,ZTk ]
T , h(Xk) = [hTk−N+1(Xk−N+1), … ,hTk (Xk)]

T , and X∗
k is the initial

state of Xk, so the observability of the system can be reflected in whether 𝚪(k − N + 1, k) is
approaching singularity or pathosis. If X∗

k is the true value, we can tell from expression (8.40)
that 𝚪−1(k − N + 1, k) reflects the sensitivity that error Xk − X∗

k of the solution is influenced
by measured noise Z − h(X∗

k ). If the covariance matrix of measured noise is denoted as R, the
state covariance matrix can be expressed as

cov(Xk − X∗
k ) = (𝚪TR−1𝚪)−1. (8.41)

As det
((

𝚪TR−1𝚪
)−1)

is the measurement of uncertainty hyper-ellipsoid volume under a
Gaussian condition, here it can be introduced as a measurement of observability of the system,
that is, the observability of the system 𝜌 is [10]

𝜌 =
√||||det((𝚪TR−1𝚪

)−1)||||. (8.42)
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There are two advantages to adopting 𝜌 for describing system observability:

1. It can reflect the relationship between the system observability and the measured noise. As
the covariance matrix R of measured noise is needed for calculating 𝜌, such a description
method can reflect the relationship between the system observability and the measurement
equation.

2. It is easy for calculation. System observability 𝜌 is a scalar, which is easy for calculation
and comparison.

A set of tracking scenarios are taken as examples for simulations as follows. Analyze the cor-
related influencing factors between computer simulation results of observability of the satellite
passive tracking system by bearings-only and state equation/measurement equations. Here the
ephemeris of two satellites in the J2000.0 coordinate system are generated by simulations
based on orbit elements set by STK® 6.0 software, where the filtering period is T , the obser-
vation duration is 5000 seconds, and the angle measurement error 𝜎𝛽 = 𝜎𝜀. See Table 8.1 for
orbit elements of two satellites for analysis on system observability.

8.3.2 Influence of Factors on the State Equation

See expression (8.2) for the state equation of the satellite-to-satellite passive tracking sys-
tem with bearings only. In expression (8.2), the state transition matrix after discretization is
expressed as 𝚽k+1,k = I + A(X̂(k∕k))T . As 𝚽k+1,k is basically determined by filtering period
T and changes slightly with variation of satellite position parameter, here the analysis on the
relationship between the state equation and system observability focuses on the influence of
the filtering period T on system observability.
Assuming that the angle measurement error 𝜎𝛽 = 20′′, the filtering periods T = 5 seconds,

T = 20 seconds, and T = 50 seconds are selected to test the system observability variation
curves obtained according to position and velocity estimation errors and expression (8.42).
In addition, a method [8] adopting the condition number for indicating system observability
is simulated. See Figure 8.2 for the observability curve, position, and velocity estimation
error curves (if not specially noted, the position and velocity estimation errors in a system
observability analysis all refer to the RMS (root mean square) error of the Monte Carlo
simulation repeated 50 times).

Table 8.1 Orbit elements of two satellites in localization observability analysis

Description of orbit elements Orbit elements of
observing satellite

Orbit elements of
target satellite

Semi-major axis a (km) 42 000 7171
Eccentricity e 0.1 0
Inclination i (∘) 120 30
RAAN Ω (∘) 30 75
Argument of perigee 𝜔 (∘) 45 60
Epoch mean argument of perigee M0 (

∘) 0 30



Satellite-to-Satellite Passive Orbit Determination by Bearings Only 237

(a) (b)

(c) (d)

0 1000 2000 3000 4000 5000
105

106

107

1010

106

104

102

108

Time (s)

C
o
n
d
it
io

n
 N

u
m

b
e
r

T = 5 s

T = 20 s

T = 50 s

0 1000 2000 3000 4000 5000

108

Time (s)

D
e
g
re

e
 o

f 
O

b
s
e
rv

a
b
ili

ty

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

50

100

150

200

250

300

Time (s)

E
s
ti
m

a
te

d
 P

o
s
it
io

n
 E

rr
o

r 
(k

m
)

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

E
s
ti
m

a
te

d
 V

e
lo

c
it
y
 E

rr
o

r 
(k

m
/s

)

T = 5 s

T = 20 s

T = 50 s

T = 5 s

T = 20 s

T = 50 s

T = 5 s

T = 20 s

T = 50 s

Figure 8.2 Relationship between observability, position, and velocity estimation error curves and
filtering periods. (a) Observability curve indicated by condition number, (b) observability curve obtained
according to expression (8.42), (c) position estimation error curve, and (d) velocity estimation error
curve

From Figure 8.2 it can be seen that the shorter the filtering period T , the smaller is the system
observability value and the better the system observability, the higher is the corresponding
position and velocity estimation precision; conversely, the longer the filtering period T , the
worse is the system observability and the lower is the corresponding position and velocity
estimation precision. In other words, filtering period T is an important parameter, which influ-
ences the passive tracking system by bearings only and directly determines the state transition
matrix𝚽k+1,k. As a result, it seriously influences the system observability.

8.3.3 Influence of Factors on the Measurement Equation

See expression (8.6) for the measurement equation of the satellite-to-satellite passive tracking
system by bearings only. The corresponding Jacobian matrix is expressed as expression (8.21).
Here analysis on the relationship between the measurement equation and system observability



238 Space Electronic Reconnaissance

σβ = 10˝

σβ = 150˝

σβ = 50˝

σβ = 10˝

σβ = 150˝

σβ = 50˝

σβ = 10˝

σβ = 150˝

σβ = 50˝

σβ = 10˝

σβ = 150˝

σβ = 50˝

105

106

107

C
o
n
d
it
io

n
 N

u
m

b
e
r

(a)

0 1000 2000 3000 4000 5000

Time (s)

1010

106

104

102

100

108

D
e
g
re

e
 o

f 
O

b
s
e
rv

a
b
ili

ty

(b)

0 1000 2000 3000 4000 5000

Time (s)

0

50

100

150

200

250

300

E
s
ti
m

a
te

d
 P

o
s
it
io

n
 E

rr
o

r 
(k

m
)

(c)

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
0.8

0.9

1
E

s
ti
m

a
te

d
 V

e
lo

c
it
y
 E

rr
o
r 

(k
m

/s
)

(d)

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time (s)

Figure 8.3 Relationship between observability, position, and velocity estimation error curves and angle
measurement errors. (a) Observability curve indicated with condition number, (b) observability curve
obtained according to expression (8.42), (c) position estimation error curve, and (d) velocity estimation
error curve

focuses on the influence of the angle measurement error 𝜎𝛽 on system observability. Now,
assuming that the filtering periods are the same, T = 5 seconds, test the system observation
variation curves of the position and velocity estimation error under different angle measure-
ment errors, 𝜎𝛽 = 10′′, 𝜎𝛽 = 50′′, 𝜎𝛽 = 150′′, and expression (8.42). Likewise, here a method
adopting the condition number for indicating system observations [8] is introduced as a com-
parison. See Figure 8.3 for the observability curve and position and velocity error curves.
According to Figure 8.3, the smaller the angle measurement error, the smaller is the system

observability value and the better the system observability, the higher is the corresponding
position and velocity estimation precision; conversely, the better the angle measurement error,
the worse is the system observability and the lower the corresponding position and velocity
estimation precision. In other words, for the satellite passive tracking system with bearings
only, the angle measurement error is also an important parameter, which influences the system
observability.
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From Figure 8.3a and b, the method adopting a condition number for indicating
system observability cannot reflect the influence of the angle measurement error on sys-
tem observability. Therefore, with different measurement errors, the observability curves
indicated with a condition number are the same, while system observability calculated
according to expression (8.42) can clearly reflect the relationship between it and the angle
measurement error. As the angle measurement error increases, the system observability value
increases in an obvious manner, and the system observability becomes worse.

8.4 Tracking Simulation and Analysis

In this section, satellite-to-satellite passive tracking with bearings only, mentioned in
Section 8.2 under different simulation conditions, is simulated and analyzed. As in the
classification described in Section 8.2, the system model will be considered in the case of the
two-body model and J2 perturbation of the earth oblateness. Here, the CRLB (Cramér–Rao
lower bound) under corresponding conditions is simulated for assessing the performance of
the passive tracking system, verifying whether the algorithm is optimal and how much room
is left for improvement.
Factors that influence the performance of the nonlinear filter usually include the measure-

ment error, initial state error, target model error, and so on. In this section, passive tracking
with bearings only with regards to the initial state error, angle measurement error, filtering
period, and ephemeris error of the observer itself is simulated. The influence of various factors
on tracking precision is analyzed, and further corresponding conclusions are given.
For passive tracking of theLEO satellite, in order to get observation arcs long enough, it is

acceptable to locate the observing satellite on the geosynchronous orbit and use the high earth
orbit (HEO) satellite to observe the LEO satellite. This will be the typical geometric scenario
setting for simulations in this section. The observability is good when the orbital plane of the
observing satellite is nearly perpendicular to that of the target satellite (please refer to the anal-
ysis in Section 8.3), so here the example is still the simulation scenario shown in Table 8.1.
The ephemeris of two satellites in the J2000.0 coordinate system are generated through sim-
ulations based on orbit elements set by STK®6.0 software under the two-body model and
considering the J2 perturbation model of the earth, respectively. They can be processed with
the EKF under corresponding situations where the filtering period is T and the observation
duration is 3000 seconds, assuming the angle measurement error 𝜎𝛽 = 𝜎𝜀.
Using the ‘Access’ function of satellite-to-satellite tracking in STK®6.0 software, a table of

observable periods between two satellites within one day in the simulation can be generated,
as shown in Table 8.2. The conclusion that the minimum period (i.e., not shielded by the
earth) that the observing satellite is visible to the target satellite is longer than 3600 seconds
and the maximum period is longer than 14 000 seconds, along with an average observable
duration of about 5000 seconds, can be drawn from Table 8.2. Therefore, if a bearings-only
tracking algorithm is possible to converge within the minimum observable period, there is no
need to take the shielding effect of the earth into consideration in the case of observing the
satellite-to-target satellite passive orbit determination tracking.
In STK®6.0 software, it is possible to output a 2D image (i.e., subsatellite track) and a 3D

image of relative geometric relations between the satellites in such a simulation scenario, as
shown in Figures 8.4 and 8.5, respectively.
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Table 8.2 Observable period of the observing satellite against the target satellite

Access Start time Stop time Duration (s)

1 1 January 2001 00:16:52.25 1 January 2001 02:37:57.45 8 465.202
2 1 January 2001 03:04:05.53 1 January 2001 04:09:34.55 3 929.014
3 1 January 2001 04:46:41.38 1 January 2001 05:47:46.84 3 665.456
4 1 January 2001 06:27:08.75 1 January 2001 07:27:37.79 3 629.042
5 1 January 2001 08:06:43.19 1 January 2001 09:08:23.74 3 700.553
6 1 January 2001 09:45:04.89 1 January 2001 10:50:34.59 3 929.702
7 1 January 2001 11:20:13.99 1 January 2001 15:20:00.75 14 386.767
8 1 January 2001 15:35:56.83 1 January 2001 16:47:27.28 4 290.443
9 1 January 2001 17:21:33.71 1 January 2001 18:24:08.49 3 754.780
10 1 January 2001 19:02:53.09 1 January 2001 20:03:05.99 3 612.895
11 1 January 2001 20:42:54.44 1 January 2001 21:43:18.12 3 623.678
12 1 January 2001 22:21:03.38 1 January 2001 23:26:02.37 3 898.989

Invisible Area Between Satellites

Track of Target
Satellite

Track of Observing
Satellite

Satellite 1

Satellite 2

VisibleArea Between Satellites

Figure 8.4 2D subsatellite track of two satellites in the simulation scenario

Track of Target
SatelliteTrack of Observing

Satellite
Earth

40

310
300

Figure 8.5 3D relative geometric relation between two satellites in the simulation scenario
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8.4.1 Simulation in the Case of the Two-Body Model

8.4.1.1 Simulation 1: Influences of State Initialization on Passive Tracking
Performance

Assuming the angle measurement 𝜎𝛽 = 20′′ and the filtering period T = 2 seconds, select

three groups of different initial state errors of
[
100 100 100 0.1 0.1 0.1

]T
(Case 1),[

300 300 300 0.5 0.5 0.5
]T

(Case 2), and
[
500 500 500 1 1 1

]T
(Case 3), where the units

of initial state errors are kilometer for position vector r and kilometers per second for velocity
vector ṙ. The method in reference [1] is also simulated for comparison, of which the initial
state error is

[
200 0.0005 3 3 3 0

]T
(Case 4) (see Table 8.1 for its units). The CRLBs of the

same angle measurement accuracy are the same. See Figure 8.6 for satellite tracking and the
azimuth angle, elevation angle, and relative distance variation curves in Case 2 (in the figure,
the HEO satellite is the observer and the LEO satellite is the target).
According to Figure 8.6a, the initialization error of the target satellite position is large at

the starting stage of bearings-only tracking. After a short time of state update, however, such
a method can achieve good performance for tracking the target satellite. The estimated track
obtained in this way can basically match that of the actual track of the target satellite.
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satellite tracking geometry, (b) azimuth angle curve, (c) elevation angle curve, and (d) relative distance
curve
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Figure 8.7 Position and velocity error curves of different initial state errors in the case of the two-body
model. (a) Estimated position error curve and (b) estimated velocity error curve

Based on the estimated position and velocity vector of each point, it is possible to calculate
the position and velocity errors of the target satellite, as shown in Figure 8.7 (if not specially
noted again in this book, for passive tracking performance simulation, the position and velocity
estimation errors both refer to RMS errors of Monte Carlo simulations repeated 100 times).
The converged position and velocity estimation errors and corresponding CRLB under

the above conditions are shown in Table 8.3. According to Figure 8.7 and Table 8.3, the
bearings-only tracking method proposed in this chapter can adapt to various initial state errors
and, finally, converges stably in the case of the two-body model. Although when the initial
state error increases, the time required by filter convergence and the final estimation error
both increase in a certain way, the performance of the algorithm can still approach that of the
CRLBs. While using the method described in references [1] and [11], the target satellite will
be confronted with a singularity issue when the typical orbit elements are used as the state
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Table 8.3 Position and velocity errors of different initial state errors in the case of the two-body model

Simulation scenario/parameter Case 1 Case 2 Case 3 Case 4 CRLB

Position estimation error (km) 1.0566 1.1298 1.4275 31.7958 0.6489
Velocity estimation error (km/s) 0.0012 0.0012 0.0013 0.0155 7.1867× 10−4
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Figure 8.8 Position and velocity error curves in the case of the two-body model with an angle mea-
surement error 𝜎𝛽 = 10′′. (a) Estimated position error curve and (b) estimated velocity error curve
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variable. This will have a certain influence on its filter performance and, as a result, the time
required by filter convergence and estimation error will increase dramatically compared with
the bearings-only tracking method shown in this chapter.

8.4.1.2 Simulation 2: Influences of Different Angle Measurement Errors on Passive
Tracking Performance

Assuming the filtering period T = 2 seconds and the initial state error is
[
300 300 300 0.5 0.5

0.5
]T
, calculate the estimation error of passive tracking when angle measurement errors are

10′′, 50′′, 150′′, and 200′′, respectively. As CRLBs are different with different angle mea-
surement errors, the position and velocity estimation error curves of the target satellite with
different angle measurement errors are now given:
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Figure 8.9 Position and velocity error curves in the case of the two-body model with an angle mea-
surement error 𝜎𝛽 = 50′′. (a) Estimated position error curve and (b) estimated velocity error curve.
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Figure 8.10 Position and velocity error curves in the case of the two-body model with an angle mea-
surement error 𝜎𝛽 = 150′′. (a) Estimated position error curve and (b) estimated velocity error curve

1. When the angle measurement error 𝜎𝛽 = 10′′, the simulation results are as shown in
Figure 8.8.

2. When the angle measurement error 𝜎𝛽 = 50′′, the simulation results are as shown in
Figure 8.9.

3. When the angle measurement error 𝜎𝛽 = 150′′, the simulation results are as shown in
Figure 8.10.

4. When the angle measurement error 𝜎𝛽 = 200′′, the simulation results are as shown in
Figure 8.11.

The converged position and velocity estimation errors and corresponding CRLBs under the
prescribed four groups of simulation conditions are shown in Table 8.4.
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Figure 8.11 Position and velocity error curves in the case of the two-body model with an angle mea-
surement error 𝜎𝛽 = 200′′. (a) Estimated position error curve and (b) estimated velocity error curve

According to Figures 8.8 to 8.11 and Table 8.4, in the case of the two-body model, with
angle measurement error increases, the filter convergence time, position, and velocity esti-
mation errors of the proposed bearings-only tracking method all increase dramatically. When
the angle measurement error 𝜎𝛽 = 200′′, the position estimation error is nearly up to 10 km,
which indicates that the bearings-only tracking method is very sensitive to the angle measure-
ment error. Additionally, when the angle measurement error is less than 200′′, the position
and velocity estimation error curves are both close to the corresponding CRLB curve, which
indicates that when the angle measurement error is small in the case of the two-body model,
the tracking algorithm is close to optimal.
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Table 8.4 Position and velocity estimation errors of different angle measurement errors in the case of
the two-body model

Simulation scenario/parameter 𝜎𝛽 = 10′′ 𝜎𝛽 = 50′′

Estimation error CRLB Estimation error CRLB

Position estimation error (km) 0.9114 0.3245 1.8138 1.6223
Velocity estimation error (km/s) 9.5498× 10−4 3.5934× 10−4 0.0020 0.0018

Simulation scenario/parameter 𝜎𝛽 = 150′′ 𝜎𝛽 = 200′′

Estimation error CRLB Estimation error CRLB
Position estimation error (km) 4.8663 4.2059 9.5796 6.4889
Velocity estimation error (km/s) 0.0054 0.0050 0.0105 0.0072

8.4.1.3 Simulation 3: Influences of Different Filtering Periods on Passive Tracking
Performances

Assuming the initial state error is still
[
300 300 300 0.5 0.5 0.5

]T
and the angle measure-

ment error 𝜎𝛽 = 20′′, calculate the passive location tracking estimation error in the case of
the filtering periods T = 5 seconds and T = 50 seconds. As CRLBs are different in different
filtering periods, here the estimation error curves under different filtering periods are given:

1. When the filtering period T = 5 seconds, the simulation results are as shown in Figure 8.12.
2. When the filtering period T = 50 seconds, the simulation results are as shown in Figure 8.13.

The converged position and velocity estimation errors and corresponding CRLBs under the
two groups of simulation conditions are shown in Table 8.5.
According to Figures 8.4 to 8.13 and Table 8.5, in the case of the two-body problem, with

filtering period increases, the filter convergence time, position, and velocity estimation errors
of the proposed bearings-only tracking method discussed in this chapter all increase dramati-
cally. When the filtering period is 50 seconds, the position estimation error is up to 16 km and
its curve is obviously different from its corresponding CRLB curve, which indicates that the
bearings-only tracking method is also very sensitive to the filtering period. In the case of the
two-body problem, as there is a linearization error when using the EKF, with filtering period
increases the linearization error increases, leading to worse tracking filter precision.

Table 8.5 Position and velocity estimation errors of different filtering periods in the case of the
two-body problem

Simulation scenario/parameter T = 5 s T = 50 s

Estimation error CRLB Estimation error CRLB

Position estimation error (km) 1.1023 0.7084 16.3420 3.4958
Velocity estimation error (km/s) 0.0013 5.8446× 10−4 0.0133 0.0036
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Figure 8.12 Position and velocity error curves in the case of the two-body model with a filtering period
T = 5 seconds. (a) Estimated position error curve and (b) estimated velocity error curve

8.4.1.4 Simulation 4: Influences of the Ephemeris Error of Observing Satellite
on Passive Tracking Performance

In this chapter, for simulations 1 to 3, it is assumed that there is no error in the ephemeris of
the observing satellite. In fact, it is not possible for the ephemeris of the observer itself to be
precisely accurate. This simulation analysis will be done in simulation 4. Assuming that the
initial state error is still

[
300 300 300 0.5 0.5 0.5

]T
, the angle measurement error 𝜎𝛽 = 20′′,

and the filtering period T = 10 seconds, calculate the passive tracking estimation errors for the
three cases: Case 1, where there is no error in the ephemeris of the observer, Case 2 with
position error of 200m and velocity error of 10m/s, and Case 3 with position error of 500m
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Figure 8.13 Position and velocity error curves in the case of the two-body model with a filtering period
T = 50 seconds. (a) Estimated position error curve and (b) estimated velocity error curve

and velocity error of 50m/s. The position and velocity estimation error curves based on the
above cases are shown in Figure 8.14. The converged position and velocity estimation errors
with the above conditions are shown in Table 8.6.
From Figure 8.14 and Table 8.6, for the case of the two-body model with the ephemeris error

of the observer itself under consideration, there is no obvious difference from the position and
velocity estimation errors by the bearings-only tracking method in this chapter, in which the
position error varies around 100m and the variation of velocity error is less than 1m/s. This
indicates that the ephemeris error of the observer itself is an influencing factor that can be
ignored in satellite passive orbit determination tracking.
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Figure 8.14 Position and velocity estimation error curves of the observer with different ephemeris
errors in the case of the two-body model. (a) Estimated position error curve and (b) estimated velocity
error curve

Table 8.6 Position and velocity estimation errors of the observer with different
ephemeris errors in the case of the two-body model

Simulation scenario/parameter Case 1 Case 2 Case 3

Position estimation error (km) 1.3716 1.2439 1.4917
Velocity estimation error (km/s) 0.0015 0.0016 0.0017
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8.4.2 Simulation Considering J2 Perturbation of Earth Oblateness

As described above, passive tracking performance with bearings only is analyzed through sim-
ulation in the case of the two-bodymodel. The following simulations are about passive tracking
performance with bearings only considering J2 perturbation of the earth oblateness.

8.4.2.1 Simulation 5: Influences of Different Initial State Errors on Passive Tracking
Performance

Assume that the angle measurement error 𝜎𝛽 = 20′′, filtering period T = 2 seconds, two

groups of initial state error Xe =
[
300 300 300 0.5 0.5 0.5

]T
(Case 2), and Xe =

[
500 500

500 1 1 1
]T

(Case 3) are adopted considering J2 perturbation, where the units of the initial
state error are kilometer for position vector r and kilometers per second for velocity vector
ṙ. Additionally, the estimated result when the initial state error in the case of the two-body
model is Xe =

[
300 300 300 0.5 0.5 0.5

]T
(Case 1) is compared with the CRLB (whether

orbit perturbation is considered does not have much influence on CRLB, if not specially
noted in this chapter, for the lower bound of estimation errors under the perturbation case
all use CRLB in the case of the two-body model for the research). Based on the estimated
position and velocity vectors of each point, it is possible to calculate the position and velocity
estimation errors of the target satellite, as shown in Figure 8.15. The converged position and
velocity estimation errors and corresponding CRLBs under the above conditions are shown
in Table 8.7.
From Figure 8.15 and Table 8.7, the estimation error with perturbation considered is obvi-

ously larger than that in the case of the two-body model and there are differences in the CRLB.
Furthermore, the filter is less stable than that in the case of the two-body model and the esti-
mation error will oscillate within a certain scope, which indicates that the linearization error
generated by the EKF with perturbation considered is more complicated than that in the case
of the two-body model and that rectification with the noise covariance matrix in a constant
state is not as effective. Additionally, with increases in the initial state error, the error of posi-
tion and velocity estimation with the bearings-only tracking method discussed in this chapter
increases in an apparent way.

8.4.2.2 Simulation 6: Influences of Different Angle Measurement Errors on Passive
Tracking Performance

Assuming the filtering period T = 2 seconds and the initial state error is Xe
[
300 300 300 0.5

]
0.5 0.5

]T
, calculate the passive tracking estimation error when angle measurement errors are

50′′ and 150′′, respectively, with perturbation considered, and where the CRLB is still intro-
duced as the reference to the lower bound of the parameter estimation error:

1. When the angle measurement error 𝜎𝛽 = 50′′, the simulation results are as shown in
Figure 8.16.

2. When the angle measurement error 𝜎𝛽 = 150′′, the simulation results are as shown in
Figure 8.17.
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Figure 8.15 Position and velocity estimation error curves of different initial state errors in the case of
perturbation. (a) Estimated position error curve and (b) estimated velocity error curve

Table 8.7 Position and velocity estimation errors of different initial state errors in
the case of perturbation

Simulation scenario/parameter Case 1 Case 2 Case 3 CRLB

Position estimation error (km) 1.1298 2.6523 4.0558 0.6489
Velocity estimation error (km/s) 0.0012 0.0177 0.0179 7.1867× 10−4
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Figure 8.16 Position and velocity estimation error curves in the case of perturbation with an angle
measurement error 𝜎𝛽 = 50′′. (a) Estimated position error curve and (b) estimated velocity error curve

The converged position and velocity estimation errors and corresponding CRLB under the
above two simulation conditions are shown in Table 8.8.
According to Figure 8.16, Figure 8.17, and Table 8.8, when perturbation is considered,

with angle measurement error increases, the position and velocity estimation errors with the
bearings-only tracking method increase in an apparent way. Compared with the correspond-
ing results in the case of the two-body model in Simulation 2, either the position and velocity
estimation precision or filter stability with perturbation considered is as good as those in the
case of the two-body model.
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Figure 8.17 Position and velocity estimation error curves in the case of perturbation with an angle
measurement error 𝜎𝛽 = 150′′. (a) Estimated position error curve and (b) estimated velocity error curve

Table 8.8 Position and velocity estimation errors of different angle measurement errors
in the case of perturbation

Simulation scenario/parameter 𝜎𝛽 = 50′′ 𝜎𝛽 = 150′′

Estimation error CRLB Estimation error CRLB

Position estimation error (km) 5.0624 1.6223 6.8377 4.2059
Velocity estimation error (km/s) 0.0185 0.0018 0.0209 0.0050
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Figure 8.18 Position and velocity error curves in the case of perturbation when the filtering period
T = 5 seconds. (a) Estimated position error curve and (b) estimated velocity error curve

8.4.2.3 Simulation 7: Influences of Different Filtering Periods on Passive Tracking
Performances

Assuming the initial state error is still
[
300 300 300 0.5 0.5 0.5

]T
and the angle measure-

ment error 𝜎𝛽 = 20′′, calculate the passive tracking estimation error when the filtering period
T = 5 seconds and T = 50 seconds with perturbation considered. As the CRLBs are different
in different filtering periods, here the estimation error curves in different filtering periods are
given:

1. When the filtering period T = 5 seconds, the simulation results are as shown in Figure 8.18.
2. When the filtering period T = 50 seconds, the simulation results are as shown in Figure 8.19.
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Figure 8.19 Position and velocity error curves in the case of perturbation when the filtering period
T= 50 seconds. (a) Estimated position error curve and (b) estimated velocity error curve

The converged position and velocity estimation errors and corresponding CRLB under the
above two simulation conditions are shown in Table 8.9.
From Figure 8.18, Figure 8.19 and Table 8.9, with filtering period increases, the filter conver-

gence time, position, and velocity estimation errors all increase in an obvious manner, which
indicates that with perturbation considered, the bearings-only tracking method is still very
sensitive to the filtering period. When the filtering period is 5 seconds, the estimated precision
under perturbation is still not as good as that in the case of the two-body model, but when
the filtering period increases to 50 seconds, the position estimation error under perturbation
is 11.9 km, which is better than that in the case of the two-body model (at such a time, the
position estimation error in the case of the two-body model is 16.3 km, as shown in Table 8.9).
This indicates that, as with filtering period increases, the linearization error generated by the
EKF algorithm with perturbation considered is more complicated than that in the case of the
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Table 8.9 Position and velocity estimation errors of different filtering periods in the case
of perturbation

Simulation scenario/parameter T = 5 s T = 50 s

Estimation error CRLB Estimation errorCRLB

Position estimation error (km) 6.0135 0.7084 11.9188 3.4958
Velocity estimation error (km/s) 0.0185 5.8446× 10−4 0.0132 0.0036
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Figure 8.20 Position and velocity estimation error curves of the observer with different ephemeris
errors under perturbation. (a) Estimated position error curve and (b) estimated velocity error curve
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Table 8.10 Position and velocity estimation error curves of the observer with
different ephemeris errors under perturbation

Simulation scenario/parameter Case 1 Case 2 Case 3

Position estimation error (km) 1.4917 6.0600 6.0866
Velocity estimation error (km/s) 0.0017 0.0193 0.0193

two-body model and that rectification with the noise covariance matrix in a constant state
hardly satisfies the requirement of a high precision state estimation.

8.4.2.4 Simulation 8: Influences of the Ephemeris of Observing Satellite on Passive
Tracking Performances

In this chapter, for simulations 5 to 7, it is assumed that there is no error in the ephemeris of
the observing satellite, for which simulation analysis will be done in Simulation 8. Assuming
that the initial state error is still

[
300 300 300 0.5 0.5 0.5

]T
, the angle measurement error

𝜎𝛽 = 20′′, and the filtering period T = 10 seconds, calculate the passive tracking estimation
error under the three cases: position error of 500m and velocity error of 50m/s (Case 1), for
the ephemeris of the observing satellite in the case of the two-body model, no error in the
ephemeris of the observing satellite (Case 2), position error of 500m and velocity error of
50m/s (Case 3). See Figure 8.20 for the position and velocity estimation error curves based
on the above cases. The converged position and velocity estimation errors under the above
conditions are shown in Table 8.10.
According to Figure 8.20 and Table 8.10, when the ephemeris error of the observer itself is

being considered, the position and velocity estimation errors under perturbation do not increase
dramatically, but obviously are larger than those in the case of the two-body model, which
indicates that the ephemeris error of the observer itself under perturbation is still an influencing
factor, which can be ignored for satellite passive orbit determination tracking.

8.5 Summary

Through theoretical analysis and simulation results, the following conclusions can be
achieved:

1. Under two-dimensional (two satellites on the same orbital plane) and three-dimensional
conditions, the satellite-to-satellite passive tracking system with bearings only is totally
observable. In other words, it is possible to achieve satellite-to-satellite passive tracking
through several times of bearings observation.

2. Under typical simulation scenarios, what influences the estimation performance of passive
tracking with bearings only most is the filtering period, the second is the angle measure-
ment and initial state error, and the least is the ephemeris error of the observer itself. The
estimation error of the algorithm increases with an increase in various influencing factors.

3. In the case of the two-body model only, the estimation performance of the bearings-only
tracking method is very close to the lower bound of parameter estimation (CRLB), which
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indicates that in the case of the two-body model, the EKF with bearings only mentioned in
this chapter can achieve satellite-to-satellite passive tracking in an effective way.

4. In the case of perturbation, the estimation performance of the bearings-only tracking
method is obviously worse than that in the case of the two-body model, along with
differences in the CRLB, which indicates that under a complicated system model like
perturbation, the linearization error generated by the EKF is much more complicated than
that in the case of the two-body model, and that it s not enough to rectify the linearization
error of the nonlinear state equation by a noise covariance matrix in the constant state only.
Further research on the filter improvement algorithm under a complicated system model
is needed for a state estimation result of high precision.
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9
Satellite-to-Satellite Passive
Tracking Based on Angle and
Frequency Information

9.1 Introduction of Passive Tracking

Chan and Rudnicki [1] and Becker [2–4] have respectively pointed out that, when an angle
is measured, the introduction of frequency measurement information can increase the observ-
ability of the passive localization system to reduce the filtering convergence time and improve
localization accuracy. Since both measurement information of the angle and frequency are
adopted, it is also called the combined method (CM) [2–4]. The question is whether the pas-
sive tracking system of the satellite-to-satellite target can introduce frequency measurement
information.
According to Kepler’s Third Law, the square of the running cycle of the satellite orbiting the

earth is in proportion to the cube of the semi-major axis of its orbit [5, 6]. In other words, for
two satellites running in different orbits, a relative motion must exist between the satellites. If
the observing satellite can also measure frequency information of the arrived signal at the same
time as finding measuring angle information, there may be some Doppler shift in the frequency
of the received signal due to relative motion between the satellites, which is helpful when
improving observability of the passive tracking system to reduce the filtering convergence
time and to improve tracking accuracy.
Therefore, based on the study in Chapter 8, frequency measurement information is further

introduced to study the satellite-to-satellite passive tracking method on the basis of angle and
frequency information, establish such two passive tracking models as the two-body model and
that considering the term J2 perturbation of earth oblateness, and derive the corresponding
extended Kalman filter (EKF) method when the angle is measured.
Moreover, this chapter will further study the observability of the satellite-to-satellite passive

tracking system based on angle and frequency information and analyze relations between the
system observability and the influencing factors correlated with the state equation and the
measurement equation, which provide the basis for performance evaluation of the algorithm.

Space Electronic Reconnaissance: Localization Theories and Methods, First Edition.
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9.2 Tracking Model and Method

Similar to research ideas in Chapter 8, we will start from the two-body model to establish
the satellite-to-satellite passive tracking model based on angle and frequency information and
then extend it to the condition considering J2 perturbation of the earth oblateness and using
the EKF method under corresponding conditions.

9.2.1 Mathematic Model in the Case of the Two-Body Model

9.2.1.1 State Model

Take the position and velocity vector and unknown signal carrier frequency f0 of the target
satellite in the J2000.0 coordinate system as the state variable XCM (similar to that in reference
[2], assuming that the target satellite signal carrier frequency f0 is constant during observation),
that is:

XCM =
[
rT ṙT f0

]T
. (9.1)

Therefore, the state differential equation of the satellite motion is as follows:

ẊCM = FCM(XCM) =
[
ṙT r̈T 0

]T
. (9.2)

In the case of two-body model, according to the law of universal gravitation, the satellite
motion equation is as follows [6]:

r̈ = −𝜇 r
r3
, (9.3)

where r =
[
x y z

]T
, ṙ =

[
ẋ ẏ ż

]T
, and r̈ =

[
ẍ ÿ z̈

]T
, respectively, are the position, velocity, and

acceleration vectors of the target satellite in the J2000.0 coordinate system, FCM(⋅) is the non-
linear transformation of state variableXCM , 𝜇 is the constant of gravity, and r =

√
x2 + y2 + z2

is the distance between the target satellite and the centroid of the earth.

9.2.1.2 Measurement Model

Assuming that the observing satellite could measure the azimuth angle 𝛽k, the elevation angle
𝜀k, and the Doppler frequency fk of the target satellite by means of direction finding and fre-
quency measurement, the definitions of them are as follows:

𝛽k = arctan

(
𝜌y (k)
𝜌x(k)

)
+ n𝛽k (k = 0, 1, … ,Ns − 1), (9.4)

𝜀k = arctan

⎛⎜⎜⎜⎝
𝜌z (k)√

𝜌2x(k) + 𝜌2y(k)

⎞⎟⎟⎟⎠ + n𝜀k (k = 0, 1, … ,Ns − 1), (9.5)

where n𝛽 and n𝜀 are measurement noise at the azimuth angle and the elevation angle, and it is
still assumed that the measurement noise is zero-mean Gaussian distributed and the variances
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are 𝜎2
𝛽
and 𝜎2

𝜀
, respectively. Suppose 𝝆 =

[
𝜌x (k) 𝜌y(k) 𝜌z(k)

]T
is the position vector of the

target satellite in the coordinate system of the centroid measurement station belonging to the
observing satellite (see Section 2.3 for the definition of the coordinate system).
Since relative motion between the satellites results in a larger Doppler shift in receiving

signal frequencies, the Doppler frequency fk of the received signal can be expressed as

fk = f0

⎡⎢⎢⎢⎣1 −
𝝆 ⋅ �̇�

c
√
𝜌2x (k) + 𝜌2y(k) + 𝜌2z (k)

⎤⎥⎥⎥⎦ + nfk (k = 0, 1, … ,Ns − 1), (9.6)

where c is the propagation speed of the electromagnetic wave in free space, f0 is the unknown
signal carrier frequency, and nf is the frequencymeasurement noise assumed to be theGaussian

white noise with zero mean and variance 𝜎2f . Suppose �̇� =
[
�̇�x �̇�y �̇�z

]T
contains three velocity

components of the target satellite in the coordinate system of the centroid measurement station
belonging to the observing satellite (ee Section 2.3 for definitions).
The measurement vector is defined as ZCM(k) =

[
𝛽k 𝜀k fk

]T
and the measurement vector

can be expressed as a nonlinear function of state variable XCM:

ZCM (k) = HCM

(
XCM (k)

)
+ nCM(k), (9.7)

where HCM(⋅) is the nonlinear transformation from the measurement vector consisting of
expressions (9.4) to (9.6) to the state variable XCM and nCM(k) =

[
n𝛽 (k) n𝜀(k) nf (k)

]T
is the

measured noise vector in the measuring azimuth angle, elevation angle, and Doppler frequency
shift, whose corresponding covariance matrix can be expressed as

E
[
nCM (k) nCM(k)T

]
= RCM(k) =

⎡⎢⎢⎢⎢⎣
𝜎2
𝛽

0 0

0 𝜎2𝜀 0

0 0 𝜎2f

⎤⎥⎥⎥⎥⎦
. (9.8)

9.2.2 Tracking Method in the Case of the Two-Body Model

Similar to the analytic method in Chapter 8, the state differential equation (Equation (9.2)) of
the satellite can be discretized to obtain

XCM(k + 1) − XCM(k) = ∫

tk+1

tk

FCM(XCM(t))dt. (9.9)

When the time interval tk+1 − tk = T is short enough,FCM(XCM(t)) can be expanded to a Taylor
series in the vicinity of tk:

FCM(XCM(t)) ≈ FCM(XCM(k)) + ACM(XCM(k)) ⋅ FCM(XCM(k))(t − tk), (9.10)
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where

ACM(XCM(k)) =
𝜕FCM

(
XCM (t)

)
𝜕XCM

|||||t=tk
is a 7× 7 matrix. Substitute expression (9.10) into expression (9.9), which gives

XCM (k + 1) = XCM (k) + FCM
(
XCM (k)

)
T + ACM

(
XCM (k)

)
⋅ FCM

(
XCM (k)

) T2

2

+WCM (k) , (9.11)

whereWCM (k) is the error vector introducedwhen linearization is applied to the nonlinear state
equation. It is of the same order as |||XCM (k) − X̂CM (k∕k)|||2 and E [

WCM (k)WCM(k)T
]
= QCM

is the state noise covariance matrix.
According to expression (9.2) and the law of vector differentiation, ACM

(
XCM (k)

)
can be

expressed as follows:

ACM
(
XCM (k)

)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜕ṙ
𝜕r3×3

𝜕ṙ
𝜕ṙ3×3

𝜕ṙ
𝜕f0 3×1

𝜕r̈
𝜕r3×3

𝜕r̈
𝜕ṙ3×3

𝜕r̈
𝜕f0 3×1

𝜕0
𝜕r1×3

𝜕0
𝜕ṙ1×3

𝜕0
𝜕f01×1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

[
A(X (k))6×6 𝟎6×1
𝟎1×6 0

]
t=tk

, (9.12)

where A(X(k)) is the observation matrix of the bearings-only (BO) tracking method in the case
of the two-body model (see Section 8.2.1) and r, ṙ, and r̈ are respectively the position, velocity,
and acceleration vector of the target satellite in the J2000.0 coordinate system.
By substituting the state filtered value X̂CM(k∕k) into expressions (9.12) and (9.11), respec-

tively, the state prediction equation can be expressed as

X̂CM(k + 1∕k) = X̂CM(k∕k) + FCM(X̂CM(k∕k))T

+ ACM(X̂CM(k∕k)) ⋅ FCM(X̂(k∕k))
T2

2
. (9.13)

The algorithm of the state transition matrix is now similar to that of BO in Chapter 8. Firstly,
it can be expanded to a Taylor series in the vicinity of tk according to the definition [7] of the
state transition matrix𝚽CM(t, tk):

𝚽CM(t, tk) = 𝚽CM(tk, tk) +
d𝚽CM

(
t, tk

)
dt

|||||t=tk (t − tk) + O(t − tk). (9.14)

It can then be obtained after the continuous state transition matrix is discretized according to
the property [7] of the state transition matrix that

𝚽CM(k + 1∕k) = I + ACM(X̂CM(k∕k))T . (9.15)

As the measurement equation is a nonlinear discrete equation, only linearization is required.
The measurement equation can be expanded at X̂CM(k + 1∕k) to the Taylor series. As mea-
surement values of both the angle and frequency are obtained in the body coordinate system
of the observing satellite and the position and velocity components of the state variable are in
the J2000.0 coordinate system, it is required to convert from the body coordinate system of the
observing satellite to the J2000.0 coordinate system to calculate the Jacobian matrix. Based
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on the law of vector differentiation [8], the measured Jacobian matrix can be expressed as

HCM(k + 1∕k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝛽k

𝜕r1×3

𝜕𝛽k

𝜕ṙ1×3

𝜕𝛽k

𝜕f01×1
𝜕𝜀k

𝜕r1×3

𝜕𝜀k

𝜕ṙ1×3

𝜕𝜀k

𝜕f01×1
𝜕fk
𝜕r1×3

𝜕fk
𝜕ṙ1×3

𝜕fk
𝜕f01×1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(
𝜕𝛽k
𝜕𝝆

𝜕𝝆

𝜕r
+
𝜕𝛽k
𝜕�̇�

𝜕�̇�

𝜕r

)
1×3

𝜕𝛽k
𝜕�̇�

𝜕�̇�

𝜕ṙ1×3

𝜕𝛽k
𝜕f01×1(

𝜕𝜀k

𝜕𝝆

𝜕𝝆

𝜕r
+
𝜕𝜀k

𝜕�̇�

𝜕�̇�

𝜕r

)
1×3

𝜕𝜀k

𝜕�̇�

𝜕�̇�

𝜕ṙ1×3

𝜕𝜀k

𝜕f01×1(
𝜕fk
𝜕𝝆

𝜕𝝆

𝜕r
+
𝜕fk
𝜕�̇�

𝜕�̇�

𝜕r

)
1×3

𝜕fk
𝜕�̇�

𝜕�̇�

𝜕ṙ1×3

𝜕fk
𝜕f01×1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (9.16)

The following is the specific solution for the measured Jacobian matrix. According to expres-
sions (9.4) and (9.5), 𝛽k and 𝜀k are the only functions of 𝝆, so it can be found that

𝜕𝛽k
𝜕�̇�

=
𝜕𝜀k
𝜕�̇�

= 𝟎1×3,

𝜕𝛽k

𝜕f0
=
𝜕𝜀k

𝜕f0
= 0. (9.17)

According to the coordinate system definition in Section 2.3

𝜕𝝆

𝜕r
= GT,

𝜕�̇�

𝜕r
= Ġ

T
,
𝜕�̇�

𝜕ṙ
= GT. (9.18)

According to the corresponding results of the BO tracking method in Chapter 8, the partial
differential correlated with the angle measurement value can be expressed as

𝜕𝛽k
𝜕𝝆

=
[ −𝜌y
𝜌2x + 𝜌2y

𝜌x

𝜌2x + 𝜌2y
0
]
1×3
, (9.19)

𝜕𝜀k

𝜕𝝆
=

⎡⎢⎢⎢⎣
−𝜌x𝜌z

𝜌2r

√
𝜌2x + 𝜌2y

−𝜌y𝜌z

𝜌2r

√
𝜌2x + 𝜌2y

√
𝜌2x + 𝜌2y

𝜌2r

⎤⎥⎥⎥⎦1×3
. (9.20)

The following is the solution for the partial differential correlated with the frequency measure-
ment. It can be obtained according to expression (9.6) as follows:

𝜕fk
𝜕𝝆

=
f0
c

(
(𝝆 ⋅ �̇�)𝝆 − 𝜌2r �̇�

𝜌3r

)
,

𝜕fk
𝜕�̇�

= −
f0
c

(
𝝆

𝜌r

)
𝜕fk
𝜕f0

= 1 −
(𝝆 ⋅ �̇�)
c𝜌r

, (9.21)
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where the definitions of 𝝆, �̇�, G, and Ġ are as shown in Section 2.3, and 𝜌r =
√
𝜌2x + 𝜌2y + 𝜌2z

is the distance between the observing satellite and the target satellite. Substituting expressions
(9.17) to (9.21) into expression (9), the measured Jacobian matrix can be derived.
After being linearized and discretized, the state equation and the measurement equation can

be substituted into the EKF expression for iterative calculation according to the following
steps:

1. Calculate the one-step state prediction estimation X̂CM(k + 1∕k) as expression (9) and then-
calculate its corresponding covariance matrix:

PCM(k + 1∕k) = 𝚽CM(k + 1∕k)PCM(k∕k)𝚽T
CM(k + 1∕k) + QCM . (9.22)

Here the constant matrix [7] can be selected for the QCM matrix by experience.
2. Calculate the filter gain matrix:

KCM(k + 1) = PCM(k + 1∕k)HT
CM(k + 1∕k)

(HCM(k + 1∕k)PCM(k∕k)HT
CM(k + 1∕k) + RCM(k + 1))−1. (9.23)

3. Calculate the state filter update and the corresponding covariance matrix:

X̂CM(k + 1∕k + 1) = X̂CM(k + 1∕k) + KCM(k + 1)

(ZCM(k + 1) −HCM(X̂CM(k + 1∕k))), (9.24)

PCM(k + 1) = (I − KCM(k + 1)HCM(k + 1∕k))PCM(k + 1∕k). (9.25)

9.2.3 Mathematical Models Considering J2 Perturbation of Earth
Oblateness

Since it is idealistic to analyze satellite-to-satellite passive tracking performance in the case
of the two-body model, this section will consider the influence of orbit perturbation of earth
oblateness.
The state variable considering perturbation is the same as the two-body model and is

still XCM , as shown in expression (9.1). According to expression (9.1), the state differential
equation of satellite motion when the term J2 perturbation of earth oblateness is considered is
as follows:

ẊCM = FCM(XCM) =
[
ṙT r̈T 0

]T
. (9.26)

In order to distinguish these results from the results in the case of the two-bodymodel,FCM(⋅)
is adopted as the nonlinear transformation against the state variable XCM . The key to solve
expression (9.26) is to calculate the perturbation acceleration of the satellite at this moment.
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The perturbation acceleration is derived in Chapter 8, which is expressed as:

ẍ = − 𝜇
r3
x

[
1 − J2

(
Re
r

)2 (
7.5

z2

r2
− 1.5

)]

ÿ = − 𝜇
r3
y

[
1 − J2

(
Re
r

)2 (
7.5

z2

r2
− 1.5

)]

z̈ = − 𝜇
r3
z

[
1 − J2

(
Re
r

)2 (
7.5

z2

r2
− 4.5

)]

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

, (9.27)

where Re is the average equatorial radius of the earth and J2 is the second-order spherical
harmonic coefficient of terrestrial gravitation field.
Whether perturbation is being considered has nothing to do with the observations as the

measurement model considering orbit perturbation of the earth oblateness is the same as that
in Section 9.2.1 in the case of the two-body model.

9.2.4 Tracking Method Considering J2 Perturbation of Earth Oblateness

Considering J2 perturbation of earth oblateness, the state differential equation of satellite
motion is different from that in the case of the two-body model, so the corresponding state
prediction equation and state transition matrix are also different from those in the case of the
two-body model, while the measured Jacobian matrix is the same as that of the two-body
model. The following is only to derive the difference from the results in the case of the
two-body model.
Similarly, the state differential equation (Equation (9.26)) of the target satellite is now dis-

cretized to obtain

XCM (k + 1) − XCM (k) =
∫

tk+1

tk

FCM
(
XCM (t)

)
dt. (9.28)

When the time interval tk+1 − tk = T is short enough, FCM
(
XCM (t)

)
can be expanded to a

Taylor series in the vicinity of tk:

FCM
(
XCM (t)

)
≈ FCM

(
XCM (k)

)
+ ACM

(
XCM (k)

)
⋅ FCM

(
XCM (k)

) (
t − tk

)
, (9.29)

Where

ACM
(
XCM (k)

)
=
𝜕FCM

(
XCM (t)

)
𝜕XCM

||||||t=tk
is a 7× 7 matrix. Substituting expression (9.29) into expression (9.28) yields

XCM (k + 1) = XCM (k) + FCM
(
XCM (k)

)
T + ACM

(
XCM (k)

)
⋅ FCM

(
XCM (k)

) T2

2

+WCM (k) . (9.30)
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In the above expression, WCM (k) is still the error vector introduced when the nonlinear state
equation is linearized, while it is different from that of the two-body modelWCM (k). To make

a distinction, here it is WCM (k), which is still on the same order as |||XCM (k) − X̂CM (k∕k)|||2
and E

[
WCM (k)WCM(k)T

]
= QCM and is still the state noise covariance matrix.

According to expression (9.26) and the vector differential law, ACM
(
XCM (k)

)
can be

expressed as follows:

ACM
(
XCM (k)

)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜕ṙ
𝜕r3×3

𝜕ṙ
𝜕ṙ3×3

𝜕ṙ
𝜕f0 3×1

𝜕r̈
𝜕r3×3

𝜕r̈
𝜕ṙ3×3

𝜕r̈
𝜕f03×1

𝜕0
𝜕r1×3

𝜕0
𝜕ṙ1×3

𝜕0
𝜕f01×1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

[
A(X (k))6×6 𝟎6×1
𝟎1×6 0

]
t=tk

, (9.31)

where A(X(k)) is the derived matrix of the BO tracking method considering J2 perturbation in
Chapter 8 and r, ṙ, and r̈ are respectively the position, velocity, and acceleration vector of the
target satellite in the J2000.0 coordinate system.
Substitute the state filtered value X̂CM(k∕k) into expressions (9.31) and (9.30) respectively.

The state prediction equation considering J2 perturbation of the earth oblateness can then be
expressed as

X̂CM(k + 1∕k) = X̂CM(k∕k) + FCM(X̂CM(k∕k))T

+ ACM(X̂CM (k∕k)) ⋅ FCM
(
X̂ (k∕k)

) T2

2
. (9.32)

Calculate the state transition matrix by a method similar to that in the case of the two-body
model. Firstly, obtain the continuous state transition matrix. Then expand this to a Taylor series
in the vicinity of tk. Finally, discretize it. The state transition matrix after being discretized is
found as𝚽CM (k + 1∕k) and its expression is

𝚽CM (k + 1∕k) = I + ACM
(
X̂CM (k∕k)

)
T . (9.33)

9.3 System Observability Analysis

Chapter 8 of this book has given a detailed analysis of the existing observability prob-
lem and calculation methods. It introduced a kind of system observability description method
and analyzed the advantages of using the method to describe the system observability
compared with the existing description method. This section will analyze the observability
of the satellite-to-satellite passive tracking system based on angle and frequency information
using the description method. Since the known carrier frequency f0 is a special case of the
unknown f0 in Section 9.2, this section will only analyze system observability of targeting the
unknown f0 situations.
Still taking the typical simulation scenario in Chapter 8 as an example, we shall study the

relations between the system observability and correlated influencing factors of the state
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equation and the measurement equation by simulation. Suppose the filtering period is T ,
the observation duration is 5000 seconds, the angle measurement errors are 𝜎𝛽 and 𝜎𝜀, with
𝜎𝛽 = 𝜎𝜀, the frequency measurement error is 𝜎f , and the signal carrier frequency of the target
satellite is f0.

9.3.1 Influence of Factors of the State Equation

When the carrier frequency f0 is unknown, the state equation of the satellite-to-satellite
passive tracking system based on angle and frequency information can be expressed as
Equation (9.2). According to expression (9.15), the state transition matrix after being
discretized is expressed as

𝚽CM (k + 1∕k) = I + ACM(X̂CM(k∕k))T .

As 𝚽CM(k + 1∕k) is basically determined by the filtering period T and changes slightly with
variation of the satellite position parameter, analyses on relations between correlated influenc-
ing factors of the state equation and system observability focus on studying the influence of
the filtering period T on system observability.
Assume that the angle measurement error is 𝜎𝛽 = 20′′, the frequency measurement error is

𝜎f = 1 kHz, and the signal carrier frequency of the target satellite is f0 = 15GHz. Select filtering
periods as T = 5 seconds, T = 20 seconds, and T = 50 seconds, respectively, to test the variation
curves of the position and the velocity estimation errors and the system observability calculated
in expression (8.42). At the same time, a comparison of the condition numbers of the system
observability method [9] and the BO method, and the observability curve of the position and
the velocity error curves are shown in Figure 9.1.
According to Figure 9.1, the shorter the filtering period, the smaller is the system observ-

ability value and the better the system observability, the higher is the corresponding position
and velocity estimation precision. Conversely, the longer the filtering period, the worse is the
system observability and the lower is the corresponding position and velocity estimation pre-
cision. In other words, the filtering period is an important parameter based on the passive
tracking system and combines the bearings and frequency methods, which directly determines
the state transition matrix of the system and consequently influences the system observability.
Moreover, according to the corresponding results of Figure 9.1a and b and the BOmethod in

Chapter 8, when the condition number is now adopted to describe the system observability, the
obtained observability of the CM is worse than that of BOmethod but the truth is not the same,
which indicates that using the condition number to describe observability does not apply here.
Consequently, when the observability description method introduced in Chapter 8 is adopted,
observability obtained from the CM is obviously superior to that of the BO method.

9.3.2 Influence of Factors of the Measurement Equation

When the carrier frequency f0 is unknown, themeasurement equation of the satellite-to-satellite
passive tracking system based on the angle and frequency is expression (9.7) and the corre-
sponding measurement Jacobian matrix is expression (9). Here the research will be focused
on the influence of the angle measurement error 𝜎𝛽 , the frequency measurement error 𝜎f ,
and the signal carrier frequency f0 of target satellite on the system observability when
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analyzing relations between the system observability and correlated influencing factors of the
measurement equation.

9.3.2.1 Relations between the System Observability and the Angle Measurement
Error

Now assume that the filtering period is T = 5 seconds, the frequency measurement error is
𝜎f = 100Hz, the signal carrier frequency of the target satellite is f0 = 15GHz, and the select
angle measurement errors 𝜎𝛽 = 10′′, 𝜎𝛽 = 50′′, and 𝜎𝛽 = 150′′, respectively, are used to test
the variation curve of the position and velocity estimation errors and the system observability
introduced in this section under different angle measurement errors. Similarly, the condition
number method for the measurement of the system observability is determined [9] and the BO
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Figure 9.1 Relations between system observability and location and velocity estimation error and
filtering period. (a) Observability curve indicated with condition number, (b) observability calculated
according to expression (8.42), (c) position estimation error curve, and (d) velocity estimation error
curve
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Figure 9.1 (continued)

method is used as a comparison, and the observability curve and position and velocity error
curves are shown in Figure 9.2.
According to Figure 9.2, the shorter the angle measurement error, the smaller is the system

observability value and the better the system observability, the higher is the corresponding
position and velocity estimation precision. Conversely, the greater the angle measurement
error, the worse is the system observability and the lower is the corresponding position and
velocity estimation precision. In other words, for the satellite-to-satellite passive tracking sys-
tem with the CM, the angle measurement error is also an important factor that influences the
system observability.
Moreover, according to Figure 9.2a to d, the system observability describing the condition

number can not only show the influence of angle measurement error on the system observabil-
ity but also draws the conclusion that the system observability based on the CM is worse than
that of the BO method, which is inconsistent with the simulation results in Figure 9.2e and f.
Use of the system observability description method introduced in this section can clearly show
the relations between the observability and angle measurement error. Along with the increase
of the angle measurement error, the system observability value is obviously increased, and
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the system observability obtained by the CM is apparently superior to that of the BO method
under the same conditions.

9.3.2.2 Relations between the System Observability and the Frequency Measurement
Error

Assume that the filtering period is still T = 5 seconds, the angle measurement error is 𝜎𝛽 = 20′′,
and the signal carrier frequency of the target satellite is f0 = 15GHz. Select the angle mea-
surement errors 𝜎f = 100Hz, 𝜎f = 5 kHz, and 𝜎f = 50 kHz, respectively, to test the variation
curve of the position, the velocity estimation error, and the system observability introduced
in this section under different frequency measurement errors. Similarly, the condition number
method as the measurement of the system observability [9] is used, with the BO method used

(a) (b)

(c) (d)

0 1000 2000 3000 4000 5000
105

105

105

104

104

103

102

106

106

106

107

107

108

109

109

Time (s)

C
o
n
d
it
io

n
 N

u
m

b
e
r

BO method
CM method

0 1000 2000 3000 4000 5000
10‒2

10‒1

100

101

102

Time (s)

D
e
g
re

e
 o

f 
O

b
s
e
rv

a
b
ili

ty

BO method σβ = 10ʺ
CM method σβ = 10ʺ

BO method σβ = 50ʺ
CM method σβ = 50ʺ

BO method σβ = 150ʺ
CM method σβ = 150ʺ

0 1000 2000 3000 4000 5000

Time (s)

D
e
g
re

e
 o

f 
O

b
s
e
rv

a
b
ili

ty

0 1000 2000 3000 4000 5000

108

Time (s)

D
e
g
re

e
 o

f 
O

b
s
e
rv

a
b
ili

ty

Figure 9.2 Relations between system observability and location and velocity estimation error and
angle measurement. (a) Observability curve indicated with condition number, (b) observability calcu-
lated according to expression (8.42) when 𝜎𝛽 = 10′′, (c) observability calculated according to expression
(8.42) when 𝜎𝛽 = 50′′, (d) observability calculated according to expression (8.42) when 𝜎𝛽 = 150′′, (e)
position estimation error curve, and (f) velocity estimation error curve
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Figure 9.2 (continued)

as a comparison; the observability curve and the position and velocity error curves are shown
in Figure 9.3.
According to Figure 9.3, the shorter the frequency measurement error, the smaller is the sys-

tem observability value and the better the system observability, the higher is the corresponding
position and velocity estimation precision. Conversely, the greater the frequency measurement
error, the worse is the system observability and the lower is the corresponding position and
velocity estimation precision. In other words, for the satellite-to-satellite passive tracking sys-
tem with the CM, the frequency measurement error is also an important factor that influences
the system observability.
According to Figure 9.3a and b, the system observability describing the condition number

still cannot reflect the influence of the frequency measurement error, but the observability
description method introduced in this section can clearly show the influence of the frequency
measurement error. Along with the increase of the frequency measurement error, the system
observability value is also increased, and the observability obtained through the CM is obvi-
ously superior to that of the BOmethod.Moreover, according to Figure 9.3b, relations between
the system observability and the frequency measurement error are not uniformly decreased,
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andwith the increase of the frequencymeasurement error, the system observability is gradually
decreased, which is reflected in Figure 9.3c and d.

9.3.2.3 Relations between the System Observability and the Target Signal Carrier
Frequency f

𝟎

Assume that the filtering period is still T = 5 seconds, the angle measurement error is 𝜎𝛽 = 20′′,
and the relative frequency error is 𝜎f∕f0 = 5 × 10−8. Select the signal carrier frequencies of the
target satellite f0 = 1GHz, f0 = 3GHz, and f0 = 20GHz, respectively, to test the variation curve
of the position and velocity estimation errors, and the system observability introduced in this
section under the same relative frequency measurement error. Similarly, the condition number
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Figure 9.3 Relations between system observability and location and velocity estimation error and
frequency measurement. (a) Observability curve indicated with condition number, (b) observability cal-
culated according to expression (8.42), (c) position estimation error curve, and (d) velocity estimation
error curve
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Figure 9.3 (continued)

method as the measurement of the system observability [9] is used, with the BO method used
for comparison, and the observability curve and position and velocity error curves are shown
in Figure 9.4.
According to Figure 9.4, the system observability curves obtained under the same rela-

tive frequency measurement error 𝜎f∕f0 and the different signal carrier frequencies of the
target satellite f0 are the same, indicating that the system observability has nothing to do
with the target signal carrier frequency f0 for the satellite-to-satellite passive tracking system
using the CM. This compares well with the position and velocity estimation error curves in
Figure 9.4.
According to Figure 9.4a and b, the system observability curves describing the condition

number is different when f0 = 20GHz, f0 = 1GHz, and f0 = 3GHz. Curves obtained through
the observability description method introduced in this section arestill the same when f0 is
given different values, from which the clear conclusion can be drawn that the system observ-
ability using the CM only relates to the relative frequency measurement error 𝜎f∕f0 and has
nothing to do with f0.
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In conclusion, the simulation analysis is applied to various factors influencing the satellite-
to-satellite passive tracking system based on the CM. The conclusions are as follows:

1. The method [9] using the condition number as the system observability is not applicable
to satellite-to-satellite passive orbit determination application. Firstly, it cannot reflect the
relations between the observability and measurement errors; secondly, it cannot correctly
reflect the situation that the system observability using the CM is better than that of the BO
method; and thirdly, the observability curves obtained under the same relative frequency
measurement error 𝜎f∕f0 still relate to f0. The observability description method introduced
in this section could well solve the above-mentioned problem.

2. For the satellite-to-satellite passive tracking system based on the CM, the filtering period
has the most significant effect on the system observability, the angle measurement error
comes second, and the relative frequency measurement error comes third, while the target
signal carrier f0 has nothing to do with it. Therefore, it can offer a certain reference frame
to the satellite-to-satellite passive tracking performance estimation based on the CM.

0 1000 2000 3000 4000 5000
105

106

107

108

Time (s)

(a)

C
o
n
d
it
io

n
 N

u
m

b
e
r

BO method
CM method (f0 = 1 GHz)
CM method (f0 = 3 GHz)
CM method (f0 = 20 GHz)

0 1000 2000 3000 4000 5000
10‒2

10‒1

100

101

102

103

104

Time (s)

(b)

D
e
g
re

e
 o

f 
 O

b
s
e
rv

a
b
ili

ty

BO method
CM Method (f0 = 1 GHz)
CM Method (f0 = 3 GHz)
CM Method (f0 = 20 GHz)

Figure 9.4 Relations between system observability and location and velocity estimation error and sig-
nal carrier frequency of the target satellite f0. (a) Observability curve indicated with condition number, (b)
observability calculated according to expression (8.42), (c) position estimation error curve, and (d) veloc-
ity estimation error curve
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Figure 9.4 (continued)

9.4 Simulation and Its Analysis

In this section, the simulation of performances for the CMbased on satellite-to-satellite passive
orbit determination and the tracking system discussed in Sections 9.2 and 9.3 will be ana-
lyzed under different kinds of simulation conditions. The system models will still be con-
sidered in two conditions, that is, in the two-body model and in considering J2 perturba-
tion of earth oblateness. To evaluate the performances of the passive tracking system, here
the CRLB (Cramér–Rao lower bound) under corresponding conditions is also introduced
to the stimulation results to test whether the algorithm is the optimal and how far it can
be improved.
Factors influencing the performances of the nonlinear filter usually include the measurement

error, the initial state error, and the target model error, and so on. According to the analysis
results of the system observability in Section 9.3, this section will simulate the performances
of the CM based on satellite-to-satellite passive tracking under the initial state error, the angle
measurement error, the frequency measurement error, the filter period and the ephemeris error
of the observer itself, will analyze the effects of different factors on tracking accuracy and,
finally, will arrive at corresponding conclusions.
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Incomparison with the BO tracking method, typical simulation scenarios used in Chapter
2 will be adopted here. Also, if the algorithm in this chapter can converge within the short-
est observable time span, the shielding effect of the earth may not be considered when the
observing satellite passively determines the orbit of the target satellite and tracks it. Because
the known carrier frequency f0 is a special case of the unknown f0, the CM in the following
simulations refers to the unknown signal carrier frequency f0 unless otherwise specified.

9.4.1 Simulation in the Case of the Two-Body Model

9.4.1.1 Influences of Different Initial State Errors on Passive Tracking Performance

Assume that the angle measurement error is 𝜎𝛽 = 20′′, the filter period is T = 2 seconds, the
frequency measurement error is 𝜎f = 100Hz, the target satellite signal carrier frequency
is f0 = 15GHz, and define three different groups of initial state error XCMe , which
are

[
100 100 100 0.1 0.1 0.1 5e4

]T
(Case 2),

[
300 300 300 0.5 0.5 0.5 1e5

]T
(Case 3),

and
[
500 500 500 1 1 1 1e6

]T
(Case 4), respectively, among which the units of the initial

state errors are: position vector r in kilometers, velocity vector ṙ in kilometers per second, and
target signal carrier frequency f0 in hertz. In addition, the method suggested in reference [10]
are also introduced here for comparison, and its initial state error is

[
200 0.0005 3 3 3 0

]T
(Case 1). Since the CRLBs for different initial state errors are identical, here the CRLB of
the CM is introduced as the reference for the CRLB. According to the estimated location and
velocity vectors of each point, the position and velocity estimation errors of the target satellite
can be calculated as shown in Figure 9.5.
For these groups of simulation conditions, the corresponding estimation error and corre-

sponding CRLB of the converged position, velocity, and target signal carrier frequency f0 are
shown respectively in Table 9.1.
According to Figure 9.5 and Table 9.1 it can be seen that the CM in the case of the two-body

model in this chapter can well adapt to different initial state errors and steadily converge at
last. With the increase of the initial state error, both the filtering convergence time and the final
converged error will slightly increase; when the position error increases by about 30m and the
velocity error increases by about 0.1m/s, the performance of the algorithm is very close to the
CRLB. However, if the method suggested in reference [10] is adopted, since the circular orbit
target satellite will be confrontedwith the singularity problemwhen classic orbital elements are
adopted as the state variable, its filter performance is greatly influenced, and both the filtering
convergence time and the estimation error greatly increase in comparison with the CM.

9.4.1.2 Influences of Different Angle Measurement Errors on Passive Tracking
Performance

Assume that the filter period is T = 2 seconds, the initial state error is
[
300 300 300 0.5 0.5

0.5 1e5
]T

(the unit is the same as that in Simulation 1), the frequency measurement error is
𝜎f = 100Hz, the target satellite signal carrier frequency is f0 = 15GHz, and the passive tracking
estimation error can be calculated for the angle measurement error 𝜎𝛽 when 10′′, 50′′, 150′′,
and 200′′, respectively. For easy comparison, the BO method and the CRLB in Chapter 8
are here introduced as references. Since the CRLB of the CM is different for different angle



Satellite-to-Satellite Passive Tracking Based on Angle and Frequency Information 279

500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

70

90

80

100

Time (s)

(a)

(b)

E
s
ti
m

a
te

d
 P

o
s
it
io

n
 E

rr
o

r 
(k

m
)

Case 1

Case 2

Case 3

Case 4

CRLB

Case 1

Case 2

Case 3

Case 4

CRLB

500 1000 1500 2000 2500 3000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (s)

E
s
ti
m

a
te

d
 V

e
lo

c
it
y
 E

rr
o

r 
(k

m
/s

)

Figure 9.5 Position and velocity error curves of different initial state errors in the case of the two-body
model. (a) Position estimation error curve and (b) velocity estimation error curve

Table 9.1 Parameter estimation error of different initial state errors in the case of the two-body model

Simulation
scenarios/parameters

Case 1 Case 2 Case 3 Case 4 CRLB

Position estimation error
(km)

31.7958 0.3192 0.3307 0.3677 0.3297

Velocity estimation error
(km/s)

0.0155 3.4647× 10−4 3.8354× 10−4 3.8432× 10−4 3.5255× 10−4

Target carrier frequency
error (Hz)

– 3.1 3.9 7.8 7.2
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Figure 9.6 Position and velocity error curve in the case of the two-body model when the angle mea-
surement error is 𝜎𝛽 = 10′′. (a) Position estimation error curve and (b) velocity estimation error curve

measurement errors, the estimation error curves for different angle measurement errors are
here given respectively:

1. When the angle measurement error is 𝜎𝛽 = 10′′, the estimation results are shown in
Figure 9.6.

2. When the angle measurement error is 𝜎𝛽 = 50′′, the estimation results are shown in
Figure 9.7.

3. When the angle measurement error is 𝜎𝛽 = 150′′, the estimation results are shown in
Figure 9.8.
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4. When the angle measurement error is 𝜎𝛽 = 200′′, the estimation results are shown in
Figure 9.9.

In the above four groups of simulation conditions, the corresponding converged position,
velocity, target signal carrier frequency f0 estimation error, and corresponding CRLB are
shown respectively in Table 9.2.
According to Figures 9.6 to 9.9 and Table 9.2, for the two-body model under different

angle measurement errors, the accuracy of orbit determination and tracking of the CM is
obviously better than the BO method, and its advantage becomes more and more obvious
with the increase of angle measurement errors, and both the filtering convergence time,
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Figure 9.7 Position and velocity error curves in the case of the two-body model when the angle mea-
surement error is 𝜎𝛽 = 50′′. (a) Position estimation error curve and (b) velocity estimation error curve
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position accuracy, and velocity accuracy are clearly improved. In addition, when the angle
measurement error is less than 200′′, the position and velocity estimation error curves of the
CM are close to the corresponding CRLB curves, indicating that the tracking accuracy of
the CM in the case of the two-body model is close to the optimal estimation performance.
With other simulation conditions fixed, now test the influence of different angle mea-

surement errors on the performance of passive tracking used when adopting the CM and
f0 is known. In order to compare the performances, corresponding estimation results of
unknown f0 and CRLB are here introduced as references (the CRLB at this point of time is
the lower estimation error bound when f0 is known).

(a)

(b)

500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

70

90

80

100

Time (s)

E
s
ti
m

a
te

d
 P

o
s
it
io

n
 E

rr
o

r 
(k

m
)

BO method
CM method
CRLB

500 1000 1500 2000 2500 3000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (s)

E
s
ti
m

a
te

d
 V

e
lo

c
it
y
 E

rr
o

r 
(k

m
/s

) BO method
CM method
CRLB

Figure 9.8 Position and velocity error curves in the case of the two-body model when the angle mea-
surement error is 𝜎𝛽 = 150′′. (a) Position estimation error curve and (b) velocity estimation error curve
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Figure 9.9 Position and velocity error curves in the case of the two-body model when the angle mea-
surement error is 𝜎𝛽 = 200′′. (a) Position estimation error curve and (b) velocity estimation error curve

5. When f0 is known and the angle measurement error is 𝜎𝛽 = 10′′, the estimation result is
shown in Figure 9.10.

6. When f0 is known and the angle measurement error is 𝜎𝛽 = 150′′, the estimation result is
shown in Figure 9.11.

In the above two groups of simulation conditions, the corresponding converged position,
velocity estimation error, and the CRLB are shown respectively in Table 9.3.
According to Figure 9.10, Figure 9.11, and Table 9.3, for the different anglemeasurement

errors of the two-body model, when the CM is adopted, the passive tracking accuracy of
known f0 has been improved in comparison with unknown f0, but as the angle measurement
errors increase, the filtering convergence time of the known f0 case also greatly increases,
and its advantage relative to unknown f0 is only reflected in position estimation accuracy.
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Figure 9.10 Position and velocity error curves in the case of the two-body model when f0 is known and
the angle measurement error is 𝜎𝛽 = 10′′. (a) Position estimation error curve and (b) velocity estimation
error curve

9.4.1.3 Influences of Different Frequency Measurement Errors on Passive Tracking
Performances

Assume that the filter period is T = 2 seconds, the initial state error is still
[
300 300 300 0.5

0.5 0.5 1e5
]T
, the angle measurement error is 𝜎𝛽 = 50′′, and the target signal carrier fre-

quency is f0 = 15GHz, We can calculate the passive tracking estimation errors for frequency
measurement errors being 𝜎f = 50Hz (Case 1), 𝜎f = 500Hz (Case 2), 𝜎f = 5 kHz (Case 3), and
𝜎f = 50 kHz (Case 4), respectively. The BO method and corresponding CRLB in Chapter 8
are introduced to make a comparison, and the obtained position and velocity estimation error
curves are shown in Figure 9.12.
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For several groups of simulation conditions above, the corresponding estimation errors of the
converged position, velocity, and target signal carrier frequency f0, as well as the corresponding
CRLB, are shown respectively in Table 9.4.

Table 9.3 Position and velocity estimation error of different angle measurement errors in the case of
the two-body model when f0 is known

Simulation scenarios/parameters 𝜎𝛽 = 10′′ 𝜎𝛽 = 150′′

Unknown f0 Known f0 CRLB Unknown f0Known f0 CRLB

Position estimation error (km) 0.2105 0.1753 0.1461 3.2094 2.3251 1.1379
Velocity estimation error (km/s) 2.24× 10−4 2.45× 10−4 1.86× 10−4 0.0049 0.0034 0.0014
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Figure 9.11 Position and velocity error curves in the case of the two-body model when f0 is known and
the angle measurement error is 𝜎𝛽 = 150′′. (a) Position estimation error curve, (b) velocity estimation
error curve



Satellite-to-Satellite Passive Tracking Based on Angle and Frequency Information 287

(c)

(d)

500 1000 1500 2000 2500 3000
0

5

10

15

20

25

30

Time (s)

E
s
ti
m

a
te

d
 P

o
s
it
io

n
 E

rr
o
r 

(k
m

)

500 1000 1500 2000 2500 3000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Time (s)

E
s
ti
m

a
te

d
 V

e
lo

c
it
y
 E

rr
o
r 

(k
m

/s
)

CM, f0 Unknown

CM, f0 Known  
CRLB 

CM, f0 Unknown

CM, f0 Known  

CRLB 

Figure 9.11 (continued)

According to Figure 9.12 and Table 9.4 for the case of the two-body model in a different
frequency error, the accuracy of the passive tracking based on the CM is better than that of the
BO method. Though with the increase of frequency measurement error the relative filtering
convergence time and the position and velocity estimation errors are increased, their estimation
accuracy is still better than that of the BO tracking method, indicating that at the same time
with the angle measurement after the frequency measurement information has been increased,
even though the frequency measurement accuracy is not high, the estimated performance can
also be effectively improved. The basic reason lies in the fact that the observability of the
system has been improved after adding frequency measurement information.
With other simulation parameters remaining fixed, the influence of different frequency mea-

surement errors on the performance of passive tracking when adopting the CM and f0 is known
is tested in this simulation. In the meanwhile, estimation results of the corresponding unknown
f0 and the CRLB are introduced as a reference (the CRLB at the moment still refers to the esti-
mation error lower bound when f0 is known). Calculate the passive tracking estimation error
under two conditions of frequency measurement error, that is, under 𝜎f = 50Hz (Case 5) and
𝜎f = 50 kHz (Case 6), the obtained position and velocity estimation error curves are shown in
Figure 9.13.
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Figure 9.12 Position and velocity error curves of different frequency measurement errors in the case
of the two-body model. (a) Position estimation error curve and (b) velocity estimation error curve

For the above two groups of simulation conditions, the corresponding converged position
and velocity estimation errors, as well as the corresponding CRLB, are shown respectively in
Table 9.5.
According to Figure 9.13 and Table 9.5 for the two-bodymodel, in different frequency errors,

the accuracy of passive tracking with the f0 known has been improved in comparison with that
of the unknown f0, but as the frequency increases, the filtering convergence time of the known
f0 has also greatly increased. According to Table 9.3, relative to the angle measurement error,
under different frequency errors the performance improvement of the known f0 is poorer than
the unknown f0.
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Table 9.4 Parameter estimation error of different frequency measurement errors in the case of the
two-body model

Simulation
scenario/parameter

BO error Case 1:
𝜎f = 50Hz

Case 2:
𝜎f = 500Hz

Case 3:
𝜎f = 5 kHz

Case 4:
𝜎f = 50 kHz

CM CRLB CM CRLB CM CRLB CM CRLB

Position estimation
error (km)

1.8138 0.99160.6464 1.0891 1.0446 1.4445 1.2048 1.3996 1.3221

Velocity estimation
error (km/s)

0.0020 0.00158.04× 10−4 0.0010 0.0010 0.0015 0.0017 0.0018 0.0018

Target carrier
frequency error
(Hz)

– 9.1 8.4 34.5 31.5 67.1 38.7 139.7 129.2
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Figure 9.13 Position and velocity error curves of different frequency errors in the case of the two-body
model when f0 is known. (a) Position estimation error curve and (b) velocity estimation error curve
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Table 9.5 Position and velocity estimation error of different frequency measurement errors in the case
of the two-body model when f0 is known

Simulation scenario/parameter 𝜎f = 50Hz 𝜎f = 50 kHz

Unknown f0 Known f0 CRLB Unknown f0 Known f0 CRLB

Position estimation error (km) 0.9916 0.9086 0.4378 1.3996 1.3421 1.3210
Velocity estimation error (km/s) 0.0015 0.0013 5.38× 10−4 0.0018 0.0016 0.0018
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Figure 9.14 Position and velocity error curves in the case of the two-body model when the filtering
period is T = 5 seconds. (a) Position estimation error curve and (b) velocity estimation error curve
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9.4.1.4 Influences of Those Different Filtering Periods on Passive Tracking
Performances

Assume that the initial state errors are the angle measurement error 𝜎𝛽 = 20′′, the frequency
error 𝜎f = 100Hz, and the target signal carrier frequency f0 = 15GHz. Calculate the orbit
determination and tracking estimation error when the filtering periods are T = 5 seconds and
T = 50 seconds respectively. Since the CRLBs are different under different filtering periods,
the estimation error curves of different filtering periods are shown as follows:

1. When the filtering period is T = 5 seconds, the estimation results are shown in Figure 9.14.
2. When the filtering period is T = 50 seconds, the estimation results are shown in Figure 9.15.

In the above two groups of simulation conditions, the corresponding converged position,
velocity, and target signal carrier frequency f0 estimation error as well as the corresponding
CRLB are shown respectively in Table 9.6.
According to Figure 9.14, Figure 9.15, and Table 9.6, in the case of the two-body model

and in different filtering periods, the accuracy of passive tracking based on the CM is
clearly better than that of the BO method, and as the filtering period increases, its advan-
tage becomes obvious, and both the filtering convergence time and the estimated accuracy
of the position and velocity are much improved. However, as the filtering period increases,
the difference between the estimation accuracy of the CM and its relative CRLB curve also
increases, indicating that the CM is also sensitive to the filtering period. In the case of the
two-body model, since there is a linearization error when adopting the EKF method, after
the filtering period increased, the linearization error increases as well and eventually it will
result in a decrease in tracking filtering accuracy.
With other simulation conditions remaining fixed, now test the influence of different fil-

tering periods on the performance of passive tracking when adopting the CM and knowing
f0. In the meanwhile, estimation results of the relative unknown f0 and the CRLB are intro-
duced as a reference (the CRLB at the moment still refers to the estimation error lower
bound when f0 is known). Calculate the passive tracking estimation error under the two
conditions of filtering periods T = 5 seconds and T = 50 seconds, respectively.

3. When f0 is known and the filtering period is T = 5 seconds, the estimation results are shown
in Figure 9.16.

4. When f0 is known and the filtering period is T = 50 seconds, the estimation results are shown
in Figure 9.17.

For the above two groups of simulation conditions, the corresponding converged position
and velocity estimation errors, as well as the corresponding CRLB, are shown respectively
in Table 9.7.
According to Figure 9.16, Figure 9.17, and Table 9.7, in the case of the two-body model

and in different filtering periods, the accuracy of passive tracking based on the CM with
known f0 is clearly improved compared with that of unknown f0, and as the filtering period
increases, its advantage becomesmore andmore obvious, and both the filtering convergence
time, and accuracy of the position and velocity are clearly improved.
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Figure 9.15 Position and velocity error curves in the case of the two-body model when the filtering
period is T = 50 seconds. (a) Position estimation error curve and (b) velocity estimation error curve

Table 9.6 Parameter estimation error of different filtering periods in the case of the two-body model

Simulation scenario/parameter T = 5 seconds T = 50 seconds

BO error CM error CRLB BO error CM error CRLB

Position estimation error (km) 1.1023 0.6329 0.5211 16.3420 3.3501 1.6484
Velocity estimation error (km/s) 0.0013 6.26× 10−4 6.05× 10−4 0.0133 0.0080 0.0019
Target carrier frequency error (Hz) – 15.9 12.3 – 249.7 41.7
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Figure 9.16 Position and velocity error curves in the case of the two-body model when the filtering
period is T = 5 seconds and f0 is known. (a) Position estimation error curve and (b) velocity estimation
error curve

9.4.1.5 Influences of the Ephemeris Error of the Observing Satellite on Passive
Tracking Performances

Simulations 1 to 4 in this chapter are all based on a presumption that the ephemeris of the
observing satellite has no error. However, in fact the ephemeris of the observer itself cannot
be absolutely accurate, so Simulation 5 conducts a stimulation analysis of this issue. Assume
that the initial state error is

[
300 300 300 0.5 0.5 0.5 1e5

]T
, the angle measurement

error is 𝜎𝛽 = 20′′, the frequency measurement error is 𝜎f = 100Hz, the filtering period is
T = 10 seconds, and the target signal carrier frequency is f0 = 15GHz. Calculate the passive
tracking estimation error under ephemeris error free (Case 1), the position error 200m and
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Figure 9.17 Position and velocity error curves in the case of the two-body model when the filtering
period is T = 50 seconds and f0 is known. (a) Position estimation error curve and (b) velocity estimation
error curve

Table 9.7 Position and velocity estimation error of different filtering periods in the case of the
two-body model when f0 is known

Simulation scenario/parameter T = 5 seconds T= 50 seconds

Unknown f0 Known f0 CRLB Unknown f0 Known f0 CRLB

Position estimation error (km) 0.6329 0.4075 0.4035 3.3501 2.0355 1.2378
Velocity estimation error (km/s) 6.26× 10−4 5.28× 10−4 5.13× 10−4 0.0080 0.0049 0.0016
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Figure 9.18 Position and velocity error curves of different ephemeris errors of observing satellites in
the case of the two-body model. (a) Position estimation error curve and (b) velocity estimation error
curve

velocity error 10m/s (Case 2), and the position error 500m and velocity error 50m/s (Case 3).
The obtained position and velocity estimation error curves are shown in Figure 9.18.
For these groups of simulation conditions, the corresponding estimation errors of the con-

verged position, velocity, and target signal carrier frequency f0 are shown in Table 9.8.
According to Figure 9.18 and Table 9.8, in the case of the two-body model, when taking the

ephemeris error of the observing satellite itself into consideration, the position and velocity
estimation errors do not change much. The variation of the position error is around 10m and
the variation of velocity error is less than 0.1m/s, indicating that the ephemeris error of the
observing satellite itself has a negligible influence on satellite-to-satellite passive tracking.
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Table 9.8 Position and velocity estimation error of different ephemeris errors of observing satellites
in the case of the two-body model

Simulation scenario/parameter Case 1 Case 2 Case 3

Position estimation error (km) 0.7743 0.8125 0.8026
Velocity estimation error (km/s) 8.0585× 10−4 8.7191× 10−4 8.6862× 10−4

Target carrier frequency error (Hz) 21.2 21.4 21.9

9.4.2 Simulation Considering J2 Perturbation of Earth Oblateness

Previously, in the case of the two-body model and based on the CM method, passive tracking
performance of the unknown f0 has been analyzed by computer simulation. In the mean-
while,for the threemajor factors that will have an effect on the observability of the system – the
filtering period, the angle measurement error, and the frequencymeasurement error – the prob-
lem of how to improve estimation performance with the known f0 case and the unknown f0 case
adopting the CM is analyzed. Now we continue to study the passive tracking performance of
the CM when considering J2 perturbation of the earth oblateness.

9.4.2.1 Influences of Different Initial State Errors on Passive Tracking Performances

Take the simulated results of the BO method from Chapter 8 as a comparison and suppose
that its initial state error is

[
300 300 300 0.5 0.5 0.5

]T
(Case 1) and that other simulation

conditions are identical with those of Simulation 1 in this chapter. Since the CRLB under
different initial state errors are identical, here the CRLB is also introduced as the reference of
the CRLB (as orbit perturbation has a very small influence on the CRLB, the CRLB of this
study in the case of perturbation all adopt the CRLB in the case of the two-body model). The
obtained position and velocity estimation error curve is shown in Figure 9.19.
In several groups of the simulation conditions above, the corresponding converged position,

velocity, and target signal carrier frequency f0 estimation error as well as the corresponding
CRLB are shown in Table 9.9.
According to Figure 9.19 and Table 9.9, even though the estimation error adopting the CM

has greatly increased in the case of the perturbation condition more than in the case of the
two-body model, it still has a performance of position estimation accuracy exceeding 1 km
and velocity estimation accuracy exceeding 5m/s. In addition, with the increase of the initial
state error, the position and velocity estimation errors obtained by the CM have been increased
to some extent, and the difference with the CRLB also increases, indicating that in the case
of perturbation, the effect of the EKF linearization error by a constant state noise covariance
matrix can still be improved.

9.4.2.2 Influences of Different Angle Measurement Errors on Passive Tracking
Performances

Other simulation conditions are identical with those in Simulation 2 of this chapter. Calculate
the CM based on the passive tracking error in the case of perturbation and when the angle
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Figure 9.19 Position and velocity error curve of different initial state errors in the case of perturbation.
(a) Position estimation error curve and (b) velocity estimation error curve

Table 9.9 Parameter estimation error of different initial state errors in the case of perturbation

Simulation scenario/parameter Case 1 Case 2 Case 3 Case 4 CRLB

Position estimation error (km) 4.0558 2.7272 2.8581 2.9378 0.3297
Velocity estimation error (km/s) 0.0179 0.0125 0.0125 0.0126 3.5255× 10−4

Target carrier frequency error (Hz) – 102.8 108.1 114.9 7.2
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Figure 9.20 Position and velocity error curve in the case of perturbation when the angle measurement
error is 𝜎𝛽 = 50′′. (a) Position estimation error curve and (b) velocity estimation error curve

measurement errors are 50′′ and 150′′, respectively. Here the CRLB and the BO method are
also introduced for comparison:

1. When the angle measurement error is 𝜎𝛽 = 50′′, the estimation results are shown in
Figure 9.20.

2. When the angle measurement error is 𝜎𝛽 = 150′′, the estimation results are shown in
Figure 9.21.

In the two groups of simulation conditions above, the corresponding converged position,
velocity, and the target signal carrier frequency f0 estimation error as well as the corre-
sponding CRLB are shown in Table 9.10.
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According to Figure 9.21 and Table 9.10, as the angle measurement error increases, the
filtering convergence time and the estimation error of position, velocity, and frequency of
the CM all increase accordingly, indicating that in the case considering J2 perturbation,
the estimation accuracy of the CM is clearly better than the BO method. Under the same
conditions where the angle measurement error increases from 50′′ to 150′′, the position
estimation error of the BO method increases about 1.8 km, and the velocity error increases
about 2m/s, but the position estimation error of the CM only increases about 0.3 km and
the velocity error increases 1m/s, this indicates that if the angle measurement accuracy is
going to worsen, the same size and performance deterioration of the CM is much less than
the BO method.
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Figure 9.21 Position and velocity error curve in the case of perturbation when the angle measurement
error is 𝜎𝛽 = 150′′. (a) Position estimation error curve and (b) velocity estimation error curve
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Table 9.10 Parameter estimation error of different angle measurement errors in the case of J2
perturbation

Simulation scenario/parameter 𝜎𝛽 = 50′′ 𝜎𝛽 = 150′′

BO error CM error CRLB BO error CM error CRLB

Position estimation error (km) 5.0624 3.6037 0.7026 6.8377 3.9386 1.8198
Velocity estimation error (km/s) 0.0185 0.0146 8.83× 10−4 0.0209 0.0154 0.0022
Target carrier frequency error (Hz) – 97.3 11.4 – 206.3 21.9
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Figure 9.22 Position and velocity error curve in the case of perturbation when f0 is known and the
angle measurement error 𝜎𝛽 = 50′′. (a) Position estimation error curve and (b) velocity estimation error
curve
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With other simulation conditions fixed, the increased filtering period is T = 5 seconds.
Test the influence that different angle measurement errors have on passive tracking perfor-
mances by the CM when f0 is known. Here the relative unknown f0 estimation results and
the CRLB are still introduced as the reference.

3. When f0 is known and the angle measurement error is 𝜎𝛽 = 50′′, the estimation result is
shown in Figure 9.22.

4. When f0 is known and the angle measurement error is 𝜎𝛽 = 150′′, the estimation result is
shown in Figure 9.23.

In the two groups of simulation conditions above, the corresponding converged position
and velocity estimation errors as well as the corresponding CRLB are shown in Table 9.11.
According to Figure 9.22, Figure 9.23 and Table 9.11, under the condition of different

angle measurement errors when considering J2 orbit perturbation, the accuracy of passive
tracking based on the CM with the f0 known improved to some extent in comparison with
the f0 unknown case, but this shows that the position estimation accuracy, the filtering con-
vergence time, and the velocity estimation accuracy has barely improved with the increase
of angle measurement error. Its performance improvement has become smaller relative to
the unknown f0 conditions.

9.4.2.3 Influences of Different Frequency Measurement Errors on Passive Tracking
Performances

The simulation conditions are identical with those in Simulation 3 of this chapter. Calculate
the passive tracking error under different frequency measurement errors in the case of pertur-
bation. Here the BO method and the relative CRLB are also introduced as a comparison and
the position and velocity estimation error curves are shown in Figure 9.24.
In several groups of simulation conditions above, the corresponding converged position,

velocity, and the target signal carrier frequency f0 estimation error as well as the corresponding
CRLB are shown in Table 9.12.
According to Figure 9.24 and Table 9.12, in the case of J2 perturbation, the accuracy of the

passive tracking based on the CM is better than that of the BOmethod under different frequency
measurement errors. As the frequency measurement error increases, the filtering convergence
time, position error, and velocity estimation error all increase. However, even though the fre-
quency measurement error increases to 𝜎f = 50 kHz, its position estimation accuracy still has
a nearly 100m improvement compared with the BO tracking method, which indicates that

Table 9.11 Position and velocity estimation error of different angle measurement errors in the case of
the two-body model when f0 is known

Simulation scenario/parameter 𝜎𝛽 = 50′′ 𝜎𝛽 = 150′′

Unknown f0 Known f0 CRLB Unknown f0 Known f0 CRLB

Position estimation error (km) 4.0929 2.3666 0.6352 6.6180 4.3861 1.3919
Velocity estimation error (km/s) 0.0118 0.0122 6.32× 10−4 0.0088 0.0116 0.0014
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Figure 9.23 Position and velocity error curve in the case of perturbation when f0 is known and the
angle measurement error is 𝜎𝛽 = 150′′. (a) Position estimation error curve and (b) velocity estimation
error curve

after the frequency measurement accuracy has been improved, the estimation accuracy will be
better than that of the BO method, even though the frequency accuracy is not high.

9.4.2.4 Influences of Those Different Filtering Periods on Passive Tracking
Performances

The simulation conditions are the same as those of Simulation 4 in this chapter. Calculate
the error of the satellite-to-satellite passive tracking estimation when the filtering periods
are T = 20 seconds and T = 50 seconds, respectively. Since the CRLBs are different under
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Figure 9.24 Position and velocity error curve of different frequency measurements in the case of per-
turbation. (a) Position estimation error curve and (b) velocity estimation error curve

Table 9.12 Estimation error in the case of J2 perturbation

Simulation
scenario/parameter

BO error Case 1:
𝜎f = 50Hz

Case 2:
𝜎f = 500Hz

Case 3:
𝜎f = 5 kHz

Case 4:
𝜎f = 50 kHz

CM CRLB CM CRLB CM CRLB CM CRLB

Position estimation
error (km)

5.0624 3.59330.6464 3.6218 1.0446 3.6353 1.2048 4.9376 1.3221

Velocity estimation
error (km/s)

0.0185 0.01458.04× 10−4 0.0146 0.0010 0.0149 0.0017 0.0180 0.0018

Target carrier
frequency error
(Hz)

– 97.4 8.4 100.4 31.5 150.1 38.7 224.9 129.2
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Figure 9.25 Position and velocity error curve in the case of perturbation when the filtering period is
T = 20 seconds. (a) Position estimation error curve and (b) velocity estimation error curve

different filtering periods, the estimation error curves in different filtering periods are shown
in Figures 9.25 and 9.26:

1. When the filtering period is T = 20 seconds, the estimation results are as shown in
Figure 9.25.

2. When the filtering period is T = 50 seconds, the estimation results are as shown in
Figure 9.26.

In the two groups of simulation conditions above, the corresponding converged position,
velocity, and the target signal carrier frequency f0 estimation error as well as the corre-
sponding CRLB are shown in Table 9.13.
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Figure 9.26 Position and velocity error curve in the case of perturbation when the filtering period is
T = 50 seconds. (a) Position estimation error curve and (b) velocity estimation error curve

Table 9.13 Parameter estimation error of different filtering periods in the case of perturbation

Simulation scenario/parameter T = 20 seconds T = 50 seconds

BO error CM error CRLB BO error CM error CRLB

Position estimation error (km) 6.1300 3.7600 1.0415 11.9188 3.3206 1.6484
Velocity estimation error (km/s) 0.0203 0.0140 0.0012 0.0132 0.0098 0.0019
Target carrier frequency error (Hz) – 128.9 25.2 – 90.1 41.7
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According to Figure 9.25, Figure 9.26, and Table 9.13, in the case of perturbation and
with different filtering periods, the accuracy of the passive tracking based on the CM is
clearly better than that of the BO method. As the filtering period increases, its advan-
tage becomes more and more obvious, and both the filtering convergence time and the
estimated accuracy of the position and velocity are much improved. However, when the fil-
tering period T = 50 seconds, the location accuracy obtained from the CM is much higher
than that of T = 20 seconds, which does not coincide with the conclusion obtained from the
observability analysis in previous systems, indicating that the linearization error in the case
of J2 perturbation is no longer stable and the EKF by the constant state noise covariance
matrix cannot meet the requirement of high accuracy.
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Figure 9.27 Position and velocity error curve in the case of perturbation when the filtering period is
T = 20 seconds and f0 is known. (a) Position estimation error curve and (b) velocity estimation error curve
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Figure 9.28 Position and velocity error curve in the case of perturbation when the filtering period is
T = 50 seconds and f0 is known. (a) Position estimation error curve and (b) velocity estimation error curve

Table 9.14 Position and velocity estimation error of different filtering periods in the case of
perturbation when f0 is known

Simulation
scenario/parameter

T = 20 seconds T = 50 seconds

Unknown f0 Known f0 CRLB Unknown f0 Known f0 CRLB

Position estimation
error (km)

4.9157 2.0961 0.5775 5.3692 3.5952 0.9173

Velocity estimation
error (km/s)

0.0100 0.0117 5.82× 10−4 0.0076 0.0078 9.1191× 10−4
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With other simulation conditions fixed, if the CM is used in the f0 known case, then
the influence of different filtering periods on the performance of passive tracking can be
analyzed. In order to compare the performances, the estimation results of the unknown f0
and the CRLB are still introduced as references (the CRLB refers to the CRLB when f0 is
known).

3. When f0 is known, the filtering period is T = 20 seconds and the estimation results are shown
in Figure 9.27.

4. When f0 is known, the filtering period is T = 50 seconds and the estimation results are shown
in Figure 9.28.

In the two groups of simulation conditions above, the corresponding converged position
and velocity estimation errors as well as the corresponding CRLB are shown in Table 9.14.
According to Figure 9.27, Figure 9.28, and Table 9.14, when considering different filter-

ing periods and adopting the CM, the passive tracking accuracy when f0 is known is better
compared with the f0 unknown case, but is similar to that of the influence of angle measure-
ment error analysis. This improvement only reflects on the position estimation accuracy and
filtering convergence time, but the velocity estimation accuracy has barely improved.

9.5 Summary

Through the results of theoretical analysis and simulation, the following conclusions can be
made:

1. The influences of the factors on the performance of passive tracking based on the CM in
descending order are: filtering period, angle measurement error, frequency measurement
error, initial state error, and ephemeris error of the observer itself.

2. Considering only the two-body model, the estimation performance of the CM is close to
optimal, that is, it is very close to the CRLB, and this method is clearly superior to the BO
method in Chapter 8. This indicates that when two satellites run in different orbits, adding
the target frequency information on the basis of angle measurement can effectively improve
the observability of the system and location accuracy.

3. Taking perturbation of the satellite into consideration, the performance of the CM clearly
becomes worse in comparison with its performance in the two-bodymodel, and it obviously
cannot reach the CRLB, indicating that the linearization errors caused by the EKF method
are more complex than those in the two-body model and the constant state noise covariance
matrix is not enough to correct the linearization error from the nonlinear state equation.
In addition, under the perturbation condition, the tracking performance of the CM in the
two-body model is clearly superior to that of the BO tracking method.

4. In different filtering periods and angle measurement errors of the two-body model, the esti-
mation performance in the f0 known case will be improved compared with the f0 unknown
case. When taking different filtering periods and angle measurement errors into consider-
ation, the performance of location estimation accuracy and filtering convergence time in
the f0 known case has also been improved compared with the f0 unknown case, but the
corresponding velocity estimation accuracy has barely improved. In addition, under differ-
ent frequency measurement errors, the location performance of the known f0 case is better
than that of the unknown f0 case, but relative to filtering periods and angle measurement
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errors, its performance improvement is much less. In general, when adopting the CM, if
part of the prior information for the target can be introduced, the tracking performance of
the algorithm can be further improved.

References

1. Chan, Y. T. and Rudnicki, S. (1992) Bearings-only and Doppler-bearing tracking using instrumental
variables. IEEE Transactions on Aerospace and Electronic Systems, 28(4), 1076–1082.

2. Becker, K. (1992) An efficient method of passive emitter location. IEEE Transactions on Aerospace
and Electronic Systems, 28(4), 1091–1104.

3. Becker, K. (2005) Three-dimensional target motion analysis using angles and frequency measure-
ments. IEEE Transactions on Aerospace and Electronic Systems, 41(1), 284–301.

4. Becker, K. (1996) A general approach to TMA observability from angle and frequency measure-
ments. IEEE Transactions on Aerospace and Electronic Systems, 32(1), 487–494.

5. Wang, Y. and Liu, Y. (2003)Military Satellite and Application Concept. Beijing: National Defence
Industry Press (in Chinese).

6. Xi, X., Wang, W., and Gao, Y. (2003) Fundamentals of Near-Earth Spacecraft Orbit. Changsha:
NUDT Publish House (in Chinese).

7. Bar-Shalom, Y., Li, R.X. and Kjrubarajan, T. (2001) Estimation with Applications to Tracking and
Navigation. New York: John Wiley & Sons, Inc.

8. Zhang, X. (2004) Matrix Analysis and Applications. Beijing: Tshinghua University Press, p. 9.
9. Liu, Z. and Chen, Z. (2004) Application of condition number in observability analysis of system.

Journal of System Simulation, 16(7): P1552–P1555 (in Chinese).
10. Guo, F. and Fan, Y. (2005) A tracking method for satellite-to-satellite passive localization in space

information confrontation. Journal of Astronautics, 26(2): P196–P200 (in Chinese).





10
Satellite-to-Satellite Passive Orbit
Determination Based on Frequency
Only

Chapters 8 and 9 focused on the methods for satellite-to-satellite passive tracking with bear-
ings only (BO) and with bearings and frequency information, respectively. They both used the
position and velocity vector of the target satellite in the J2000.0 coordinates system as the state
variable to be estimated and the extended Kalman filter (EKF) algorithm was used to achieve
passive tracking of the target satellite. In general, the researches in the previous two chapters
both used the satellite as a moving target for system modeling and employed the nonlinear
filtering algorithm to achieve passive tracking of the satellite.
A satellite is a maneuvering target that moves under a special law of motion (i.e., Kepler’s

law). In the case of the two-body model, the satellite orbit can be a closed elliptical or circular
orbit, and its motion state can be well described by the orbit elements at the epoch time. Thus
the passive tracking of the satellite target can be converted to parameter estimation of the orbit
elements at the epoch time.
By selecting the observed parameters and treating the orbit elements of the target satellite

at the epoch time as the parameter to be estimated, a constraint relation can be established
between the measurement information and the orbit elements of the target satellite at the epoch
time, so as to acquire the cost function to be optimized (minimized or maximized). Eventually,
some nonlinear estimation algorithms should be employed to achieve parameter estimation of
the orbit elements of the target satellite at the epoch time. Here it refers to the passive orbit
determination of the target satellite. For the issue to be researched in this chapter, the epoch
time is the time of starting the observation. If the observation starts at the time k0 and ends at
the time k0 + N − 1, the passive orbit determination is to determine the orbit elements of the
target satellite at the time k0 using the measurement information from k0 to k0 + N − 1.
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There are two key problems in the nonlinear state localization system: the first is the selection
of the observed parameter and the second is the nonlinear estimation algorithm.

1. For the selection of the observed parameter, reference [1] researched into a method
for satellite-to-satellite frequency that only based passive localization of the ground
(two-dimensional) or the aerial (three-dimensional) target by frequency-only measure-
ment. With the help of the target frequency information received by the satellite at N
different moments, a nonlinear cost function that contains the unknown emitter signal
frequency and the target position is eventually acquired. By solving this nonlinear function
the estimated position of the emitter can be obtained. Thus, in this chapter, the Doppler
frequency information of reference [1] has been selected as the observed parameter and
estimation of the orbit elements of the target satellite at the epoch time is modeled into a
single-target nonlinear optimization issue.

2. The nonlinear estimation algorithms for solving optimization problems include the follow-
ing types: the first type is to acquire the analytic solution in closed form [2]; the second
type is the grid search method [3]; and the third type is the iterative search method [4].
Iterative computation is involved (e.g., solution of the eccentric argument of perigee E)
when the orbit elements at the epoch time are converted to the position and velocity of the
satellite. Thus there is no analytic solution for using the problem of Doppler frequency to
determine the position and velocity or the orbit elements of the satellite at the epoch time.
In addition, the orbit elements at the epoch time, which is at least in a six-dimensional
state, using the grid search method may involve a large amount of computational load and
is therefore inadvisable for the research in this chapter. The general iterative search method
has an inherent disadvantage that it is greatly dependent on the initial value and most of
the algorithms, such as the Newton iteration method and the gradient method, require cal-
culation of the gradient of the cost function [5]. In recent years, Kennedy and Eberhart
proposed a particle swarm optimization (PSO) algorithm in 1995 [6–9], which is a swarm
intelligent optimization algorithm. It originated from the research into the group behavior
of bird flock and fish shoal. This algorithm has intense parallelism and does not require
gradient information; instead, it uses only the value information of the target, and there-
for is quite commonly used [9]. The PSO algorithm has been proven to be effective for
numerous actual applications and has drawn extensive attention from numerous domestic
and foreign scholars [6–8]. Therefore, this chapter introduces the PSO algorithm for orbit
determination of satellite and researches into the method for satellite-to-satellite passive
orbit determination.

This chapter will also research into the observability of the satellite-to-satellite passive orbit
determination system based on frequency-only measurement. The orbit elements of the target
satellite at the epoch time are used as the parameter to be estimated. Thus the relation between
the system observability and the orbit elements of the target satellite under certain observation
geometric conditions is researched in this chapter.
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10.1 The Theory and Mathematical Model of Passive Orbit
Determination Based on Frequency Only

10.1.1 The Theory of Orbit Determination Based on Frequency Only

Similar to the one in Chapter 9, the satellite target to be estimated in two cases is researched
in this chapter: the unknown signal carrier frequency f0 case and the known signal carrier
frequency f0 case.
For a noncooperative target satellite, there is relative movement between two satellites

because they are not on the same orbit. If the Doppler frequency information between
satellites can be measured, there is a nonlinear relation between the Doppler frequency and
the position and velocity components of two satellites and the signal carrier frequency f0
of the target satellite. If the orbit elements of the target satellite at the epoch time are the
parameter to be estimated, either in the case of the two-body model or with consideration
of orbit perturbation, orbit extrapolation can be achieved for this satellite, in order to
acquire the position and velocity vector of the satellite at any time t. With the assumption
that the ephemeris of the observing satellite are known, a more complicated nonlinear
relation can be established between the measured Doppler frequency information and the
orbit elements of the target satellite at the epoch time. Establish a single-target function
and let it be optimized (minimized or maximized) based on the Doppler frequency. By
iterative optimization of the established cost function, the orbit elements of the target
satellite at the epoch time can be estimated, that is, the passive orbit determination of
the target satellite can be achieved by measuring the Doppler frequency only. What is
described above is the theory of satellite-to-satellite passive orbit determination by Doppler
frequency only.

10.1.2 The System Model in the Case of the Two-Body Model

In this chapter, the state parameters to be estimated are the orbit elements of the target satel-
lite at the epoch time, which is similar to the state variables selected in reference [1]. They
include the semi-major axis a, eccentricity e, orbit inclination i, RAAN (right ascension of the
ascending node) Ω, the argument of perigee 𝜔, and the epoch mean argument of perigee M0,
the latter parameter being the last one to be estimated, unlike the time past perigee 𝜏, which
was the last one in reference [1]. These two parameters are the same essentially, which is the
description of satellite perigee, and can be mutually converted as in the conversion expression
in Section 2.2.2, but they are in different units and their range of values are also different. The
time past perigee 𝜏 is in seconds and is not bounded; the epoch mean argument of perigee
M0 is in radian, for one orbit period corresponds to 2𝝅, and so it has a fixed range of values
[0, 2𝝅). For the issue to be researched in this chapter, the iterative search method is needed to
estimate the state parameter and the parameter to be estimated preferably has a fixed range of
values so that the initial value can be easily selected. This means that the epoch mean argument
of perigee M0 is the last parameter to be estimated here. Therefore, the state parameter XFO
to be estimated in this chapter is (in order to be different from the state variables in previous
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chapters, the state parameter to be estimated with a frequency measurement only is marked
as XFO):

XFO =
[
a e i Ω 𝜔 M0

]T
. (10.1)

In this expression, the semi-major axis a and eccentricity e determine the size and shape of
the elliptic orbit of the satellite, the orbit inclination i and RAAN Ω determine the position of
the orbital plane in the space, the argument of perigee 𝜔 determines the bearing of the ellipse
in the orbital plane, and M0 determines the mean argument of perigee of the satellite at time
t = 0 [10].
In the case of the two-body problem, the orbit elements of the target satellite are constant;

thus the position and velocity component of the satellite at any time t can both be acquired by
extrapolation according to the orbit elements of the satellite at the epoch time. The calculation
expression is seen in the part for satellite ephemeris calculation in the case of the two-body
model in Section 2.2.1.
With the assumption that the position and velocity component of the observing satellite (O)

at the ith frequency measurement are riO and ṙiO, respectively, now the position and velocity
component of the target satellite (T) are riT and ṙiT . Due to the relative movement between
the two satellites, the frequency value of the observing satellite measured at the ith time is
expressed as

f im = f0

[
1 −

(
ṙi ⋅ ri

)
cri

]
+ 𝜀i, (10.2)

where c is the propagation speed of the electromagnetic wave in free space, f0 is the signal car-
rier frequency, 𝜀i is the random error in frequency measurement, assuming all errors are i.i.d.
(independent and identically distributed), and the zero-mean Gaussian is distributed with vari-
ance of 𝜎2f . In addition, ri = riT − riO, ṙi = ṙiT − ṙiO, and ri are respectively the relative position,
velocity, and the relative distance between satellites.
When i = 1, … ,N, there are N frequency measurements in total and expression (10.2) can

be expressed as
Zm = f0 ⋅H0(rT , ṙT ) + 𝜺 = f0 ⋅HFO(XFO) + 𝜺, (10.3)

where Zm =
[
f 1m f 2m … f Nm

]T
is the Doppler frequency measurement vector, 𝜺 =

[
𝜀1 𝜀2 …

𝜀N
]T

is the measurement error vector, rT =
[
r1T r2T … rNT

]T
and ṙT =

[
ṙ1T ṙ2T … ṙNT

]T
are

the position and velocity component of the target satellite, respectively, H0(⋅) and HFO(⋅) are
respectively the nonlinear transformation of the state variable XFO by the expression (10.2),
and the subscript ‘m’ in Equations (10.2) and (10.3) is the parameter measurement value. There
is only one transform of the state parameter to be estimated, XFO, to the position and velocity
vector each time [10], so in expression (10.3), the position and velocity vector of the target
satellite can be substituted by the state parameter to be estimated, XFO.
By now, the position rO and velocity vector ṙO of the observing satellite (O) in expression

(10.3) are already known; Zm is the frequency measurement vector; the only state parameter to
be estimated, XFO, is unknown (for the case of unknown signal carrier frequency f0, f0 is also
unknown); and by solving the nonlinear expression (10.3), the state parameter to be estimated,
XFO, can be acquired.
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10.1.3 The System Model for J2 Perturbation of Earth Oblateness

Similar to the analyses in the previous two chapters, since it is too idealistic to analyze
a satellite-to-satellite passive orbit determination problem under the two-body model,
this section will take into account the effects of orbit perturbation on the passive orbit
determination problem.
The system model considering J2 perturbation of the earth oblateness is, in form, similar

to the state model to be estimated, XFO, and measurement Equation (10.3) for the previous
analysis under the two-body model system. The only difference is the way used to extrapolate
the orbit elements of the satellite at the epoch time to the position and velocity vector at any
time t.
In the case of the two-body model, the orbit elements of the satellite are fixed and so the

epoch time can be directly extrapolated to acquire the position and velocity of the satellite at
any time t [11, 12]. However, with consideration of perturbation, the orbit elements of the satel-
lite no longer form a constant, but keep changing all the time. Direct extrapolation using the
orbit elements at the epoch time by the expression for the two-body model will not describe
the motion state of the satellite precisely and therefore, as the extrapolation time increases,
the error increases rapidly. To solve the problem of orbit estimation under the perturbation
condition, two methods for satellite perturbation motion can be used [10, 13].
The first method is the analytical solution. This method, based on the fact that the perturba-

tive force is small compared with the gravity at the center of mass of the earth, expands the
perturbation motion expression into a series and then integrates the motion expression within a
certain accuracy range, thus establishing the analytic function relation where the orbit elements
change with time. In other words, the orbit elements at the epoch time need to be extrapolated
to any time t considering J2 perturbation, to acquire the instantaneous orbit elements at this
time. Then the orbit elements will be converted according to the two-body model to calculate
the corresponding position and velocity vector.
The second method is the numerical solution. This method takes the position and veloc-

ity vector of the satellite at a given epoch time t0 as the initial values and then employs the
numerical method to acquire the precise position and velocity vector of the satellite at the cor-
responding time t. In other words, the orbit elements at the epoch time will first be converted
according to the two-body model to calculate the corresponding position and velocity vector,
use them as the initial values, and then numerical values are integrated according to the per-
turbation motion expression to acquire the position and velocity vector of the satellite at any
time t.
The calculation steps of the analytical solution method and numerical solution method for

orbit extrapolation with consideration of J2 perturbation are given below:

1. The analytical solution for solving the perturbation motion equation [13]
Suppose the orbit elements of the satellite at the epoch time t0 are known to be 𝜎(t0),

which is the initial condition. Solve the Lagrange planetary motion equation [10] to obtain
the orbit elements variation Δ𝜎(t) from t0 to any time t, in order to obtain the instantaneous
orbit elements 𝜎(t) = 𝜎(t0) + Δ𝜎(t) at time t. The analytical solution method usually uses
the series solution. The perturbation is relatively small, so the function, on the right of the
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Lagrange planetary motion equation, which contains the orbit elements, can be expanded
into a series, as the approximate value of 𝜎, to obtain a solution of certain accuracy.
When the J2 perturbation of the earth oblateness is considered, it is called the first-order

approximate solution of the series method. Then the perturbation function R can be decom-
posed as follows [10]:

R = R(1)
c + R(1)

s + R(1)
l , (10.4)

where R(1)
c is the first-order secular term, R(1)

s is the first-order short-period term, and R(1)
l

is the first-order long-period term. Solve the above components to acquire the solution to
the satellite perturbation motion with consideration of J2 perturbation:

𝜎(t) = 𝜎(t0) + Θ⋅M0(t − t0) + 𝜎1(t − t0) + 𝜎
(1)
l (t) + 𝜎(1)s (t), (10.5)

where Θ =
[
0 0 0 0 0 1

]T
. The known initial conditions are the orbit elements 𝜎(t0) =[

a0 e0 i0 Ω0 𝜔0 M0

]T
of the satellite at epoch t0 time. The calculating steps for obtain-

ing the position and velocity vector of the satellite at any time t with consideration of J2
perturbation oblateness are given in Table 10.1.
Table 10.1 gives the calculation steps for the series solution with consideration of J2

perturbation of the earth oblateness. The detailed series solution for perturbation motion
can be found in reference [10].

2. The numerical solution method for solving the perturbation motion equation [14]
With the known satellite orbit elements 𝜎(t0) at the epoch time t0, use the satellite

ephemeris calculation expression in the case of the two-body model in the Appendix to
convert 𝜎(t0) to the position and velocity vector of the satellite at the time t0, which are
the initial values, and use the fourth-order Runge–Kutta method to integrate the values
(if there is a higher requirement for accuracy, the Runge–Kutta of higher order can be
used, e.g., RKF5(6) or RKF7(8)) to obtain the position and velocity vector of the satellite
at any time target. The Runge–Kutta method and high-order RK method can be found in
reference [15] and will not be listed here in detail. According to the tests, in the application
of passive orbit determination of the satellite, the fourth-order Runge–Kutta method
already provides adequate accuracy for numerical integration.

3. The comparison between the two solution methods for solving perturbation motion
equation
The analytic method obtains the solution on the basis of the orbit elements of the satel-

lite. This method has explicit significance, but it is more complicated. It is suitable for
applications such as analysis on and research into the law of motion of the satellite or orbit
design. The solution of the numerical method is easy to obtain and is easier to understand.
However, the solving process does not involve the orbit elements of the satellite and so it
is difficult to obtain the regular patterns concerning satellite orbits. This method is more
suitable for precise orbit determination of the satellite.
Therefore these two solution methods both have advantages and disadvantages and are

both suitable for specific applications. This chapter only intends to extrapolate the position
and velocity of the satellite at any time t according to the orbit elements at the epoch time
under perturbation. Therefore the numerical solution method will be selected to solve the
orbit determination problem under perturbation.
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Table 10.1 Calculation steps to find the satellite ephemeris by the analytic method with consideration
of J2 term perturbation of the earth oblateness

1. Calculate the first-order short-period term 𝜎
(1)
s (t0) and the first-order long-period term 𝜎

(1)
l (t0) at

the epoch time t0
2. Calculate the mean element 𝜎(t0) at the epoch time t0:

𝜎(t0) = 𝜎(t0) − 𝜎
(1)
s (t0) − 𝜎

(1)
l (t0)

3. Use the mean element 𝜎(t0) at the epoch time t0 to calculate the first-order secular term 𝜎1(t − t0)
4. Calculate the mean element 𝜎(t) at the time t to be solved:

𝜎(t) = 𝜎(t0) + Θ ⋅M0(t − t0) + 𝜎1(t − t0)

5. Calculate the first-order short-period term 𝜎
(1)
s (t) and the first-order secular term 𝜎

(1)
l (t) at the

time t to be solved
6. Use the expression (10.5) to calculate the instantaneous orbit elements 𝜎(t) at the time to be

solved t
7. Use the satellite ephemeris transformation in the case of the two-body model to convert the

instantaneous orbit elements 𝜎(t) at the time to be solved to the position and velocity vector at
the corresponding time

10.2 Satellite-to-Satellite Passive Orbit Determination Based on PSO
and Frequency

The previous section analyzed the theory and mathematical model of satellite-to-satellite pas-
sive orbit determination using frequency only. This section will focus on the methods for
solving nonlinear Equation (10.3). According to the analysis above,a highly nonlinear rela-
tion exists between the state parameter to be estimated, XFO, and the observed parameter.
frequency. So the iterative method can be involved as the analytic method may not be feasible
for solving Equation (10.3). In addition, the grid search method requires such a large amount
of calculation that it is impossible to achieve a six-dimensional search and the fact that the
calculation result is not unique makes the grid search method infeasible for solving Equation
(10.3). This section will focus on the research into the iterative method for solving the nonlin-
ear Equation (10.3). Here the particle swarm optimization (PSO) algorithm is introduced as a
method for state estimation of XFO.

10.2.1 Introduction of Particle Swarm Optimization (PSO)

The PSO algorithm was inspired by the foraging behavior of bird flocks and is essentially
an evolutionary algorithm (EA) based on swarm intelligence. It applies the position–velocity
search mode [6]. Every particle has two properties: position and velocity. The position of a
particle is a candidate solution in the solution space; the degree of superiority of the solution
is determined by the fitness function; and the calculation of the fitness function is defined by
the cost function to be optimized. The velocity of a particle determines the moving step of the
particle in the solution space at every iteration [7].
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PSO is first randomly initialized into a swarm of particles in the solution space. With the
assumption that the number of particles is P and the solution space is L-dimensional, the posi-
tion of the particle i in the L-dimensional solution space is expressed as xi = (xi1, xi2, … , xiL)
and its velocity as vi = (𝑣i1, 𝑣i2, … , 𝑣iL). In every iteration, the particle upgrades its velocity
component and position component by dynamically tracking the two extreme values. Among
two extreme values, one is the optimal solution that has been found by the particle from the
initialization to the current iteration, that is, pBesti = (pi1, pi2, … , piL), and the other is the
globally optimal solution that has been found by the swarm of particles until the current
iteration in history, that is, gBest = (g1, g2, … , gL). If the superscript ‘n’ is the number of
iterations, the updating expression for the velocity and position of particle i is expressed as

vn+1i = 𝑤n ⋅ vni + c1 ⋅ rand(pBestni − xni ) + c2 ⋅ rand(gBestn − xni ), (10.6)

xn+1i = xni + vn+1i , (10.7)

where i = 1, … ,P; c1 is known as the cognitive acceleration constant, which is the factor
where the individual particle learns from itself; c2 is known as the social acceleration constant,
which is the factor where the individual particle learns from the society (swarm); both c1 and
c2 are positive constants, which are usually c1 = c2 = 2; rand is a random number in [0, 1];
and vn+1i is the vector sum of vni , pBest

n
i − xni , and gBest

n − xni . Thus the combination diagram
of the weighted values of the three possible movement directions of the particle is as shown in
Figure 10.1.
In order to balance the global search ability and local optimization ability of particles, a par-

ticle in every dimension has a maximum velocity Vlmax set by the user (l is the dimensionality of
the particle, where 1 ≤ l ≤ L and Vlmax > 0). If the upgraded velocity of a particle in a dimen-
sion exceeds Vimax, the velocity in this dimension is limited to Vlmax; that is, if v

n+1
il > Vlmax,

then let vn+1il = Vlmax; if v
n+1
il < −Vlmax, then let vn+1il = −Vlmax.

This parameter has proved to be very important to convergence of PSO in applications. If the
selected Vlmax is excessively large, the particle may fly past the optimal solution; if the selected
Vlmax is too small, the particle may be unable to detect the space outside the local optimum
area, only being able to obtain the local optimal solution [6, 7].
The parameter 𝑤 is the inertia weight factor and was also introduced for the purpose of

balancing the global search ability and local optimization ability of particles. It is usually
linearly reduced from 𝑤max to 𝑤min, so that the particle swarm algorithm has a better global
search ability at the beginning of an iteration and higher local optimization accuracy can also
be achieved in the later period of the iteration [6]. Selection of the inertia weight factor 𝑤 can

npBesti

gBestn

n + 1xi

nvi

nxi

Figure 10.1 Combination of the weighted values of the three possible movement directions of the
particle
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Table 10.2 Calculation process of particle swarm optimization

Step 1. Randomly initialize the position and velocity of the particle in the solution space, calculate
the fitness function value of particles (i.e., the corresponding function to be optimized), to obtain
the globally optimal solution gBest and the optimal solution pBesti that the particle swarm has
obtained until the current time (in the case of the minimization issue, the optimal solution is the
one made the minimum value of the fitness function; otherwise, the maximum value)

Step 2. If the stopping condition of iteration has been reached, output the result and end the
algorithm; otherwise, proceed to step 3

Step 3. Add the number of iteration(s) with one; calculate the inertia weighting factor at the time by
expression (10.8), update the velocity component and position component of each particle using
the expressions (10.6) and (10.7) (the velocity of a particle in a dimension should not exceed the
maximum velocity in the dimension, but if the maximum velocity is exceeded, the maximum
velocity Vl

max in this dimension is selected; likewise, the position of the particle should not be
beyond the scope of the solution space). Calculate the fitness function of each particle, update the
globally optimal solution gBest and the optimal solution pBesti that the particle has obtained up
until the current time; then proceed to step 2

be expressed as

𝑤n = 𝑤max −
𝑤max −𝑤min

itermax
n, (10.8)

where 𝑤max and 𝑤min are respectively the maximum value and minimum value of the inertia
weighting factor, itermax is the maximum number of iteration(s), and n is the count number of
the current iteration. The initial position and velocity of every particle is randomly generated
in the solution space and then iteration calculation is performed using expressions (10.6) to
(10.8), until a satisfactory solution is obtained or the maximum number of iteration(s) has been
reached. The calculation process of the PSO algorithm is shown in Table 10.2.

10.2.2 Orbit Determination Method Based on the PSO Algorithm

When making an estimation of the two state parameters under the case of the unknown target
signal carrier frequency f0 and known f0, it should be realized that what they have in common
in two cases is that they both need estimation of the orbit elements XFO of the satellite at the
epoch time. The difference between them is that, in the case of the unknown carrier frequency
f0, the value of f0 also needs to be estimated in addition to estimation of XFO. The two cases
are analyzed in the following:

The first case refers to the fact that there is no prior information for the noncooperative target. In
this case, the target signal carrier frequency f0 is unknown and the search scope for the state
parameter to be estimated in each dimension is relatively large. Specifically, the semi-major
axis a can be set in a large search scope according to the orbital altitude of the target of
interest; the value range of eccentricity e is [0, 1); the value range of orbit inclination i is
[0,𝝅); and the value range of the remaining three parameters to be estimated is [0, 2𝝅).

The second case refers to the fact that there is certain prior information for the noncooperative
target; for example, the rough information on the target orbit has been obtained in other
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ways. In this case, the assumption is that the satellite signal carrier frequency f0 is known
and that the search scope of the state parameters in each dimension is relatively smaller.

The orbit (state) parameter estimation method based on PSO can be expressed as follows:

1. Randomly generate the position and velocity of each particle in the search space, with the
assumption that the number of particles in PSO is P.

2. Regard each particle as a set of feasible solutions, that is, the orbit elements of the satellite
at the epoch time, and convert them to the position and velocity vector at the corresponding
N observation times using the orbit extrapolation method previously applied in the case of
two-body model and with consideration of J2 perturbation of earth oblateness. Then sub-
stitute the position and velocity vector of the observing satellite at the corresponding time
into the expression (10.3). For the unknown f0, the least squares method can be employed
to estimate f0, which is expressed as f̂0 = (HT

i Hi)−1HT
i Zm, where Hi = Hi

FO(X
i
FO) is the

result of solving the ith particle.
3. Substitute the known carrier frequency f0 or the least squares estimate of the carrier fre-

quency f̂0 (in the case of f0 unknown) into the expression (10.3). Then the state parameter
to be estimated, XFO, can be obtained according to the expression

X̂FO = argmin
XiFO

J(XiFO), (10.9)

where J(XiFO) = ‖Zm − f 0 ⋅HFO(XiFO)‖2, which is the cost function to be optimized in the
PSO algorithm, that is, the fitness function (if f0 is known, f 0 = f0; if f0 is unknown, f 0 = f̂0).
Then repeat step 3 of the PSO algorithm until the stopping condition has been reached.

10.3 System Observability Analysis

Chapter 8 analyzed the existing methods for an observability description and the problems
of such methods. It also introduced a new method for a description of system observability
and explained the advantages of that new method for a description of system observability.
In addition, for a satellite-to-satellite passive orbit determination system based on BO and on
bearings and frequency information, Chapters 8 and 9 also researched the correlation between
the system observability and the influencing factors for the state equation and the measurement
equation under typical simulation scenarios.
In the satellite-to-satellite passive orbit determination system based on BO and on bearings

and frequency information, the position and velocity vector in the J2000.0 coordinate system
are used as state variables. The position and velocity vector and the orbit elements of the
satellite can be converted to each other, but the former changes with time. Thus, the position
and velocity vector in a Cartesian coordinates system is not suitable for analysis of the effects
on system observability of satellite orbit elements.
This chapter uses the orbit elements of the target satellite at the epoch time as the state

parameters to be estimated, which, compared with the Cartesian coordinates system, is more
helpful for analysis of the effects on orbit elements of system observability, that is, the effects
of different geometrical types of the satellite on system observability. This research has the
following two features:
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1. Theory and analysis on this problem faces great difficulties. Both the observer and the target
are satellites with six orbit elements needed to determine the orbit of the satellite; therefore
the relative observation geometry will be jointly determined by 12 different parameters.
It is rather difficult to find an analytic method to derive the effects of different parameter
values on system observability.

2. Research into this problem has great significance in practice. If the result of the research
into this problem can be obtained, system observability under the given satellite observation
geometric conditions can be qualitatively analyzed and better results on the orbit of the
target can be estimated through orbit maneuver of the observing satellite.

Due to the particular importance of this problem, it is researched in this chapter. However,
during the research, the problem was simplified, which is mainly reflected in the following:

1. The research probed into the relation between the system observability and the orbit ele-
ments of the target satellite under specific observation geometric conditions.

2. The researches only focused on the effects of the first four orbit elements of the target
satellite. Of the classic orbit elements of the satellite, the semi-major axis a and eccentricity
e determine the size and shape of the elliptic orbit of the satellite, the orbit inclination i and
RAAN Ω determine the position of the orbital plane in 3D space, the argument of perigee
𝜔 determines the bearing of the ellipse in the orbital plane, and M0 determines the mean
argument of perigee of the satellite at time t = 0. The first four orbit elements determine the
position in the space of the satellite orbit and the size and shape of the elliptic orbit while
the last two orbit elements only determine the position of the perigee in the orbital plane and
the starting time of satellite motion. In other words, it is mainly the first four orbit elements
that determine the different observation geometric relations between two satellites.

Intuitionally speaking, no matter what kind of observation information is applied, as long
as the relative movement between two satellites intensifies, better state estimation results can
be obtained with the same measurement accuracy; conversely, if the same state estimation
accuracy can be achieved with lower requirements for the parameter measurement accuracy,
this indicates that the system observability has been enhanced.
With specific orbital altitude of the observing satellite, the orbit period of the target satellite

will increase as its semi-major axis increases and the relative movement between satellites will
decrease accordingly; in other words, system observability reduces as the semi-major axis of
the satellite increases.
By the ‘Access’ function used in STK®6.0, the following can be obtained through different

scenario settings: for two satellites operating in different orbits, a longer observation arc can be
acquired in the case where their orbital planes are almost perpendicular than in the case where
they are almost in the same plane. Take the angle measurement information as the example.
If two satellites not on the same track are almost on the same plane, the issue downgrades to
a two-dimensional tracking issue and now the elevation angle has lost its importance, that is,
the target orbit is determined by only the azimuth angle. However, in the case of perpendicular
planes, the bearing measurement information and elevation measurement information can be
used for comparison and, with the same measurement accuracy, the perpendicular planes case
can result in higher estimation accuracy. In other words, the relative movement is much more
significant in the case where the two satellite orbital planes are perpendicular than in the case
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Table 10.3 Orbit elements of satellites in the analysis on system observability

Description of orbit
elements

Observing
satellite of
Simulation
scenario 1

Observing
satellite of
Simulation
scenario 2

Observing
satellite of
Simulation
scenario 2

Default
scenario of

target satellite
(T)

Semi-major axis a (km) 42 000 40 000 28 000 7 200
Eccentricity e 0.1 0.01 0 0.05
Orbit inclination i (deg) 36 45 120 30
RAAN Ω (deg) 120 30 60 75
Argument of perigee 𝜔 (deg) 60 30 30 60
Mean argument of perigee M0 (deg) 0 0 0 10

where the two satellite orbital planes are almost on the same plane. In summary, compared
with two satellites not on the same track but almost on the same plane, two satellites being
almost perpendicular provides a longer observation duration and also improves the estimation
performance.
The analysis above explains the effects of different observation geometric conditions on

system observability. The following will, through computer simulation, analyze the relation
between the system observation and the first four orbit elements of the satellite under a specific
observation geometric condition.
Assuming that the filtering period is T = 20 seconds and the observation duration is

9000 seconds (the simulation was intended for a LEO (low earth orbit) satellite with orbital
altitude <3000 km and orbital period <9000 seconds, thus making the observation duration
9000 seconds here, so that the operation of the LEO satellite in one entire orbital period can
be learned), the Doppler frequency measurement error is 𝜎f = 50Hz and the signal carrier
frequency of the target satellite is set as f0 = 15GHz. In three different simulation scenarios,
the orbit elements of the observing satellite and the default orbit elements of the target satellite
are as shown in Table 10.3.

10.3.1 Simulation Scenario 1

From the first set of orbit elements of the observing satellite in Table 10.3, the curve of the
relation between system observability and the semi-major axis a2 and eccentricity e2 can be
obtained, which is shown in Figure 10.2 (define the 𝜎1 mark as the orbit elements of the observ-
ing satellite and the 𝜎2 mark as the orbit elements of the target satellite, where 𝜎 =

[
a e i Ω

]
).

The relation between system observability and the orbit inclination i2 and RAAN Ω2 is indi-
cated in the curve in Figure 10.3.
Figure 10.2 indicates that the value of system observability increases as the semi-major axis

a2 increases.When eccentricity e2 is relatively small, the observability is fairly stable; as eccen-
tricity e2 increases, system observability changes in a wide range. However, in general, when
e2 = 0.05, the value of observability is small and stable. Figure 10.3 indicates that when the
orbit inclination i2 is close to or equal to the orbit inclination of the observing satellite (in
this scenario, the orbit inclination of the observing satellite is i1 = 36∘), the value of system
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Figure 10.2 Relation between observability and the semi-major axis a2 and eccentricity e2 in
Scenario 1. (a) Degree of observability of a2 and (b) degree of observability of e2

observability is larger; as the orbit inclination i2 is different from the observing satellite orbit
inclination i1, the value of system observability reduces to a certain extent; and when i2 = 120∘,
the value of system observability is obviously reduced.When the RAANΩ2 is close to or equal
to the RAAN of the observing satellite (in this scenario, the RAAN of the observing satellite
is Ω1 = 120∘), the value of system observability is larger; as the RAAN Ω2 moves far away
from the RAAN of the observing satellite Ω1, the value of system observability reduces to a
certain extent; and when Ω2 = 30∘, the value of system observability is obviously reduced.

10.3.2 Simulation Scenario 2

By using the second set of orbit elements of the observing satellite in Table 10.3, the curve of
the relation between system observability and the semi-major axis a2 and eccentricity e2 can
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Figure 10.3 Relation between observability and orbit inclination i2 and RAAN Ω2. (a) Degree of
observability of i2 and (b) degree of observability of Ω2

be obtained, which is shown in Figure 10.4. The relation between system observability and the
orbit inclination i2 and the RAAN Ω2 is shown in the curve in Figure 10.5.
Figure 10.4 indicates that the value of system observability increases as the semi-major

axis a2 increases. When eccentricity e2 is relatively small, the observability is fairly stable;
as eccentricity e2 increases, system observability changes in a wide range; but, in general,
when e2 = 0.05, the value of observability is small and stable. Figure 10.5 indicates that when
the orbit inclination i2 is close to or equal to the orbit inclination of the observing satellite (in
this scenario, the orbit inclination of the observing satellite is i1 = 45∘), the value of system
observability is larger; as the value of the orbit inclination i2 moves far away from the observing
satellite orbit inclination i1, the value of system observability reduces to a certain extent; and
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Figure 10.4 Relation between observability and the semi-major axis a2 and eccentricity e2 in Sce-
nario 2. (a) Degree of observability of a2 and (b) degree of observability of e2

when i2 = 135∘, the value of system observability is obviously reduced. When the RAANΩ2 is
close to or equal to RAAN of the observing satellite (in this scenario, the RAAN of the observ-
ing satellite isΩ1 = 30∘), the value of system observability is larger; as the RAANΩ2 moves far
away from the RAAN of the observing satellite Ω1, the value of system observability reduces
to certain extent; and whenΩ2 = 120∘, the value of system observability is obviously reduced.

10.3.3 Simulation Scenario 3

From using the third set of orbit elements of the observing satellite in Table 10.3, the curve of
the relation between system observability and the semi-major axis a2 and the eccentricity e2
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Figure 10.5 Relation between observability and the orbit inclination i2 and RAAN Ω2 in Scenario 2.
(a) Degree of observability of i2 and (b) degree of observability of Ω2

can be obtained, as shown in Figure 10.6. The relation between system observability and the
orbit inclination i2 and the RAAN Ω2 is indicated in the curve in Figure 10.7.
Figure 10.6 indicates that the value of system observability increases as the semi-major axis

a2 increases. When the eccentricity e2 is relatively small, the observability is fairly stable; as
the eccentricity e2 increases, system observability changes dramatically; but, in general, when
e2 = 0.05, the value of observability is small and stable. Figure 10.7 indicates that when the
orbit inclination i2 is close to or equal to the orbit inclination of the observing satellite (in
this scenario, the orbit inclination of the observing satellite is i1 = 120∘), the value of system
observability is larger; as the orbit inclination i2 is different from the observing satellite orbit
inclination i1, the value of system observability reduces to a certain level; and when i2 = 30∘,
the value of system observability is obviously reduced.When the RAANΩ2 is close to or equal
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Figure 10.6 Relation between observability and the semi-major axis a2 and eccentricity e2 in
Scenario 3. (a) Degree of observability of a2 and (b) degree of observability of e2

to the RAAN of the observing satellite (in this scenario, the RAAN of the observing satellite is
Ω1 = 60∘), the value of system observability is larger; as the RAAN Ω2 moves far away from
the RAAN of the observing satellite Ω1, the value of system observability reduces to a certain
extent; and when Ω2 = 150∘, the value of system observability is obviously reduced.
In conclusion, through the three sets of different observing satellites above, the relation

between the observability of the satellite-to-satellite passive orbit determination system with
frequency-only measurement and the orbit elements of the target satellite was analyzed. Under
the observation condition of a single HEO (high earth orbit) satellite to locate the LEO satellite
target, the following conclusions are acquired by simulation:

1. The system observability reduces as the semi-major axis a2 of the target satellite increases.
2. The system observability increases first and then reduces as the eccentricity e2 of the target

satellite increases; when 0.001< e2 < 0.1, the observability is favorable.
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3. When the orbit inclination i2 of the target satellite is close to or equal to the orbit inclination
i1 of the observing satellite, the observability downgrades significantly; when there is a
certain difference between the value of the orbit inclination i2 of the target satellite and
i1 of the observing satellite, the observability improves accordingly; and if the difference
between the value of the orbit inclination i2 of the target satellite and i1 of the observing
satellite is 90∘ or almost 90∘, the system observability improves significantly.

4. When the RAAN Ω2 of the target satellite is close to or equal to the RAAN Ω1 of the
observing satellite, observability significantly downgrades; when there is a certain differ-
ence between the value of the RAAN Ω2 of the target satellite and the RAAN Ω1 of the
observing satellite, the observability improves accordingly; and if the difference between
the value of the RAAN Ω2 of the target satellite and the value of the RAAN Ω1 of the
observing satellite is 90∘ or almost 90∘, the system observability improves significantly.
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The conclusions acquired above are based on the method of passive orbit determination
with frequency-only measurement, but the relation between the system observability and the
orbit elements of the target satellite can be expanded to the corresponding cases where other
observed quantities are used, although the magnitude and variation trend of the system observ-
ability acquired are not completely the same.

10.4 CRLB of the Orbit Parameter Estimation Error

For cases of either unknown or known signal carrier frequencies f0, because the state parame-
ters to be estimated are orbit elements of the target satellite at the epoch time (when the signal
carrier frequency f0 is unknown, f0 becomes a parameter to be additionally estimated), the
CRLB (Cramér–Rao lower bound) analysis of the orbit parameter estimation error discussed
below will mainly aim at the case of unknown f0. The calculation expressions of the parameter
estimation error CRLB for the case of known f0 are the same as those of the first six parameters
for the case of unknown f0.
The parameters to be estimated for the case of unknown f0 can be expressed as

𝜽 =
[
𝜃1, 𝜃2, … , 𝜃7

]
=

[
XT
FO, f0

]
. (10.10)

According to expression (10.3), suppose errors 𝜀1, … , 𝜀N are zero-mean Gaussian and i.i.d.

with variance 𝜎2f , that is, 𝜀i ∼ N
(
0, 𝜎2f

)
(1 ≤ i ≤ N). Therefore, for a given 𝜽, the joint con-

ditional probability density function (PDF) of f 1m, … , f Nm can be expressed as

p
(
f 1m, … , f Nm |𝜽) = 1(

2𝜋𝜎2f

)N∕2 exp
⎡⎢⎢⎢⎢⎢⎣
−

N∑
i=1

(
f im

)2

2𝜎2f

⎤⎥⎥⎥⎥⎥⎦
, (10.11)

where f im is

f im = E
(
f im
)
= f0

[
1 −

(
ṙi ⋅ ri

)
c ⋅ ri

]
, (10.12)

where E{⋅} represents a mathematical expectation operation. By taking the natural logarithm
of expression (10.11), it can be found that

ln (p |𝜽 ) = −

N∑
i=1

(
f im − f

i
m

)2

2𝜎2f
− N

2
ln

(
2𝝅𝜎2f

)
. (10.13)

Then by taking the partial differentials of expression (10.13) with respect to each 𝜽 component,
it can be found that

𝜕 ln(p|𝜽)
𝜕𝜃j

=

N∑
i=1

(
f im − f im

)
𝜎2f

𝜕f
i
m

𝜕𝜃j
, (10.14)
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that is, the jkth element of the Fisher information matrix (FIM) is expressed as

Fjk = E

⎧⎪⎪⎨⎪⎪⎩

N∑
i=1

(
f im − f im

)
𝜎2f

𝜕f im
𝜕𝜃j

N∑
q=1

(
f qm − f

q
m

)
𝜎2f

𝜕f qm
𝜕𝜃k

⎫⎪⎪⎬⎪⎪⎭
= 1

𝜎2f

N∑
i=1

𝜕f
i
m

𝜕𝜃j

𝜕f
i
m

𝜕𝜃k
. (10.15)

According to expression (10.15), it can be found that the CRLB of every parameter 𝜃j in the
vector 𝜽 to be estimated is (F−1)jj.
Since f im is a function of 𝜃j (1 ≤ j ≤ 7), when finding 𝜕f im∕𝜕𝜃j from the FIM, first find the

partial differentials of the frequency component f im with respect to the location and velocity
vectors of target satellite and then find the partial differentials of the location and velocity
vectors of target satellite with respect to 𝜃j. Finally, multiple each calculation result above to
obtain 𝜕f im∕𝜕𝜃j. See the following for detailed solutions.
According to expression (10.12), it can be found that 𝜕f im∕𝜕𝜃j (1 ≤ j ≤ 7) can be expressed as

follows:
𝜕f im
𝜕𝜃j

=
𝜕f im
𝜕rT

𝜕r
𝜕𝜃j

+
𝜕f im
𝜕ṙT

𝜕ṙ
𝜕𝜃j

+
𝜕f im
𝜕f0

𝜕f0
𝜕𝜃j

, (10.16)

where r and ṙ are the relative location and the relative velocity vectors respectively. According
to expression (10.12), it can be found that 𝜕f im∕𝜕rT, 𝜕f im∕𝜕ṙT, and 𝜕f im∕𝜕f0 m can be expressed as

𝜕f im
𝜕rT

=
f0
c

(
(ṙ ⋅ r) rT − r2ṙT

r3

)
, (10.17)

𝜕f im
𝜕ṙT

= −
f0
c

(
ṙT

r

)
, (10.18)

𝜕f im
𝜕f0

= 1 − (ṙ ⋅ r)
cr

. (10.19)

According to definitions of the relative location and relative velocity vectors, it can be found
that 𝜕r∕𝜕𝜃j and 𝜕ṙ∕𝜕𝜃j are equal to 𝜕rT∕𝜕𝜃j and 𝜕ṙT∕𝜕𝜃j, respectively, and the solutions for 𝜕rT∕𝜕𝜃j and
𝜕ṙT∕𝜕𝜃j (1 ≤ j ≤ 7) can be found as follows.
According to the Appendix, in the case of the two-body model, the transformation relations

between the orbit elements of the target satellites and their location and velocity vectors can
be expressed in the form of vectors as follows:

rT = aA ⋅
⎛⎜⎜⎝

cosE − e√
1 − e2 sinE

0

⎞⎟⎟⎠ = aA ⋅ Vr, (10.20)

ṙT =
√
𝜇∕a

(1 − e cosE)
A ⋅

⎛⎜⎜⎝
− sinE√

1 − e2 cosE
0

⎞⎟⎟⎠ =
√
𝜇∕a

(1 − e cosE)
A ⋅ V ṙ, (10.21)
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where 𝜇 is the gravitational constant. For the convenience of expression, use Vr and V ṙ to
substitute the corresponding vectors and E to express the eccentric argument of perigee, which
is the nonlinear function of a, e, and M0 [12] and can be expressed as follows:

E − e sinE =
√
𝜇∕a3t +M0 (10.22)

A is a transition matrix defined as follows:

A =
⎛⎜⎜⎝
A11 A12 A13
A21 A22 A23
A31 A32 A33

⎞⎟⎟⎠ . (10.23)

Each element of matrix A can be expressed respectively as follows:

A11 = cosΩ cos𝜔 − sinΩ sin𝜔 cos i

A12 = − cosΩ sin𝜔 − sinΩ cos𝜔 cos i

A13 = sinΩ sin i

A21 = sinΩ cos𝜔 + cosΩ sin𝜔 cos i

A22 = − sinΩ sin𝜔 + cosΩ cos𝜔 cos i.

A23 = − cosΩ sin i

A31 = sin i sin𝜔

A32 = sin i cos𝜔

A33 = cos i

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

(10.24)

According to expression (10.22), 𝜕E∕𝜕a, 𝜕E∕𝜕e, and 𝜕E∕𝜕M0 can be respectively expressed as:

𝜕E
𝜕a

=
−3
2

√
𝜇∕a5t

1 − e cosE

𝜕E
𝜕e

= sinE
1 − e cosE

.

𝜕E
𝜕M0

= 1
1 − e cosE

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(10.25)

Then each component of 𝜕rT∕𝜕𝜃j and 𝜕ṙT∕𝜕𝜃j (1 ≤ j ≤ 6) can be calculated according to expres-
sions (10.20) to (10.25) and 𝜕rT∕𝜕a and 𝜕ṙT∕𝜕a can be expressed respectively as follows:

𝜕rT
𝜕a

= A ⋅

⎛⎜⎜⎜⎝
cosE − e − a sinE

𝜕E
𝜕a√

1 − e2 sinE + a
√
1 − e2 cosE

𝜕E
𝜕a

0

⎞⎟⎟⎟⎠ , (10.26)

𝜕ṙT
𝜕a

=
√
𝜇

a(1 − e cosE)2
A ⋅

⎛⎜⎜⎜⎜⎜⎝

−
√
a
𝜕E
𝜕a

(cosE − e) + sinE
0.5√
a
(1 − e cosE)

−
√
1 − e2

(√
a sinE

𝜕E
𝜕a

+ 0.5√
a
cosE (1 − e cosE)

)
0

⎞⎟⎟⎟⎟⎟⎠
, (10.27)
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and 𝜕rT∕𝜕e and 𝜕ṙT∕𝜕e can be expressed respectively as follows:

𝜕rT
𝜕e

= aA ⋅

⎛⎜⎜⎜⎜⎝
− sinE

𝜕E
𝜕e

− 1
−e√
1 − e2

sinE +
√
1 − e2 cosE

𝜕E
𝜕e

0

⎞⎟⎟⎟⎟⎠
, (10.28)

𝜕ṙT
𝜕e

=
√
𝜇

a(1 − e cosE)2
A ⋅

⎛⎜⎜⎜⎜⎜⎝
−
√
a
𝜕E
𝜕e

(cosE − e) −
√
a sinE cosE√

a cosE√
1 − e2

(cosE − e) −
√
a
√
1 − e2 sinE

𝜕E
𝜕e

0

⎞⎟⎟⎟⎟⎟⎠
, (10.29)

and
𝜕rT
𝜕i

and
𝜕ṙT
𝜕i

can be expressed respectively as follows:

𝜕rT
𝜕i

= a
⎛⎜⎜⎝
sinΩ sin𝜔 sin i sinΩ cos𝜔 sin i sinΩ cos i

− cosΩ sin𝜔 sin i − cosΩ cos𝜔 sin i − cosΩ cos i
cos i sin𝜔 cos i cos𝜔 − sin i

⎞⎟⎟⎠ ⋅ Vr, (10.30)

𝜕ṙT
𝜕i

=
√
𝜇

a(1 − e cosE)

⎛⎜⎜⎝
sinΩ sin𝜔 sin i sinΩ cos𝜔 sin i sinΩ cos i

− cosΩ sin𝜔 sin i − cosΩ cos𝜔 sin i − cosΩ cos i
cos i sin𝜔 cos i cos𝜔 − sin i

⎞⎟⎟⎠ ⋅ V ṙ. (10.31)

and 𝜕rT∕𝜕Ω and 𝜕ṙT∕𝜕Ω can be expressed respectively as follows:

𝜕rT
𝜕Ω

= a ⋅ AΩ ⋅ Vr, (10.32)

𝜕ṙT
𝜕Ω

=
√
𝜇

a(1 − e cosE)
⋅ AΩ ⋅ V ṙ. (10.33)

and finally 𝜕rT∕𝜕𝜔 and 𝜕ṙT∕𝜕𝜔 can be expressed respectively as follows:

𝜕rT
𝜕𝜔

= a ⋅ A𝜔 ⋅ Vr, (10.34)

𝜕ṙT
𝜕𝜔

=
√
𝜇

a(1 − e cosE)
⋅ A𝜔 ⋅ V ṙ, (10.35)

where AΩ and A𝜔 represent the partial differentials of Ω and 𝜔 in matrix A of expression
(10.23), respectively, and 𝜕rT∕𝜕M0 and 𝜕ṙT∕𝜕M0 can be expressed respectively as follows:

𝜕rT
𝜕M0

= aA ⋅

⎛⎜⎜⎜⎜⎝
− sinE

𝜕E
𝜕M0√

1 − e2 cosE
𝜕E
𝜕M0

0

⎞⎟⎟⎟⎟⎠
, (10.36)
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𝜕ṙT
𝜕M0

=
√
𝜇

a(1 − e cosE)2
A ⋅

⎛⎜⎜⎜⎜⎝
−
√
a
𝜕E
𝜕M0

(cosE − e)

−
√
a
√
1 − e2 sinE

𝜕E
𝜕M0

0

⎞⎟⎟⎟⎟⎠
. (10.37)

In addition, there is

𝜕rT
𝜕f0

=
𝜕ṙT
𝜕f0

=
𝜕f0
𝜕𝜃j

= 0 (1 ≤ j ≤ 6).

Substitute the solution results of the partial differentials above into expression (10.15) and the
estimation error lower bond (CRLB) of the parameters can be obtained.

10.5 Orbit Determination and Tracking Simulation and Its Analysis

In this section, a performance simulation analysis of the frequency-only based passive orbit
determination described in Section 10.2 will be simulated under different conditions. The sys-
tem modus is still established for two cases: one for the two-body model and the other for
considering J2 perturbation of earth oblateness.
Generally speaking, factors influencing the nonlinear estimator performance include

various parameters, such as the initial state error (ISE), the target model error, a number of
accumulated measuring points, and so on. In this section, the performance of frequency-only
based passive orbit determination from effects such as the ISE, the frequency measurement
error, accumulated measuring points (equal to the length of observation arcs here), observation
intervals is analyzed for the case of the target signal carrier frequency f0, known or not known,
to discover the influences of different factors on estimation accuracy. The corresponding
conclusions are given.
Suppose that the frequency and angle accumulated measuring points of the target satellite

(T) measured by the observing satellite (O) in every Ts seconds are Nf and N𝛽 , respectively,
the corresponding tracked durations are Nf Ts and N𝛽Ts, the angle measurement error, fre-
quency measurement error, and the signal carrier frequencies of the target satellite are 𝜎𝛽 and
𝜎𝜀 (suppose 𝜎𝛽 = 𝜎𝜀), 𝜎f and f0 = 15 GHz, respectively.
According to the analysis of Section 10.2.2 in this chapter, for known f0 cases, the prior infor-

mation of targets indicates that its parameter search scope is relatively small so itsmeasurement
accuracy is higher than that in the case of unknown f0 in the simulation. The corresponding
parameters used in the simulation scenarios are shown in Table 10.4. Orbit elements of the two
satellites are shown in Table 10.5.
Corresponding parameters for the PSO algorithm are as follows: the number of swarm par-

ticles and the maximum iteration times itermax of each dimension, which are 80 and 200,
respectively. Two acceleration constants c1 = c2 = 2, and the maximum and minimum inertia
weight factors 𝑤max and 𝑤min and the maximum velocity Vlmax (l is the dimension of particles
and 1 ≤ l ≤ L) are 1.2, 0.2, and 15% of the search scope of the dimension, respectively. For
both the unknown signal carrier frequency f0 case and the known f0 case, the parameter search
scopes of the PSO algorithm are shown in Table 10.6. The ISEs of the BO method are given
in reference [1].
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Table 10.4 Parameters in the frequency-only based passive orbit determination simulation

Parameter description Unknown f0 Known f0
Ts (s) 20 10

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3
Accumulated measuring points Nf 200 100 50 200 100 50
𝜎f (Hz) 50 25 15 1 0.2 0.1

Case 4 Case 5 Case 6 Case 4 Case 5 Case 6
Accumulated measuring points N𝛽 200 100 50 200 100 50
𝜎𝛽 (rad) 1× 10−3 1× 10−3 1× 10−3 1× 10−4 1× 10−4 1× 10−4

Table 10.5 Orbit elements of two satellites in frequency-only based passive orbit
determination

Description of orbit elements Observing satellite (O) Target satellite (T)

Semi-major axis a (km) 42 000 7 100
Eccentricity e 0.1 0.1
Orbit inclination i (deg) 120 30
RAAN Ω (deg) 30 75
Argument of perigee 𝜔 (deg) 45 60
Mean argument of perigee M0 (deg) 0 60

Table 10.6 Parameter search scopes and ISE setting

Parameter / Unknown f0 Known f0
orbit elements Minimum Maximum ISE Minimum Maximum ISE

Semi-major axis a (km) 6900 7500 100 7000 7200 10
Eccentricity e 0 1 0.05 0.01 0.5 0.01
Orbit inclination i (deg) 0 180 5 10 60 1
RAAN Ω (deg) 0 360 5 45 90 1
Argument of perigee 𝜔 (deg) 0 360 5 45 90 1
Mean argument of perigee M0 (deg) 0 360 5 45 90 1

The performances of frequency-only based passive orbit determination in the case of the
two-body model and considering J2 perturbation of earth oblateness through computer simu-
lation are analyzed below.

10.5.1 Simulation in the Case of the Two-Body Model

The iterative search process of orbit elements of the target satellite at the epoch time by the
method of the PSO algorithm is according to the simulation parameters in Table 10.4 and the
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Figure 10.8 Particle swarms initialized by the PSO algorithm. (a) Results of the semi-major axis a and
eccentricity e, (b) results of the orbit inclination i and RAAN Ω, (c) results of the argument of perigee 𝜔
and the mean argument of perigee M0, and (d) frequency measurement and fitting curve

parameter search scopes and ISE in Table 10.5. (Here only the iterative search conditions are
given for unknown f0 in the case of the two-body model as the iterative process in the case of
known f0 when considering orbit perturbation is similar.)
The corresponding results are shown in Figure 10.8 when particle swarms are initialized. In

the figure, ‘x’ represents the location of every particle, ‘o’” represents the current location of
gBest, that is, the best estimation result up to the current iteration times, while ‘*’” represents
the actual orbit elements of the satellite to be estimated. The vector of the state to be estimated is
of six dimensions, so it is displayed in three figures, among which Figure 10.8a is the iteration
results of the semi-major axis a and eccentricity e, Figure 10.8b is those of the orbit inclination i
and RAANΩ, Figure 10.8c is those of the argument of perigee𝜔 and the epochmean argument
of perigee M0, and Figure 10.8d is the frequency measurement result and the fitting curve of
the PSO algorithm.
Results of particle swarms after 20 iterations are shown in Figure 10.9.
Results of particle swarms after 50 iterations are shown in Figure 10.10.
Results of particle swarms after 80 iterations are shown in Figure 10.11.
It can be seen from Figures 10.8 to 10.11 that with increasing iteration times, the difference

between the orbit elements at the epoch time of the target satellite estimated by the method of
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Figure 10.9 Particle swarms iterated for 20 times by the PSO algorithm. (a) Results of the semi-major
axis a and eccentricity e, (b) results of the orbit inclination i and RAAN Ω, (c) results of the argument
of perigee 𝜔 and the mean argument of perigee M0, and (d) frequency measurement and fitting curve

passive orbit determination based on PSO and the actual values reduces gradually while the
fitting degree of corresponding frequency change curves becomes higher and higher.
Now the parameter estimation error of the frequency-only based passive orbit determination

based on PSO algorithm will be calculated for unknown f0 cases by statistical evaluation of
Monte Carlo simulations. In order to evaluate the performance of passive orbit determination,
the same satellite orbit elements as used in reference [1] will be taken for the BO passive
tracking algorithm for state variables with the CRLB as reference. According to the simulation
parameters shown in Table 10.4 and the parameter search scopes and ISEs shown in Table 10.4,
the estimation errors of orbit elements of the target satellite under different conditions can be
calculated and are shown in Figure 10.12 (the parameter estimation errors referred to in this
chapter are all RMS errors of 50 Monte Carlo simulations).
The estimation error curve of the corresponding target signal carrier frequency f0 and the

curve of the fitness function values calculated according to expression (10.9) are shown in
Figure 10.13. They all vary with the iteration times.
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Figure 10.10 Particle swarms iterated 50 times by the PSO algorithm. (a) Results of the semi-major
axis a and eccentricity e, (b) results of the orbit inclination i and RAAN Ω, (c) results of the argument
of perigee 𝜔 and the mean argument of perigee M0, and (d) frequency measurement and fitting curve

The estimation errors of each parameter corresponding to several groups of simulation con-
ditions above and the corresponding CRLB are shown in Figure 10.12 and Table 10.7.
According to Figure 10.12 and Table 10.7, the simulation results are as follows:

1. For unknown f0 cases in the case of the two-body model, what has the largest effect on the
estimation accuracy of frequency-only based passive orbit determination based on PSO is
the accumulated points Nf (length of the observation duration), followed by the frequency
measurement error. The estimation error of the algorithm will increase with reduction of
accumulated points.

2. The parameter estimationRMS error still does not reach the CRLB and it will deviate CRLB
more and more with reduction of accumulated measuring points (length of the observation
duration).



338 Space Electronic Reconnaissance

3. According to Figure 10.12, it can be seen that no matter how large the number of accu-
mulated measuring points (here it refers to Nf = 200) or how small the number of accumu-
lated measuring points (here it refers to Nf = 50) are, the parameter estimation accuracy of
frequency-only based passive orbit determination based on PSO is better than that of the
BO method in reference [1]. Here it must be specified that the BO method in reference
[1] adopts the method of recursive filtering. For the frequency-only based passive orbit
determination based on PSO in this chapter, the method of batch processing is adopted,
so the performance comparison of the two methods are based on the same observation arc
data. For example, when Nf = 100, for the frequency-only based method based on PSO, the
results of itermax times of observation data iterations at Nf are compared with those derived
according to the observation data at Nf by the method of BO in reference [1]. As the com-
parison rules are therefore the same as those of the BO method in reference [1], they will
be used in the following simulations in this chapter.
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Figure 10.11 Particle swarms iterated 80 times by the PSO algorithm. (a) Results of the semi-major
axis a and eccentricity e, (b) results of the orbit inclination i and RAAN Ω, (c) results of the argument
of perigee 𝜔 and the mean argument of perigee M0, and (d) frequency measurement and fitting curve
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Figure 10.12 Parameter estimation error curves for unknown f0 cases in the case of the two-bodymodel.
Estimation error of (a) the semi-major axis a, (b) eccentricity e, (c) the orbit inclination i, (d) RAAN Ω,
(e) the argument of perigee 𝜔, and (f) the epoch mean argument of perigee M0
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Figure 10.13 Estimation error and fitness function variation curves for unknown f0 cases in the case of
the two-body model. (a) Fitness curve of f0 and fitness curve of XFO

Similarly, for known f0 cases, the parameter estimation error of the frequency-only based
passive orbit determination using the PSO algorithm can be calculated under the simulation
scenarios and the parameter search scopes and ISEs through Monte Carlo simulations, as
shown in Table 10.6. Here also the satellite orbit elements used in reference [1] are taken
for state variables with the CRLB introduction derived in Section 10.4 as reference, with the
corresponding estimation results. This is shown in Figure 10.14.
The fitness function values calculated according to expression (10.9) are shown in

Figure 10.15, which vary with the iteration times.
Estimation errors of each parameter corresponding to several groups of simulation conditions

above and the corresponding CRLB are shown in Table 10.8.
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Figure 10.14 Parameter estimation error curves for known f0 cases in the case of the two-body model.
Estimation error of (a) the semi-major axis a, (b) eccentricity e, (c) the orbit inclination i, (d) RAAN Ω,
(e) the argument of perigee 𝜔, and (f) the epoch mean argument of perigee M0
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According to Figure 10.14 and Table 10.8, conclusions can be drawn from the simulation
results:

1. For known f0 cases and in the case of the two-body model, what has the largest effect on
the parameter estimation accuracy of state is the accumulated measuring points Nf (length
of the observation arcs), followed by the frequency measurement error. Errors of the esti-
mation algorithm will increase with reduction of the accumulated measuring points.

2. The estimation error in the case of known f0 is closer to its CRLB than in the case of
unknown f0, which indicates that higher parameter estimation accuracy can be achieved
after a certain amount of prior frequency information of the target is added.

3. According to Figure 10.14, it can be seen that when the number of accumulated points is
small (here this refers to Nf = 50), the estimation accuracy of passive orbit determination
based on PSO is obviously better than that of the BO method in reference [1]; when the
number of accumulated points grows (here this refers to Nf = 100), the estimation accuracy
of passive orbit determination based on PSO is slightly better than that of the BO method
in reference [1]; and when the number of accumulated points grows to Nf = 200, the esti-
mation accuracy of the BO method in reference [1] is better than that of the passive orbit
determination based on PSO.

According to Figures 10.12 and 10.15, it can be seen that in the case of the two-body model,
the fitness function value for known f0 cases is obviously smaller than that in the case of
unknown f0. The fitness function value is the sum of squares of the frequency estimation errors
at each measuring point, which will become larger with an increasing number of accumulated
measuring points, therefore causing the fitness function value of Case 1 in Figures 10.12 and
10.14 to be larger than those of Case 2 and Case 3. According to this effect, it can be concluded
that the estimation accuracy for known f0 cases is obviously better than that for unknown f0
cases because the smaller the cost function value (whichmeans that the better the fitness degree
of frequency variation curves), the higher is the parameter estimation accuracy.
The computation load of frequency-only based passive orbit determination based on PSO

and the grid search method [16, 17] is analyzed below. For simplicity, here only the different
calculation steps of the two methods are compared. Assume that the computation load of every
feasible solution to be calculated is 1 and the computation load by the method of PSO is
P ⋅ itermax, where P is the particle number of the particle swarm and itermax is the maximum
allowable iteration times. The computation load by the grid search method is N1 ⋅ N2 ⋅ ⋅ ⋅ ⋅ ⋅
N6, where Nl is the grid number necessary for each dimension of parameters to be estimated
in the grid search method (1 ≤ l ≤ 6), and is determined by the expected resolution of each
dimension of parameters in the grid search method.
Taking the initial search scopes of the simulation scenarios shown in Table 10.4 as an

example, if we use the grid search method and the PSO algorithm for state estimations and
their final estimation accuracies are required to be equivalent, the computation loads of the
two methods are as shown in Table 10.9.
According to Table 10.9, it can be seen that it is rarely possible to use the computation load of

the grid search method to obtain estimation accuracy equivalent to that of the PSO algorithm.
Due to the different parameter estimation accuracies in the case of different accumulated mea-
suring points (length of the observation arcs), whether it is for known f0 cases or not, their
computation loads will be different, with differences of the computation loads in various sim-
ulation scenarios within 101 –106. When the passive orbit determination algorithm based on
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Figure 10.15 Fitness function variation curves for known f0 cases in the case of the two-body model

Table 10.9 Analysis of computation load by the PSO algorithm and the grid search method

Simulation scenario / Unknown f0 Known f0
grid number Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

Semi-major axis a
(km)

195 170 90 2 180 190 64

Eccentricity e 2 150 1 410 560 8 040 1 330 285
Orbit inclination
i (deg)

4 800 4 360 3 230 28 400 8 250 4 950

RAAN Ω (deg) 5 340 4 710 3 550 9 230 5 030 1 540
Argument of perigee
𝜔 (deg)

5 470 3 730 1 720 5 140 1 970 740

Mean argument of
perigee M0 (deg)

6 290 3 770 1 590 1 260 740 560

Total computation load
of grid search

3.7× 1020 6.9× 1019 1.6× 1018 2.9× 1022 1.5× 1019 5.7× 1016

Computation load of
the PSO algorithm

16 000 16 000

PSO in this chapter is used, since it does not use the serial work method as used in the grid
search method but uses the multidimensional parallel iteration searching method, it does not
matter whether f0 is known or not. Their computation loads only depend on the particle num-
ber of the particle swarm and the iteration times of the algorithm, and computation loads in
the various simulation scenarios are the same and obviously smaller than those of the grid
search method.
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Figure 10.16 Parameter estimation error curves for unknown f0 cases in the case of perturbation. Esti-
mation error of (a) the semi-major axis a, (b) eccentricity e, (c) the orbit inclination i, (d) RAAN Ω, (e)
the argument of perigee 𝜔, and (f) the epoch mean argument of perigee M0
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Table 10.10 Estimation errors for unknown f0 cases and in the case of J2 perturbation

Parameters / Case 1 Case 2 Case 3

orbit elements Estimation
error

CRLB Estimation
error

CRLB Estimation
error

CRLB

Semi-major axis a
(km)

3.4333 0.0933 4.9681 0.5751 8.2837 2.5058

Eccentricity e 9.7389× 10−4 6.2522× 10−5 1.8787× 10−3 1.0478× 10−4 3.4955× 10−3 1.3805× 10−4

Orbit inclination
i (deg)

0.0368 0.0014 0.0449 0.0040 0.0660 0.0121

RAAN Ω (deg) 0.0675 0.0026 0.0812 0.0086 0.1277 0.0324
Argument of
perigee 𝜔 (deg)

0.0726 0.0323 0.1264 0.0414 0.2688 0.0615

Mean argument
of perigee
M0 (deg)

0.0722 0.0340 0.0964 0.0375 0.2956 0.0841

f0 (Hz) 17.2 4.3 33.2 12.0 78.4 16.0

10.5.2 Simulation in the Case of Considering the Perturbation

By Monte Carlo simulations, according to the simulation scenarios and parameter search
scopes shown in the tables, the parameter estimation error of frequency-only based passive
orbit determination in considering the perturbation is now calculated in this section. Since the
known f0 case is just a special case of the unknown f0 case, only orbit determination under the
case of the unknown f0 is simulated here. For the convenience of comparison, here also the
CRLB is taken as a reference (similar to the analysis in Chapter 8, the CRLB in the case of the
two-bodymodel is still adopted for the estimation error lower bound, as in the case of perturba-
tion). With these parameters, the estimation results are shown in Figure 10.16. The estimation
errors of each parameter in the case of several groups of simulation conditions above and the
corresponding CRLB are shown in Table 10.10.
According to Figure 10.16 and Table 10.10, as well as the corresponding simulation results

in the case of the two-body model, it can be concluded that:

1. When J2 perturbation is considered, what has the most important effect on the parameter
estimation accuracy of every state is still the accumulated measuring points Nf (length of
the observation arcs) followed by the frequency measurement error. The estimation error
of the algorithm will increase with reduction of the accumulated measuring points.

2. Compared with the performance in the case of the two-body model, the parameter esti-
mation accuracy when J2 perturbation is considered drops slightly, but compared with the
corresponding CRLB, the estimation error does not change obviously, indicating that even
though when orbit perturbation is considered, a good state (orbit) estimation effect can still
be obtained for the frequency-only based passive orbit determination based on PSO.
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11
A Prospect of Space Electronic
Reconnaissance Technology

By summarizing and analyzing the history of the space electronic reconnaissance technology,
its characteristics and trends are: composition of HEO (high earth orbit) satellites and LEO
(low earth orbit) satellites, compensation of general monitoring and detailed survey, integration
of multiple reconnaissance and monitoring tasks to realize the full time domain (7/24), and
frequently reconnaissance and monitoring to the electronic targets all over the world so as to
provide timely and effective information for military operation.

1. Multiple-satellite networking for military demands of both strategic and tactical reconnais-
sance
After a general survey and monitoring of important and hot spots have been ensured,

tactical support can be enhanced by methods such as multiple-satellite networking and
satellite–ground system design to effectively provide timely and effective information for
major weapons and combat units.

2. Comprehensive reconnaissance for meeting the reconnaissance demands of the complex
electromagnetic environment
The electronic reconnaissance satellite integrates multiple reconnaissance and monitor-

ing tasks for radar, communication, measurement, control, navigation, and data links. It
also has the capacity of photoelectric reconnaissance to meet the fast-changing demands of
a high-tech battlefield in the future, enabling the battlefield commander to know the latest
conditions on the battlefield in time, all day so as to make the correct decisions.

3. Composition of HEO satellites and LEO satellites for realizing the continuous monitoring,
detailed survey, and precise measurement
HEO and LEO satellite reconnaissance is mainly used for long-time continuous gen-

eral monitoring, detailed surveying, and accurately locating target emitters. Deployment of
satellites in the future will include the reconnaissance network of multiple kinds of satellite
orbits, such as LEO, MEO (medium earth orbit), HEO, and geosynchronous orbit, as well
as providing continuous monitoring depending on HEO reconnaissance satellites and the

Space Electronic Reconnaissance: Localization Theories and Methods, First Edition.
Fucheng Guo, Yun Fan, Yiyu Zhou, Caigen Zhou and Qiang Li.
© 2014 John Wiley & Sons Singapore Pte Ltd. Published 2014 by John Wiley & Sons Singapore Pte Ltd.
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cooperative engagement capability to guide the LEO reconnaissance satellites to conduct
further detailed surveys.

4. Diversified localization system for meeting the reconnaissance demands of different kinds
of tasks
By direction finding technology of the interferometer, the single-satellite LOS

(line-of-sight) localization with LEO satellites can meet the localization demands of
many types of signals with high localization accuracy and strong adaptability to complex
signal environment; by multiple-satellite TDOA (time difference of arrival) and FDOA
(frequency difference of arrival) localization, ocean surveillance satellites can meet
the relatively simple reconnaissance demands of ocean signal environments with high
localization accuracy and long-time continuous monitoring; by HEO satellites using
electronically scanning array LOS geolocation, continuous monitoring of signals with
HEO and limited localization capability can be realized. Therefore, the localization
system will be selected reasonably according to the tasks of the electronic reconnaissance
satellites.

5. Synchronic development of large and small satellites for meeting the demands of long-term
duty and emergency launching
Throughout the history of electronic reconnaissance satellites, it has been found that the

electronic reconnaissance satellites are becoming heavier and their functions are becoming
stronger, with their weights gradually growing from tens of kilograms earlier to 8 to –9 tons
and their functions integrated with reconnaissance of various electronic signals such as
radar, communication, remote measurement, and remote control. On the other hand, with
the development of high technologies, such as microelectronics and lightweight materials,
the developmental upsurge of small satellites of dozens to several kilograms has begun to
spring up and the concept of their design has begun to emphasize single functions. Since
these satellites have advantages, such as short preparation time, rapid renewal, low cost,
and fast launching, they are especially applicable to the emergency launching in wartime,
meeting the demands for short-term monitoring and reconnaissance of the battlefields and
conflict areas.



Appendix

Transformation of Orbit Elements,
State and Coordinates of Satellites
in Two-Body Motion

In localization, there are often transformations of orbit elements (a, e, i, Ω, 𝜔, 𝜏), motion
states of satellites (r, 𝛼, 𝛿, v, Θ, A), and the satellite position vector [X,Y ,Z] and velocity vec-
tor [Ẋ, Ẏ , Ż] on the coordinate of the ECI (earth centered inertial) coordinates, among which,
one-to-one mapping relations are formed in two-body motion. For the convenience of readers,
here the transformation relations are set out specially.

1. Obtain the state of orbits according to the orbit elements
To obtain the state (r, 𝛼, 𝛿, v, Θ, A) at time t according to the orbit elements (a, e, i,

Ω, 𝜔, 𝜏), the following processes will be used.Firstly, calculate the eccentric anomaly E
according to

E − e sinE =
( 𝜇
a3

)1∕2
(t − 𝜏). (A.1)

Equation (A.1) is a transcendental equation, so it can only be solved by numerical solution,
that is, E can be obtained through iterative calculation. The expression 𝜇= 398 603 km3/s2

is the gravitational constant (Kepler constant).
After the eccentric anomalyE is obtained according to expression (A.1), the true anomaly

f can be obtained according to the following expression:

f = 2tan−1
[(1 + e

1 − e

)1∕2
tg
E
2

]
. (A.2)

After the true anomaly f is obtained, the following can be calculated according to the
expressions below:

u = 𝜔 + f , (A.3)
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𝛿 = arcsin(sin i sin u). (A.4)

cos (𝛼 − Ω) = cos u
cos 𝛿

sin(𝛼 − Ω) = tan 𝛿 cot i

}
, (A.5)

𝛼 = Ω + tan−1
[
sin (𝛼 − Ω)
cos (𝛼 − Ω)

]
, (A.6)

sinA = sin (𝛼 − Ω)
sin u

cosA = cot u tan 𝛿

}
, (A.7)

P = a(1 − e2), (A.8)

r = P
1 + e cos f

, (A.9)

𝑣 =
√
𝜇
(2
r
− 1
a

)
, (A.10)

Θ = tan−1
(
re sin f
P

)
. (A.11)

2. Obtain the orbit elements according to the state of orbits.
If the state at a certain time (r, 𝛼, 𝛿, v, Θ, A) is known, the orbit elements (a, e, i, Ω, 𝜔,

𝜏) can be obtained according to the expressions below:

a = 𝜇r

2𝜇 − r𝑣2
. (A.12)

e sinE = r𝑣 sinΘ√
𝜇a

e cosE = 1 − r
a

⎫⎪⎬⎪⎭ , (A.13)

e =
(
e2cos2E + e2sin2E

)1∕2
E = arctg

e sinE
e cosE

⎫⎪⎬⎪⎭ , (A.14)

𝜏 = t −
(
a3

𝜇

)1∕2
(E − e sinE), (A.15)

i = arccos(cos 𝛿 sinA), (A.16)

sin (𝛼 − Ω) = tg𝛿ctgi

cos(𝛼 − Ω) = cosA
sin i

}
, (A.17)

Ω = 𝛼 − arctg

(
sin (𝛼 − Ω)
cos(𝛼 − Ω)

)
, (A.18){

sin u = sin 𝛿
sin i

cos u = ctgictgA
, (A.19)
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u = arctg
sin u
cos u

, (A.20)

f = 2arctg

[(1 + e
1 − e

)1∕2
tg
E
2

]
, (A.21)

𝜔 = u − f . (A.22)

3. Obtain the state of the orbit according to the ECI coordinate of the satellite.
According to the geometric relations, it can be found that:

r =
√
X2 + Y2 + Z2

𝛼 = tan−1
(Y
X

)
𝛿 = tan−1

(
Z√

X2 + Y2

)
𝑣 =

√
Ẋ2 + Ẏ2 + Ż2

Θ = arcsin

(
XẊ + YẎ + ZŻ

r𝑣

)
A = tan−1

(
−Ẋ sin 𝛼 + Ẏ cos 𝛼

− sin 𝛿 cos 𝛼Ẋ − sin 𝛿 sin 𝛼Ẏ + cos 𝛿Ż

)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

. (A.23)

4. Obtain the satellite coordinate in the ECI system according to the state of the orbit.
The expressions to obtain the position vector [X, Y, Z] and the velocity vector [Ẋ, Ẏ , Ż]

of the satellite according to the motion state are

X = r cos 𝛼 cos 𝛿

Y = r sin 𝛼 cos 𝛿

Z = r sin 𝛿

Ẋ = 𝑣 (cos 𝛼 cos 𝛿 sinΘ − sin 𝛼 cosΘ sinA − sin 𝛿 cos 𝛼 cosΘ cosA)

Ẏ = 𝑣(sin 𝛼 cos 𝛿 sinΘ + cos 𝛼 cosΘ sinA − sin 𝛿 sin 𝛼 cosΘ cosA)

Ż = 𝑣(sin 𝛿 sinΘ + cos 𝛿 cosΘ cosA)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
. (A.24)
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Ambiguous geolocation point, 7, 134, 143
Amplitude-comparison, 48
Analytical solution, 117, 315
Angle of arrival(AOA), 47, 219
Antenna, 10, 30, 48
Apogee, 14
Approximate analytical method, 141
Array, 55
Auxiliary stations, 211

Band, 2
Baseline, 6, 50, 123, 193
Bearings only(BO), 45, 64, 227
Best linear unbiased estimation, 67
Bias, 38, 113
Binary phase-shift keying(BPSK), 166

Calibration, 117, 159
Central limit theorem, 40
Circular error probability, 41
Circular orbit, 15
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Companion matrix, 140
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Condition number, 235
Constellation, 103
Conventional inertial system, 21
Conventional terrestrial pole, 28
Conventional terrestrial system, 28
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Cramér–Rao lower bound(CRLB), 60, 85,

165, 180
Cross ambiguity function(CAF), 165

Digital signal processor(DSP), 56, 171
Direction finding(DF), 47
Direction of arrival(DOA), 47, 144
Discrete Fourier transform(DFT), 55
Doppler, 6, 134
Doppler rate of changing, 179
Dual-satellite TDOA-FDOA, 5, 133

Earth centered inertial, 21
Earth geodetic coordinates system, 28
Earth oblateness, 232
Earth-center earth-fixed coordinates, 22
Eccentricity, 13, 15
Eigenvalues, 41
Electronic intelligence, 1, 10
Electronic reconnaissance System, 3
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Ellipsoid model, 59
Elliptical error probable, 42
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Error ellipse probability, 42
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Fast Fourier transform, 171
Field-programmable gate array, 171
Fisher information matrix, 60, 85, 180, 330
Five-station calibration geolocation

algorithm, 163
Four-station calibration method, 161
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Frequency difference of arrival(FDOA), 5,

133
Frequency modulation, 187
Frequency of arrival, 183
Frquency, 2, 135

Gauss-Newton, 138
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Geographical information system, 100
Geolocation, 2
Geometric dilution of precision, 40, 110
Geostationary orbit, 15
Geosynchronous orbit, 16
Global positioning system(GPS), 23, 112

High earth orbit, 2
Higher order terms, 157, 230
Highly elliptical orbit, 15
Hyperboloid, 6, 36

Inclination, 15
Independent and identically distributed, 39
Initial state error, 239
Instantaneous velocity, 17, 134
Intercept, 1
Interferometer, 49
Intermediate frequency, 135
Intersection, 6, 37, 141
Iterative method, 29, 136, 307

J2 perturbation, 277
J2000.0 geocentric coordinates system, 21
Jacobian matrix, 44, 61, 231

Kepler’s laws, 13
Kinematic principle, 177

Least-squares(LS), 67, 84, 179
Line of position, 34
Line of sight, 3, 47
Local oscillator, 155
Long baseline interferometer, 52, 200
Low earth orbit, 16
Low noise amplifier, 10
Lowpass filter, 50

Maximum likelihood estimation, 84
Mean anomaly, 19
Measurement model, 218
Medium earth orbit, 16
Modefied gain extended Kalman filter, 221
Multi-baseline interferometer, 53
Multiple signal classification, 56
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Navigation, 112
Near space, 203
Newton iteration method, 235
Nonlinear least-squares, 68, 195
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No-solution problems, 102
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Optimal geometric configuration, 207
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Orbit determination, 227
Orbit elements, 18, 351
Orbit ellipse, 14
Orbital period, 14
Osculation error, 86

Particle, 195, 317
Particle filter, 195
Particle swarm optimization, 317
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Passive orbit determination, 227
Perigee, 13
Phase ambiguity, 51
Phase difference, 50
Phase rate of changing, 192
Phase shift keying, 166
Pitch, 24
Platform, 203
Platform body coordinates system, 24
Polar orbit, 15
Primary station, 216
Prior knowledge, 79
Pseudoinverse, 67
Pulse repetition frequency(PRF), 168
Pulse repetition interval, 168

Radio, 228
Radio frequency(RF), 2
Reciver, 10
Recursive orbit, 16
Reference sources, 155
Regular spherical model, 27, 87
Resolution, 103
Right ascension of the ascening Node, 19
Roll, 24
Root mean square(RMS), 38
Root mean square error(RMSE), 39

Satellite, 13
Satellite body coordinates system, 24
Satellite tool kit(STK), 67
Semi-major axis, 14
Side reconnaissance coverage area, 33
Signal Intelligence(SIGINT), 2
Signal-to-noise ratio(SNR), 33, 74, 165
Space electronic reconnaissance, 1

Spherical error probable(SEP), 41
Spherical iteration method, 92
Standard error, 38
State model, 228, 262
Storage, 10
Sub-satellite point, 30
Sunsynchronous orbit, 16
System observability, 44

Taylor series, 157, 229
Telemetry, tracking, command and

monitoring(TTC&M), 10
Three-satellite geolocation, 7, 79
Three-station calibration method, 117
Time difference of arrival(TDOA), 5, 211
Time of arrival, 80, 212
Time past perigee, 20, 313
Topocentric-horizon coordinates

system, 23
Tracking and data relay satellite sytem, 10
Triangulation, 65, 204
Two-body model, 227

Unambiguous visual angle, 51
Uniform linear array, 53
Universal gravitational constant, 100
Unmanned aerial vehicle(UAV), 204

Very high frequency(VHF), 2
Video frequency(VF), 2

Weighted least-squares, 67
WGS-84 earth ellipsoid model, 28
World geodetic system, 27
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